Skip to main content

Advertisement

Log in

Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Drinking teas containing high fluoride (F) imposes fluorosis risk. The soil F bioavailability is an important factor influencing its uptake and contents in teas. The present work was conducted to investigate F fractions in soil and their bioavailability to tea plants. Tea seedlings were cultivated on 6 typical soils treated with a mixture consisting of dolomite, lime, peat and KCl at variable rates in the pot experiment. Soils and young shoots were collected in pairs from 63 sites of 21 plantations in a field experiment. Soil fluoride was sequentially separated into hot water soluble \([{\text{F}}_{{ ( {\text{h, H}}_{ 2} {\text{O,s)}}}} ]\), exchangeable \({\text{F}}\;[{\text{F}}_{{({\text{MgCl}}_{ 2} , {\text{ s}})}} ]\) (by 1 mol L−1 MgCl2, pH = 7.0), F bound to Mn and Fe hydroxides [F(oxides,s)], and organic matter [F(OM,s)] or extracted independently by water \([{\text{F}}_{{ ( {\text{H}}_{ 2} {\text{O)}}}} ]\) or 0.01 mol L−1 CaCl2 solution \([{\text{F}}_{{(0.01{\text{ M CaCl}}_{ 2} )}} ]\). Averaged \({\text{F}}_{{ ( {\text{h, H}}_{ 2} {\text{O,s)}}}}\), \({\text{F}}_{{ ( {\text{MgCl}}_{ 2} , {\text{ s)}}}}\), F(oxides,s) and F(OM,s) accounted for 51, 14, 5 and 30 % of the total sequential extracts, respectively. There were significant correlations among \({\text{F}}_{{ ( 0. 0 1 {\text{ M CaCl}}_{ 2} )}}\), \({\text{F}}_{{ ( {\text{H}}_{ 2} {\text{O)}}}}\) and F(OM,s). Fluoride contents in leaves correlated with \({\text{F}}_{{ ( {\text{H}}_{ 2} {\text{O)}}}}\) (r = 0.71, p < 0.001), \({\text{F}}_{{ ( 0. 0 1 {\text{ M CaCl}}_{ 2} )}}\) (r = 0.93, p < 0.001) and F(OM,s) (r = 0.69, p < 0.01) but not other fractions in the pot experiment and with \({\text{F}}_{{ ( {\text{H}}_{ 2} {\text{O)}}}}\) (r = 0.43–0.57, p < 0.001) and \({\text{F}}_{{ ( 0. 0 1 {\text{ M CaCl}}_{ 2} )}}\) (r = 0.42–0.79, p < 0.001) in the field experiment. It was concluded that 0.01 M CaCl2 extractable fluoride can be a good indicator of soil F bioavailability to tea plants. The significant correlations among some of the F fractions suggested that F in solution, AlF complexes (AlF2 +, AlF2+) and those bound to organic matter likely represent the available pools to tea plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, J., Lee, H. A., Lee, J., & Yoon, H.-O. (2015). Fluorine distribution in soil in the vicinity of an accidental spillage of hydrofluoric acid in Korea. Chemosphere, 119, 577–582. doi:10.1016/j.chemosphere.2014.07.043.

    Article  CAS  Google Scholar 

  • Arnesen, A. K. M. (1997). Availability of fluoride to plants grown in contaminated soils. Plant and Soil, 191(1), 13–25.

    Article  CAS  Google Scholar 

  • Arnesen, A. K. M., Abrahamsen, G., Sandvik, G., & Krogstad, T. (1995). Aluminium-smelters and fluoride pollution of soil and soil solution in Norway. Science of the Total Environment, 163(1), 39–53. doi:10.1016/0048-9697(95)04479-k.

    Article  CAS  Google Scholar 

  • Balcerzak, M., & Janiszewska, J. (2013). Fluorides in tea products and analytical problems with their determination. Critical Reviews in Analytical Chemistry, 43(3), 138–147. doi:10.1080/10408347.2013.766077.

    Article  CAS  Google Scholar 

  • Braen, S. N., & Weinstein, L. H. (1985). Uptake of fluoride and aluminum by plants grown in contaminationed soils. Water, Air, and Soil Pollution, 24(2), 215–223.

    Article  CAS  Google Scholar 

  • Chan, L., Mehra, A., Saikat, S., & Lynch, P. (2013). Human exposure assessment of fluoride from tea (Camellia sinensis L.): A UK based issue? Food Research International, 51(2), 564–570. doi:10.1016/j.foodres.2013.01.025.

    Article  CAS  Google Scholar 

  • Chen, Z. M., & Lin, Z. (2015). Tea and human health: Biomedical functions of tea active components and current issues. Journal of Zhejiang University-Science B, 16(2), 87–102. doi:10.1631/jzus.B1500001.

    Article  CAS  Google Scholar 

  • Chinese Soil Taxonomy Research Group of Institute of Soil Science of Chinese Academy of Sciences, & Cooperative Research Group on Chinese Soil Taxonomy. (2001). Keys to Chinese soil taxonomy (3rd ed.). Hefei: Press of University of Science and Technology of China. (in Chinese).

    Google Scholar 

  • Cronin, S. J., Manoharan, V., Hedley, M. J., & Loganathan, P. (2000). Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand. New Zealand Journal of Agricultural Research, 43(3), 295–321.

    Article  CAS  Google Scholar 

  • D’Alessandro, W., Bellomo, S., & Parello, F. (2008). Fluorine speciation in topsoils of three active volcanoes of Sicily (Italy). Environmental Geology, 56, 413–423. doi:10.1007/s00254-007-1179-7.

    Article  Google Scholar 

  • Frankenberger, W. T., Tabatabai, M. A., Adriano, D. C., & Doner, H. E. (1996). Bromine, chlorine, and fluorine. In D. L. Sparks (Ed.), Methods of soil analysis: Part 3. Chemical methods (pp. 833–867). Madison: Soil Science Society of America.

    Google Scholar 

  • Fung, K. F., Zhang, Z. Q., Wong, J. W. C., & Wong, M. H. (1999). Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion. Environmental Pollution, 104(2), 197–205.

    Article  CAS  Google Scholar 

  • Gago, C. R., Alvarez, E. R., & Fernandez, M. M. L. (2001). Comparison of methods for fluoride extraction from forest and cropped soils in vicinity of an aluminum smelter in Galicia (NW Spain). Communications in Soil Science and Plant Analysis, 32(15), 2503–2517.

    Google Scholar 

  • Gago, C., Romar, A., Fernandez-Marcos, M. L., & Alvarez, E. (2014). Fluoride sorption and desorption on soils located in the surroundings of an aluminium smelter in Galicia (NW Spain). Environmental Earth Sciences, 72(10), 4105–4114. doi:10.1007/s12665-014-3304-8.

    Article  CAS  Google Scholar 

  • Gao, H. J., Zhang, Z. Z., & Wan, X. C. (2012). Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants. Environmental Geochemistry and Health, 34(5), 551–562. doi:10.1007/s10653-012-9459-x.

    Article  CAS  Google Scholar 

  • Kao, C., & Pan, K. (1957). On the characteristic features of the fluorite deposit, Wuyi, Chekiang. Acta Geologica Sinica, 37, 99–108. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Loganathan, P., Gray, C. W., Hedley, M. J., & Roberts, A. H. C. (2006). Total and soluble fluorine concentrations in relation to properties of soils in New Zealand. European Journal of Soil Science, 57(3), 411–421. doi:10.1111/j.1365-2389.2005.00751.x.

    Article  CAS  Google Scholar 

  • Loganathan, P., Hedley, M. J., Wallace, G. C., & Roberts, A. H. C. (2001). Fluoride accumulation in pasture forages and soils following long-term applications of phosphorus fertilisers. Environmental Pollution, 115(2), 275–282.

    Article  CAS  Google Scholar 

  • Loganathan, P., Liu, Q., Hedley, M. J., & Gray, C. W. (2007). Chemical fractionation of fluorine in soils with a long-term phosphate fertiliser history. Australian Journal of Soil Research, 45(5), 390–396. doi:10.1071/sr07030.

    Article  CAS  Google Scholar 

  • Ma, L. F., Shi, Y. Z., Ruan, J. Y., & Han, W. Y. (2001). Status of fluoride of soils from tea gardens in brick tea areas of Hunan, Hubei provinces and its affecting factors. Journal of Tea Science, 22, 34–38. (in Chinese with English abstract).

    Google Scholar 

  • Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis: Mineralogical, organic and inorganic methods. Berlin: Springer.

    Book  Google Scholar 

  • Ruan, J. Y., Ma, L. F., Shi, Y. Z., & Han, W. Y. (2003). Uptake of fluoride by tea plant (Camellia sinensis L) and the impact of aluminium. Journal of the Science of Food and Agriculture, 83(13), 1342–1348. doi:10.1002/jsfa.1546.

    Article  CAS  Google Scholar 

  • Ruan, J. Y., & Wong, M. H. (2001). Accumulation of fluoride and aluminium related to different varieties of tea plant. Environmental Geochemistry and Health, 23(1), 53–63. doi:10.1023/a:1011082608631.

    Article  CAS  Google Scholar 

  • Shu, W. S., Zhang, Z. Q., Lan, C. Y., & Wong, M. H. (2003). Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China. Chemosphere, 52(9), 1475–1482. doi:10.1016/S0045-6535(03)00485-5.

    Article  CAS  Google Scholar 

  • Takmaz-Nisancioglu, S., & Davison, A. W. (1988). Effects of aluminium on fluoride uptake by plants. New Phytologist, 109(2), 149–155.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. doi:http://pubs.acs.org/doi/pdf/10.1021/ac50043a017.

  • Weinstein, L. H., & Davison, A. W. (2004). Fluorides in the environment: Effects on plants and animals. Cambridge: CABI International.

    Book  Google Scholar 

  • Wenzel, W. W., & Blum, W. E. H. (1992). Fluorine speciation and mobility in F-contaminated soils. Soil Science, 153(5), 357–364.

    Article  CAS  Google Scholar 

  • WHO. (2004). Fluoride in drinking water: Background document for development of WHO guidelines for drinking water. WHO/SDE/WSHWHO/03.04/96. Copenhagen, Denmark: World Health Organization.

  • Wong, M. H., Fung, K. F., & Carr, H. P. (2003). Aluminium and fluoride contents of tea, with emphasis on brick tea and their health implications. Toxicology Letter, 137(1–2), 111–120. doi:10.1016/S0378-4274(02)00385-5.

    Article  CAS  Google Scholar 

  • Xie, Z. M., Ye, Z. H., & Wong, M. H. (2001). Distribution characteristics of fluoride and aluminum in soil profiles of an abandoned tea plantation and their uptake by six woody species. Environment International, 26(5–6), 341–346. doi:10.1016/S0160-4120(01)00010-1.

    Article  CAS  Google Scholar 

  • Zhang, L., Li, Q., Ma, L. F., & Ruan, J. Y. (2013). Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze). Plant and Soil, 366(1–2), 659–669. doi:10.1007/s11104-012-1466-2.

    Article  CAS  Google Scholar 

  • Zhou, Q., & Sun, T. (2002). Effects of chromium(VI) on extractability and plant uptake of fluorine in agricultural soils of Zhejiang province, China. Water Air and Soil Pollution, 133(1), 145–160. doi:10.1023/a:1012948131082.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Ministry of Agriculture of China through the Earmarked Fund for China Agriculture Research System (Project No. CARS 23) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyun Ruan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Qiao, S., Ma, L. et al. Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.). Environ Geochem Health 39, 1005–1016 (2017). https://doi.org/10.1007/s10653-016-9868-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9868-3

Keywords

Navigation