
Vol.:(0123456789)

Environmental Fluid Mechanics (2019) 19:1167–1184
https://doi.org/10.1007/s10652-019-09671-3

1 3

ORIGINAL ARTICLE

Effect of the water depth on oscillatory flows over a flat plate: 
from the intermittent towards the fully turbulent regime

Steven J. Kaptein1   · Matias Duran‑Matute1 · Federico Roman2 · Vincenzo Armenio3 · 
Herman J. H. Clercx1

Received: 16 April 2018 / Accepted: 11 February 2019 / Published online: 23 February 2019 
© The Author(s) 2019

Abstract
We performed high-resolution numerical simulations of a turbulent flow driven by an oscil-
lating uniform pressure gradient. The purpose was to investigate the influence of a reduced 
water depth h on the structure and dynamics of the turbulent boundary layer and the transi-
tion towards a fully turbulent flow. The study is motivated by applications of oscillatory 
flows, such as tides, in which h is of the same order of magnitude as the thickness of the 
turbulent boundary layer � . It was found that, if h ∼ � , the turbulent flow is characterized 
by (1) an increase of the magnitude of the surface velocity, (2) an increase in the magnitude 
of the wall shear stress and (3) a phase lead of the velocity profiles, all with respect to the 
reference case for which h ≫ 𝛿 . These results are in agreement with analytical solutions for 
a laminar oscillatory flow. Nevertheless, if the value of the Reynolds number is too small 
and h ∼ � , the flow relaminarizes.

Keywords  Oscillatory flow · Shallow flow · Turbulence · Large eddy simulation

1  Introduction

Oscillatory flows are of interest in the offshore industry and in coastal engineering as approx-
imations of some of the typical flows occurring in seas, such as the currents generated by 
waves or by tides. Oscillatory flows have been investigated intensively in the past both experi-
mentally [1–3] and numerically [4–8]. The majority of these studies have been performed in 
experimental set-ups or computational domains where the water depth h was much larger than 
the thickness of the turbulent boundary layer � . Although this is a good approximation for 
wave boundary layers, it is, however, questionable for tides in several regions.
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It is possible to estimate the thickness of the boundary layer � that would exist in an infi-
nitely deep water column, i.e. if h ≫ 𝛿 . According to [1, 5], � is defined as the height at which 
the velocity is maximum for the phase �t = �∕2 , where � is the angular frequency and 
t the time. This phase is defined relatively to the the free-stream velocity U

∞
= U0 sin(�t) , 

with U0 the amplitude of U
∞

 . This definition is valid for both experiments [1] and numeri-
cal simulations [5]. Jensen et al. [1] determined the values of � as a function of the Reynolds 
number using experimental data. They plotted the non-dimensional boundary layer thickness 
��∕U0 as a function of the Reynolds number based on the free-stream velocity, Refs (see their 
Fig. 24).

An example of a tidal flow in which 𝛿 > h can be found along the Dutch coast, around the 
mouth of the river Rhine. In this region, the tidal flow takes the form of a Kelvin wave [9], and 
the boundary layer extends over the entire water depth [10]. Under unstratified conditions, the 
tidal currents are therefore rectilinear along the coast [11, 12], making them a prototype of an 
environmental oscillatory flow. In this case, Refs can be estimated using measurements of the 
surface velocity (see Table 1) and according to the expression Refs = U2

0
∕(��) , where � is the 

kinematic viscosity. The values of Table 1 combined with an extrapolation of the scaling graph 
by Jensen et al. [1] give a non-dimensional boundary layer thickness ��∕U0 ∼ 5 × 10−3 . As 
a result, 0.51 ≲ h∕𝛿 ≲ 0.80 , i.e. the theoretical boundary layer is larger than the water depth.

However, this scaling law is based on experiments and simulations in which the water 
depth was much larger than the thickness of the turbulent boundary layer, and this is not the 
case in the example of the Rhine estuary above. Previously, the influence of a reduced water 
depth on an oscillatory flow has only been briefly investigated by Li et al. [7]. He showed 
in a preliminary study that a reduced water depth greatly influences the momentum balance 
between the pressure gradient, the local acceleration of the flow, and the wall shear stress.

To obtain more insight into the effect of shallowness on oscillatory flows, we propose to 
study a simplified model in which the effect of the water depth has been isolated. In particular, 
we focus on flows within the intermittent turbulent regime reaching the start of the fully tur-
bulent regime. This choice has lead to a simplified approach in which variations in the surface 
elevation and the bottom roughness have been neglected. These choices are further motivated 
in the discussion section. We performed a series of idealized simulations in which the tidal 
forcing is modelled by a horizontal uniform oscillating pressure gradient:

with P the pressure, � the density, x the streamwise direction and U0 the previously men-
tioned amplitude of the free-stream velocity. This approach has been used in [4, 5, 7], and 
the simplicity of such a numerical set-up allows easy comparisons with experiments in 

(1)
�P

�x
= −�U0� cos(�t),

Table 1   Recapitulation of the 
turbulent tidal boundary layer 
thickness in the Rhine estuary for 
spring tide and neap tide

The results are obtained for a tidal period T = 12.42 h [13], a tidal 
angular frequency � = 1.41 × 10−4 s−1 , a kinematic viscosity 
� = 1.14 × 10−6 m s −1 , a non-dimensional boundary layer thickness 
��∕U

0
∼ 5 × 10−3 [1] a depth h = 20 m, and the velocity measure-

ments of Van der Giessen [14] to estimate U
0

U
0
 ( m s−1) Re

fs
� (m) h∕�

Neap tide 0.7 3.06 × 109 24.88 0.51
Spring tide 1.1 7.55 × 109 39.11 0.80



1169Environmental Fluid Mechanics (2019) 19:1167–1184	

1 3

similar configurations [1, 2]. We have simulated the oscillatory flow for three different val-
ues of the Reynolds number

based on the thickness of the Stokes boundary layer �s =
√
2�∕� . Note that this definition 

differs from that of � which was previously defined as the depth of the velocity maximum 
at �t = �∕2 . In fact, this depth in the laminar case is given by � =

3

4
��s [2]. The chosen 

values for Re
�
 ( Re

�
= 990 , 1790 and 3460) correspond to tests 6, 8 and 10 in the study of 

Jensen et al. [1]. For each value of Re
�
 , we varied the ratio h∕�s from 5 to 70.

In the remaining part of this manuscript, we first briefly present a laminar analytical 
solution. Afterwards, we describe the numerical model and the set-up. Finally, we expose 
our numerical results on the turbulent flow in shallow water environments through a study 
of mean velocity profiles, the mean wall shear stress, and the depth-integrated turbulent 
kinetic energy (TKE).

2 � Laminar solution

In the laminar case, the flow is governed by the simplified Navier–Stokes equations,

in which the streamwise velocity u depends on the vertical coordinate y (positive upwards) 
and on time.

This equation can be rewritten as

where � represents the shear stress defined as � = ��(�u∕�y) . In order to analyse the influ-
ence of the reduced water depth on the velocity profile, the analytical solutions to Eq. (3) 
can be studied via: (1) a phase difference � , and (2) a change in the amplitude A. Both 
� and A are defined with respect to the free-stream velocity U

∞
 , i.e. the time-signal of 

the velocity infinitely far away from the bottom wall. For more details about the analytical 
solutions, the reader is referred to the Appendix. Since the flow is investigated in terms of 
velocity profiles, water depth and wall shear stress, three different phase shifts and three 
different amplitudes are considered: �

∞
 , �h,f and �

�
 , and A

∞
 , Ah,f and A

�
 . The shift �

∞
 

and the amplitude A
∞

 are not related to a reduced water depth. They simply denote the 
phase shift and amplitude of the infinite velocity profile as a function of the position y in 
the water column; the shift �h,f and amplitude Ah,f denote the phase shift and the amplitude 
of the surface velocity signal in a reduced water depth configuration as a function of the 
total water depth h; shift �

�
 and amplitude A

�
 denote the phase shift and the amplitude of 

the wall-shear stress signal in a reduced water depth configuration as a function of the total 
water depth h.

As expected, the phases and amplitudes change with changing depth. Figure 1 shows 
these different phase shifts (i.e. positive phase differences � ) defined with respect to U

∞
 as 

a function of y∕� (for �
∞

 ) or h∕� (for �h,f and �
�
 ). This figure also shows of A

∞
 , Ah,f and 

A
�
 From Fig. 1, it can be seen that the influence of the water depth on the velocity phase 

(2)Re
�
=

U0�s

�

(3)
�u

�t
= �

�
2u

�y2
+ U0� cos(�t),

(4)
�u

�t
= −

1

�

�P

�x
+

1

�

��

�y
,
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and amplitude becomes significant from h ≲ 2𝛿 . For a general description, three different 
cases can be identified.

Case 1: h ≳ 2𝛿 . The wall shear stress leads the free-stream velocity by an angle 
�

�
= �∕4 . The momentum balance is mainly between the local acceleration and the pres-

sure gradient. When h decreases, the phase shifts and amplitudes remain constant but the 
contribution of the wall shear stress to the momentum balance becomes increasingly more 
important.

Case 2: 𝛿 ≲ h ≲ 2𝛿 . When h ∼ 2� , the velocity profile changes to accommodate to the 
no-stress boundary condition at the free-surface which results in slight adjustments of �h,f , 
�

�
 and Ah,f . When h approaches � , the amplitude of the free surface velocity Ah,f reaches 

a maximum and the phases �h,f , ��
 increase significantly. This is due to the size reduction 

of the upper water layer lying in between the heights y = � and y = h . As this upper layer 
is resisting, via viscous forces, the motion of the lower water layer, lying between y ≲ 𝛿 , 
its size reduction implies a reduction of its damping effect on the lower such that Ah,f can 
reach a maximum.

Case 3: h ≲ 𝛿 . First, the increasing amplitude of the velocity generates higher gradients 
close to the wall resulting in an increase in the shear stress amplitude A

�
 . Second, when 

h becomes too small, the oscillating boundary cannot fully develop anymore: Ah,f and A
�
 

both decrease towards zero. At the same time, �h,f and �
�
 keep increasing until they con-

verge to �∕2.
The analytical laminar solutions give an overview of the influence of the water depth on 

the oscillating boundary layer in the laminar regime. It is also a model for turbulent flows 
if the eddy viscosity is considered constant. Nevertheless, a constant eddy viscosity is not 
realistic (see the plane averaged eddy viscosity calculations of Salon et  al. [5, 15, 16]). 
In order to investigate the turbulent oscillatory flow accurately, we performed numerical 
simulations which we describe in the following sections.

3 � Numerical set‑up

In high resolution numerical simulations, the value of the Reynolds number that can 
be achieved is limited by computational requirements. In fact, the value for most 
tidal flows cannot be reached with the current day resources. This is also the case for 
the Rhine estuary: the characteristics of the Rhine estuary presented in the introduc-
tion (i.e. � = 1.41 × 10−4s−1 ; � = 1.14 × 10−6m2 s −1 and 0.7m s−1 ≤ U0 ≤ 1.1 m s−1 ) 

(a) (b)

Fig. 1   Phase shift (a) and the amplitude (b) of the surface velocities and the wall shear stress with respect 
to U

∞
 . Note that �

∞
 and A

∞
 are function of y∕� while �h,f , ��

 , Ah,f and A
�
 are function of h∕�
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suggest Re
�
∼ 105 . The highest Reynolds number that we can compute with the present day 

resources at a satisfactory resolution is Re
�
= 3460 , and this is also the highest value of Re

�
 

for which experimental data is available. A similar ’down-scaling’ approach has already 
been used by Salon et al. [15] to study turbulence in an oscillatory flow subjected to rota-
tion. Simulations with Re

�
= 1790 (using large eddy simulations, abbreviated ’LES’) 

and Re
�
= 990 (using direct numerical simulations, abbreviated ’DNS’), have also been 

performed to investigate the influence of this parameter on the flow, between the laminar 
and fully turbulent flow. For these values of the Reynolds number, either fully developed 
turbulence (for Re

�
= 1790 ) or intermittent turbulence (for Re

�
= 990 ) is present [5, 6], 

although not throughout the full tidal cycle. For each value of the Reynolds number, simu-
lations have been carried out for five different values of h∕�s i.e., 5, 10, 25, 40 and 70. In 
total, 15 combinations of values for h∕�s and Re

�
 have been carried out.

In the simulations, the filtered, three-dimensional continuity and Navier–Stokes equa-
tions are solved in non-dimensional form:

where ⋅̄ denotes a filtered quantity and * denotes a non-dimensional quantity. The z∗-direc-
tion is the spanwise direction and w∗ its associated velocity, v∗ is the vertical velocity and 
�i1 the Kronecker delta. The first term on the right hand side represents the filtered pres-
sure gradient, the second term represents the viscous forces, the third term the large scale 
oscillating driving force and the fourth term the modelled subgrid-scale stresses. The non-
dimensional coordinates x∗

i
= (x∗, y∗, z∗) have been made non-dimensional with h, the 

velocity variables u∗
i
= (u∗, v∗,w∗

) with U0 , the time t∗ with h∕U0 , the pressure p̄∗ with �U2
0
 

and the subgrid scale stresses �∗
ij
 with U2

0
 . The numerical algorithm has been previously 

used successfully in similar studies [5, 15, 16] and is based on the fractional step method 
for non-staggered grids of Zang et al. [17]. A successive over relaxation (SOR) with multi-
grid is used to solve the Poisson equation and the algorithm is overall second order accu-
rate in both time and space. For more details see [5]. The code was already parallelized in 
the spanwise direction using the Message Passing Interface (MPI) technique. Recently, the 
pressure solver (i.e. the bottleneck in terms of computational requirements) has also been 
parallelized in a second direction. This has made the algorithm roughly one order of mag-
nitude faster according to our own tests.

The subgrid scales are parametrized using the dynamic Smagorinsky approach of 
Armenio and Piomelli [18]. The simulations at Re

�
= 1790 and Re

�
= 3460 are performed 

with LES, while the simulations at Re
�
= 990 are performed in DNS (i.e. with finer reso-

lution and �∗
ij
= 0 ). This is motivated by the fact that, although the dynamic Smagorinsky 

model has been proved to give excellent results for highly unsteady flows [19], it is not 
able to reproduce well the relaminarization occurring at the lower Reynolds number of 
Re

�
= 990 [5].

(5)
𝜕ū∗

i

𝜕x∗
i

=0

(6)

𝜕ū∗
i

𝜕t∗
+ ū∗

j

𝜕ū∗
i

𝜕x∗
j

= −

𝜕p̄∗

𝜕x∗
i

+

1

Re
𝛿

𝛿s

h

𝜕
2ū∗

i

𝜕x∗2
j

+

2

Re
𝛿

h

𝛿s

cos

(
2

Re
𝛿

h

𝛿s

t∗
)
𝛿i1 −

𝜕𝜏
∗

ij

𝜕x∗
j
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In most of the simulations, the computational domain was chosen with horizontal 
sizes of 65�s in the streamwise direction and 32�s in the spanwise direction (see Fig. 2). 
Only for Re

�
= 1790 or Re

�
= 990 and h∕�s = 5 (i.e. simulations characterized by high 

intermittency), the domain was doubled in the horizontal directions, keeping the grid-
spacing constant. The boundary conditions are periodic in the horizontal directions, a 
no-slip condition is applied at the bottom and a rigid-lid no-stress condition at the top. 
This means that dynamic vertical variations in the water level were neglected. For the 
simulations with Re

�
= 1790 or Re

�
= 990 and h∕�s = 5 wall imperfections in the spirit 

of Blondeaux and Vittori [20] are applied to favour retransition to turbulence after pre-
vious relaminarization. The horizontal resolution in wall units, defined by x+

i
= xi�∕u� 

(with u
�
=

√
�w∕� the friction velocity and �w the wall shear stress), was chosen such 

that �x+ (streamwise) was less than 45y+ for the LES simulations and 12y+ for the DNS 
simulations. The spanwise grid spacing �z+ was chosen to be at most 22y+ for the LES 
simulations and 14y+ for the DNS simulations. In the vertical, wall-normal direction, 
the cells were clustered close to the wall. The ratio between the vertical lengths of two 
successive cells (i.e. stretching) was kept lower than 3%. This limit was set such, since a 
higher stretching would reduce the accuracy of the numerical algorithm. As a result, the 
cell size in the vertical direction increases from �y+ = 2y+ to �y+ = 22y+ (to �y+ = 14y+ 
for the DNS simulations). Once the maximum grid spacing was reached, the grid spac-
ing was kept constant in the remaining part of the domain. These criteria have been 
based on the estimated size of turbulence structures [21, 22] and results from previous 
studies [5, 6]. For simulations characterized by a low h∕�s ratio, time-step convergence 
has been checked by decreasing the Courant number. It was found that the Courant num-
ber value of 0.6 gave converged results for all the simulations except for Re

�
= 1790 , 

h∕�s = 5 (i.e. simulations characterized by high intermittency) for which convergence 
was achieved for a Courant number equal to 0.3. Additionally, it has to be mentioned 
that the results for the simulations with Re

�
= 990 and h∕�s = 5 where still highly grid 

dependent, probably because the flow relaminarize through the whole cycle.
Initial turbulence was generated by interpolating the velocity field from a converged 

turbulence simulation (either a plane channel flow or an oscillatory flow at lower reso-
lution) for which the mean velocity was removed. The spin-up of the simulations takes 
several periods. Therefore, we discard the first five periods and started to average from 
period six to skip the transient regime. The velocity profiles and other statistical quanti-
ties have been obtained by averaging over horizontal planes as well as by performing 
phase averaging. By taking advantage of the anti-symmetry of the flow between �t and 
�t + � , statistics were accumulated over about 40 time windows (i.e. 20 periods).

Fig. 2   Sketch of the computa-
tional domain, with the oscil-
lating pressure gradient in the x 
direction. The estimation of the 
metric size of the domain in the 
streamwise and the spanwise 
direction is based on the value 
of �s for � = 1.41 × 10−4 s−1 and 
� = 1.14 × 10−6 m s−1
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4 � Results

4.1 � Validation against experimental data

The data of Jensen et al. [1] has been used to validate several numerical simulation studies 
with similar set-ups to ours, including Costamagna et al. [6] (for Re

�
= 990 ), Salon et al. 

[5] (for Re
�
= 990 and Re

�
= 1790 ) and Radakrishnan and Piomelli [4] (for Re

�
= 3460 ). 

Jensen et al. [1] performed their experiments in a U-shaped water tunnel with a 10 m long 
working section, a 0.39 m width and a 0.28 m depth. The velocities were measured with 
two laser-Doppler anemometers, and the wall shear stress with a hot film probe using a 
sample interval of 14 and 48 ms within an oscillating cycle of 9.72 s (i.e. 200–600 samples 
per cycle). For more details about the experimental set-up, the reader is referred to Jensen 
et al. [1].

Among the several numerical studies, the one of Salon et al. [5] used a previous ver-
sion of our code. Salon and co-authors extensively compared their numerical results at 
Re

�
= 1790 and h∕�s = 40 to the experimental results in terms of wall shear stress, velocity 

profiles, turbulence intensities and Reynolds shear stresses, and they claimed a very good 
agreement except for some discrepancies between some of the numerical and experimental 
turbulent intensities. Since our simulations at Re

�
= 3460 are the first simulations at this 

high Reynolds number value for which the wall layer is resolved (in Radakrishnan and 
Piomelli [4] a wall model was used), we display the wall shear stress and four velocity 
profiles in Fig. 3 together with the available data of Jensen et al. [1]. Note that ⟨⋅⟩ denotes 
a plane and phase-averaged quantity. The wall shear stress agreement is excellent for 
Re

�
= 1790 and very good for for Re

�
= 3460 except that the maximum in the numerical 

signal is slightly higher than the maximum in the experimental signal. This feature was 
also observed by Radhakrishnan & Piomelli [4] and the difference is consistent with the 
rounding performed by Jensen et al. [1] (private communication) to compute the value of 
the Reynolds number.

The agreement of the velocity profiles is also excellent in the wall region but differs 
non-negligibly higher in the water column. However, we can argue about the accuracy of 
the experimental data higher in the water-column. Indeed, far from the wall, the surface 
velocity evolves as sin(�t) and the velocity profiles at �t = �∕4 and �t = 3�∕4 should 
coincide. This concurrence is observed in the numerical profiles but not in the experimen-
tal data. Furthermore, the divergence between numerical and experimental results are also 
visible in the modelled wall simulations of Radhakrishnan and Piomelli. A possible expla-
nation of these discrepancies is that the experimental set-up does not lead to a perfectly 
symmetric flow as suggested by the authors themselves in [23] and later pointed out by 
Salon et al. [5].

4.2 � Velocity profiles and turbulent boundary layer thickness

The velocity profiles for the three values of Re
�
 (i.e. 990, 1790 and 3460) and h∕�s = 70 

are displayed in Fig. 4, and the turbulent boundary layer thickness � can be estimated from 
the graph by determining, for each value of Re

�
 , the height at which the velocity profile for 

the phase �t = �∕2 is maximum.
Table  2 shows that the turbulent boundary layer grows in size with Re

�
 . As a result 

every simulation is characterized by a specific value of h∕� and the simulations cover a 
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wide range of values for h∕� , including simulations that are not influenced and simulations 
strongly influenced by the finite water depth. Three simulations have a value for h∕� similar 
to those of the Rhine estuary.

4.3 � Surface velocity and turbulent wall shear stress

The impact of a reduced water depth on the flow properties is observable in Fig. 5. In this 
figure, the wall shear stress is shown as a function of time, and the velocity at �t = �∕2 
is shown as a function of the depth, for all the combinations of values of Re

�
 and h∕�s . 

For simulations with Re
�
= 990 and Re

�
= 1790 , and h∕�s ≥ 25 , the velocity profiles are 

hardly affected by the water depth, but for simulations with Re
�
= 3460 , the profile is 

already affected when h∕�s = 25 . According to Table 2, h∕� = 1.98 for the simulation with 
(Re

�
= 1790;h∕�s = 25) and h∕� = 1.42 for the simulation with (Re

�
= 3460;h∕�s = 25) . 

This means that the effect of the water depth becomes clearly visible for 1.5 ≲ h∕𝛿 ≲ 2.0.

(a) (b)

Fig. 3   Comparison between the results of the numerical simulations and the data from the experimental 
results of Jensen et al. [1]. On the left hand side (a) the numerically computed, plane and phase averaged 
wall shear stress is displayed for the three values of the Reynolds numbers in the largest depth configuration 
(i.e. h∕�s = 70 ). On the right hand side (b), the plane and phase-averaged velocity profiles for Re

�
= 3460 

and h∕�s = 70 are shown for �t = {�∕4,�∕2, 3�∕4,�} . Wall shear stress data for Re
�
= 990 was not avail-

able

Fig. 4   Velocity profiles for 
h∕�s = 70 every ��t = �∕12 in 
the acceleration phase and for 
three different Reynolds number 
values
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Similar to the velocity profiles, the wall shear stress is also affected by the water depth. 
For all the values of the Reynolds number simulated, the signals of the wall shear stress as a 
function of time are nearly equal as long as h∕� ≥ 25 but the signals react differently for each 
Re

�
-value if a smaller depth is considered, see Fig. 5. For Re

�
= 1790 and for Re

�
= 3460 , 

the amplitude of the wall shear stress is the largest for h∕�s = 10 , followed by h∕�s = 5 and 
finally by h∕�s ≥ 25 . This behaviour suggests that for 0.50 ≲ h∕𝛿 ≲ 2.00 , the amplitude of 
the wall shear stress is maximum. In contrast, for Re

�
= 990 the magnitude of the wall shear 

stress decreases slightly for h∕�s = 10 compared to the cases with h∕�s ≥ 25 and almost col-
lapses on that of the laminar solution for h∕�s = 5 . This drop is probably related to a complete 
relaminarization of the flow except for the deceleration phase where disturbances are still gen-
erated. Despite this complete relaminarization is not observed for the other simulations, some 
elements suggest that a strong decrease of turbulent activity occurs for these other simulations 
too, although during only part of the oscillation cycle. In fact, it is well known that the transi-
tion to turbulence is marked by a sudden increase in the slope of the wall shear stress time-
series [1, 5, 6]. This phenomenon of sudden increase is observed in all the simulations but the 
wall shear stress follows the laminar solution for some part of the cycle only (1) for Re

�
= 990 

and h∕�s ≥ 10 , (2) for Re
�
= 1790 and h∕�s ≤ 10 and (3) for Re

�
= 3460 and h∕�s = 5 . This 

behaviour suggests that these latter simulations experience partial relaminarization, the simu-
lation with h∕�s = 5 and Re

�
= 990 experiences complete relaminarization while the other 

simulations just experience a reduction in turbulent activity.
Additionally, a more careful look at the velocity profiles for Re

�
= 990 , Re

�
= 1790 and 

h∕�s = 5 , indicated already relaminarization since the velocity profiles converge towards the 
analytical laminar solution. This tendency might be caused by the water depth becoming too 
small to contain the largest turbulence scales. Earlier studies of oscillating pipe flows have also 
shown that reducing the diameter of the pipe delays the transition to turbulence [24, 25]. Dur-
ing this regime, the boundary layer thickness probably switches between its laminar and tur-
bulent thickness. This process is further investigated by means of the TKE in the next section.

4.4 � Turbulent kinetic energy

In order to estimate the amount of turbulence in the computational domain, we define the 
resolved plane averaged TKE, ⟨E⟩p , by

(7)⟨E⟩p =
1

2U2
0

��
u − ⟨u⟩p

�

p

2

+

�
v − ⟨v⟩p

�

p

2

+

�
w − ⟨w⟩p

�

p

2
�

Table 2   Turbulent boundary layer thickness for the three different Reynolds numbers in sufficiently 
large domains, i.e. h∕�

s
= 70 , (left) and the corresponding h∕� ratio for the 15 different ( Re

�
, h∕�

s
 ) cou-

ples (right)

Reδ δ/δs δ/h

990 7.76 0.11
1790 12.60 0.18
3460 17.60 0.25

Reδ , h/δs 5 10 25 40 70

990 0.64 1.29 3.22 5.15 9.02
1790 0.40 0.79 1.98 3.17 5.56
3460 0.28 0.57 1.42 2.27 3.98

The cells coloured in gray represent simulations for which the h∕� ratio is comparable with the h∕� ratio 
estimated for the Rhine estuary
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where ⟨⋅⟩p refers to plane averaging only. The choice of not using a combined plane and 
phase averaged velocity for the computation of the plane and phase averaged TKE, E, is 
motivated by the turbulence intermittency observed in some simulations. For example, for 
h∕�s = 5 and Re

�
= 1790 , there is a certain randomness in the phase at which transition to 

turbulence occurs, and the flow at a specific phase can be either laminar during a certain 
cycle or turbulent during a different cycle. The mean velocity of the flow in laminar condi-
tions is different from the mean velocity of the flow in turbulent conditions. As a result, 

(a) (b)

(c) (d)

(e) (f)

Fig. 5   Plane and phase averaged velocity profiles at �t = �∕2 (left column, i.e. a, c, e) and wall shear 
stress series (right column, i.e. b, d, f) for Re

�
= 990 (top, i.e a, b), Re

�
= 1790 (middle, i.e. c and d) and 

Re
�
= 3460 (bottom, i.e. e and f). The laminar analytical solutions are also displayed and the subscript 5 

refers to h∕�s = 5
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computing ⟨E⟩p for each phase using the local mean velocity gives more reliable results 
than using the phase-averaged mean velocity. The mean resolved TKE E is defined as the 
phase average of the ⟨E⟩p over the number of cycles nc:

where the cycle numbers 1 and nc do not account for the discarded cycles in the transient 
regimes. To have a fair comparison between the different simulations, E is integrated 
between 0 and 5�s:

This quantity is displayed as a function of time in Fig.  6. For Re
�
= 3460 , the mini-

mum value of E5�s
 decreases with h∕�s . Furthermore, the lowest values of E5�s

 for h∕�s = 5 , 
Re

�
= 3460 occur slightly before �t = � , just before the increase in slope of the wall shear 

stress, a strong indication of relaminarization in the acceleration phase. This feature con-
firms that the sudden increase in slope of the wall shear stress signal is due to transition to 
turbulence after previous relaminarization. For the lower Re

�
 values, the results are similar. 

The temporal minimum of E5�s
 still decreases with h∕�s , and the extent of the cycle for 

which E5�s
 stays low increases, particularly for h∕�s = 5 . Additionally, for all the values 

of Re
�
 , E5�s

 decreases during large parts of the cycle for h∕�s = 10 when compared to the 
simulations with higher h∕�s ratios. The turbulent kinetic energy shows a maximum, which 
is actually the highest for h∕�s = 10 . This could mean that there are higher levels of turbu-
lence during the decelerating phases of the cycle even if the rest of the cycle relaminarizes. 
This finding was already suggested by the wall shear stress in Fig. 5: the evolution of the 
wall shear stress has a higher maximum but also suggests a longer period of turbulence 
activity reduction for h∕�s = 10 and Re

�
= 1790 or Re

�
= 3460 than for the large depth 

simulations.
An additional feature is the apparent decrease of E5�s

 with increasing Re
�
 values. This 

could have several origins: (1) at high Reynolds numbers, turbulent kinetic energy is faster 
transported away from the wall and does not remain in the region 0 ≤ y ≤ 5�5 ; (2) the use 
of DNS for Re

�
= 990 while LES is used for Re

�
= 1790 and Re

�
= 3460 resulting in a 

larger fraction of the resolved fluctuations (this only explains the increase in E5�s
 between 

Re
�
= 990 and Re

�
= 1790 ). The exact cause of this increase in E5�s

 remains however 
unclear and is of minor importance for our investigation.

4.5 � Amplitude and phases of the velocities and wall shear stresses

Figures 5 and 6 have shown that both the value of Re
�
 and the value of h∕�s impact the 

velocity, the wall-shear stress and TKE. Since the flow is periodic in time, the velocity and 
the wall shear-stress can be investigated by means of the phase and the amplitude of the 
periodic signal, in a similar way as for the laminar solution.

The results for �
∞

 , �h,f , A∞
 and Ah,f are shown in Fig. 7 for the turbulent results as well 

as for the analytical solution. The dependence of Ah,f on h∕� and of A
∞

 on y∕� are similar 
for the data from turbulent numerical simulations and the laminar analytical solutions. The 
amplitudes A

∞
 and Ah,f are maximum around h = � and then decrease towards zero. The 

(8)E =

1

nc

nc�

i=1

�
⟨E⟩p

�
i
,

(9)E5�s
(t) = ∫

5�s

0

E(y;t)dy.
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deviation of A
∞

 curves near the bottom is due to the differences in vertical shear between 
a laminar bottom boundary and a turbulent bottom boundary. The agreement between the 
laminar and turbulent results for �h,f and �

∞
 is more qualitative: for the simulations as 

well as for the laminar theory, �h,f increases with decreasing y∕� and �
∞

 increases with 
decreasing h∕� . However, the rate of increase is faster and the limit values are different 
when the flow is laminar than when the flow is turbulent: �

∞
 increases towards �∕4 in the 

laminar case while it increases towards approximately �∕16 in the turbulent case. Addi-
tionally, the data points from the simulations characterized by relaminarization of the flow 
are slightly out of trend. A last remarkable feature is that both the turbulent profiles of A

∞
 

and of �
∞

 collapse on each other, for the three Reynolds numbers. This proves that � is an 
excellent scaling parameter.

The variation of the magnitude A
�
 and phase-shift �

�
 of the wall shear stress is also 

studied, but the analysis of this quantity is more delicate. Indeed Fig.  5 has shown that 
the temporal signal of the wall-shear stress is not sinusoidal for the turbulence simulations 
which makes the identification of the phase shift rather difficult. As a result, the phase lead 
of the wall shear stress with respect to the free-stream velocity is defined as the phase dif-
ference between the maximum wall shear stress and the maximum free stream velocity, 
in agreement with Jensen et al. [1]. Nevertheless, also this definition is difficult to handle. 
Previous studies have shown that turbulence was characterized by a reduction of the phase 
lead of the wall shear stress with respect to the free-stream velocity [1, 2], while the lami-
nar theory suggests an increase of this phase lead with decreasing h∕�s and thus with h∕� , 
see Fig. 1). We are, therefore, in the presence of two competing mechanisms: on one side, 
transition to turbulence decreases the phase lead of the wall shear stress while the interfer-
ence between the boundary layer and the surface increases this phase lead. Nevertheless, 
the amplitude and phase angles for the wall shear stress have been displayed in Fig. 8. In 

(a) (b)

(c)

Fig. 6   Resolved turbulent kinetic energy integrated over 0 ≤ y ≤ 5�s , E5�s
 for Re

�
= 990 (a), Re

�
= 1790 (b) 

and Re
�
= 3460 (c)
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order to eliminate the influence of the Reynolds number, A
�
 and �

�
 have been scaled, so 

that for high values of h∕� , A
�
 and �

�
 are close to their laminar value, respectively �∕4 

and 
√
2∕2 . The amplitude of the wall shear stress A

�
 for the turbulence simulations shows 

a similar behaviour as in the laminar theory, as long as the flow stays turbulent. The data 
points lying slightly out of trend correspond to the lowest Reynolds number ( Re

�
= 990 ). 

For this value of Re
�
 , there is no maximum in the wall shear stress and A

�
 decreases with 

h∕� due to relaminarization.
The behaviour of the turbulent phase shift �

�
 is very different from the laminar case: it 

decreases instead of increasing for decreasing h∕� . It remains unclear if this discrepancy is 
due to the relaminarization occurring for low values of h∕� , to the non-sinusoidal shape of 
the wall shear stress signal or to a combination of these two phenomena. The reason of this 
behaviour could partly be clarified with simulations at a much higher Reynolds number, 
but they are not achievable with the current resources yet.

(a) (b)

Fig. 7   Phase shift (a) and the amplitude (b) of the surface velocity with respect to the free-stream velocity, 
for Re

�
= 990,Re

�
= 1790 or Re

�
= 3460 . Note that �

∞
 and A

∞
 are functions of y∕� while �h,f and Ah,f 

are functions of h∕� . For turbulent flows enough data points are available to present �
∞

 and A
∞

 as lines but 
one point per simulation is available for �h,f and Ah,f and they are presented as symbols. The subscript ’an’ 
refers to the laminar analytical solution while the subscript ’num’ refers to the numerical solution

(a) (b)

Fig. 8   Phase shift �
�
 (a) and the amplitude A

�
 (b) of the wall shear stres, for Re

�
= 990,Re

�
= 1790 or 

Re
�
= 3460 . The subscript ‘an’ refers to the laminar analytical solution while the subscript ‘num’ refers to 

the numerical solution
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5 � Discussion

Numerical simulations have shown that a reduction of the water depth strongly affects tur-
bulent oscillatory flows by generating changes in the amplitude and in the phase of both 
the velocity signals and the wall shear stress signals. The evolution of the phases and the 
amplitudes with the water depth shows a similar trend to the analytical solution in which a 
constant (kinematic) viscosity has been used. In many environmental applications, turbu-
lence is not resolved but modelled for cost efficiency purposes. In this regard, an analytical 
model of the turbulent flow using a constant eddy viscosity approach could give a quick 
first estimation of the velocity profiles and the wall-shear stress. However, for more accu-
rate results, environmental flows often rely on somewhat more sophisticated turbulence 
models, such as the k − � model. The k − � model could be a time saving alternative to high 
resolution simulations, under the condition that it is able to reproduce the features observed 
in the present numerical simulations and in particular the relaminarization. In this regard, 
the results presented in this paper could be an interesting bench mark for k − � based solv-
ers (such as in the paper by Pu [26]), so that more realistic oscillatory flows, incorporating 
free-surface, bottom roughness, rotation or just a higher value for the Reynolds number, 
can be simulated reliably at lower computational costs.

The role played by the ratio h∕� in the theoretical solution of the oscillating bound-
ary layer flow is also relevant for applications in environmental flows. Our results con-
firm the finding of Li et al. [7], that for small ratios of h∕� (such as tidal flows along the 
Dutch coast), the momentum balance is between the local acceleration, the driving pres-
sure gradient and the wall shear stress �w , whereas for large values of h∕� (tidal currents in 
deep oceans, wave boundary layers or seiches in lakes), the balance is mainly between the 
local acceleration and the driving pressure gradient. The claim by Lorke et al. [27], that the 
momentum balance for seiches in an Alpine lake (lake Alpnach) is not comparable with the 
momentum balance of tidal oscillatory flows, is explained by the large h∕� ratio of the lake 
when compared to tidal flows. Note that the oscillatory flow in this Lake is generated by a 
diurnal wind forcing. As a result, free surface effects do not play an important role and due 
to the absence of Coriolis force (because of the small size of the lake), Lake Alpnach can 
be considered as a prototype example of our deep-water simulations.

Additionally, the present results could play a role in estimating the free-stream velocity 
or the friction parameter fw of oscillating tidal flows such as for example in the North-
Sea, the main channel of Skagit Bay (studied for example in [28]) or the tidal channel in 
Three Mile Slough (studied for example in [29]). The results even suggest that the tidal 
free-stream velocity along the Dutch coast, presented in the introduction, could be overesti-
mated by 10–20% since it does not coincide, as implicitly assumed, with the surface veloc-
ity. However, it is necessary to evaluate how accurate the oscillating boundary layer model 
is for actual tidal flows. As mentioned in the introduction, four simplifying assumptions 
have been used: (1) the absence of the Coriolis force, (2) the presence of a flat bottom, (3) 
a rigid-lid assumption and a (4) a relatively low Reynolds number. The first assumption, 
the absence of the Coriolis force can be justified because the purely oscillating motion of 
the flow is a direct result from the Earth’s rotation, via the Kelvin wave. The incorporation 
of the Coriolis force would generate a Stokes–Ekman boundary layer [15, 16] and gener-
ate tidal ellipses that are only observed near the Rhine mouth under stratified conditions, 
or far away from the coast [11]. For the current study, it seems less relevant. The second 
assumption, ignoring of bottom roughness, is clearly a disadvantage of the model. How-
ever, roughness is known to facilitate transition to turbulence [1], so that it can be expected 
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that oscillatory flows with rough bottoms are less affected by relaminarization, maintaining 
the similar trends for laminar and turbulent oscillating flow at lower value of the Reynolds 
number. The third assumption, the rigid lid assumption is probably the most challenging 
one. Near the Rhine mouth, the tidal amplitude varies roughly between 1m during neap 
tide to 2 m during spring tide on a water depth of approximately 20 m [30], so that the free 
surface might play an important role. These first three assumptions could be investigated in 
the future with a DNS or LES approach providing tailor-made models. However, the fourth 
assumption, i.e. increasing the Reynolds number value significantly, is not realistic in the 
near future. Therefore, although we do believe that the reduction of the water depth has 
a non-negligible impact on oscillating tidal flows, we recommend to quantify this impact 
with Reynolds-Averaged Navier–Stokes simulations. The present results are then very use-
ful as a reference case and including understanding of the basic phenomena a calibration 
for the Reynolds-Averaged Navier–Stokes simulations.

6 � Conclusion

The influence of a reduced water depth on turbulent oscillatory flows has been investi-
gated using a high resolution numerical approach (direct numerical simulations and wall-
resolving large eddy simulations) and compared to a laminar analytical solution. In this 
study the water depth h was compared to the thickness of the boundary layer � . It was 
found that turbulent, oscillatory flows are characterized by an increase of the phase lead 
of the surface velocity and the wall shear stress on the free-stream velocity, if the water 
depth is decreased. The evolution of the phase and the amplitude of the turbulent velocity 
time-signals shows similar trends to the analytical laminar solution. However, if the water 
depth is decreased too much, the flow relaminarizes. We would expect that for very high 
Reynolds numbers this relaminarization will only take place for very low values of h∕�s 
(i.e. h∕𝛿s < 5 ), but we cannot currently confirm or validate this statement due to the high 
computational costs such simulations require.

The results of our study may have implications for applications of oscillatory flows 
such as tidal flows. For example, the tidal currents along the Dutch coast are in the shal-
low water regime. However, the influence of other physical actors such as free-surface or 
bottom-roughness have been neglected in the present study and they might be responsible 
for additional effects on these tidal flows. Therefore, we believe that the present findings 
constitute an excellent benchmark for typical environmental fluid mechanics configurations 
and their associated numerical solvers with which the impact of a reduced water depth 
on environmental flows can be further investigated. From a more fundamental point of 
view, we intend to extend this study to investigate the ability that oscillatory flows have to 
mix river-induced stratification. The water depth is believed to play a major role here. In 
too deep water, the turbulent bottom boundary layer does not extend over the entire water 
depth and will be unable to mix the surface layer. In too shallow water layers, the mixing 
potential will be altered by relaminarization.
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A: Analytical solutions

Depending on the top boundary condition used, two different analytical solutions are possible 
for Eq. (3). If an infinite depth is assumed,

where the subscript ∞ refers to the infinite-depth case. In the case of a finite-depth, a no-
stress boundary condition is applied at y = h . In this case, the solution is given by

and the subscript f refers to the finite-depth solution. The real constants A11 , A12 , A21 and 
A22 are given by 

 The two velocities u
∞

 and uf , and the wall-shear stress associated to the latter, �w,f , can be 
put under the form
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and the phases �
∞

 , �h,f and �
�
 read
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