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Abstract
Analytical solutions are developed for the flow induced by a vertically distributed turbu-
lent plume in an otherwise quiescent uniform environment. The plume considered is that 
which forms adjacent to a vertical wall source that emits a flux of buoyancy uniformly 
over its entire area. Two cases are considered: a plume from an elevated source that is 
offset vertically a distance a > 0 from a horizontal boundary, and a source with zero offset 
a = 0 . We adopt a solution technique for the induced flow inspired by Taylor (J Aerosp Sci 
25:464–465, 1958), with the model of a vertically distributed plume developed by Cooper 
and Hunt (J Fluid Mech 646:39–58, 2010) used to represent the boundary condition that 
induces the flow. The solution, developed in terms of the stream function, indicates that 
the induced flow approaches the plume perimeter along an upwardly inclined and continu-
ously steepening path. Speeds in the induced flow increase with horizontal distance from 
the plume perimeter. This occurs as a result of the increasing plume entrainment demand 
with height. Analysing the flow in a Lagrangian framework we show that fluid parcels in 
the induced flow do not simply accelerate towards the plume but, in fact, fluid moving 
along streamlines decelerates to a minimum speed before accelerating towards the plume. 
For the plume with zero offset, the local minimum in speed is predicted to occur once fluid 
parcels cross the locus at � = 7�∕8 radians ( ≡ 157.5◦ ), where � increases anticlockwise 
from the (negative) vertical � = 0 . Finally, the solution derived is applied in the context of 
the built environment to describe the plume induced flow adjacent to the wall of a room 
heated by the sun. The solution indicates that a typical thermal wall plume has the ability 
to draw air laterally over significant horizontal distances and we consider the implications 
for the spread of airborne contaminants.
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1  Introduction

Plane vertical surfaces at a temperature different to their surroundings are prevalent in our 
everyday environment. Examples include an area of a wall in a room that is heated by solar 
radiation and the façade of a glazed atrium cooled by outdoor air. Heat transfer from the 
surface results in a warming or cooling of the fluid adjacent to it and, consequently, a local 
buoyancy force which drives vertical motion under gravity leading to the development of 
a convective boundary layer. This boundary layer, referred to as a vertically distributed 
plume [3, 5, 15] or wall plume, can also form following a supply of buoyant fluid from a 
vertical source. An example is the plume that forms due to the ablation of a vertical ice 
wall submerged in a polar ocean (Kerr and McConnochie [10]). A brief review of experi-
mental and numerical studies undertaken on vertically distributed plumes is given in Tsuji 
and Nagano [24] and Abedin et  al. [1], respectively. Theoretical modelling of vertically 
distributed plumes is discussed in Cooper and Hunt [5], George and Capp [7], and Wells 
and Worster [27].

The Grashof number, Gr, relates driving buoyancy forces to momentum diffusivity and 
in a rising wall plume Gr increases with height. At a sufficiently large height, typically 
for Gr ≳ 109 [25], the plume becomes fully turbulent. In this turbulent regime, a horizon-
tal section through the flow can be separated into three distinct regions, each with differ-
ent dynamics: a laminar near-wall conductive region; an intermediate viscous turbulent 
layer; and an outer inertial turbulent layer [27]. In their measurements, Vliet and Liu [26] 
show that the inner layers account for less than 0.25% of the local volume flux. As a conse-
quence, approaches that have focussed solely on modelling the outer layer (e.g. Caudwell 
et al. [3], Cooper and Hunt [5]) have proven successful in capturing the bulk flow physics 
in vertically distributed plumes. At sufficiently large scales, for example, the plume adja-
cent to a tall building façade heated by the sun, Wells and Worster [27] predict that buoy-
ancy forces are also dominant in the inner layers of the flow and, thereby, exhibit identical 
scalings to the outer layer.

The literature on vertically distributed plumes is mainly centred on those which develop 
adjacent to isothermal surfaces. These studies primarily focus on identifying the verti-
cal variation of the convective heat flux, H, from the vertical surface (the plume source). 
Knowledge of this flux is useful, for instance, to predict the lifespan of a submerged ice 
feature, for which the melting rate is controlled by the heat supplied to the ice–water inter-
face [27]. The dimensionless heat flux is represented by the Nusselt number

[12], where �a is the ambient fluid density, ch the specific heat capacity of the ambient 
fluid, D the relevant thermal diffusivity, ΔT  the temperature difference between the sur-
face and the ambient, and z the vertical coordinate with origin at the base of the plume 
source. Experimental studies, including those of Cheesewright [4], Tsuji and Nagano [23] 
and Tsuji and Nagano [24], conclude that in the turbulent region of the plume flow

is the Rayleigh number, � the kinematic viscosity, Pr = �∕D the Prandtl number and 
g� = g(�a − �)∕�a (where g is the gravitational acceleration) the buoyancy based on the 
density difference between the ambient and the plume fluids. The scaling (2) has also 

(1)Nu =
Hz

�achDΔT

(2)Nu ∝ Ra1∕3, where Ra = Gr ⋅ Pr =
g�z3

D�
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been proposed based on dimensional and asymptotic arguments by George and Capp [7] 
and Hölling and Herwig [8]. Expressions (1) and (2) suggest that the heat flux H from the 
source is independent of height. The constant value of the coefficient  relating the convec-
tive heat flux to the plume buoyancy flux B:

[13], where e is the thermal expansion coefficient, indicates that the turbulent region of 
the plume adjacent to an isothermal surface can be considered to have identical dynamics 
to that of a source with a uniform buoyancy flux. This equivalence leads to universal scal-
ings for the time-averaged quantities of interest in the distributed plume. The scalings with 
height for the time-averaged width b, vertical velocity w and buoyancy g′ in the turbulent 
region [5, 27] are

While a focus of the literature on the vertically distributed plume has been to gain insight 
into the plume, the secondary flow in the ambient that the plume induces has been over-
looked. Our primary aim is to model the flow induced by the turbulent wall plume, which 
is perpendicular to a horizontal boundary, that develops adjacent to a vertical plane that 
supplies a constant flux of buoyancy per unit area. Figure 1a (left) shows a schematic of the 
situation considered. Such an induced flow can have practical implications, for example, to 
the comfort of occupants in a room where the flow of air induced naturally toward a warm 
or a cool wall may prove beneficial by leading odours, stale air or humidity away from 
occupants.

The paper is laid out as follows. First, in Sect. 2 the general method we adopt to model 
the plume induced flow is introduced. The vertically distributed plume boundary condi-
tion is then formulated in Sect.  2.1. Following this, in Sect.  3 an analytical solution for 
the induced flow is derived. In Sect. 4 the solution is analysed—we examine the general 
features of the flow, including the streamline pattern, the flow speeds induced and the effect 
that the plume source strength has on the induced flow. The solution is then considered in 
the context of an application in the built environment. Conclusions are drawn in Sect. 5.

2 � Model development

It is not possible to identify a suitable characteristic length scale in order to enable a simi-
larity scaling for the flow induced by a vertically distributed plume emanating from a uni-
form input of buoyancy as in Fig. 1a for which the offset is zero. The only existing scale, 
�
2∕g3 , has little physical significance and is too small to be considered for any problems in 

practice. As a result, from a modelling perspective, we opt to reframe the problem in terms 
of a more general geometry, namely that corresponding to a distributed plume which is 
offset vertically by a distance a from the horizontal boundary (illustrated in the schematic 
in Fig. 1b (left)). Our original problem now represents the limiting case when the charac-
teristic length scale a → 0.

We draw inspiration from Taylor [22] to formulate a boundary value problem describ-
ing the flow induced by the vertically distributed plume. Specifically, the induced flow is 
modelled as a two-dimensional potential flow, e.g. Kotsovinos [11], Lippisch [14]. The 
flow is assumed to be inviscid, an assumption that is readily justified based on the order 

(3)B = H,  =
ge

�ach

(4)b ∝ z, w ∝ z1∕3 and g� ∝ z−1∕3.



804	 Environmental Fluid Mechanics (2019) 19:801–818

1 3

of magnitude arguments by Schneider [20]. Schneider [20] reasons that the local Reynolds 
number of the induced flow is comparable with that of the plume. This is a consequence of 
the lower induced flow speeds measured relative to the plume flow being compensated for 
by the markedly larger characteristic region over which the induced flow occurs. In terms 
of the stream function � , the inviscid potential flow model for the plume induced flow is 
governed by the Laplace equation

From the reference frame of the ambient, the plume acts as a sink owing to the continuous 
entrainment of ambient fluid and, as such, is modelled here as a vertical distribution of line 
sinks. The local strength of the sinks is governed by the local entrainment velocity which is 
determined based on solutions for the plume from Cooper and Hunt [5].

With reference to Fig. 1b, we introduce a global plane polar coordinate system ( r, � ), 
originating at the base of the offset plume, and a second system, ( ra, �a ), originating at a 
distance a below the horizontal boundary—the latter to account for the offset. This dual 

(5)∇2
� = 0.
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Fig. 1   (left) Schematic of a uniform vertical planar source (red) adjacent to a horizontal boundary for a 
a = 0 and b a > 0 . The rising convective plume draws a bulk secondary inflow (in the direction indicated 
by the curved arrows) from an otherwise quiescent ambient. (right) The corresponding domain, boundary 
conditions and coordinates for the boundary value problem formulated to model the plume induced flow
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coordinate system was used by Hunt and Ingham [9] when modelling the flow induced by 
industrial exhaust hoods. The local coordinate system (x, z) relates to the distributed plume 
(Sect. 2.1) which originates at the offset z = a on the vertical axis (as indicated by the dot 
in Fig. 1b).

Measurements of a saline plume adjacent to a sintered vertical plate in a fresh water 
environment by Cooper and Hunt [5] showed that the distributed plume is straight-sided 
and slender. Based on these results, we approximate the plume width as infinitesimal and 
apply the plume boundary condition, � = �p , along the vertical axis for z ≥ a . A constant 
value for � is enforced along the horizontal axis to represent the horizontal boundary and 
along the vertical boundary for 0 ≤ z ≤ a.

Referring to the diagram in Fig. 1b (right), the governing boundary value problem for 
the induced flow can be represented mathematically by the Laplace equation (5) subject to 
the boundary conditions

Boundary conditions (7) and (8) account for the vertical offset and horizontal boundary, 
respectively. In the limiting case of a zero offset, the two coordinate origins coincide, r = ra 
and � = � − �a . Working in terms of the coordinates (r, � ), illustrated in Fig. 1a (right), the 
boundary value problem simplifies to solving the Laplace equation subject to the following 
reduced form of the boundary conditions

2.1 � Plume boundary condition

To model the flow induced by a vertically distributed plume we require the form of the 
boundary condition � = �p that describes the influence of plume entrainment on the sur-
rounding environment. For this, we adopt the model of the plume formulated by Cooper 
and Hunt [5] as outlined below — their formulation is based on the classic integral tech-
nique popularised by Morton, Taylor and Turner [17]. Such a model assumes that the lami-
nar portion of the plume above the base of the source is negligibly small, and further, that 
viscous forces in the relatively thin sublayers of the turbulent flow adjacent to the source 
have a negligible effect on entrainment. The entrainment hypothesis, ue = �w , introduced 
in Taylor [21] is used to close the governing equations. This hypothesis links the local 
entrainment velocity, ue , to a characteristic local plume velocity, w, using the entrainment 
coefficient �.

By tracking the position of a front in a freshwater filled ‘filling box’ (cf. Baines and 
Turner [2]) formed by supplying saline solution through a sintered vertical plate, Cooper 
and Hunt [5] estimated that the (top-hat) entrainment coefficient takes a value of � = 0.02 . 
Using an identical measurement technique McConnochie and Kerr [15] estimate a value of 
� = 0.014 – 0.017, which is in close agreement with Cooper and Hunt [5], for the plume 
formed following the dissolution of a vertical ice wall in a saline water tank. The value of 
� = 0.02 from Cooper and Hunt [5] is used herein.

(6)𝜒 = 𝜒p on 𝜃 = 𝜋 and 𝜃a = 0 for r > 0, ra ≥ 2a,

(7)� = 0 when � = 0 and �a = 0,

(8)� = 0 when r = ra and � = �a.

(9)� = �p on � = �,

(10)� = 0 on � = �∕2.
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The plume source considered supplies a buoyancy flux per unit area of � = const. . 
Assuming top-hat profiles for vertical velocity and buoyancy, Cooper and Hunt [5] derive 
the following system of ordinary differential equations to describe a vertically distributed 
plume in a uniform environment:

Expressed in terms of the integral fluxes of volume ( Q = bw ), momentum ( M = bw2 ) and 
buoyancy ( B = bwg� ), with b denoting the local plume width and g′ the local buoyancy, 
(11a – c) represent equations describing the vertical variation of fluxes (per unit length) of 
volume, momentum and buoyancy, respectively.

Solving (11a – c) subject to Q = M = B = 0 at z = 0 , Cooper and Hunt [5] develop the 
similarity solutions

Using the solution for Q given in (12), a quantity identical to the two-dimensional stream 
function � , we take the plume boundary condition (6) to be

3 � Solution for the induced flow

Applying the method of separation of variables [19], a broad family of solutions to the 
Laplace equation (5) is identified which takes the form

for constant coefficients k
�
 , l

�
 , m

�
 and n

�
 , where � takes positive integer values to ensure 

that � is single-valued. Owing to the linearity of the Laplace equation, we linearly super-
pose a second family of solutions to (5) in order to account for the plume offset, giving

To satisfy (6)–(8), we match the boundary conditions to (17). To model the stream-
line representing the horizontal boundary (8) we take the difference between the 

(11a -- c)
dQ

dz
= �

M

Q
,

dM

dz
=

QB

M
,

dB

dz
= �.

(12)Q =
3
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(

4

5
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�
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�
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(13)M =
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(

4

5
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�
1∕3

�
2∕3z5∕3,

(14)B = �z.

(15)�p =
3

4

(

4

5

)1∕3

�
2∕3

�
1∕3z4∕3.

(16)�(r, �) = (k0lnr + l0)(m0� + n0) +

∞
∑

�=1

(k
�
r� + l

�
r−�)(m

�
cos(��) + n

�
sin(��)),

(17)

�(r, �, ra, �a) = (k0lnr + l0)(m0� + n0) +

∞
∑

�=1

(k
�
r� + l

�
r−�)(m

�
cos(��) + n

�
sin(��))

± (k0lnra + l0)(m0�a + n0) ±

∞
∑

�=1

(k
�
r�
a
+ l

�
r−�
a
)(m

�
cos(��a) + n

�
sin(��a)).
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superposed solutions in (17). To represent the streamline along the vertical offset we set 
k0 = n0 = m

�
= 0 , reducing (17) to

As a partially-confined problem, the exponent � in (18) need not be restricted to inte-
ger values to maintain single-valuedness. To match the exponent of z in expression (15) 
with that of the global induced flow coordinates r and ra , we assign � = 4∕3 in (18). The 
resulting expression is then matched to the plume boundary condition (15) along the 
vertical axis above the offset at � = � , �a = 0 on setting l

�=4∕3 = l0m0 = 0 and assigning 
n
�=4∕3k�=4∕3 = 3∕4 ⋅ (4∕5)1∕3�2∕3

�
1∕3∕sin(4�∕3).

3.1 � Non‑dimensional variables

Introducing the offset a, we have a characteristic scale with which we scale all lengths to give

Given � characterises the strength of the source, the following scalings are obtained for the 
stream function, volume flux, velocity and time:

respectively.

3.2 � Solution for non‑zero offset ( a > 0)

The dimensionless solution for the flow induced by a vertically offset distributed plume 
(Fig. 1b) is

From (21), the corresponding dimensionless plane polar velocity components are

and

(18)� = l0m0(� − �a) + n
�

(

(k
�
r� + l

�
r−�)sin(��) − (k

�
r�
a
+ l

�
r−�
a
)sin(��a)

)

.
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x
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, ū =

u

(a𝛽)1∕3
, t̄ =

t

a2∕3𝛽−1∕3
,

(21)𝜒̄ =
31∕2

2

(

4

5

)1∕3

𝛼
2∕3

(

r̄
4∕3
a

sin

(

4𝜃
a

3

)

− r̄
4∕3sin

(

4𝜃

3

))

.

(22)
ū
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To evaluate the derivatives in (22) and (23) in a dual coordinate system we expressed the 
coordinates r̄a and �a in terms of r̄ and � . The speed of the induced flow corresponds to the 
square root of the sum of the squares of the velocity components, given by

3.3 � Solution for zero offset ( a = 0)

In the case when the offset a = 0 , the origin of the coordinate system (r, � ) and the image 
system ( ra , �a ) coincide (Fig. 1b), and thus r = ra and � = � − �a . Working in terms of the 
dimensional coordinates (r, � ) (Fig. 1a), (21) reduces to

where �p = � represents the line along which the plume boundary condition is applied. The 
solution cannot be expressed in terms of the dimensionless stream function 𝜒̄ (defined in 
Sect. 3.1) as now a = 0 . The velocity components can be derived from (25) as

and

The induced flow speed is therefore

Although in the above we have taken the plume width to be zero, one may account for the 
plume width by a straightforward modification of our solution in (25) for instances when 
the width is of a considerable scale. Based on (12) and (13), the plume width grows lin-
early as

which can be modelled by applying the solution (25) on � = �p where

4 � Analysis of solution

4.1 � Non‑zero offset ( a > 0)

Dimensionless streamlines, 𝜒̄ = const. , and contours of constant dimensionless speed, 
Ū = const. , are plotted in Fig. 2 for the induced flow of an offset vertically distributed 
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plume. The dimensionless offset is z∕a = 1 . The streamline pattern and speed contours 
are independent of the offset distance a and the plume source strength � (cf. (21) and 
(24) with scalings from (19) and (20)). Immediately evident from the streamline pattern 
is the upward inclination of the induced flow as it approaches the source. The inclina-
tion to the horizontal is approximately �∕3 radians ( ≡ 60◦ ) at the source. The contours 
of constant speed in Fig.  2a show an asymmetry which is more readily visible in the 
zoomed in picture close to the offset in Fig. 2b. Reasoning for this asymmetry is given 
in Sect.  4.2 after we consider the symmetric case achieved for a = 0 . The speeds in 
the induced flow increase with distance from the coordinate origin. Whilst this trend 
is readily explained physically (see below), it points to the limit of applicability of the 
model for large x and z. This is discussed further in Sect. 4.4. The increasing induced 
flow speeds and inclined flow pattern occur due to the increasing entrainment velocity ue 
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Fig. 2   a Streamlines, 𝜒̄ = const. , and contours of constant speed, Ū = const. (dashed lines), for the flow 
induced in the region 0 ≤ (x∕a, z∕a) ≤ 10 by a vertically distributed plume with a > 0 . Values of the stream 
function and speed are overlain. The arrows indicate the direction of flow and the dot corresponds to the 
base of the plume source. b Zoom in of streamline pattern and speeds near the base of the plume source 
located at z∕a = 1
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with height. The increasing entrainment velocity is evident on differentiating the local 
plume volume flux (12) with respect to z, expressed in dimensionless terms as

Buoyancy, continuously input over the entire surface of the source, does work and thereby 
increases the local momentum flux of the plume M, as expressed in (13). The momen-
tum flux M ∝ z5∕3 increases vertically at a faster rate than the corresponding volume 
flux Q ∝ z4∕3 . Given the plume’s entrainment velocity ūe is proportional to the local ratio 
M∕(�1∕3Q) , see (31), ūe also increases with height as ūe ∝ z̄1∕3 . This indicates a stronger 
plume entrainment demand at greater heights, which leads to the increasing induced flow 
speeds with distance from the coordinate origin as illustrated in Fig. 2.

4.2 � Zero offset ( a = 0 ) and application to flow induced by a heated wall in a room

Thus far the focus has been on identifying the general flow features in the induced flow of 
a plume with an offset a > 0 . In the following, we focus on an application in the built envi-
ronment for the case when the offset is zero ( a = 0).

Consider the wall of a large room that is heated by solar radiation. Heat transfer from 
the wall to the adjacent air leads to an upward flowing vertically distributed thermal plume 
and an associated induced airflow in the environment. With this example in mind, we now 
estimate a representative source heat flux. The solar constant, denoting the average incident 
extraterrestrial solar radiation has been measured as 1.36 kWm−2 [16]. This solar energy is 
considerably weakened due to absorption, scattering and reflection by the Earth’s atmos-
phere. In addition, solar rays are typically at some inclination to the vertical surface of the 
wall. For these reasons, we take a lower estimate for the (steady) plume source heat flux 
(assuming a clear sky day) of 1 kWm−2 [18, p. 60]. This is equivalent to a source buoy-
ancy flux per unit area of � = 0.0281 m2s−3 based on expression (3). Figure 3a is a (dimen-
sional) plot of the streamline pattern for the induced flow adjacent to the solar heated wall 
of a room predicted from (25) with � = 0.0281 m2s−3 and �p given in (30). In contrast to 
an offset plume case, here ambient fluid is entrained for all heights z > 0 . Contours of con-
stant speed from (28) are overlain in Fig.  3a. Not unsurprisingly the contours of speed 
appear, at first sight, similar to those in Fig. 2. However, here they are symmetric, forming 
concentric quarter circles about the base of the plume source.

Having analysed the induced flow for the plume with zero offset above, we now provide 
a physical explanation for the asymmetry predicted in the contours of constant speed for 
the plume with an offset in Fig. 2. Consider a streamline ( � = const.) close to the hori-
zontal boundary ( � = 0 ) for x >> 1 . The volume flow rate in the streamtube bounded by 
� = 0 and � = const. is identical to that entrained into the plume between its base and a 
height, say zc , above the base. Consequently, the streamline � = const. intersects the plume 
at height z = zc for a = 0 . Beginning with the reference case a = 0 for which the profiles 
of constant speed are concentric circles centred at (0, 0), as dimension a is increased the 
streamline � = const. intersects the plume at a height z = a + zc . Thus, as the streamline 
pattern distorts from the reference case with increasing dimension a, the speed contours in 
turn respond, breaking the symmetry.

In the interests of developing a simplified model, it may have been tempting at the very 
outset to consider modelling the induced flow as a purely horizontal flow, in other words 

(31)
dq

dz̄
= ūe =

𝛼

(a𝛽)1∕3
M

Q
=
(

4

5

)1∕3

𝛼
2∕3z̄1∕3.
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without reference to the Laplace equation and without satisfying the irrotationality condi-
tion. From volume conservation, (31), this would indicate a speed of

for the induced flow of the plume with zero offset (where the subscript (⋅)s denotes ‘simpli-
fied’). Expression (32) represents a constant speed along horizontal layers in the induced 
flow. In Fig. 3b we have plotted contours of constant difference between the speeds from 
our solution in expression (28) illustrated in Fig. 3a and that based on the simplified calcu-
lation in (32). From Fig. 3b it is evident that (32) underpredicts the induced flow speeds. 
The difference is largest at lower heights and, rather counter-intuitively, away from the 
source. This highlights the role of the irrotationality condition.

Figure 4a presents the variation of speed with height in the induced flow at different 
horizontal distances from the source. The plot indicates that speeds increase with dis-
tance from the source and that the profiles become increasingly uniform away from the 
source. The variation in the speeds implies that a heated surface can influence the flow in 
a region a considerable distance from that surface. Although the induced flow speeds are 
small in this application, smaller than what is typically considered to be a draught1, the 
induced flow can in principle transport fluid over significant distances. For example, at the 
approximate head height of an occupant ( ≈ 1.5m ), air located at a horizontal distance of 
6m from the wall will reach the wall in approximately 3 min. This estimation is based on 
calculating the average speed along the trajectory of a fluid parcel following the streamline 

(32)Us =
(
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)1∕3

�
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Fig. 3   a Streamlines, � = const. (solid lines) m2s−1 , and contours of constant speed, U = const. (dashed 
lines) ms−1 , in the induced flow of a vertically distributed plume with zero offset with source strength 
1 kWm

−2 . Values of the stream function and air speeds are overlain. The perimeter of the plume (dotted 
line) predicted by (30) has been superposed. The arrows indicate the direction of the induced flow. b Con-
tours of constant speed for the difference between the speeds induced in a and the (lower) speeds induced 
based on assuming a horizontal flow in the environment, where the velocity at a given height is equivalent 
to the entrained velocity at that height at the vertical axis

1  Speeds in excess of 0.1 m s−1 are typically regarded as a draught [6].
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� = 0.05 m2s−1 in Fig. 3a. Given that 3 min is short relative to the time spent by an occu-
pant in an office during a typical working day, the induced flow could lead to the spread 
of airborne contaminants (e.g. a virus such as the common cold) from occupant to occu-
pant. Alternatively, these findings indicate that a wall could be actively heated or cooled to 
improve the air quality in a large internal space, e.g. by drawing heat, humidity and stale air 
in an office environment, or aerosols discharged from an industrial process, to the perim-
eter of the room.

4.2.1 � Effect of source strength

If one considers a vertical surface which is actively heated, rather than passively by solar 
radiation, we can assess the effect of source strength. Figure  4b illustrates the role of 
the source heat flux per unit area on the speeds induced at the approximate head height 
( z = 1.5 m ) of an occupant. The source strength imposed is increased in unit increments 
of H = 1 kWm−2 from H = 1 kWm−2 to H = 5 kWm−2 . A greater source strength drives 
larger induced flow speeds (28). The factor increase in speed at a given location is small 
in comparison to that of the respective source strength increase as U ∼ �

1∕3 , and from the 
decreased spacing between adjacent curves, the incremental increase in the induced flow 
speed diminishes with increasing source strength.

4.3 � Accelerating and decelerating flow regions

The contours of constant speed in Figs. 2 and 3a provide additional insights into the flow fea-
tures of the induced flow. Note that while the streamlines are concave, the contours of constant 
speed have a convex form. This implies that the acceleration of fluid parcels in the induced 
flow changes sign. Though one might have initially anticipated the induced flow to gradu-
ally accelerate towards the plume, as we establish below, parcels accelerate following an ini-
tial period of deceleration along their trajectories. From volume conservation, this would 
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cate the direction of increasing distance x in a and source strength H in b 
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suggest that the spacing between adjacent streamlines increases and then decreases as the flow 
approaches the source. This is clearly evident on close inspection of the streamline portraits 
(Figs. 2 (left), 3a).

To establish the aforementioned behaviour, we re-analysed the flows in a Lagrangian 
framework wherein individual fluid parcels of the induced flow were followed. We reframe 
expressions (22) and (23) corresponding to induced flow velocity components of the plume 
with an offset a > 0 , as

and

respectively (with the subscript (⋅)pc reading ‘parcel’). Expressions (33) – (34) enable the 
coordinates ( ̄rpc , �pc ) of a parcel in the induced flow to be determined at each instant in time 
from a given initial position ( ̄ri , �i ). Similarly, the corresponding expressions (26) and (27) 
for the plume with zero offset, lead to

and

respectively, enabling the coordinates ( rpc , �pc ) of a parcel in the induced flow to be deter-
mined at each instant in time from an initial location ( ri , �i ). By definition, the trajectory 
of a parcel will correspond to a streamline for the steady flows considered. Figure 5 (left) 
presents the trajectories of (a) five parcels A, B, C, D and E for the plume with a > 0 and 
(b) four parcels F, G, H and I for the plume with a = 0 , all parcels initially located along 
� = 3�∕4 . The trajectories are determined on numerically solving the respective coupled 
non-linear ordinary differential equations (33), (34) and (35), (36) using a Runge–Kutta 
scheme.

The speed of each fluid parcel was predicted on inputting the coordinates from solving 
(33), (34) and (35), (36) into expressions (24) and (28), respectively. The distance s along a 
given parcel trajectory is given by

(33)
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Figure 5a (right) represents the corresponding speed Ū of the parcels in Fig. 5a (left) along 
their trajectories. The equivalent dimensional plot is illustrated in Fig. 5b for a = 0 . Evi-
dently, there is a turning point, a local minima, in each profile. Moreover, following each 
profile in turn a parcel experiences a reduced acceleration and deceleration with height. 
On comparison of Fig. 5a and b (right), the profiles of speed are asymmetric for the plume 
with a non-zero offset. The asymmetry becomes increasingly pronounced for streamlines 
at lower heights. Furthermore, the steep positive gradient of the speed contours evident in 
this region indicates that there is a strong acceleration in the vicinity of the offset.

Our attention now turns to identifying the precise location in the environment at which the 
transition from deceleration to acceleration occurs. The position at which the acceleration of 
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∫
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a fluid parcel changes sign is where the speed is a local minimum (Fig. 5 (right)), or equiva-
lently, where the separation between adjacent streamlines in Figs. 2a and 3a is largest. For the 
offset plume, this location has been identified on numerically evaluating the speeds along each 
streamline and identifying a locus of minima. The position of the locus is depicted in Fig. 6a, 
where it has been superposed onto the streamline portrait of the plume induced flow from 
Fig. 2. Figure 6 indicates that the high velocity flow further from the source initially (small s) 
slows before increasing in speed closer to the source. For the zero offset case, we use the fact 
that induced flow speeds are solely a function of the radial coordinate (cf. (28)) in order to for-
mulate an expression locating the locus. First, we focus on a single streamline, by equating the 
stream function in (25) to a constant value � , giving

Given the speed is solely a function of the radial coordinate r, and increases with r, we 
seek the location along each streamline where the radial coordinate is minimised. A global 
locus can be identified once this location is determined for all streamlines 0 ≤ � ≤ �p . To 
identify the location at which the radial coordinate is minimised along a given streamline, 
we rearrange expression (38) for r to give

Differentiating (39) with respect to � and equating to zero results in
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Solving expression (40) for � , we derive the periodic solution

from which we select the first root ( n = 0 ) to give

This result indicates that fluid moving along a given streamline in the induced flow of a 
vertically distributed plume with zero offset ( a = 0 ) will undergo a transition from deceler-
ation to acceleration once it encounters the locus at � = 7�∕8 radians ( ≡ 157.5◦ ). The posi-
tion of this locus is depicted in Fig. 6b, where it has been superposed onto the streamline 
portrait of the plume induced flow from Fig. 3a. The locus for the non-zero offset plume 
has a shallow inclination close to the offset of � = 22�∕30 radians ( ≡ 132◦ ). The inclina-
tion increases with height to � = 7�∕8 radians ( ≡ 157.5◦ ) in the vertical limit and matches 
that of the plume with zero offset in (b).

4.4 � Limit on applicability of model

Figures 2 and 3a illustrate that the model predicts speeds in the induced flow that increase 
with distance from the plume source. In the vertical limit as z → ∞ , the speeds tend to 
infinity in response to the infinite plume entrainment velocity (31). This naturally leads 
to the question of the practical limit on the induced flow solutions derived, particularly as 
sources do not extend over an infinite extent in practice.

To address this question it is useful to consider the more realistic case of a source with 
a finite height  . In the solution domain as z → ∞ , the relative source height is infinitesi-
mal ( ( + a)∕z → 0 ) and the far-field induced flow approximates to that above a horizon-
tal line source and thereby induces a flow with a finite speed [22]. Owing to the elliptic 
nature of the governing equation (5), the far-field plume entrainment behaviour (above the 
finite height source) only governs the induced flow field at large radial distances from the 
base of the plume source; the near-field region at smaller radial distances r <  remains 
unaffected. For these reasons we anticipate that our induced flow solutions can be used to 
describe the near-field induced flow region, for radial distances that are less than the verti-
cal dimension of the source.

5 � Conclusions

Analytical solutions have been developed for the flow induced by a rising turbulent plume 
adjacent to a vertical wall source supplying a constant flux of buoyancy. Two cases are 
considered: a plume from an elevated source that is offset vertically a distance a > 0 from a 
horizontal boundary, and a source with zero offset a = 0 . Crucially, the induced flow solu-
tion for a > 0 enables a similarity scaling, which is not afforded for the case a = 0 . This 
scaling enables a universal solution to be formulated that can be straightforwardly utilised 
to describe a range of problems in practice.

The analytical solutions derived, for both a > 0 and a = 0 , indicate that the induced 
flow follows an increasingly upwardly inclined path towards the plume. Speeds in the 
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induced flow increase with horizontal distance from the source. These flow features 
occur as a result of the increasing plume entrainment demand with height. On further 
inspection of the induced flow solutions, we find that fluid parcels do not purely accel-
erate towards the source but, in fact, encounter a period of deceleration, followed by 
acceleration closer to the source. For the plume with zero offset, this is predicted to 
occur once fluid parcels cross the locus at � = 7�∕8 radians ( ≡ 157.5◦ ). The locus is 
located at a greater horizontal distance from the source for the plume with non-zero 
offset. Further, the plume offset creates a strong asymmetry in the profiles of constant 
speed adjacent to the offset, resulting in a strong acceleration of the flow in this region.

The solutions developed are applied in the context of the built environment to 
describe the plume induced flow adjacent to the wall of a room heated by the sun. We 
find that the influence of the wall, somewhat counter-intuitively, increases with increas-
ing distance from the wall.
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