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Abstract
The drift velocity, defined as the velocity of individual phase relative to the water–sedi-
ment mixture, is a key variable in two-phase mixture model. In this paper, a relation for the 
drift velocity in sediment-laden jets, expressed as a power series of the nozzle Stokes num-
ber, was derived by using the perturbation approach. It shows that except the gravity and 
turbulent diffusion, effects of particle inertia, inter-phase interaction, and other forces con-
tained in the first-order particle inertial corrections also play significant roles in sediment-
laden jet flows. Based on the relation for the drift velocity, the velocity and concentration 
distribution were obtained from the similarity solutions for sediment-laden jets. The calcu-
lated concentration and velocity profiles agree well with the experimental observations in 
literature. Furthermore, analysis on the sediment diffusion coefficient shows that the fluid 
turbulence is not the only driving force for the sediment diffusion in sediment-laden jets; 
the effect of particle turbulence on the behavior of sediment-laden jets is also significant 
with the increasing of particle inertia.
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1  Introduction

Turbulent jet, as a common phenomenon found in fluid engineering and a representative 
topic in fluid mechanics, has attracted considerable attention and received extensive inves-
tigation in the past several decades [1, 12, 18, 25, 34]. Previously reported focus is not only 
centered on single-phase jet flows but also on multi-phase jet flows which can be observed 
in a number of circumstances both in natural and engineering circumstances. For instance, 
sediment-laden jets, as a typical of two-phase jets, have been of great interest in fluvial 
hydraulics, not only because there still remain numerous unsolved problems in this field, 
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but also because there are a wide variety engineering applications, such as dredging and 
deepening of canals, and desilting of reservoirs, in which both solid grains and fluids are 
sprayed out of nozzles to develop intensive and concentrated flows against deposited mate-
rials on channel bed. In this case, a better understanding of turbulent sediment-laden jets 
is helpful to improve the efficiency of devices used in dredging. Moreover, because turbu-
lent jets as a typical boundary layer flows involve intensive momentum transfer between 
sprayed fluids and ambient fluids, and thus two-phase jets are usually adopted as a repre-
sentative flow pattern to investigate the underlying mechanisms with respect to inter-phase 
interactions and momentum transfer in sheared two-phase boundary layers. Therefore, 
studies on sediment-laden jets are of importance in both practical applications and theoreti-
cal studies.

A number of experimental investigations upon sediment-laden jets have been conducted 
[2, 12, 18, 21, 22, 24, 31]. In the early stage of these studies, Singamsetti [31] observed 
the axial velocity distribution of sediment-laden downward jets, and found that the axial 
velocity followed a self-similar Gaussian distribution based on the dimensional analysis in 
the zone of established flow. Because the observation was made on water–sediment mix-
tures with the assumption that the sediment and fluid velocities were identical, and thus 
his result cannot reveal the difference between the solid and liquid phase. Subsequently, 
Parthasarathy and Faeth [24] carried out a series of experiments, in which the velocities 
for solid and liquid phase and the sediment concentration for solid phase were measured 
by using a Laser Doppler Anemometer (LDA). Their work were widely cited in theoretical 
studies on sediment-laden jets for it gives comprehensive view of the two-phase jets. With 
the rapid development of the measuring instrument for two-phase flows, more and more 
experiments on sediment-laden jets were conducted and reported. For example, Muste 
et  al. [22] observed the sediment and water velocity in sediment-laden jets with Laser-
Doppler Velocimetry (DLDV) and Particle Tracking Velocimetry (PTV); Jiang et al. [18] 
used an instantaneous whole-field velocimetry tool, Particle Image Velocimetry (PIV) to 
measure the mean and fluctuation velocity for fluid and sediment in sediment-laden down-
ward jets.

It should be noticed that the aforementioned studies were conducted in the condition of 
low concentrations, which permits the assumption that fluids and particles have no signifi-
cant interactions to be acceptable [37]. That those studies had to be limited to low sediment 
concentrations is due largely to the difficulty in measuring the velocity and concentration 
for sediment-laden jets with traditional measurement techniques such as PIV in high sedi-
ment load jet flows. This also has been a limitation for theoretical studies of sediment-laden 
jets under high concentrations. This difficulty has been partially solved recently. Hall et al. 
[12] developed a novel optical probe to measure concentration and velocity of particles 
simultaneously with initial sand concentration by volume as high as 0.124, which provides 
valuable observational data for the study of sediment-laden jets under high concentrations.

In addition to experimental studies, much effort has been made to theoretical descrip-
tions of sediment-laden jets. However, because of the complexity arising from inter-
phase interactions occurred in sediment-laden jets, a large part of theoretical studies 
have to be conducted under simplified circumstances. For instance, Al Taweel and Lan-
dau [1], Shuen et al. [27], Shuen et al. [28], Shuen et al. [29], and Sun and Faeth [32] 
suggested k − � models for sediment-laden jets with at least one of the approximations 
as (1) ignoring the relative velocity between the two phase; (2) ignoring the interac-
tions between sediment and turbulence; (3) or adopting a stochastic approach to con-
sider the effects of the relative velocity and the sediment-turbulence interactions. The 
assumptions make their results meet difficulty in reflecting the effect of the dynamics of 
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two-phase flow on sediment-laden jets. For instance, it is well known that the effect of 
inter-phase interaction on velocity distributions for individual phase due to velocity dif-
ference between two phases is significant for sediment-laden flows [10, 11, 41]; neglect-
ing relative velocity between two phases can lead to lose important information about 
two-phase jets.

As to the theoretical approaches in the studies regarding two-phase jets, it can be found 
that there are several different theories adopted in the previous investigations. Sediment-
laden jets, as well as sediment-laden flows in rivers and channels, are typical two-phase 
flows, so that theories and methods developed in the realm of the two-phase fluid dynam-
ics can be employed with minor adaptions. For instance, numerous achievements on the 
transport of suspended sediment in turbulent open channel flows were reported by means 
of theories and approach developed in two-phase flows dynamics [10, 11, 13, 14, 16, 33, 
40, 41]. As to sediment-laden jets, Jiang et al. [18] analyzed the features of sediment-laden 
jets based on two-phase conservation equations. In his work, the governing equation for 
solid phase contains effects of various terms including body force, turbulence stress and 
inter-phase interaction. Furthermore, by considering dilute two-phase jets, the sediment 
velocity along the central axis was assumed to differ from that of the fluid phase by the 
settling velocity of sediment particles when turbulence stress and inter-phase interaction 
on particles is ignored. Subsequently, Jiang et al. [18] argued that this assumption was still 
approximately valid to extend to the whole jet field. This implies that the effects of parti-
cle turbulent stress and inter-phase interaction were not considered in his study. Actually, 
similar assumption was widely adopted in the study of sediment transport in turbulent open 
channel flows, which leads to the traditional convection–diffusion equation for suspended 
load and resulting in the Rouse equation for sediment concentration profiles. It is a widely 
accepted conclusion that the Rouse equation can give correct concentration profile of sus-
pended sediment only under the circumstances of low particle inertia and concentration so 
that particle–particle and particle–fluid interactions can be neglected (see Greimann and 
Holly [10], Zhang and Prosperetti [38], Zhong et al. [40], Keetels et al. [20]). Similar prob-
lem occurs to sediment-laden jet flows. It shows that, with the increasing of the particle 
size and solid concentration, particle–particle and inter-phase interaction, play significant 
roles in the flow fields of sediment-laden jet. Based on the previous study by Elghobashi 
[8], when the volume fraction of particles is larger than 10−6, the interaction between the 
particle and the flow turbulence cannot be one-way coupling, which means that the proper-
ties of particles has a significant effect on flow turbulence. Therefore, how to establish a 
proper model considering the effects of all the mechanisms on motions of sediment-laden 
jets is the key step for the theoretical studies.

To take into account the inter-phase and particle–particle interactions, in the study con-
ducted by Zhong et al. [41], a relationship for the drift velocity, which is defined as the 
velocity difference between the individual phase and the sediment–water mixture, was 
obtained with the perturbation approach. The expressions for the drift velocity for solid 
phase shows that the motion of the sediment was affected by several key factors includ-
ing gravity, turbulent diffusion, inter-phase interaction, and particle inertia. Applications 
of two-phase mixture equations closed by the drift velocity shows that concentration and 
velocity distributions in open-channel flows are in good agreement with experimental 
observations. Based on the above-mentioned, the previous theoretical studies on sediment-
laden jet flows has not considered the effect of velocity difference between individual 
phases (Jiang et al. [17]), because how to determine the relation for the relative velocity for 
sediment-laden jets considering the effect of inter-phase interaction theoretically is still an 
open issue.
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In this paper, we intend to derive the drift velocity for sediment-laden jets with the similar 
approach based on the two-fluid equations for two-phase flows. Considering the similarities of 
the velocity and concentration profiles in sediment-laden round jets, theoretical expressions 
for the velocity and concentration distribution were obtained, which can account for the effects 
on sediment-laden jets due to inter-phase interactions and particle inertia. Satisfactory agree-
ments between calculated results and experimental observations were obtained. Moreover, 
based on the calculated concentration distributions, the contributions of two different factors, 
i.e., fluid turbulence and particle turbulence which largely depends on the effect of particle 
inertia to the sediment diffusion coefficient were analyzed. It shows that the particle turbu-
lence plays a crucial part in sediment diffusion in jet flows when the Stokes number (particle 
inertia) is large enough.

The paper is structured as follows. Following the Introduction, the constitutive rela-
tion for the drift velocity for sediment-laden jets is derived based on two-fluid equations 
for solid/liquid two-phase flows in Sect. 2. The concentration and velocity distribution are 
obtained by the similarity solutions to the mass and momentum conservation equations for 
sediment-laden jets in Sect. 3. Closures for equations are presented in Sect. 4. Comparisons 
with experimental observations by Parthasarathy and Faeth [24] and Hall et  al. [12] are 
subsequently presented. Finally, a discussion about the effect of particle inertia on sedi-
ment diffusion and the velocity distributions for sediment-laden jets is given. We hope this 
study can not only deepen the understanding of underlying mechanism of sediment-laden 
jets, but also become the basic foundation of practical applications including dredging and 
deepening of canals, desalting of reservoirs, and sewage purification, etc.

2 � Drift velocity for sediment‑laden downward jets

The two-fluid equations for solid/liquid phase flows are widely applied to investigate sedi-
ment-laden flows. As typical incompressible solid/liquid two phase flows, sediment-laden 
flows can be described by the governing equations consisting of the ensemble-averaged 
mass and momentum conservation equations, which are given as follows [6, 9, 13, 14]

where the Cartesian tensor and the summation convention with respect to repeated indices 
i and j are used; the coordinate system and time are denoted, respectively, by xi ( i = 1, 2, 
or 3) and t ; the subscript k is used exclusively to denote the fluid phase with k = f  , and to 
denote the dispersed phase with k = p ; 𝛼̄k = volumetric fraction of phase-k , which satis-
fies 𝛼̄f + 𝛼̄p = 1 ; ⟨u

ki
⟩ = velocity of phase-k ; �k = material density of phase-k ; p = pressure; 

⟨T
kij
⟩=⟨Tv

kij
⟩ + ⟨Tt

kij
⟩ is stress tensor of phase-k , of which ⟨Tv

kij
⟩ is the viscous stress and ⟨Tt

kij
⟩ 

is the turbulent stress including both the small-scale and larger-scale Reynolds stresses; 
bi = body force; f ki = momentum transfer between phases, which satisfies f fi + f pi = 0 ; and 
Dk

�
Dt = �∕�t + ⟨u

kj
⟩���xj is material derivative with respect to the phase-k . In the above 

equations, the variables with an over-bar “–” denote the ensemble-averaged mean values, 
and the variables enclosed by a pair of brackets “ ⟨⟩ ” stand for the concentration-weighted 

(1)
𝜕𝛼̄k𝜌k

𝜕t
+

𝜕𝛼̄k𝜌k⟨uki⟩
𝜕xi

= 0,

(2)𝛼̄k𝜌k

Dk⟨uki⟩
Dt

= 𝛼̄k𝜌kbi − 𝛼̄k
𝜕⟨p⟩
𝜕xi

+
𝜕𝛼̄k⟨Tkij⟩

𝜕xj
+ f ki,
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mean values, which used the concept of an indicator function, defined as follows [6, 9, 10, 
38, 42]:

The function I� = discontinuous function at the interface between phases. Thus the volu-
metric fraction of phase-p is 𝛼̄p = I𝛼 . The concentration-weighted average of a quantity s is 
defined as

The inter-phase interaction corresponding to solid phase adopts the following relation 
reported by Zhong et al. [41]:

where Mpi = summation of external forces on sediment additional to drag; Dij = diffusion 
coefficient tensor; ⟨�p⟩ = particle relaxation time in turbulent flows, which is expressed as

where D is the diameter of sediment particles; �f  is the viscosity of fluid; Cf  is the drag cor-
rection coefficient; The term (1 − 𝛼̄p)

n is introduced to account for the influence from the 
particle cloud [26] and n = 1.7 is used in this paper [10, 41]. However, because informa-
tion regarding the drag coefficient is lacking in turbulent flows of high concentration, the 
approximation for ⟨�p⟩ is used [10]:

where � is the particle fall velocity. The inter-phase interaction expressed by Eq. (5) con-
tains a term associated with turbulence diffusion, which is proved being of significance in 
the process of sediment suspension by turbulence [10, 11, 13, 41].

For a round jet, it is reasonable to adopt the axisymmetric coordinate system with z denot-
ing the axial direction (i.e. x3 in Eqs. (1) and (2)) and r denoting the radial direction (i.e. x1 in 
Eqs. (1) and (2)) (Fig. 1).

Let x3 = z and k = p in Eq. (2) with the inter-phase interaction determined by Eq. (5), we 
had that

(3)
{

I� = 1, If phase � is present

I� = 0, otherwise.

(4)⟨s⟩ = I𝛼s

𝛼̄p
.

(5)f pi =
𝛼̄p𝜌p

�⟨ufi⟩ − ⟨upi⟩
�

⟨𝜏p⟩ −
Dij𝜌p

𝛼̄f ⟨𝜏p⟩
𝜕𝛼̄p

𝜕xj
+Mpi,

(6)⟨𝜏p⟩=
𝜌pD

2
�
1 − 𝛼̄p

�n
18𝜈f 𝜌f Cf

,

(7)⟨𝜏p⟩ =
𝜌p𝜔

�
1 − 𝛼̄p

�n
g
�
𝜌p − 𝜌f

� ,

(8)
𝛼̄p𝜌p

D⟨upz⟩
Dt

= −𝛼̄p
𝜕⟨p⟩
𝜕z

+ 𝛼̄p𝜌pg +
𝜕
�
𝛼̄p⟨Tpzz⟩

�
𝜕z

+
1

r

𝜕
�
r𝛼̄p⟨Tpzr⟩

�
𝜕r

+
𝛼̄p𝜌p

�⟨ufz⟩ − ⟨upz⟩
�

⟨𝜏p⟩ −
Dzz𝜌p

𝛼̄f ⟨𝜏p⟩
𝜕𝛼̄p

𝜕z
−

Dzr𝜌p

r𝛼̄f ⟨𝜏p⟩
𝜕
�
r𝛼̄p

�
𝜕r

+Mpz.
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As in the study of Zhong et al. [41], by introducing the drift velocity defined as the veloci-
ties of the individual phases relative to the velocity of sediment–water mixture, the solid and 
liquid velocity are expressed as follows

and

respectively, where ⟨Vpz⟩ and ⟨Vfz⟩ are the drift velocity of the solid and liquid phase, 
respectively; Uvz = 𝛼̄f ⟨ufz⟩ + 𝛼̄p⟨upz⟩ is the velocity of water–sediment mixture with respect 
to the concentration average. The relation between the mass-weighted velocity of the mix-
ture Umz = 𝛼̄f 𝜌f ⟨ufz⟩ + 𝛼̄p𝜌p⟨upz⟩ and the concentration-averaged velocity is

where 𝜌m = 𝛼̄f 𝜌f + 𝛼̄p𝜌p . The reason for using the concentration-averaged velocities of the 
mixture is that volumetric fluxes are more useful for kinematic analyses than the mass-
weighted velocities for two-phase flow system [16]. Substituting Eqs.  (9) and (10) into 
Eq. (8) yields

(9)⟨upz⟩ = ⟨Vpz⟩ + Uvz,

(10)⟨ufz⟩ = ⟨Vfz⟩ + Uvz, ,

(11)Uvz = Umz − 𝛼̄p
𝜌p − 𝜌f

𝜌m
⟨Vpz⟩,

(12)

�⟨Vpz⟩ − ⟨Vfz⟩
�

⟨𝜏p⟩ +
D
�⟨Vpz⟩ + Uvz

�
Dt

= −
1

𝜌p

𝜕⟨p⟩
𝜕z

+ g +
1

𝛼̄p𝜌p

𝜕
�
𝛼̄p⟨Tpzz⟩

�
𝜕z

+
1

r𝛼̄p𝜌p

𝜕
�
r𝛼̄p⟨Tpzr⟩

�
𝜕r

−
Dzz

𝛼̄p𝛼̄f ⟨𝜏p⟩
𝜕𝛼̄p

𝜕z
−

Dzr

r𝛼̄p𝛼̄f ⟨𝜏p⟩
𝜕
�
r𝛼̄p

�
𝜕r

+
1

𝛼̄p𝜌p
M̄pz

Fig. 1   Configuration of a down-
ward sediment-laden jet
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Considering

Equation (12) can be written as follows:

Equation  (14) can be solved asymptotically, because the term multiplied by ⟨�p⟩ is of a 
small magnitude in comparison with others on the right hand side of Eq. (14) [41]. For this 
purpose, we introduced the reference length scale L , velocity scale U , and viscosity scale �  to 
non-dimensionlize Eq. (14) in order to analyze the relative importance of each term within it. 
The variables in Eq. (14) can be non-dimensionlized as follows:

Using these non-dimensionlized variables, Eq. (14) is rewritten in the following form:

where Re = UL∕�  . If we denote Stb = ⟨�p⟩U
�
L as the bulk Stokes number and 

Fr = U
�√

gL as the Froude number, we can write Eq. (16) as follows:

(13)

𝛼̄f ⟨Vfz⟩ + 𝛼̄p⟨Vpz⟩ = 𝛼̄f
�⟨ufz⟩ − Uvz

�
+ 𝛼̄p

�⟨upz⟩ − Uvz

�

=
�
𝛼̄f ⟨ufz⟩ + 𝛼̄p⟨upz⟩

�
�����������������������

=Uvz

−
�
𝛼̄f + 𝛼̄p

�
�������

=1

Uvz

=Uvz − Uvz

= 0

.

(14)

⟨Vpz⟩ + 𝛼̄f ⟨𝜏p⟩
D
�⟨Vpz⟩ + Uvz

�
Dt

= 𝛼̄f ⟨𝜏p⟩g −
Dzz

𝛼̄p

𝜕𝛼̄p

𝜕z
−

Dzr

r𝛼̄p

𝜕
�
r𝛼̄p

�
𝜕r

+
𝛼̄f

𝛼̄p

�
−
𝛼̄p

𝜌p

𝜕⟨p⟩
𝜕z

+
1

𝜌p

𝜕
�
𝛼̄p⟨Tpzz⟩

�
𝜕z

+
1

r𝜌p

𝜕
�
r𝛼̄p⟨Tpzr⟩

�
𝜕r

+
1

𝜌p
Mpz

�
⟨𝜏p⟩

.

(15)t0 = t
U

L
, x0

i
=

xi

L
, ⟨u0

pi
⟩ =

⟨u
pi
⟩

U
, ⟨p0⟩ = ⟨p⟩

�pU
2
, ⟨T0

pij
⟩ =

L⟨T
pij
⟩

�p�U
,M

0

pi
=

M
pi
L

�pU
2
.

(16)

⟨V0
pz
⟩ + 𝛼̄f

⟨𝜏p⟩U
L

D
�
⟨V0

pz
⟩ + U0

vz

�

Dt0

= 𝛼̄f
⟨𝜏p⟩U
L

gL

U2
−

D0
zz

𝛼̄p

𝜕𝛼̄p

𝜕z0
−

D0
zr

r0𝛼̄p

𝜕
�
r0𝛼̄p

�

𝜕r0

+
𝛼̄f

𝛼̄p

⎡
⎢⎢⎢⎣
−𝛼̄p

𝜕⟨p0⟩
𝜕z0

+
1

Re

𝜕
�
𝛼̄p⟨T0

pzz
⟩
�

𝜕z0
+

1

r0Re

𝜕
�
r0𝛼̄p⟨T0

pzr
⟩
�

𝜕r0
+M

0

pz

⎤
⎥⎥⎥⎦

⟨𝜏p⟩U
L

,



8	 Environmental Fluid Mechanics (2019) 19:1–25

1 3

where �0 = Stb
�
Fr2 = g⟨�p⟩

�
U.

The bulk Stokes number is usually a small value having the magnitude of 10−2 (see Table 1 
in a following section); therefore, the term multiplied by the bulk Stokes number as a small 
perturbation on the drift of sediment particles, as enable us to use perturbation techniques 
to find an asymptotic solution to Eq. (17). Similar approach has been adopted to explore the 
particle distributions in dilute two-phase flows by Druzhinin [7] and dispersion of sediment in 
turbulent open channel flows by Zhong et al. [41]. Here by expanding the drift velocity of the 
solid phase as a power series in terms of the bulk Stokes number, we had that:

Substituting Eqs.  (18) into (17), following the general procedure of the perturbation 
approach [7], we obtained the first two coefficients for the power series as

and

Thus, we had an asymptotic expression for the velocity of the solid phase in terms of the 
bulk Stokes number

(17)

⟨V0
pz
⟩ + 𝛼̄f Stb

D
�
⟨V0

pz
⟩ + U0

vz

�

Dt0

= 𝛼̄f𝜔
0 −

D0
zz

𝛼̄p

𝜕𝛼̄p

𝜕z0
−

D0
zr

r0𝛼̄p

𝜕
�
r0𝛼̄p

�

𝜕r0

+
𝛼̄f

𝛼̄p

⎡
⎢⎢⎢⎣
−𝛼̄p

𝜕⟨p0⟩
𝜕z0

+
1

Re

𝜕
�
𝛼̄p⟨T0

pzz
⟩
�

𝜕z0
+

1

r0Re

𝜕
�
r0𝛼̄p⟨T0

pzr
⟩
�

𝜕r0
+M

0

pz

⎤
⎥⎥⎥⎦
Stb

(18)⟨V0
pz
⟩=

l=∞�
l=0

⟨V0(l)

Dz
⟩Stl

b
.

(19)⟨V0(0)

Dz
⟩ = 𝛼̄f𝜔

0 −
D0

zz

𝛼̄p

𝜕𝛼̄p

𝜕z0
−

D0
zr

r0𝛼̄p

𝜕
�
r0𝛼̄p

�

𝜕r0
,

(20)⟨V0(1)

Dz
⟩ = 𝛼̄f

𝛼̄p

⎡⎢⎢⎢⎢⎢⎣

− 𝛼̄p

D
�
⟨V0(0)

Dz
⟩ + U0

vz

�

Dt0
− 𝛼̄p

𝜕⟨p0⟩
𝜕z0

+
1

Re

𝜕
�
𝛼̄p⟨T0

pzz
⟩
�

𝜕z0
+

1

r0Re

𝜕
�
r0𝛼̄p⟨T0

pzr
⟩
�

𝜕r0
+M

0

pz

⎤⎥⎥⎥⎥⎥⎦

.
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For convenience, the Eq. (21) is written in the dimensional form with the terms with the 
order higher than O

(
St2

b

)
 neglected as follows:

Equation (22) can be further written as

After the gradient of solid concentration is separated out, the solid velocity in the axial 
direction is written as

(21)

⟨u0
pz
⟩ = U0

vz
+ 𝛼̄f𝜔

0 −
D0

zz

𝛼̄p

𝜕𝛼̄p

𝜕z0
−

D0

zr

r0𝛼̄p

𝜕
�
r0𝛼̄p

�

𝜕r0

+
𝛼̄f

𝛼̄p

⎡
⎢⎢⎢⎢⎢⎣

− 𝛼̄p

D
�
⟨V0(0)

Dz
⟩ + U0

vz

�

Dt0
− 𝛼̄p

𝜕⟨p0⟩
𝜕z0

+
1

Re

𝜕
�
𝛼̄p⟨T0

pzz
⟩
�

𝜕z0
+

1

r0Re

𝜕
�
r0𝛼̄p⟨T0

pzr
⟩
�

𝜕r0
+M

0

pz

⎤
⎥⎥⎥⎥⎥⎦

Stb + O
�
St2

b

�
.

(22)

⟨u
pz
⟩ = U

vz
+ 𝛼̄f𝜔 −

D
zz

𝛼̄p

𝜕𝛼̄p

𝜕z
−

D
zr

r𝛼̄p

𝜕
�
r𝛼̄p

�
𝜕r

+
𝛼̄f

𝛼̄p

⎡⎢⎢⎢⎢⎢⎢⎣

−𝛼̄p

D
�
⟨V (0)

Dz
⟩ + U

vz

�

Dt
−

𝛼̄p

𝜌p

𝜕⟨p⟩
𝜕z

+
1

𝜌p

𝜕
�
𝛼̄p⟨Tpzz⟩

�

𝜕z
+

1

r𝜌p

𝜕
�
r𝛼̄p⟨Tpzr⟩

�

𝜕r
+

1

𝜌p
M

pz

⎤⎥⎥⎥⎥⎥⎥⎦

⟨𝜏
p
⟩.

(23)

⟨u
pz
⟩ = U

vz
+ 𝛼̄f𝜔 −

D
zz

𝛼̄p

𝜕𝛼̄p

𝜕z
−

D
zr

r𝛼̄p

𝜕
�
r𝛼̄p

�
𝜕r

+
𝛼̄f

𝛼̄p

⎡⎢⎢⎢⎢⎢⎣

−𝛼̄p

D
�
⟨V (0)

Dz
⟩ + U

vz

�

Dt
−

𝛼̄p

𝜌p

𝜕⟨p⟩
𝜕z

+
𝛼̄p

𝜌p

𝜕⟨T
pzz
⟩

𝜕z
+
⟨T

pzz
⟩

𝜌p

𝜕𝛼̄p

𝜕z

+
𝛼̄p

𝜌p

𝜕⟨T
pzr
⟩

𝜕r
+
⟨T

pzr
⟩

r𝜌p

𝜕
�
r𝛼̄p

�
𝜕r

+
1

𝜌p
M

pz

⎤⎥⎥⎥⎥⎥⎦

⟨𝜏
p
⟩.

(24)

⟨u
pz
⟩ = U

vz
+ 𝛼̄f𝜔 −

D
pzz

𝛼̄p

𝜕𝛼̄p

𝜕z
−

D
pzr

r𝛼̄p

𝜕
�
r𝛼̄p

�
𝜕r

+
𝛼̄f

𝛼̄p

⎡⎢⎢⎢⎢⎢⎣

−𝛼̄p

D
�
⟨V (0)

Dz
⟩ + U

vz

�

Dt
−

𝛼̄p

𝜌p

𝜕⟨p⟩
𝜕z

+
𝛼̄p

𝜌p

𝜕⟨T
pzz
⟩

𝜕z
+

𝛼̄p

𝜌p

𝜕⟨T
pzr
⟩

𝜕r
+

1

𝜌p
M

pz

⎤⎥⎥⎥⎥⎥⎦

⟨𝜏
p
⟩,
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where the sediment diffusion coefficients are, respectively

and

As to the pressure gradient, it is assumed

where �(z) is introduced to account for the effect of dynamic pressure gradient on the 
gradient of pressure in the axial direction. Because of the lack of information about the 
dynamic pressure gradient, for the sake of simplicity, we ignore the effect of dynamic pres-
sure (i.e. �(z)=0 ) in this paper. Therefore, the pressure gradient is assumed as the �f g [18]. 
Consequently, Eq. (24) is reduced to

where �s =
(
1 − �f

/
�p
)
� is the terminal settling velocity of a single particle in still water. 

When we consider fully developed sediment-laden jets, the term D
�
⟨V (0)

Dz
⟩ + U

vz

��
Dt can 

be ignored. As to the force M
pz

 , it usually is the lift force [41]. Because lift on sediment 
particle is nonsignificant in comparison with other forces, for the sake of simplicity, the lift 
force is not considered, and thus M

pz
= 0 is assumed in this paper. Consequently, Eq. (28) 

reduces to

Equation (29) shows that the drift velocity contains a number of effects including gravi-
tational acceleration, turbulent diffusion, and inertia effects. Based on Eq. (29), it can be 
known that when the particle concentration is low enough and particle inertia is small, 
which means that 𝛼̄p ≈ 0, 𝛼̄f ≈ 1 , and Uvz ≈ ⟨u

fz
⟩ , and thus Eq. (29) is reduced to

(25)Dpzz = Dzz −
𝛼̄f

𝜌p
⟨T

pzz
⟩⟨𝜏

p
⟩,

(26)Dpzr = Dzr −
𝛼̄f

𝜌p
⟨T

pzr
⟩⟨𝜏

p
⟩,

(27)
�⟨p⟩
�z

=�f g(1 + �(z)),

(28)

⟨u
pz
⟩ = U

vz
+ 𝛼̄f𝜔s −

D
pzz

𝛼̄p

𝜕𝛼̄p

𝜕z
−

D
pzr

r𝛼̄p

𝜕
�
r𝛼̄p

�
𝜕r

+
𝛼̄f

𝛼̄p

⎡
⎢⎢⎢⎣
−𝛼̄p

D
�
⟨V (0)

Dz
⟩ + U

vz

�

Dt
+

𝛼̄p

𝜌p

𝜕⟨T
pzz
⟩

𝜕z
+

𝛼̄p

𝜌p

𝜕⟨T
pzr
⟩

𝜕r
+

1

𝜌p
M

pz

⎤
⎥⎥⎥⎦
⟨𝜏

p
⟩,

(29)

⟨u
pz
⟩ = U

vz
+ 𝛼̄f𝜔s −

D
pzz

𝛼̄p

𝜕𝛼̄p

𝜕z
−

D
pzr

r𝛼̄p

𝜕
�
r𝛼̄p

�
𝜕r

+
𝛼̄f

𝛼̄p

�
𝛼̄p

𝜌p

𝜕⟨T
pzz
⟩

𝜕z
+

𝛼̄p

𝜌p

𝜕⟨T
pzr
⟩

𝜕r

�
⟨𝜏

p
⟩.

(30)⟨u
pz
⟩ = ⟨u

fz
⟩ + 𝜔s −

D
pzz

𝛼̄p

𝜕𝛼̄p

𝜕z
−

D
pzr

r𝛼̄p

𝜕
�
r𝛼̄p

�
𝜕r

.



11Environmental Fluid Mechanics (2019) 19:1–25	

1 3

If we use the similar method proposed by Jiang et al. [18] to estimate the last two terms 
of Eq.  (30), it is found that the order of these two terms is much smaller than the set-
tling velocity �s ; therefore, these two terms can be neglected and Eq. (30) can be further 
reduced to

which is consistent with the result reported by Jiang et al. [18]. However, with the increas-
ing of the concentration and particle inertia, the effect of particle inertia term has to be 
considered.

3 � Similarity solutions for sediment‑laden jets

The particle concentration is involved in the expression of the velocity for the solid phase 
(Eq. (29)). In order to obtain the expression for the velocity and concentration distribution, 
respectively, the relation between these two variables must be determined in advance. For 
sediment-laden jets, considering the similarity solutions of the velocity and concentration 
[15], we assumed that

where 𝛼̄pm and ⟨u
pzm

⟩ are, respectively, the concentration and velocity along the centerline 
of the jet of interest; Sc is the Schmidt number, defined as the ratio of the eddy viscosity 
coefficient of flows to the sediment diffusion coefficient. It is well known that the cross-
sectional profiles of normalized concentration and mean velocity are self-similar in the 
zone of established flow [12, 15, 34], therefore, in this paper, the similarity solution of the 
concentration is given by

where � = r∕ z , defined as the ratio of the radial length r to the axial length z , is a dimen-
sionless length scale. Thus, the gradient of the concentration in the axial and transverse 
directions are, respectively, expressed as

and

where prime the superscript “ ′ ” denotes �f∕�� . Based on the Eq. (24), the corresponding 
velocity distribution for solid phase is expressed as

(31)⟨u
pz
⟩ = ⟨u

fz
⟩ + �s,

(32)
𝛼̄p

𝛼̄pm
=

� ⟨u
pz
⟩

⟨u
pzm

⟩

�Sc

,

(33)
𝛼̄p

𝛼̄pm
= f (𝜂),

(34)
𝜕𝛼̄p

𝜕z
= −

𝛼̄pm𝜂f
�

z
+ f

𝜕𝛼̄pm

𝜕z
,

(35)
𝜕𝛼̄p

𝜕r
=

𝛼̄pmf
�

z
,

(36)
⟨u

pz
⟩

⟨u
pzm

⟩ = f 1∕ Sc.
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Substitution of Eqs. (33)–(36) into Eq. (29) leads to

So far as the Schmidt number, it is defined as the ratio of the eddy viscosity coefficient to 
the sediment diffusion coefficient and expressed as

Considering the velocity of the water–sediment mixture is

Consequently, Eq. (37) is rewritten as

4 � Closures

Several parameters in the present model must be determined in advance before calculat-
ing the concentration and velocity distributions of sediment-laden jets. For the fluid phase, 
in order to determine the fluid velocity ⟨u

fz
⟩ , the closure for the mean axial velocity ⟨u

fzm
⟩ 

needs to be given; in addition, the eddy viscosity of fluid phase �t
f
 , which is involved in the 

diffusion coefficient Dpij , also needs to be given. For the solid phase, the mean concentra-
tion along the jet centerline 𝛼̄pm and the diffusion coefficients of sediment should be firstly 
determined; in order to determine the stress tensor for solid phase ⟨T

pzz
⟩ and ⟨T

pzr
⟩ , closure 

for the particle turbulence also needs to be given. It should be pointed out that no matter for 
the fluid and solid phase, turbulent models are involved in the closures. Instead of invoking 
complicated turbulent models for two-phase flows [3], as has been adopted by Johansen 
[19], Greimann and Holly [10], and Zhong et al. [41], empirical or semi-theoretical rela-
tions are used in this paper for the purpose of turbulence closure. Details are presented in 
the following subsections.

(37)

⟨u
pzm

⟩f 1∕ Sc = U
vz
+ 𝛼̄f𝜔s −

D
pzz

𝛼̄pmf

�
−
𝛼̄pm𝜂f

�

z
+ f

𝜕𝛼̄pm

𝜕z

�

−
D

pzr

𝛼̄pmf

�
𝛼̄pmf

�

z
+

𝛼̄pmf

𝜂z

�
+

𝛼̄f

𝜌p

�
−
𝜂

z

𝜕⟨T
pzz
⟩

𝜕𝜂
+

1

z

𝜕⟨T
pzr
⟩

𝜕𝜂

�
⟨𝜏

p
⟩.

(38)Sc =
𝜈t
f

Dpzz

=
𝜈t
f

Dzz −
𝛼̄f

𝜌p
⟨T

pzz
⟩⟨𝜏

p
⟩
.

(39)

Uvz = 𝛼̄f ⟨ufz⟩ + 𝛼̄p⟨upz⟩
=
�
1 − 𝛼̄p

�⟨u
fz
⟩ + 𝛼̄p⟨upz⟩

=
�
1 − 𝛼̄pmf

�⟨u
fz
⟩ + 𝛼̄pm⟨upzm⟩f 1+1∕Sc.

(40)

⟨u
pzm

⟩f 1∕ Sc = �
1 − 𝛼̄pmf

�⟨u
fz
⟩ + 𝛼̄pm⟨upzm⟩f 1+1∕Sc +

�
1 − 𝛼̄pmf

�
𝜔s

−
D

pzz

𝛼̄pmf

�
−
𝛼̄pm𝜂f

�

z
+ f

𝜕𝛼̄pm

𝜕z

�
−

D
pzr

𝛼̄pmf

�
𝛼̄pmf

�

z
+

𝛼̄pmf

𝜂z

�

+
𝛼̄f

𝜌p

�
−
𝜂

z

𝜕⟨T
pzz
⟩

𝜕𝜂
+

1

z

𝜕⟨T
pzr
⟩

𝜕𝜂

�
⟨𝜏

p
⟩.
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4.1 � Closures for the fluid phase

The empirical relation for the fluid velocity based on experimental observations in previ-
ous studies [18, 23, 34, 35] is given as

where kcw is a coefficient; the mean axial velocity ⟨u
fzm

⟩ is related to that of the solid phase 
by an empirical relation as follows based on the experiments by Parthasarathy and Faeth 
[24]

where kccw is a coefficient. The mean axial velocity of solid phase ⟨u
pzm

⟩ will be given in 
the following subsection.

The eddy viscosity coefficient of fluid phase was determined by Jiang et al. [18]

where l is the mixing length given by

where k′ is a proportional coefficient, Jiang et  al. [18] suggested an empirical value of 
k′ = 0.017. However, we found in this study that the predicted concentration and velocity 
profiles for sediment-laden jets are in good agreement with experimental data conducted 
by Pathasarathy and Faeth [24], and Hall et al. [12] when it is modified to 0.1. As to the 
turbulence intensity of the fluid phase, the empirical relation based on experimental data is 
given as [18, 34]

4.2 � Closures for the solid phase

The mean axial velocity and concentration for the solid phase along the jet centerline 
have respectively the following relations suggested by [12] based on the experimental 
observations:

and

(41)⟨u
fz
⟩ = ⟨u

fzm
⟩ exp �−kcw�2

�
,

(42)
⟨u

fzm
⟩

u0
= kccw

⟨u
pzm

⟩
up0

,

(43)�t
f
= l

√
u�
fzm

u�
fzm

= l

√
u�
fz
u�
fz

|||r∕ z=0 ,

(44)l = k�z,

(45)
�

u�
fz
u�
fz
=B0⟨ufzm⟩

�
exp

�
−kfcg

�
� − �0

��
+ exp

�
−kfcg

�
� + �0

�2��
.

(46)𝛼̄pm =
kpcm𝛼̄p0[

z
/(

D ⋅ Fr
2∕5

0

)]m ,

(47)⟨u
pzm

⟩ = 1

Fr0

kpcwupz0�
z
��

D ⋅ Fr0
��n ,
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where Fr0 = u0

/(
gD

(
�p − �f

)
∕�f

)0.5 ; upz0 = u0 + �s ; u0 is the discharge fluid velocity; 

kpcm and kpcw are coefficients; the exponent m and n are empirical parameters calibrated 
based upon experimental data. The diffusion coefficient Dij is determined by [5]

As has adopted by Greimann and Holly [10], the correlation of fluctuation velocity of 
fluid phase and particle phase is approximated by the covariance of the fluctuation veloci-
ties of fluid phase [10], i.e.

Thus, the diffusion coefficient is written as

For the turbulent sediment-laden jets, there are no generally recognized theoretical 
expressions for time-scale of the eddy-particle interaction. By analogy with the results in 
turbulent open channel flows [10, 41], the axial and radial time-scale of eddy particle are, 
respectively, given as

Consequently, the diffusion coefficients are rewritten as, respectively,

and

where � , c are proportional coefficients and are calibrated by experiments; �c is the coef-
ficient to take into account the crossing trajectory and continuity effects, which is given by 
Csanady [4]

of which ⟨uri⟩ = relative velocity between sediment and water; �c = ratio of the Lagrangian 
time scale to the eddy-turn over time scale, having a value of 0.67 [30]. The parameter C� 
is used to account for the non-isotropic nature of diffusion in shearing flows: C� = 1 for 
diffusion parallel to the stream and C� = 2 for diffusion perpendicular to the stream [4, 10, 
41].

The stress tensor for solid phase ⟨Tpij⟩ were determined as following relations [18]:

(48)Dij = u�
fi
u�
pj
⟨�fp,j⟩.

(49)u�
fi
u�
pj
≈ u�

fi
u�
fj
.

(50)Dij = u�
fi
u�
fj
⟨�fp,j⟩.

(51)⟨�fp,z⟩ = ��c�
t
f

�
u�
fz
u�
fz
,

(52)⟨�fp,r⟩ = c�c�
t
f

�
u�
fz
u�
fr
.

(53)Dzz = ��c�
t
f
,

(54)Dzr = c�c�
t
f
.

(55)
�c=

⎡
⎢⎢⎢⎣
1+

⎛⎜⎜⎝
C��c

����⟨uri⟩⟨uri⟩
2

3
kf

⎞
⎟⎟⎠

2⎤
⎥⎥⎥⎦

−0.5

,

(56)⟨Tpzz⟩ = −�pu
�
pz
u�
pz
,
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With respect to the particle turbulence closures in dilute sediment-laden jets, it is found that 
they are similar to that of the fluid phase based on the experiments conducted by Parthasarathy 
and Feath [24] and Jiang et al. [18]; thus, the particle turbulence are given as the following 
forms:

where B is a coefficient; G′ is the radial function; kpw′u′ is a proportional parameter values 
of all the coefficients are list in Table 1.

5 � Comparisons with experiments

For verification, experiments conducted by Parthasarathy and Faeth [24] and Hall et al. [12] 
were selected to test the present formulation. Parthasarathy and Faeth [24] conducted their 
experiments in a windowed test tank (410 × 530 × 910 mm high) with a injector (5.08 mm dia, 
350 mm long); Hall et al. [12] conducted their experiments in a rectangular glass tank (1.25 m 
wide, 2.50 m long, and 1.20 m deep) with a metal cone (0.50 m in upper diameter, 0.20 m 
in lower diameter, and 0.50 m in height). The details of flow and sediment characteristics of 
those experimental observations and parameters for theoretical calculations are summarized in 
Table 1. It should be pointed out that the nozzle Stokes number was introduced to denote the 
non-demensionalized particle relaxation time, which is expressed as

where ⟨�f ⟩=L∕U . Usually, the width of the jet expansion b and the initial velocity u0 were 
selected as the length scale L and the velocity scale U , respectively, and thus, ⟨�f ⟩ was 
regarded as the convective time scale of the sediment-laden jet flow. In the preceding sec-
tion we have assumed that the nozzle Stokes number Stb ≪ 1 to obtain an asymptotic solu-
tion for the drift velocity. Because the width of the jet expansion b is proportional to the 
distance z [36], in order to make sure that the nozzle Stokes number satisfies Stb ≪ 1 , the 
selected z should be far enough from the nozzle to make sure that L = b ∝ z ≫ D . This 
requirement indicates that the present study is valid when the distance from the nozzle z is 
bigger than about z = 20D based on the following analysis. Hence L = 100D was used in 
this study.

Comparisons of the calculated and measured sediment concentration and velocity 
profile are shown in Figs. 2, 3, 4, 5, 6 and 7. Figures 2, 3, 4 and 5 show that: (1) the cal-
culated concentration and velocity profile agree well with the experiments conducted by 
Hall et al. [12]; (2) the differences of the predictive velocity profiles between different 
cross-sections (z = 0.1 m and z = 0.6 m) are very small, which implies that the depend-
ence of the velocity profile on z is not remarkable in sediment-laden downward jets; (3) 

(57)⟨Tpzr⟩ = −�pu
�
pz
u�
pr
.

(58)
�

u�
pz
u�
pz
= B0⟨upzm⟩

�
exp

�
−kpcg

�
� − �0

�2�
+ exp

�
−kpcg

�
� + �0

�2��
,

(59)u�
pz
u�
pr
= BG�⟨u

pzm
⟩2� exp �−kpw�u��

2
�
.

(60)Stb =
⟨�p⟩
⟨�f ⟩ ,
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with the increasing of |r∕ z| , the difference of the concentration profile between different 
cross-sections becomes gradually obvious.

Figures 6, 7 show that the calculated concentration and velocity profile agree quite 
well with the experiments by Parthsarathy and Faeth [24]. However, it should be pointed 
out that Eq. (40) cannot be used to predict the concentration and velocity profile when 
z is too small, such as z = 8D and z = 16D , the reason for which is that when the nozzle 
Stokes number is large enough, sediments cannot fully diffuse in the zone near the noz-
zle, which did not satisfy the simplification condition of this study. It is found that the 
values of Stb for experiments by Parthsarathy and Faeth [24] are much larger than that 
by Hall et al. [12]. Therefore, it is reasonable and understandable for the above results.

6 � Discussions

6.1 � Effect of particle inertia on concentration and velocity distributions

The effect of particle inertia on sediment-laden flows is significant which has been illus-
trated in turbulent open-channel flows by Greimann et al. [11], Greimann and Holly [10], 
Zhang and Prosperetti [38], and Zhang et al. [39]. Those results show that the classical dif-
fusion theory for suspended sediment takes into account only the zeroth-order particle iner-
tial effect, as implies that sediment distribution obtained by the diffusion theory can bring 
about obvious deviations from observations when the effect of particle inertia is prominent. 
The results shown in Sect. 5 reveal that particle inertia is also an important factor affecting 
sediment-laden downward jets by various ways. In this section we further discuss the effect 
of particle inertia on the movements of sediment-laden downward jets.

In order to illustrate the effect of particle inertia on the concentration and velocity dis-
tributions in sediment-laden jet flows, the runs of B1, Case 1, and Case 2 with different 
nozzle Stokes number were selected, results of which are shown in Figs. 8, 9. It should 
be pointed out that the cross-sections of z = 0.6m(≈ 39D) for B1, and z = 40D for Case 

Fig. 2   Comparisons of calculated and measured concentration and velocity profiles for Run B1 [12] (lines: 
calculated result; markers: experimental data)
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1 and Case 2 were selected here, because the distance to the nozzle for these three runs is 
almost the same, which are also far enough to make sure that sediment diffusion is fully 
developed. Results show that the sediment diffusion in sediment-laden jets decreases with 
increasing nozzle Stokes number (Fig. 8). However, The variation of the velocity profiles 
(Fig. 9) has not considerable relation with the various Stokes number for both the meas-
ured data and calculated results.

Fig. 3   Comparisons of calculated and measured concentration and velocity profiles for Run B2 [12] (lines: 
calculated result; markers: experimental data)

Fig. 4   Comparisons of calculated and measured concentration and velocity profiles for Run B3 [12] (lines: 
calculated result; markers: experimental data)
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6.2 � Effect of particle inertia on the sediment diffusion

Based on the above analysis, it is found that the effect of particle inertia on the concentra-
tion distribution is significant; therefore, here we further investigate the effect of particle 
inertia on the sediment diffusion coefficient, a key parameter for sediment diffusion. Equa-
tions (25) and (26) show that the sediment diffusion in sediment-laden jets consists of two 
parts, including the fluid turbulence and particle turbulence which closely depends on the 
particle inertia. To investigate the effect of particle inertia, Eq. (25) was expressed as

Fig. 5   Comparisons of calculated and measured concentration and velocity profiles for Run C1 [12] (lines: 
calculated result; markers: experimental data)

Fig. 6   Comparisons of calculated and measured concentration and velocity profiles for Case 1 [24] (lines: 
calculated result; markers: experimental data)
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The contributions of these two factors to the sediment diffusion coefficient for the runs 
of B1, C1, Case 1, and Case 2 were presented, which are shown in Figs. 10, 11, 12 and 13 
It can be seen that: (1) when the nozzle Stokes number is small, such as the case of the run 
B1 and C1, the effect of fluid turbulence on the sediment diffusion is dominant, the contri-
bution of which to the sediment diffusion coefficient almost reaches 100%. This means that 
the effect of the particle turbulence is ignorable because of the small particle inertia; (2) 

(61)
Dpzz = Dzz −

𝛼̄f

𝜌p
⟨T

pzz
⟩⟨𝜏

p
⟩

�����������
Dpz

.

Fig. 7   Comparisons of calculated and measured concentration and velocity profiles for Case 2 [24] (lines: 
calculated result; markers: experimental data)

Fig. 8   Effect of Stokes number 
on the concentration distributions
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comparing Case 1 and Case 2 with the run of B1 and C1, it is found that with the increas-
ing of the nozzle Stokes number, the effect of fluid turbulence decreases, whereas the effect 
of particle turbulence gradually increases, the percentage of which can reach about 40%. 
This implies that the fluid turbulence is not the only driving force for sediment diffusion 
in sediment-laden jets; the effect of particle turbulence as well plays a significant role with 
increasing particle inertia; (3) it is also found that the contribution of the particle turbu-
lence gradually decreases with the increasing value of |r∕ z| , which implies that the farther 
the sediment particle is away from the centerline, the smaller the effect of particle inertia 
is.

7 � Conclusions

In this paper, the drift velocity, understood as the relative velocity of solid or liquid phase 
to the solid/liquid two phase mixtures underling downward jets, was derived by solving the 
two fluid equation for sediment-laden flows by the perturbation approach. With the help 
of the drift velocity, the numerical solutions of the concentration and velocity distribu-
tion were obtained by introducing the similarity function. Comparisons with experimental 
observations conducted by Parthsarathy and Faeth [24], and Hall et al. [12] were presented. 
Conclusions drawn from this study are as following:

1.	 The constitutive relation for the drift velocity in sediment-laden downward jets can 
be expressed as a power series in terms of the nozzle Stokes number (Eqs. (18)–(20)), 
which helps us to understand mechanisms of sediment diffusion induced by kinds of 
actions exerting on sediment particles in jets. The predicted concentration and velocity 
profile considering the effect of the first-order particle inertial correction agree well 
with experiments by Parthsarathy and Faeth [24] and Hall et al. [12]. It shows that the 
behavior of sediment-laden downward jets is not only affected by gravitational accelera-
tion and flow turbulence, the effects of particle inertia, particle tensor, and other forces 
contained in the first-order particle inertial corrections are also of great importance.

Fig. 9   Effect of Stokes number 
on the velocity distributions
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Fig. 10   Contribution of different factor to the sediment diffusion coefficient and the corresponding concen-
tration distribution for run B1 (z = 0.6 m)

Fig. 11   Contribution of different factor to the sediment diffusion coefficient and the corresponding concen-
tration distribution for run C1 (z = 0.6 m)
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Fig. 12   Contribution of different factor to the sediment diffusion coefficient and the corresponding concen-
tration distribution for run Case 1 (z = 40D)

Fig. 13   Contribution of different factor to the sediment diffusion coefficient and the corresponding concen-
tration distribution for run Case 2 (z = 40D)
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2.	 Based on the relation for the sediment diffusion coefficient, the contributions of two 
mechanisms including fluid turbulence and particle turbulence which closely depends 
on particle inertia to the sediment diffusion were analyzed. Results show that fluid tur-
bulence is not the only reason for the sediment diffusion in sediment-laden downward 
jets; the effect of particle turbulence on the sediment diffusion is also significant when 
the particle inertia is large enough. However, with the increasing of |r∕ z| , the fluid 
turbulence generally again becomes the dominant force for sediment diffusion in jets.

3.	 Because of the lack of information on turbulent closures for sediment-laden jets, the 
empirical relations based on experimental observations for the fluid and particle tur-
bulence closures were adopted in this paper. This defect could cause certain errors 
during the application of the present study. Furthermore, in order to get the numerical 
solution of the concentration and velocity distributions for sediment-laden jets, some 
simplifications were adopted in this study. Therefore, how to improve the closures and 
these simplifications is still an important issue in the further study.
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