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Abstract This paper discusses the need for critically evaluating regional-scale
(~200-2,000km) three-dimensional numerical photochemical air quality modeling systems
to establish a model’s credibility in simulating the spatio-temporal features embedded in the
observations. Because of limitations of currently used approaches for evaluating regional air
quality models, a framework for model evaluation is introduced here for determining the suit-
ability of a modeling system for a given application, distinguishing the performance between
different models through confidence-testing of model results, guiding model development,
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and analyzing the impacts of regulatory policy options. The framework identifies operational,
diagnostic, dynamic, and probabilistic types of model evaluation. Operational evaluation
techniques include statistical and graphical analyses aimed at determining whether model
estimates are in agreement with the observations in an overall sense. Diagnostic evaluation
focuses on process-oriented analyses to determine whether the individual processes and com-
ponents of the model system are working correctly, both independently and in combination.
Dynamic evaluation assesses the ability of the air quality model to simulate changes in air
quality stemming from changes in source emissions and/or meteorology, the principal forces
that drive the air quality model. Probabilistic evaluation attempts to assess the confidence
that can be placed in model predictions using techniques such as ensemble modeling and
Bayesian model averaging. The advantages of these types of model evaluation approaches
are discussed in this paper.

Keywords Air quality model - Photochemical model - Model evaluation -
Performance evaluation

1 Introduction

Regional-scale air quality models are designed to simulate air quality in a domain with a
horizontal scale of several hundred to several thousand kilometers and a vertical scale of sev-
eral kilometers. The horizontal grid cell size is usually on the order of a few kilometers and
the smallest vertical grid spacing is on the order of tens of meters. Such three-dimensional
numerical photochemical air quality models (AQMs) play a key role in the development
and implementation of air pollution control rules and regulations in the United States and
elsewhere [1-3], and they are also being used for short-term forecasting of air quality [4—
6]. The prerequisite to such applications is an assessment of the degree to which an AQM
can simulate the spatio-temporal features embedded in air quality data. This paper discusses
multiple approaches for rigorously evaluating three-dimensional photochemical AQMs.

Over the last three decades, several workshops and research papers have addressed the
evaluation of AQMs [7-9]. However, these workshops and papers have addressed short-range
to mesoscale range plume or puff-type AQMs rather than regional-scale three-dimensional
numerical photochemical modeling systems. The statistical metrics developed to evaluate
short-range dispersion models are limited in their ability to evaluate the ability of regional-
scale models to simulate the complex relationships among the variables that constitute the
photochemical system. Most evaluation methods for short-range models focus on generating
statistics of the deviations between the modeled concentrations of a few species and the cor-
responding observations. While such statistics are useful, they provide little insight into the
adequacy of models for the many processes that constitute the complex three-dimensional
air quality system. Recognition of these shortcomings led the U.S. Environmental Protec-
tion Agency (EPA) and the American Meteorological Society (AMS) to convene an invited
group of nearly 100 experts at a workshop during August 7-8, 2007. The objectives of the
workshop were to (1) examine current approaches for the evaluation of regional scale mod-
els, (2) discuss new approaches to advance air quality and related model evaluation methods
and procedures, and (3) develop a set of recommendations for model evaluation methods,
procedures, and metrics for different components of regional AQMs for further testing and
use by the air quality modeling community. This paper is motivated by the discussions held
among the workshop participants.
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2 Model evaluation framework

Three-dimensional time-dependent numerical models of the atmosphere describe processes
at a wide range of spatial and temporal scales, and they are used in widely differing applica-
tions ranging from research on atmospheric processes to air quality forecasting. For regulatory
applications, a model must provide an adequate estimate of concentration response to forcing
variables, such as emissions and meteorology, in addition to adequate quantitative estimates
of species concentrations. By contrast, a forecast model is judged solely by its ability to
simulate the temporal evolution of chosen forecast variables. Hence, model evaluation cri-
teria are dependent on the context in which models are to be applied [10]. Nevertheless, the
following three primary objectives can be identified:

(1) Determining the suitability of a model system for a specific application and
configuration. The main goal of a model evaluation exercise (including regional AQMs) is
to demonstrate that the model is “performing adequately” when compared with observa-
tions, for the purposes for which the model is applied. The purpose of model application
as well as the relevant model outputs should be stated at the outset. For air quality manage-
ment, we are mainly interested in the model’s ability to correctly estimate the air quality
response to changes in potential source emissions. In this application, we focus on assess-
ments of the model’s simulation of the governing processes and the interaction among
them. Emphasis in air quality forecasting is chiefly on the outcome state of the model, a
prediction of next-day air quality.

(2) Distinguishing the performance among different models or different versions of
the same model. We need to compare the relative performance of different mod-
els in comparing their results to observations so we can better understand models’
strengths and limitations. Evaluation procedures must to be able to distinguish the
relative performance with specified levels of statistical significance [11]. The model
inter-comparisons can identify model deficiencies and areas requiring further model
development.

(3) Guiding model improvement. Evaluation exercises should shed light on the uncer-
tainties in the simulation of atmospheric processes attributable to model parameter-
izations and model input. The results of these exercises should lead to improved
AQMs.

Figure 1 introduces a model evaluation framework, incorporating the above three major
objectives. “Operational evaluation” refers to generating statistics of the deviations between
model estimates and observations, and comparing their magnitudes to some selected criteria.
“Diagnostic evaluation” examines the ability of the model to simulate each of the inter-
acting processes that govern the air quality system. “Dynamic evaluation” focuses on the
model’s ability to predict changes in air quality concentrations in response to changes in
either source emissions or meteorological conditions. Recognizing that there is uncertainty
in model inputs and formulation of processes, “Probabilistic evaluation” focuses on the mod-
eled distributions of selected variables rather than individual model estimates at specific times
and locations.

3 Evaluation methods

This section provides details on the approaches embodied in the proposed model evaluation
framework. We provide some illustrative examples of their application to regional AQMs.
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Fig. 1 A framework for evaluating regional-scale photochemical modeling systems

3.1 Operational evaluation

Operational evaluations make use of routine observations of ambient pollutant concentrations,
emissions, meteorology, and other relevant variables. The modeled meteorological variables
considered in operational model evaluation include temperature, moisture (humidity), wind
speed and direction, planetary boundary layer height, surface radiation, clouds and precipi-
tation. Air quality variables include concentrations of ozone (O3), carbon monoxide (CO),
nitrogen oxides (NO, NO,), and fine particulate matter mass and its species (fine particu-
late matter [PM3 5], sulfate [SO4], nitrate [NO3], ammonium [NH4], organic and elemental
carbon [OC, EC)).

The three performance measures most widely used in AQM evaluation (and most other
types of model evaluation) are mean bias (MB), root mean square error (RMSE), and corre-
lation (R) [12]. However, statistical confidence levels in these statistics are rarely calculated.
This information can be used to answer questions such as “Is the model mean bias signif-
icantly different from zero at the 95% confidence level?”, or “Is the correlation coefficient
for one model significantly different from the correlation coefficient for another model?” It
is important to note that observations and corresponding modeled values may contain dif-
ferent spatio-temporal correlation structures, complicating the interpretations of confidence
intervals and other statistics for judging model performance.

The standard metrics (MB, RMSE, and R) do not take into consideration that predictions
from 3-dimensional regional AQM models are volume-averaged ensemble mean (represent-
ing average weather conditions, physical processes, and chemical reaction rates) concen-
trations, whereas observations are point measurements reflecting individual events. This
inconsistency is referred to as the incommensurability or change of support problem [13].
One way of dealing with this problem is to use spatial smoothing such as block-kriging on the
observed data to produce values that can be compared with the grid-averaged model estimates.
However, such smoothing techniques rely on a statistical model to interpolate observations,
and, thus, the evaluation is based on a comparison of the results of two different models,
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and not a direct comparison of model output and corresponding observations. Furthermore,
observations contain measurement errors while model outputs contain errors due to inadequa-
cies in both the model input data and the model’s representations of the relevant atmospheric
processes.

Often, dense observations at the ground level and aloft are not available to adequately
define the initial and boundary conditions for numerical photochemical AQMs [14]. It is
well-recognized that without completely knowing the 3-D initial chemical state of the atmo-
sphere, its future state cannot be simulated accurately. Also, whereas the observations contain
stochastic variations, models do not. Thus, one should expect differences between model out-
puts and their corresponding observations. Most operational model evaluations conducted
and published to date have simply paired the observations and modeled values in computing
statistical metrics such as MB, RMSE, and R without properly taking into account the points
mentioned above. Hence, any agreement found between the paired observations and modeled
results should be considered fortuitous.

The spatio-temporal patterns of model predictions and observations can be compared by
determining the fractional overlap of spatial patterns or time series of predictions and obser-
vations [15]. The evaluation could determine whether the scales of variability in the predicted
and observed patterns are comparable using correlation and spectral analysis. Differences
between maps of model predictions and maps computed from observations yield a spatial
difference field. Investigation of spatial patterns can be done using statistical measures of
spatial dependency, such as the variogram function, and temporal dependency structure can
be studied with methods such as spectral analysis. For example, time series of ozone (O3)
have been decomposed into spectral bands representing intra-day, diurnal, synoptic, sea-
sonal, and longer-term fluctuations [16,17]. Figure 2a illustrates the comparison between
these component spectra estimated from 15 years of observed and CMAQ model-predicted
hourly O3 data. The figure reveals the model’s ability in capturing the variability associated
with diurnal and synoptic features in the time series of O3. There are apparent problems
in the model’s simulation of the variability inherent in high-frequency (hour-to-hour) vari-
ations, as well as a tendency for the model to underestimate the variability of the seasonal
and longer-term O3 signal, possibly due to the inaccuracies in the regional model’s boundary
conditions, emissions, and representation of the free tropospheric processes.

Empirical orthogonal functions can also be used for analysis of spatial/temporal data. This
approach provides a decomposition of the spatial response surfaces in terms of the principal
components that explain the spatial structure at different scales. For this second-order assess-
ment (based on the correlation structure), graphical displays can be used such as the spatial
variogram and estimated temporal spectrum for both model output and data-based grid cells,
and also for the difference field (differences maps between model and data-based grid cells).

Some graphical techniques in operational model evaluation have been alluded to earlier
in conjunction with standard statistical metrics. While scatter plots of percentile values of
pollutant concentrations and time-series plots have been useful for regional AQM analyses
[5,18], it may be more appropriate to aggregate results across coherent space and/or time
regions based on techniques such as Principal Component Analysis to represent distributional
quantities, and not single point observations [19,20]. For example, daily time series of sum-
mary statistics for O3 concentrations over all monitoring sites in a region (where pollutants
are spatially-coherent) can be plotted as box plots over a month or longer period for model
results and observations. The hourly O3 concentration values for a month (or a season) at
a site (or averaged over sites within a given sub-region) can be used to track the diurnal
variation of modeled and observed averages, variances, bias, etc. Time series of model bias
and error distributions are also useful. Pie charts or bar graphs of particulate matter species
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Fig.2 aPower spectra of O3 time series from CMAQ model results (blue line) and observations from ground
monitoring networks (red line). Time series of model and observed data used in the analysis covers a 15-year
period ending in 2002; b same as (a) except for wind speed

are useful for comparing simulated and observed chemical constituents of size-segregated
particulate matter [21]. Scatterplots can be used to compare distributions of observed and
modeled parameters, such as that for PMj; 5 shown in Fig. 3 [22]. From an operational evalua-
tion perspective it is recommended that standard statistics (R, MB, RMSE) be calculated from
the distributional comparisons of observed and modeled variables; this is a more appropriate
alternative to strict pair-wise comparisons.

Performance goal plots (“soccer” plots) that summarize model performance by plotting
performance goals and criteria for fractional bias versus fractional error, and concentra-
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tion performance plots (“bugle” plots) that display fractional bias or error as a function of
concentration have been suggested [23]. A Taylor diagram [24], which combines model
error and correlation statistics in a single plot, has been found to be useful for comparing
the performance of several models [25]. Figure 4 provides an illustration of the Taylor dia-
gram where, for each model included, the standard deviation of simulated values (radius)
and the time correlation between simulated and observed values (angle from horizontal) are
indicated. The standard deviation of observations is shown as the point on the horizontal
axis, and circles centered on this point represent points of equal simulation error standard
deviation. As shown in the figure, error standard deviations are smallest for models with the
highest correlations.

For regional models in particular, a basic comparison of the spatial extent and magnitude
of the modeled concentration field through a concentration isopleth or colored grid plot over-
laid with the observations or compared with a similarly analyzed field from the data-based
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grid cell values from kriging or other spatial analysis techniques, can often provide a strong
initial indication of how well the model is predicting the spatial texture and magnitude of the
species of interest. This type of screening analysis is often the essential first step in putting
into perspective the representativeness of the statistical measures and deciding on subsequent
steps in the operational evaluation. The spatial extent comparison can be made more objec-
tive by using pattern comparison techniques, such as the figure of merit [26] and e-folding
distance [27].

Emission models are an integral part of regional AQM systems and need to be evalu-
ated. However, estimates from emissions models cannot be directly compared with observed
values because emission observations generally do not exist on the regional-scale. The sole
exception to this general case is the Continuous Emissions Monitoring Systems (CEMS),
which measure primary pollutant emissions on the tall stacks of large electrical generat-
ing units. These data are used directly as emission inputs into AQMs. For other emissions
sectors, the primary assessment tool is quality assurance and control of the process, such
as aggregating emissions estimates by state or by source sector and comparing these esti-
mates to previous or independent emissions estimates. Examining statistical distributions of
emissions across a model domain can help identify outliers or questionable data for further
examination. Studying the spatial distribution of emissions surrogates (e.g., population, road
networks) or the temporal allocation of emissions (e.g., seasonal and daily patterns) may
also help spot obvious errors. While operational evaluation methods are applicable to only a
few limited sets of emissions data because of the lack of real-world emission measurements
for AQMs, diagnostic methods may provide insights into biases and errors in the emissions.
These techniques will be discussed as part of the next section.

3.2 Diagnostic evaluation

Operational evaluations do not provide information on the adequacy of models for represent-
ing the many interacting processes that lead to the concentrations that are finally modeled.
Diagnostic evaluation methods are designed to probe into the physical and chemical process
models or representations. Regional AQM diagnostic evaluations are complicated by the fact
that the system is non-linear: a change in a given model input does not always lead to a
proportional response in the model output.

An examination of the chemical processes in the AQM requires precursor concentrations
such as speciated volatile organic compounds and NO,, along with radiation data and photol-
ysis rate estimates at relatively high temporal resolution (e.g., 10- min averages). Diagnostic
evaluation of aerosol chemistry also requires extensive data for the individual aerosol spe-
cies, their size distributions, and their chemical precursors. The direct and indirect influences
of the meteorology on the chemical concentrations require data on meteorological parame-
ters that are not typically available, such as the planetary boundary layer heights and cloud
heights and cover, both of which have a large impact on air quality concentration levels.
These types of diagnostic evaluation can be obtained through process-oriented field studies,
but for very limited locations and periods of time due to the resources required. Some field
studies and special data sets include both surface data and aloft measurements via aircraft
or tower. Using information from such studies can help to evaluate the modeled chemistry
and transport processes in the free troposphere and focus on larger regional impacts and
emission budgets aloft [27]. Given the large investments in, and limited availability of these
field studies, many diagnostic evaluation studies are tailored to focus on the information and
data available from short-duration special studies.
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Diagnostic evaluation is aimed at understanding the reasons for poor and good model
performance. It can help to build additional confidence in the model even when operational
model performance statistics are deemed acceptable. A sensitivity test, which examines a
model’s response to perturbations in its inputs, is a common way to ascertain whether inputs
have a notable influence on model performance issues. A fundamental description of sensi-
tivity analyses of environmental models is given by Saltelli et al. [28]. Cullen and Frey [29]
provide specific discussions related to AQMs. However, because of the nonlinear response
of a regional AQM, sensitivity tests may be valid only for a limited range of input variables.
Air quality simulations can be performed using multiple meteorological inputs to assess how
much meteorological model errors and differences impact the air pollutant [30,31]. Emissions
have also been varied either through incremental changes to emission inputs or comparison
across different inventory estimates to test the impact on air quality endpoints [32]. Figure 5
illustrates an evaluation of total nitrate estimates from the CMAQ model. Figure 5a shows
an operational comparison of simulated total nitrate (HNO3 + NO3 aerosols) with measure-
ments from the CASTNet network on a monthly basis during 2001. In Fig. 5b the sensitivity
of CMAQ results are diagnostically probed as a function of the treatment of microphysics
and soil moisture in the meteorology model (MMS). In another experiment, the sensitivity of
ozone estimates from the CMAQ model to the representation of the chemical mechanism is
illustrated in Fig. 6. In this example, the CMAQ results for ozone using the Carbon Bond 4
(CB4) chemistry are compared to those using the 1999 version of the Statewide Air Pollution
Research Center (SAPRC99) chemical mechanism. The differences seen in the spatial plots
are a representation of the chemical uncertainties in the model results. Other chemical diag-
nostic techniques for model evaluation include the use of the ozone production efficiency
[27] for gas-phase photochemistry and the gas ratio for gas-to-aerosol partitioning.

Advanced instrumented modeling tools (e.g. direct decoupled method, adjoint models,
sulfur tracking method) have also been introduced into model evaluation research, where
contributions from various processes or inputs on pollutant concentrations are tracked dur-
ing the simulation. The tracking information from these instrumented modeling tools can
sometimes replace the need for numerous brute-force sensitivity simulations. For example,

Jan 2002 Model vs CASTNet TNO3 concentration
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Fig.5 a Comparison of monthly simulated distribution of total nitrate (jLg/ m3) for 2001 from CMAQ model
with CASTNet network measurements. b Comparison of January 2002 total nitrate concentrations between
CMAQ model and CASTNet measurements. CMAQ results are shown for three different simulations, using
different microphysics and soil temperature options in MM5 meteorology model
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Fig. 6 CMAQ model results for 8-h maximum daily ozone concentrations on July 27, 1999 using a the CB4
chemical mechanism and b the SAPRC99 chemical mechanism

process analysis tools have been embedded into AQMs to characterize the impact of transport
processes, chemical production and loss pathways, and sensitivity to NO, or radical emission
sources on ozone concentrations [33,34]. Another example of an instrumented modeling tool
is the Direct Decoupled Method (DDM) that has been incorporated into the CMAQ modeling
system, where the integral sensitivity of Oz and PM; 5 predictions to emission precursors,
source regions and sectors, and boundary conditions is calculated during the model simula-
tions [35,36]. The DDM tool is able to capture both the first and second order sensitivities to
these inputs, which, depending upon the size of the perturbations studied, are important for
non-linear chemical systems.

Meteorological models have long been used to forecast weather, but AQM predictions are
sensitive to a number of different meteorological variables that are not as critical to weather
prediction. Evaluation of such models for the purpose of providing weather forecasting guid-
ance may not be sufficient to assure their reliable use in air quality applications. Seaman
[37] provided a comprehensive summary of the key meteorological issues most relevant
for air quality modeling. For retrospective air quality modeling, meteorological simulations
often include various approaches for data assimilation or nudging, so that agreement between
meteorological observations and predictions is optimized. Otte [31] provides an example of a
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diagnostic study that demonstrates that assimilation of observations into the meteorological
predictions can contribute to improved ozone predictions, in addition to improved meteoro-
logical predictions. However, power spectra of modeled and observed temperatures and wind
speeds reveal large underestimation of the variability in the high-frequency intra-day band
even with 4-dimensional data assimilation (Fig. 2b). The results in Fig. 2b imply that one
should expect large differences to be found in the hour-to-hour comparisons of modeled and
observed values of meteorological and chemical variables since the variability in the short
scales is not well-represented in the model.

For observationally-based methods such as receptor models, speciated observations are
needed on shorter time scales in order to decipher the source signatures to distinguish between
different source types. In many cases, the data are only available for limited time periods and
specific locations. However, receptor models can be the first major step to understanding the
types of sources contributing to air pollution at a given location and can help identify potential
missing sources in an emission inventory. Inverse modeling also can be limited by data if
the network does not provide high-resolution spatial and temporal data or if the observed
species does not provide a conservative indicator for the emitted species (e.g., ammonium is
not a conservative indicator for ammonia emissions). Additionally, since inverse modeling
relies on the AQM to estimate the relationship between the emissions and the resulting con-
centration, model error should be included in the calculations whenever possible and such
methods are only helpful if the known emission uncertainties are much larger than the error
intrinsic to the AQM processes that also impact the concentrations. Recent advances have
introduced approaches that integrate receptor modeling methods into AQMs [38] and used
detailed tracking of emission contributions across space for inverse modeling [39]. In all
cases, top-down methodologies can inform improvements needed for bottom-up inventories
that are critical for AQM performance.

3.3 Dynamic evaluation

Dynamic evaluation looks at a retrospective case(s) to evaluate whether the model has
properly predicted air quality response to known emission and/or meteorological changes.
The change in concentration is evaluated instead of the “base” concentration itself, unlike
operational and diagnostic aspects of model evaluation. This method is used in addition to
traditional indicator ratios that focus on a model’s potential response to a change in emis-
sions through chemical relationships (e.g., O3/NOy). One example of dynamic evaluation
includes modeling assessments of the weekday/weekend concentration differences where
mobile source emissions are known to significantly change [40]. These studies can provide
insight into the ozone response to NO, emissions in core urban areas with very dense mobile
emissions. A model should also be able to track the impacts of emissions changes over longer
time periods. Figure 7 displays an 18-year smoothed record of NO, and CO concentrations at
several urban monitoring stations and the analogous record from CMAQ model simulations.
The data show that the modeled NO,, concentrations are about 50% lower than the observa-
tions, at least partially due to subgrid-scale emission gradients. However, there is good agree-
ment between observed and simulated trends, with both sets of data showing approximately
30 ppb reduction of ambient NO, concentrations over this time period. The CO analysis indi-
cates that the modeled concentrations are about 50% lower than observations for the earlier
time periods, with the underestimation decreasing to about 20% for the later time periods. The
observations also show a steeper decrease over time than the CMAQ model, implying that
the emissions inventory for CO was more severely underestimated in the early time period.
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More recently, an evaluation of an AQM’s response to a regulatory emission reduction
program has been assessed [27,32,41]. The “NO, SIP Call” was an unusual example of an
emission control program that required a large reduction in emissions in a short span of time
from the electricity generating sector [42]. Since those emissions are monitored with Con-
tinuous Emission Monitoring Systems, it was a unique opportunity for dynamic evaluation
where the emission change could be directly measured and then tested in an AQM. Evalua-
tion of the model’s prediction of air quality response to such emission changes is challenged
by the question of whether the year to year air quality changes are also being influenced by
different meteorological conditions from 1 year to another. In a multi-year simulation, one
could examine how the seasonality and trends in the air quality data are simulated by the
model. Further work in this area of dynamic evaluation should include sensitivity studies
with varying meteorology with the same emission reductions, as well as statistical methods
that are traditionally used to adjust the observed pollutant concentrations for meteorological
influences [43,44].

3.4 Probabilistic evaluation

All regional numerical AQMs use first-order closure, and, hence, the model outputs represent
population means reflecting average weather and chemical conditions. It is of course pos-
sible to restructure the model system to solve the equations using second-order or higher
closure. Thus, the model solves for the ensemble mean and the variance. A distribution
shape is assumed (the clipped normal) and thus the full distribution is obtained. If regional
AQMs were to use second-order closure, the computational times required would be much
larger. Thus, the current crop of first-order closure regional AQMs are inherently determin-
istic (for a given scenario with a given set of inputs, the same concentrations are predicted).
They also do not explicitly account for underlying uncertainties in the data, science process
algorithms, or numerical routines that constitute the modeling system. Probabilistic model
evaluation should allow quantification of the confidence in regional AQM-predicted values
and determination of how observed concentrations compare within an uncertainty range of
model estimates. There are no widely-used prescribed methods for determining such confi-
dence levels through a probabilistic evaluation. A method suggested by Lewellen et al. [45]
depends on knowledge of the probability distribution function (pdf) of the AQM predictions.
This probabilistic model evaluation methodology was applied by Hanna and Davis [7] to
regional AQM (UAM-V) predictions of ozone in the eastern U.S. It was shown that, across
the full distribution range for all observing sites, the observations generally fell within the
95% confidence bounds of the regional AQM predictions. For that exercise, the pdf of the
model predictions was determined from a previous Monte Carlo uncertainty study for that
model on that domain and episode. Also, Irwin et al. [46] used the Monte Carlo approach
to propagate uncertainty in meteorological inputs, using a probability distribution function
(pdf), to air quality predictions.

Yet another technique uses an ensemble of modeling methods to approximate a pdf [47—
54]. The ensemble method is a subset of a full Monte Carlo uncertainty exercise, where
a few model simulations are made using varying inputs and other assumptions in hopes
that a limited number of simulations will “cover” the full uncertainty range. The use of the
ensemble method with prognostic meteorological models linked with a dispersion model was
tested by Warner et al. [55], who showed that the method was able to adequately account
for the uncertainties in the concentration pdf due to mesoscale and regional meteorological
variations.
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A series of studies [56—58] have shown that the effect of model-to-model uncertainty on
the simulated response to emission reductions is typically on the order of a few percent of
daily maximum 8-h ozone concentrations, much smaller than the effect on absolute concen-
trations for the “base case” simulation. Bayesian Model Averaging (BMA) [59] has been
used to calibrate the ensemble predictions by weighting each individual ensemble member
generated in the Pinder et al. [60] study based on how closely it matches observed ozone
values. This approach provides an estimated probability distribution of pollutant concen-
trations at any given location and time, which can be used to estimate a range of likely, or
“highly probable”, concentration values or the probability of exceeding a given threshold
value for a particular pollutant [61]. Figure 8 illustrates a month-long time series of daily 8-h
maximum O3 concentrations from a 200-member CMAQ model ensemble along with the
observed concentration time series for this single observation site. This technique is useful
for diagnosing structural process-based errors in the AQM system. When the envelope of
ensemble results brackets the observations there is more confidence that the modeled system
processes can replicate reality. On the other hand when the observations fall outside of or
barely within the ensemble envelope, there is an indication that the model is biased across
many process combinations with respect to replicating reality.

This type of model assessment is particularly useful in examining the relative efficacies of
various emission control options in meeting a given air quality objective and in selecting the
emission control strategy having the greatest probability of success in meeting the intended
objective for future air quality. For example, the probability of exceeding a given threshold
ozone concentration over the southeastern United States for the base case and an emission
reduction case utilizing the ensemble and BMA approach is presented in Fig. 9.

Another potential approach to the probabilistic evaluation of AQMs is the use of order
statistics and extreme value theory to compare the tail of observed and simulated concentration
distributions. For some applications, we are particularly interested in the modeling system’s
ability to simulate a specific aspect of the observed distribution, such as the 4th-highest daily
maximum ozone concentration over a summer season. In addition to directly comparing the
observed and simulated 4th-highest concentrations, one can utilize extreme value theory to

100 -
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ensemble
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Fig.8 Time series of daily maximum 8-h O3 concentrations (ppb) for July 2002 at a monitoring site located in
the Birmingham, Alabama metropolitan area. Gray lines are results from individual members of a 200-member
CMAQ model ensemble; black line/symbols are observed data from the monitor
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a Weighted Ensemble Probability: Base Case b Weighted Ensemble Probability: Control Case
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Fig.9 Spatial plots of the probability of the 4th highest daily maximum 8-h ozone concentration exceeding 75
ppb for a the base case CMAQ model simulation and b after a 50% reduction in NO, emissions. Observations
are shown in white circles in plot (a)

estimate the probability that the observed or simulated 4th-highest concentration exceeds a
certain concentration threshold (say 84 ppb) or to estimate the 95% confidence bounds of
the observed and simulated 4th-highest concentrations given the other sample values of the
observed and simulated distributions. For example, if at a station the observed and simulated
4th-highest ozone concentration were 92 and 87 ppb, respectively, but the width of the 95%
confidence interval was 5 ppb in both cases, one might conclude that these two values are
not significantly different given the discrete observed and modeled sample distributions. An
illustration of this approach and an application to air quality planning is provided by Hogrefe
and Rao [56].

4 Summary

In this paper, we have examined approaches to the evaluation of regional-scale air quality
modeling systems, as they are currently used in a variety of applications. It is evident from
this examination that model evaluation exercises are based on a set of presumptions, which
are often not explicitly stated. These premises are:

e Observations of air pollution contain the influences of multiple sources that vary in space
and time. Further, observational values are affected by measurement uncertainties that can
include instrumental errors and biases as well as spatial representativeness uncertainties.

e It should be recognized that even with the perfect model science and perfect model input
and numerical algorithms, there will be differences between modeled and observed values
because the model predicts the population mean while an observation is a single event out
of a population, and stochastic variations embedded in the observations are not modeled
in current regional-scale numerical air quality models.
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Our examination of modeling practices leads us to conclude that models cannot be
validated in the formal sense, but rather can be shown to have predictive and diagnostic
value. The process whereby this value is demonstrated is called model evaluation. Because
evaluation criteria can differ between applications, the criteria for “success’” should be con-
text-relative [10].

Ourreview of current practices reveals that model evaluation is driven by three broad objec-
tives: to determine a model’s suitability for an intended application, to distinguish between
models, and to guide model development. These objectives can be achieved via four types of
model evaluation: Operational Evaluation, in which model predictions are compared with
data in an overall sense using a variety of statistical measures; Diagnostic Evaluation, in
which the relative interplay of chemical and physical processes captured by the model are
analyzed to assess if the overall operation of the model is correct; Dynamic Evaluation, in
which the ability of the modeling system to capture observed changes in emissions or meteo-
rology is analyzed; and, Probabilistic Evaluation, in which various statistical techniques are
used to capture joint uncertainty in model predictions and observations.

There exist many measures and techniques for quantifying model performance in an
operational sense. These measures (or “standard metrics”) are often used in combination
and with varying levels of utility and interpretations. A fundamental problem in using these
measures is that model output (based on volume-averages) and observations (based on point-
wise measurements) are in principle incommensurable, and that model predictions represent
population averages while observations reflect individual events out of a population. Since
this fundamental problem is generally ignored in the first three types of model evaluation,
probabilistic evaluation methods are recommended.

To conduct diagnostically-oriented model evaluations, high-quality 3-D data on ambient
air concentrations, emissions and meteorology are needed. These data needs are often quite
extensive, and in many cases not fully met. Hence, most model evaluations to date begin and
end with the operational evaluation. An outstanding example of the inadequacy of evaluation
data sets is the need to resolve three-dimensional pollution fields, when only two dimensional
data are available. Our understanding of pollutant transport aloft and re-entrainment in the
PBL is limited due to the lack of these 3-D datasets [14]. Similarly, process evaluation of
chemical sub-models often requires measurements of chemical species that are only avail-
able in specialized research studies, and not generally in routine environmental monitoring
programs.

To properly address the issues related to the model evaluation, an international effort
[62] is currently underway to apply the model evaluation framework presented in this paper
involving several regional air quality models being used in North America and Europe (see
http://aqmeii.jrc.ec.europa.eu/).
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