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Abstract
Climate model selection stands as a critical process in climate science and research. 
It involves choosing the most appropriate climate models to address specific research 
questions, simulating climate behaviour, or making projections about future cli-
mate conditions. This paper proposes a new approach, using spatial functional data 
analysis, to asses which of the 18 EURO CORDEX simulation models work bet-
ter for predicting average temperatures in the Campania region (Italy). The method 
involves two key steps: first, using functional data analysis to process climate vari-
ables and select optimal models by a hierarchical clustering procedure; second, vali-
dating the chosen models by proposing a new conformal prediction approach to the 
anomalies associated to each cluster.
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1  Introduction

Selecting a representative climate model is a significant challenge in environmen-
tal science, as these models are crucial for understanding and forecasting interac-
tions within the Earth’s climate system. The diversity among available models, 
each with distinct assumptions, complexities, and spatio-temporal resolutions, 
complicates the identification of a universally good model.

Recent research has increasingly focused on addressing this challenge, espe-
cially concerning questions related to earth-system processes, climate change 
impacts, and adaptation. The options for simulating climate models typically 
involve the use of Global Climate Models (GCMs), Regional Climate Models 
(RCMs), or a combination of both. GCMs provide a global-scale perspective, 
while RCMs offer a more detailed view at the regional level. The combination 
of both models contributes to a more comprehensive understanding of cli-
mate dynamics, encompassing both global-scale patterns from GCMs and finer 
regional details from RCMs (Jacob et  al. 2020). The simulated temporal evolu-
tion of future climate is subject to different uncertainties. In order to evaluate 
all the possible climate simulations according to different uncertainties, the use 
of the largest possible model ensemble analysing mean and standard deviation 
of climate models is suggested. A common approach in such studies is simply 
to average over all models (called the ensemble mean) with available data. This 
approach is justified by global scale results, generally examining only the mean 
climate, that show the “average model” is often the best. In the literature, dif-
ferent experimental approaches for assessing and selecting climate models are 
available. Some of them are called “past-performance” approaches, according to 
which climate models are selected based on their skill in representing, for the 
present climate, the trends of the variables of interest average and extreme values 
(Biemans et al. 2013; Pierce et al. 2009). Pierce et al. (2009) used an approach 
which consists in generating metrics of model skill to prequalify models based 
on their ability to simulate climate in the region or variable of interest. In par-
ticular, they evaluate whether the models selected in this way provide an estimate 
of climate change over the historical record that is closer to the observations than 
the models rejected on this basis. Some studies combined several performance 
measures such as root mean square errors (RMSE) (Chiew et al. 2009; Gleckler 
and Taylor 2008; Pitman and Perkins 2008; Winter and Nychka 2009), correla-
tion coefficients (Murphy and Epstein 1989; Murphy 1996), and average of errors 
(Altinsoy and Yildirim 2015, 2016; Gleckler and Taylor 2008), to determine the 
climate model that is most representative of the observations. In most of these 
studies, researchers used a single value to represent the climate characteristics 
of the entire region. As a result, some significant deficiencies and errors of the 
models on smaller parts of the region of interest are not noticed. This is due to the 
averaging of the errors of the opposite signs when trying to get a simple figure. 
Furthermore, Bayesian/relative-likelihood approach was proposed to calibrate 
double counting in climate model studies in Steele and Werndl 2013, 2018. Other 
kinds of approaches, known as envelope approaches, aim at reducing the number 
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of models to be included in the ensemble allowing to represent a wide range of 
possible future scenarios (Houle et al. 2012; Sorg et al. 2014; Warszawski et al. 
2014). Furthermore, to exclude highly dependent models, quantitative techniques 
are used that focus on distances and correlations between the output of different 
models (Masson and Knutti 2011). Among these, the most interesting ones pro-
pose a cluster analysis using different metrics and climate indices (Cannon 2015; 
Knutti and Sedl 2013; Sanderson et al. 2015).

The various methods outlined above exhibit certain limitations. More precisely, 
past-performance approaches focus solely on the models’ capabilities in representing 
the current climate, overlooking future scenario characteristics. On the other hand, 
envelope approaches solely consider the convergence of climatic anomalies from indi-
vidual models, neglecting their performance in the current context. Finally, quantitative 
techniques aimed at reducing ensemble interdependence do not incorporate measures 
of model performance. In this work we propose a new approach based on Spatial Func-
tional Data Analysis (SFDA) (Delicado et al. 2010; Mateu and Romano 2017). SFDA 
is an extension of Functional Data Analysis (FDA) (Ramsay and Silverman 2005) that 
encompasses the statistical framework for the analysis of spatially correlated function-
valued data. In SFDA, each sampled variable is treated as an individual realisation of 
an underlying spatial functional stochastic process. This approach is particularly rel-
evant in the context of climate studies, where it is applied to analyse functions such 
as temperature, pressure, or humidity observed on a spatial grid, essentially represent-
ing one-dimensional functions with spatial locations. The strategy involves two main 
steps: model selection and validation of classified models. In the first step, time series 
of climate variables are represented as spatially located functions. A hierarchical clus-
tering procedure with a spatio-functional distance, a convex combination of the spatial 
and functional dimensions, identifies similarities among these functions. Then spatial 
clusters of functional curves are compared in terms of a functional distance with all 
the simulated models, to build a ranking of models based on their skills in reproducing 
spatial functional properties of the selected climate variables.

In the second step, for model validation, future projections are used with a con-
formal prediction approach (Lei and Wasserman 2014), specifically introducing 
conformal prediction for clustering validation. This step uses anomalies associated 
with each cluster to construct conformal intervals, providing insights into how well 
selected models align with anticipated changes in the variable of interest. The chart 
in Fig. 1 shows the main steps of the proposed strategy.

The paper is organised as follows. Section  2 provides an overview of the data 
structure employed. Section 3 introduces the proposed methodology. In Sect. 4, the 
main results derived from the real case study are presented. The paper ends with 
some final remarks and conclusions.

2 � Climate variables as spatial functional data

In climate analysis, the process of selecting the best models to represent a climate 
variable at a specific spatial point of interest often involves focusing on the average 
values across time in a spatial location of the ensemble. This means that the overall 
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mean of the function is considered rather than the detailed behaviour over the time. 
The choice to adopt a spatial functional perspective for examining a climate variable 
and a simulated model overcomes this problem.

Climate variables and models can be represented as spatially located functions, to 
gain insights into the behaviour and performance of the model, such as identifying 
patterns and trends, characterising variability, and assessing model uncertainties.

Let 
(
�s1

(t),… ,… ,�sn
(t)
)
 be an empirical sample at n spatial locations of a cli-

mate variable and 
(
�m
s1
(t),… ,… ,�m

sn
(t)
)
 the corresponding simulated m = 1,… ,M 

models. The n points {si}ni=1 in D ⊆ R
2 identify the locations where the random 

functions �s and �m
s

 , spatial functional data, are located. These raw curves will be 
converted into functional data.

For a fixed site si , it is assumed that the observed data reflect a realisation of the 
following model:

where �si(t) are zero-mean residuals with constant variance �2 . For each si ∈ D , the 
function �si

(t) is defined in T = [a, b] ⊂ ℝ and it is assumed to belong to the Hilbert 
space L2(T).

With a set J of specified basis function Bj(t) it is possible to estimate the true 
underlining function and representing it by the following linear combination

where the cij are the coefficients (neither spatially correlated nor cross-correlated) 
estimated via a least squares approach, a weighted least squares approach, or a 
roughness penalty approach.

For each curve �si
(t) , the derivatives of these functions can be expressed as

(1)�si
(t) = �si

(t) + �si(t), i = 1,… , n

(2)�si
(t) =

J∑

j=1

cijBj(t) = c
T
i
B(t), i = 1,… , n

(3)� �
si
(t) =

J∑

j=1

cijB
�

j
(t) = c

T
i
�
�(t), i = 1,… , n

Fig. 1   The strategy step by step: model selection and validation
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and can be seen as spatial functional data that can reveal new insights (Ramsay and 
Silverman 2005).

In the context of climate variables, the use of derivatives becomes particularly 
valuable. Derivatives offer a detailed perspective on how climate-related functions 
change across geographical locations. This permits to identify key features and 
variations in climate patterns, which are crucial for comprehensive analysis and 
interpretation.

For instance, the derivatives of climate variables can provide insights into the 
rates of change, gradients, and functional trends across different locations. This 
information is essential for detecting spatial patterns such as temperature gradients, 
precipitation variations, or the evolution of climate-related phenomena over specific 
areas.

3 � A two‑step procedure for climate model selection

Our new approach includes the following two main steps:

•	 Model selection using a combination of hierarchical clustering based on a 
trimmed distance and a systematic approach for evaluating and ranking the per-
formance of different climate models within specific clusters and their corre-
sponding grid points.

•	 Clustering validation using a conformal prediction approach on anomalies asso-
ciated to each classified model.

3.1 � Model selection

3.1.1 � Hierarchical clustering

Hierarchical clustering of spatially dependent functional data is an unsupervised 
clustering method that groups spatially located functional data with similar charac-
teristics into clusters, based on their dissimilarities. The clustering process involves 
creating a tree-like hierarchy of nested clusters that can be visualised using a den-
drogram. This approach is useful for exploring patterns in high-dimensional func-
tional data and identifying subgroups with similar characteristics (Zhang and Parnell 
2023).

Inspired by the approach proposed by Chavent et al. (2018), we propose a hierar-
chical clustering method based on a trimmed distance. Our main aim is to identify 
subsets of climate models that best capture the observed climate variables on a spa-
tial domain. The clustering approach groups similar models together based on their 
functional similarities and allows to reduce the number of suitable models that rep-
resent the current information in both spatial and temporal components. The choice 
of the distance metric and linkage method can significantly impact the results of 
hierarchical clustering. Researchers often select these parameters based on the char-
acteristics of the data and the specific goals of their analysis. We propose to use a 
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trimmed distance d as combination of a functional and spatial component between 
the functional derivatives. The use of derivatives in this framework aims to quantify 
the similarity between the rate of change of functional curves at different spatial 
locations.

Assuming a basis function representation for data, the convex spatio-functional 
distance is defined as:

where dt is a normalised functional distance taking into account the evolution of the 
trend in the temporal dimension, ds is the normalised spatial distance between the 
spatial locations. The parameter � ∈ [0, 1] is a mixing parameter allowing for the 
adjustment of the contribution of each component in the overall distance measure.

Formally we have:

where dt� =
√∫

T
(�

�

si
(t) − �

�

sj
(t))2dt is the distance between derivatives, 

wt = max{dt� } . Using the expansion in (3) we have

where

is the Gram matrix computed by an appropiately chosen numerical integration 
scheme tailored to the used basis system, and ci, cj are the vectors of basis coeffi-
cients for the curves �si

(t),�sj
(t) . Then, the normalised spatial distance is defined as:

where ws is the maximum value of the distance between all the ones obtained from 
the spatial coordinates, taken two-by-two. The parameter � ∈ [0, 1] is chosen to 
look for a compromise between loss of functional and spatial homogeneity. These 
homogeneities can be quantified using the notion of inertia. Let W� be the within-
cluster inertia in a cluster, derived from the distances dt and ds for � = t and � = s , 

(4)d
(
�si

(t),�sj
(t)
)
= �dt + (1 − �)ds,

(5)dt =
1

wt

√

∫T

(�
�

si
(t) − �

�

sj
(t))2dt,

(6)dt =
1

wt

√

∫T

(ci − cj)
T��(t)��(t)T (ci − cj)dt

(7)=
1

wt

√
(ci − cj)

TG(ci − cj),

G = ∫T

�
�(t)��(t)Tdt

(8)ds =
1

ws

‖si − sj‖,
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respectively. Let P�
k
 be the partition in k clusters and P�

1
 the partition in one cluster. 

These measures are defined as follows:

For � = s , Qs(P
�
k
) = 1 −

Ws(P
�
k
)

Ws(P
�
1
)
 defines the ratio between the within inertia in the k 

clusters based on the distance ds and the total inertia. In other words Qs represents 
the level of homogeneity of the P�

k
 partition from a spatial point of view. We can 

easily understand that a higher value of this criteria implies greater homogeneity.
Similarly for � = t , Qt(P

�
k
) = 1 −

Wt(P
�
k
)

Wt(P
�
1
)
 defines the ratio between the within inertia 

in the k clusters based on the distance dt and the total inertia; thus Qt represents the 
level of homogeneity of the P�

k
 partition from a functional point of view.

The parameter � is formally chosen by calculating separately Qt(�) and Qs(�) of the 
partitions obtained for a range of different values of � and several number of clusters k. 
A criteria based on the cross point between the curves Qt(�) and Qs(�) is then used to 
choose a value of � that is a compromise between the loss in functional homogeneity 
and the gain in spatial cohesion.

Once the value of � is chosen, we use the ‘Gap statistic’ method for estimating the 
number of clusters obtained by the trimmed distance. Gap statistic (Tibshiran et  al. 
2001) works by comparing the performance of a clustering algorithm with different 
values of k to a reference distribution, typically generated by a randomisation process. 
The idea is to measure how much better the clustering results are than what would be 
expected by random chance. The value that results in the largest gap statistic is consid-
ered the optimal number of clusters. This is the number of clusters that best captures 
the underlying structure in the data avoiding overfitting.

3.1.2 � Cluster‑based ranking of climate models

The clustered data are the reference against which the simulated climate models are 
systematically compared. This means that first the spatial locations of each cluster are 
identified, then for each of them the simulated variables are converted into spatial func-
tional data for all the possible simulated models. This allows to draw parallels between 
the simulated data (models realisations) and the observed data. At this point a “demar-
cation score/error” function is defined, for each grid point, as the criteria to select the 
best set of models for each cluster. This function is obtained by “skill scores” quantify-
ing how well the models represent the data.

Let C be a cluster with nc grid points, and M the number of possible models. The 
“Integrate Root Mean Square Error” IRMSE for each grid point and model m is given 
by:

(9)Q� (P
�
k
) = 1 −

W� (P
�
k
)

W� (P
�
1
)
∈ [0, 1],

(10)IRMSEsi,m
=

√

∫T

(�m�

si
− � �

si
)2 dt, m = 1,… ,M
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where �m′

si
 and � ′

si
 are respectively the functional derivative of the simulated variable 

for model m and the observed ones at grid point si . The "demarcation line" between 
the best and the worst representative models in the clusters is obtained by the mean 
of IRMSE for each spatial location si . It is then computed by:

Thus, we obtain a function of the grid points in the clusters. The criteria to select 
the best model for each cluster is the following: if the error of a simulated climate 
variable at a given grid point is smaller than the demarcation line, at the same grid 
point, this model is considered successful and assigned the value of 1, otherwise 0 is 
assigned. Formally let �si,m be "a skill score function" defined for each grid point si 
and model m as:

For each model m, we compute the percentage of successful grid points within the 
cluster by:

The most representative models m̂ for the spatio-functional cluster are the models 
with the maximum percentage Pm:

3.2 � Clustering validation

Anomalies in climate change, often referred to as temperature anomalies, are a 
way to assess and communicate changes in temperature over time. These anoma-
lies represent deviations from a long-term average temperature, typically based 
on a reference period. In this second step our main aim is to fit the anomalies on 
the clustering training samples, and then use the residuals on a held-out valida-
tion set to quantify the uncertainty in future predictions. Essentially, the selected 
climate models for each cluster are validated and further evaluated by assess-
ing their performance on possible future scenarios using conformal prediction 
regions. We thus propose to combine the reliability and validity measures from 
conformal prediction with the quality of the clustering. Conformal clustering is 
based on the conformal prediction technique, thus, in this section, we will first 

(11)IRMSEsi
=

∑M

m=1
IRMSEsi,m

M
, si = 1,… , nc

𝛿si,m =

{
1 if IRMSEsi,m

< IRMSEsi

0 otherwise

Pm =

∑nc
si=1

�si,m

nc
× 100.

m̂ = argmax
m

�∑nc
si=1

𝛿si,m

nc
× 100

�
.
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introduce conformal prediction, and then proceed to describe our idea starting 
from some previously proposed conformal clustering approach.

3.2.1 � Conformal prediction

Conformal Prediction (CP) is a machine learning framework used for making pre-
dictions while providing a measure of the confidence or reliability of those predic-
tions. It is used to estimate the probability that a prediction will be correct (Vovk 
and Glenn 2008). The key components of CP are training set, a nonconformity 
measure, significance level and finally the prediction interval. The algorithm starts 
with a labeled training dataset, which consists of input features and corresponding 
target values. This quantifies how unusual or different the test instance is compared 
to the training data. Then a rank of the nonconformity scores for all test instances in 
ascending order is provided. In this context, the nonconformity measure plays a fun-
damental role. It is a function that quantifies how much a specific prediction deviates 
from the other examples in the training set. Formally, it calculates the dissimilarity 
or nonconformity of a new input instance with respect to the training set. Thus for 
a given input instance and a significance level, that represents the probability that a 
prediction interval will contain the true target value, a prediction interval is defined 
with probability target values at least (1 − �) . CP provides the following main two 
formal guarantees (Fontana et al. 2023):

•	 Validity: The prediction intervals have a predefined coverage probability (1 − �) , 
meaning that they contain the true target value with at least this probability.

•	 Conservativeness: The prediction intervals are guaranteed to be valid even if the 
underlying model makes no assumptions about the data distribution.

The method’s simplicity and versatility has enabled its extension to the analysis of 
functional data (Diquigiovanni et  al. 2022) and spatial dependent functional data 
(Diana et al. 2023).

3.2.2 � Clustering validation via conformal prediction

Conformal prediction, traditionally employed in several supervised learning tasks 
such as classification and regression, has recently seen attempts to extend its appli-
cation to the unsupervised learning task of clustering (Cherubin et al. 2015; Nouret-
dinov et al. 2019). In Cherubin et al. (2015) a clustering method solely relying on 
conformal prediction, similar to hierarchical clustering, is proposed. This method 
allows for the control of the number of instances that remain unclustered by specify-
ing a desired confidence level. In Nouretdinov et al. (2019) a conformal prediction 
with traditional clustering approaches, such as k-means or density-based clustering, 
is introduced with the aim of overcoming various clustering challenges, including 
model parameter tuning, cluster merging, and accommodating clusters of diverse 
shapes and sizes. We propose to generalise this last approach to the spatial func-
tional framework.
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The monthly climatic anomalies, obtained as the difference of the monthly 
temperature values relating to a future period, in accordance with the defined sce-
nario, compared to the reference period, are converted into a spatial functional 
form. To account for future changes in the variable of interest, we compute the 
conformal interval of these functional anomalies for each climate model repre-
sentative of the k clusters.

So, given a nominal miscoverage level � ∈ (0, 1) , we define a conformal band 
C𝜂 ⊂ L2(T) for the set of anomalies curves (��

s1
(t), ,… ,�a

snc
(t)) in the clusters.

Originally, the idea of CP is trying all possible curves for the test object to 
see how well these curves conform to a set of training samples. We construct a 
sequential prediction of possible anomalies on a spatial grid which conform to 
the mean anomalies in the clusters and thus conforms the model. Our approach 
includes the following main steps:

•	 Let {�a
sj
(t), j = 1,… , n} be a set of anomalies of each site sj . We split randomly 

into a training and a detection set.
•	 Consider the same partition of the spatial grid point obtained by the clustering 

procedure for the training sample and fix the center of the cluster as reference 
point.

•	 Define the augumented data set with a new anomaly �a
sj+1

 and compute the non-
conformity function D:

where 𝜒̄si
(t) is the mean of the anomalies in cluster C. This function quantifies the 

deviation or unusualness of the anomaly �a
sj
(t) relative to the previous instances 

�sj
(t)j = 1,… , nc within the clusters.

•	 Repeat the above steps for each anomaly, define the distribution �
(
�a
sj

)
 of D, 

called distribution scores, and set Ĉ(𝜂) = {𝜒a
sj
|𝜋(𝜒a

sj
) ≥ 𝜂}

•	 group the elements of Ĉ(𝜂) such that �a
sj
 and �a

s′
j

 are neighbours to the same aver-
age model.

Finally, prediction intervals are computed using a significance level along with 
a set of nonconformity scores. The intervals are calculated roughly by taking the 
� − th percentile of the distribution scores

where 𝜒̄si
(t) is the mean of the anomalies in the clusters and the centre of the predic-

tion band, r� is the ray of the prediction, and S(t) that is the functional standard 
deviation of all the anomalies in the clusters, is a modulation function. In particular 
r� is the value of (1 − �) quantile of the distribution values {Pi ∶ i = nc + 1,… , n} , 
where Pi = D(𝜒a

sj
(t)) =

‖‖‖𝜒̄si
(t) − 𝜒a

sj
(t)
‖‖‖ . The conformal prediction region provides a 

(12)D(𝜒a
sj
(t)) =

‖‖‖𝜒̄si
(t) − 𝜒a

sj
(t)
‖‖‖ j = 1,… , nc

(13)C(𝜂) =
{
𝜒a
sj
∈ L2(T) ∶ 𝜒a

sj
∈
[
̂̄𝜒si
(t) − r𝜋S(t), ̂̄𝜒si

(t) + r𝜋S(t)
]}
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measure of the thrust worthiness of each model in predicting future outcomes, which 
can help guiding a decision-making in the face of climate change.

4 � Data and results

4.1 � Climatic data

The observed data belong to the E-OBS dataset (Haylock et al. 2008). This dataset 
is employed for the analysis of the climatic period 1971–2005, providing monthly 
precipitation and monthly mean temperature data on a regular grid with a horizontal 
resolution of approximately 12 km. Specifically, we used the E-OBS 25.0e version 
(Cornes et al. 2018), released in April 2022. We focused on monthly mean tempera-
ture data for the period 1971–2005. The dataset encompasses a grid of time points 
covering the entire 35-year period, consisting of 420 grid points. Climate analysis 
is performed by CORDEX regional climate model (RCM) simulations available 
over the European domain (EURO-CORDEX) at a resolution 0.11degree (EUR-11, 
about 12.5 km) forced by different global climate models (GCM) (Jacob et al. 2020; 
Kotlarski et al. 2014). The climate simulations comprise 18 GCM-RCM combina-
tions conducted within the EURO-CORDEX framework, considering both the his-
torical experiment and the IPCC RCP8.5 scenarios (Moss et al. 2010). The eighteen 
EURO-CORDEX models listed in Table  1 were used (where r1i1p1, r3i1p1, and 
r12i1p1 represent ensemble members in the driving global model calculation). For 

Table 1   List of the EURO-CORDEX simulations considered

Model ID Driving GCM GCM member RCM name

cm5_cclm4 CNRM-CM5 r1i1p1 CCLM4
cm5_aladin53 CNRM-CM5 r1i1p1 ALADIN53
cm5_rca4 CNRM-CM5 r1i1p1 RCA4
earthr12_cclm4 EC-EARTH r12i1p1 CCLM4
earthr12_racmo22e EC-EARTH r12i1p1 RACMO22E
earthr12_rca4 EC-EARTH r12i1p1 RCA4
earthr1_racmo22e EC-EARTH r1i1p1 RACMO22E
earthr3_hirham5 EC-EARTH r3i1p1 HIRHAM5
esr1_cclm4 HadGEM2-ES r1i1p1 CCLM4
esr1_rca4 HadGEM2-ES r1i1p1 RCA4
esr1_racmo22e HadGEM2-ES r1i1p1 RACMO22E
lrr1_cclm4 MPI-ESM-LR r1i1p1 CCLM4
lrr1_remo2009 MPI-ESM-LR r1i1p1 REMO2009
lrr1_rca4 MPI-ESM-LR r1i1p1 RCA4
lrr2_remo2009 MPI-ESM-LR r2i1p1 REMO2009
m_hirham5 NorESM1-M r1i1p1 HIRHAM5
mr_rca4 IPSL-CM5A-MR r1i1p1 RCA4
mr_wrf331f IPSL-CM5A-MR r1i1p1 WRF331F
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clarity, it is noted that ‘r’ stands for realisation (the starting point of the calcula-
tion), ‘i’ for initialisation method, and ‘p’ for physics version. We specifically used 
the monthly mean temperature data simulated by these eighteen EURO-CORDEX 
models.

For both the E-OBS observation dataset and for each EURO-CORDEX model, 
the monthly mean temperature data relating to the grid points covering the Cam-
pania region, which is the area of interest for this work, are considered. This means 
that for each spatial location, identified by the latitude-longitude coordinates, we 
have not only the known data that belong to the E-OBS dataset, but also different 
simulated data, consequence of the fact that each of the eighteen models can be eval-
uated in that specific location.

4.2 � Results

The two-step strategy based on SFDA presented earlier has been used to select the 
most representative climate models for predicting temperature in the area of interest. 
In the first step of the analysis, we cluster the monthly temperature data from E-OBS 
v25 using the proposed trimmed distance. Subsequently, we assess the performance 
of different climate models within specific clusters and their associated grid points 
using a ranking procedure.

This step includes the construction of spatio-functional data by means of smooth-
ing where we select 100 Fourier basis functions based on a cross-validation criteria. 
Subsequently, a preprocessing step is performed to obtain the optimal value of the 
trimmed parameter �.

For a given number of k = 9 clusters, obtained by a clustering algorithm based 
on the distance dt , we begin with a predefined grid G for � values within the range 
[0, 1].

For each �j ∈ G , we apply a hierarchical clustering algorithm based on a Ward 
criteria to create a partition consisting of k = 9 clusters. We then evaluate the quality 
of each partition Pk

�
j
 using the criteria on Qs(P

�
j
) defined in (9) and observing visu-

ally how much the spatial partition deviates from the spatial partition P1 . In the same 
way we work on the temporal dimension. The visual representation of the relation-
ship between �j and Qs(P

�
j
) and between �jand Qt(P

�
j
) (Fig. 2) allows to select the 

appropriate value for � from the grid G. The choice of alpha is like adjusting a bal-
ance between functional features and spatial closeness. It is computed separately 
calculating functional homogeneity and geographic homogeneity for partitions 
obtained across different �-values and a fixed number of clusters k obtained by the 
functional classification. Figure 2 shows the proportion of explained inertia calcu-
lated with dt (the functional distances) is equal to 1 when � = 0 and decreases when 
alpha increases (black line). On the contrary, the proportion of explained inertia cal-
culated with ds (the spatial distances) is equal to 1 when � = 1 and decreases when 
alpha decreases (red line). By comparing the curves of Qt(P

�
j
) and Qs(P

�
j
) , we deter-

mine that � = 0.6 strikes a balance between the loss in functional homogeneity and 
the gain in spatial cohesion. In particular we see that the proportion of explained 
inertia calculated with dt is equal to 0.80 when � = 0 . On the contrary the 
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proportion of explained inertia calculated with ds (the geographical distances) is 
equal to 0.87 when � = 1.

The final step involves determining the optimal number of clusters. This task is 
accomplished by applying the gap statistic criteria applied on a hierarchical clus-
tering based on the trimmed distance. In this specific case, the optimal number of 
clusters is found to be k = 9 , as can be seen in Fig. 3. The choice of k = 9 is based 
on a balance between the gap statistic and the stability observed in the clustering 
results. After 10 it is possible to observe a constant trend.

The visual representation of this partition is illustrated in Fig. 4, where each 
cluster is distinguished by a unique color. The cohesion of the clusters is balanced 
by the choice of the � = 0.6 value. This suggests that the selected parameter has 
been effective in creating meaningful and balanced clusters, as evidenced by the 
visual representation in the figure.

After classifying the observed functional dataset into 9 spatio-functional clus-
ters, the next step involves investigating the monthly temperature data associ-
ated with each of the 18 EURO-CORDEX regional climate models for the period 
spanning 1971–2005.

For each model, the grid points of the observation dataset are identified and 
classified on one of the 9 detected clusters. To establish a demarcation line for 
determining the most representative models within each cluster, we compute the 
average Euclidean distance (error) between the simulated and observed values for 

Fig. 2   Comparison plot: the variations in explained inertia curves, Qt(P
�
j
) and Qs(P

�
j
) , across different 

values of � ∈ [0, 1]
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all 18 climate models at each grid point within the cluster. Within each cluster, 
the climate models with the highest count of grid points having an error less than 
the defined demarcation error are chosen as the most representative models for 
that particular cluster.

Fig. 3   Gap statistics computed for different values of k using the trimmed distance based on the optimal 
value of � = 0.6

Fig. 4   Final clusters organized by latitude-longitude coordinates and color-coded based on their respec-
tive cluster assignments for visual grouping
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Table  2 shows the composition of each of the 9 clusters obtained, that is, the 
number of grid points (on 118 N. grid points) that fall into each cluster and the num-
ber of climate models that are representative for each cluster. The tables containing 
the complete names of the climate models found to be representative for each cluster 
are shown in Appendix A.

Moreover, the temperature profiles of the clusters are illustrated in Fig. 5. These 
graphs show the temperature behaviour at each grid point within the cluster, present-
ing data for both the observed dataset and the chosen climate models for clusters 5 
and 7. It is evident from these visualisations that the spatio-temporal patterns in the 
climate models selected for clusters 5 and 7 closely mirror the trends observed in the 
dataset. Hence, it can be deduced that the chosen climate models faithfully capture 
the temperature patterns observed in the dataset.

Table 2   Summary of clusters: 
number of grid points and 
selected climate models

Cluster ID N. grid points N. selected 
climate 
models

1 6 6
2 18 4
3 13 3
4 10 9
5 8 1
6 15 6
7 15 2
8 10 8
9 23 10

Fig. 5   Temperature curves for clusters 5 (on the left) and 7 (on the right): observed dataset (in red) and 
selected climate models (in green)
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4.3 � Model evaluation

In terms of model evaluation, and for each cluster within the Campania region, the 
selection process focuses on identifying and choosing regional climate models that 
accurately represent the climatic conditions and variations of this specific area. This 
selection is related both to historical climate data to capture past trends and future 
climate projections to anticipate potential changes. For each climate model repre-
senting the clusters, monthly climatic anomalies are calculated. These anomalies 
represent the difference between monthly temperature values for the future period 
(2036–2065) under the RCP8.5 scenario and a reference period (1981–2010). These 
calculated anomalies are then converted into a functional form by using (3). Fol-
lowing this, conformal intervals for the derived functional anomalies are determined 
for each cluster. These intervals help identifying models that do not conform to the 
average behaviour observed in all models. Models that fall outside the conformal 
region are excluded from further consideration. This process helps refine the selec-
tion of climate models for more in-depth analysis or decision-making.

To illustrate this process, Fig. 6 displays the evolution of the derived functional 
anomalies of the mean temperature of the EURO-CORDEX models selected in the 
first step (black lines) for 1 year, in the period 2036–2065 (RCP8.5) compared to the 
period 1981–2010 for cluster 5 and 7 respectively. The blue line represents the mean 
value of the derived functional anomalies of all models, and the red lines represent 
the extremes of conformal interval for � = 95% . Since the derived functional anoma-
lies fall within the conformal interval, these models are representative of the average 
behaviour across all models. This indicates that their characteristics and performance 
closely align with the collective behaviour observed in the entire set of models in the 
clusters.

Fig. 6   Conformal intervals obtained considering the functional derived anomalies, in one year, from the 
climate models that are representative for clusters 5 and 7
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5 � Conclusions

Climate models are complex structures that can predict, with a certain level of 
accuracy, the variations of climate variables across the Earth’s atmosphere. Indeed, 
models can try to predict how climate change can affect parts of the natural world 
through the study of some key variables.

In this work, the monthly mean temperature was calculated with both the monthly 
series of the observed dataset available over the Campania region and with the data 
of 18 EURO-CORDEX models. The mutual dissimilarities between the models 
and the time series related to the observations were evaluated in space and time by 
implementing conformal clustering method for spatially dependent functional data. 
One of the important advantages of the proposed approach is that it gives a chance to 
look deeply and in detail to specific parts of the area of interest where their models 
produce less than perfect results compared to other climate models in the literature.

The proposed strategy offers several advantages over other model selection 
approaches. As a matter of fact, by using a hierarchical clustering method based on a 
trimmed distance, we can better account for the spatial dependencies and variability 
of climate variables, which are often highly correlated and exhibit complex spatial 
patterns. The use of skill scores and ranking criteria to select the most representative 
models, for each cluster, further improves the accuracy and reliability of the selected 
models. Moreover, the use of conformal prediction regions allows us to quantify 
the uncertainty associated with future model predictions, which is critical to make 
informed decisions in the face of climate change. By providing a measure of the reli-
ability and accuracy of each selected model, the conformal prediction regions can 
help decision-makers to better understand the range of possible outcomes.

Appendix A: List of selected EURO‑CORDEX climate models for each 
cluster

See Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11.

Table 3   List of selected EURO-
CORDEX climate models for 
cluster 1

Model ID Driving GCM GCM member RCM name

cm5_rca4 CNRM-CM5 r1i1p1 RCA4
earthr12_cclm4 EC-EARTH r12i1p1 CCLM4
earthr12_racmo22e EC-EARTH r12i1p1 RACMO22E
lrr1_cclm4 MPI-ESM-LR r1i1p1 CCLM4
lrr1_remo2009 MPI-ESM-LR r1i1p1 REMO2009
lrr1_rca4 MPI-ESM-LR r1i1p1 RCA4
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Table 5   List of selected EURO-
CORDEX climate models for 
cluster 3

Model ID Driving GCM GCM member RCM name

cm5_rca4 CNRM-CM5 r1i1p1 RCA4
lrr1_remo2009 MPI-ESM-LR r1i1p1 REMO2009
lrr1_rca4 MPI-ESM-LR r1i1p1 RCA4

Table 6   List of selected EURO-CORDEX climate models for cluster 4

Model ID Driving GCM GCM member RCM name

cm5_cclm4 CNRM-CM5 r1i1p1 CCLM4
cm5_rca4 CNRM-CM5 r1i1p1 RCA4
earthr12_cclm4 EC-EARTH r12i1p1 CCLM4
earthr12_racmo22e EC-EARTH r12i1p1 RACMO22E
earthr12_rca4 EC-EARTH r12i1p1 RCA4
earthr1_racmo22e EC-EARTH r1i1p1 RACMO22E
lrr1_cclm4 MPI-ESM-LR r1i1p1 CCLM4
lrr1_remo2009 MPI-ESM-LR r1i1p1 REMO2009
mr_wrf331f IPSL-CM5A-MR r1i1p1 WRF331F

Table 7   List of selected EURO-
CORDEX climate models for 
cluster 5

Model ID Driving GCM GCM member RCM name

cm5_rca4 CNRM-CM5 r1i1p1 RCA4

Table 8   List of selected EURO-
CORDEX climate models for 
cluster 6

Model ID Driving GCM GCM member RCM name

cm5_rca4 CNRM-CM5 r1i1p1 RCA4
earthr12_cclm4 EC-EARTH r12i1p1 CCLM4
lrr1_cclm4 MPI-ESM-LR r1i1p1 CCLM4
lrr1_remo2009 MPI-ESM-LR r1i1p1 REMO2009
lrr1_rca4 MPI-ESM-LR r1i1p1 RCA4
mr_wrf331f IPSL-CM5A-MR r1i1p1 WRF331F

Table 9   List of selected EURO-
CORDEX climate models for 
cluster 7

Model ID Driving GCM GCM member RCM name

lrr1_remo2009 MPI-ESM-LR r1i1p1 REMO2009
lrr1_rca4 MPI-ESM-LR r1i1p1 RCA4

Table 4   List of selected EURO-
CORDEX climate models for 
cluster 2

Model ID Driving GCM GCM member RCM name

cm5_cclm4 CNRM-CM5 r1i1p1 CCLM4
cm5_rca4 CNRM-CM5 r1i1p1 RCA4
lrr1_cclm4 MPI-ESM-LR r1i1p1 CCLM4
lrr1_rca4 MPI-ESM-LR r1i1p1 RCA4
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Table 10   List of selected 
EURO-CORDEX climate 
models for cluster 8

Model ID Driving GCM GCM member RCM name

cm5_rca4 CNRM-CM5 r1i1p1 RCA4
earthr12_cclm4 EC-EARTH r12i1p1 CCLM4
earthr12_rca4 EC-EARTH r12i1p1 RCA4
earthr1_racmo22e EC-EARTH r1i1p1 RACMO22E
earthr3_hirham5 EC-EARTH r3i1p1 HIRHAM5
lrr1_cclm4 MPI-ESM-LR r1i1p1 CCLM4
lrr1_remo2009 MPI-ESM-LR r1i1p1 REMO2009
lrr1_rca4 MPI-ESM-LR r1i1p1 RCA4

Table 11   List of selected EURO-CORDEX climate models for cluster 9

Model ID Driving GCM GCM member RCM name

cm5_cclm4 CNRM-CM5 r1i1p1 CCLM4
cm5_rca4 CNRM-CM5 r1i1p1 RCA4
earthr12_cclm4 EC-EARTH r12i1p1 CCLM4
earthr12_racmo22e EC-EARTH r12i1p1 RACMO22E
earthr12_rca4 EC-EARTH r12i1p1 RCA4
earthr1_racmo22e EC-EARTH r1i1p1 RACMO22E
lrr1_cclm4 MPI-ESM-LR r1i1p1 CCLM4
lrr1_remo2009 MPI-ESM-LR r1i1p1 REMO2009
lrr1_rca4 MPI-ESM-LR r1i1p1 RCA4
mr_wrf331f IPSL-CM5A-MR r1i1p1 WRF331F
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