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Abstract
Ensembles of meteorological quantities obtained from numerical models can be 
used for forecasting weather variables. Unfortunately, such ensembles are often 
biased and under-dispersed and therefore need to be post-processed. Ensem-
ble model output statistics (EMOS) is a widely used post-processing technique to 
reduce bias and dispersion errors of numerical ensembles. In the EMOS approach, 
a full probabilistic prediction is given in the form of a predictive distribution with 
parameters depending on the ensemble forecast members. Parameters are then esti-
mated and substituted, thus obtaining a so-called estimative predictive distribution. 
Nonetheless, estimative distributions may perform poorly in terms of the coverage 
probability of the corresponding quantiles. This work proposes the use of predictive 
distributions based on a bootstrap adjustment of estimative predictive distributions, 
in the context of EMOS models. These distributions are calibrated, which means 
that the corresponding quantiles provide exact coverage probabilities, in contrast to 
the estimative distributions. The introduction of the bootstrap calibrated procedure 
for EMOS is the innovative aspect of this study. The performance of the suggested 
calibrated EMOS is evaluated in two simulation studies, comparing the different 
predictive distributions by means of the log-score, the continuous ranked probabil-
ity score, and the coverage of the corresponding predictive quantiles. The results of 
these simulation studies show that the proposed calibrated predictive distributions 
improve estimative solutions, both reducing the mean scores and producing quan-
tiles with exact coverage levels. The good performance of the new calibrated EMOS 
is further stressed in two real data applications, one about maximum daily tempera-
tures at sites located in the Veneto region (Italy) and the other one about wind speed 
forecasts at weather stations over Germany.
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1 Introduction

In every field of knowledge, successful decisions need the support of accurate rep-
resentations of the future. In particular, weather forecasts play a fundamental role 
nowadays, since meteorological conditions are of primary importance in almost 
all aspects of our lives. In the last decades, forecasts - in the form of Numerical 
Weather Predictions (NWP) (Bauer et al. 2015 and Raftery et al. (2019))—have 
gradually improved their accuracy, mainly due to advances in technology and the 
coming of powerful computers. Despite this, simulated ensembles of forecasts 
based on physic models exhibit systematic bias and are often under-dispersive 
(Buizza 1997; Haiden et al. 2019).

To refine, improve, and calibrate NWP, statistical post-processing methods 
have been introduced in literature, including frequentist and Bayesian methods 
(Gneiting et  al. 2005; Raftery et  al. 2005). Among the most popular post-pro-
cessing techniques, we focus on a parametric frequentist approach, the ensemble 
model output statistics (EMOS) (Gneiting et  al. 2005). The EMOS is based on 
a heteroscedastic regression model, the parameters of which are determined by 
the ensemble forecasts. It is capable of reducing systematic biases and dispersion 
errors.

Different EMOS have been suggested in literature to model different weather 
quantities. For example, classic EMOS based on normal distribution may provide 
a reasonable model for temperature and pressure (Gneiting et al. 2005). To model 
high wind speed values, Thorarinsdottir and Gneiting (2010) propose an extended 
EMOS based on the truncated normal distribution, Baran and Lerch (2015) sug-
gest the  log-normal distribution, Baran and Lerch (2016) and Baran and Lerch 
(2018) propose a combination of different EMOS models, and Baran et al. (2021) 
and Lerch and Thorarinsdottir (2013) use the  generalised extreme value distri-
bution. Baran and Nemoda (2016) model rainfalls using censored and shifted 
gamma EMOS.

In all these applications, the unknown parameters of the EMOS model are esti-
mated using past observations and are  then replaced to obtain a whole predic-
tive distribution for the variable of interest. Despite its simplicity, this estima-
tive approach does not take into account the uncertainty introduced by estimating 
the unknown parameters. As a result, estimative predictive distributions may be 
excessively concentrated, in particular when the number of past observations is 
small compared to the number of ensemble members.

This paper proposes an adjustment of the estimative EMOS based on the boot-
strap calibration procedure introduced by Fonseca et al. (2014). This is the first 
attempt, at  the best of our knowledge, to use one of the theoretical approaches 
suggested in the literature, starting with the research of Barndorff-Nielsen and 
Cox (1996), to calibrate the quantiles of predictive distributions, in the frame-
work of EMOS. The superiority of the newly introduced bootstrap calibrated 
EMOS over the usual estimative EMOS is evaluated in different settings using 
suitable measures of calibration and sharpness, the most desirable properties that 
should characterise every predictive model (Gneiting et  al. 2007). In particular, 
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we perform two simulation studies to evaluate and compare estimative and cali-
brated EMOS models, one with truncated normal and one with log-normal distri-
butions. We assess the goodness of the considered models using the log-score, the 
continuous ranked probability score (CRPS), and the true coverage of the corre-
sponding predictive quantiles. We then address the analyses of two real datasets. 
The first one regards maximum daily temperatures at measurement sites located 
in the Veneto region, northern Italy. This study aims to explore more in depth 
the effect of bootstrap calibration in the context of classic EMOS, as already 
suggested in Giummolè and Mameli (2020). In the second application, we con-
sider wind speed data for stations located in Germany. This dataset includes the 
exchangeable 50-member ensemble of the European Center for medium-range 
weather forecasts (ECMWF) which has been recently investigated in Chen et al. 
(2022). This example allows to more fully assess and compare the performance of 
various extended EMOS, with non-normal distributions. Our analyses show that 
calibrated EMOS is more accurate than estimative EMOS both in the presented 
simulation studies and in the applications. Moreover, they suggest the new tech-
nique’s great potential in providing calibrated and sharp predictive models.

The paper is organised as follows. In Sect. 2 we outline the methodology used 
in this research, introducing the basics of EMOS and the bootstrap procedure for 
calibrating estimative distributions. In Sect.  3 we study the performance of cali-
brated EMOS conducting two simulation studies on extended EMOS with two dif-
ferent distributions. In Sect. 4 we introduce and analyse temperature data in Veneto 
(Italy) and we assess the superiority of calibrated classic EMOS in comparison with 
estimative classic EMOS. In Sect. 5 we present wind speed data for Germany, and 
we evaluate the superiority of calibrated extended EMOS versus different estimative 
extended EMOS. Finally, in Sect. 6 we present some concluding remarks.

2  The method

In this section, we present our proposal, which consists of a bootstrap procedure for 
calibration in the context of EMOS. We first recall some basics about EMOS and 
then we revise the bootstrap calibration method.

2.1  Ensemble model output statistics

EMOS produces probabilistic forecasts of weather variables by pooling together 
the raw ensembles in a parametric predictive distribution with parameters depend-
ing on the ensemble forecast members (Gneiting et al. 2005). In its basic version, 
EMOS is nothing but a normal linear regression model with heteroscedastic errors. 
The EMOS mean is a linear combination of the ensemble member forecasts, with 
unknown coefficients that represent the contributions of each member of the ensem-
ble to the relevant weather variable. The EMOS variance is a linear function of the 
ensemble variance that accounts for the spread relationship. Formally, it is assumed 
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that the weather variable Z depends on the ensemble forecasts X1,… ,Xm in such a 
way that

where � is a normally distributed error term with 0 mean and variance 
�2 = �0 + �1S

2 to account for dispersion errors in the ensemble members. Here, 
S2 =

∑m

j=1
(Xj − X̄)2∕(m − 1) denotes the ensemble variance and X̄ =

∑m

j=1
Xj∕m 

the ensemble mean. The parameters �0,… , �m , �0 and �1 are non-negative unknown 
coefficients. The distribution of Z is given by

with mean � = �0 + �1X1 +…+ �mXm and variance �2 = �0 + �1S
2 , where Φ(⋅) 

denotes the standard normal distribution function. In the sequel, we refer to model 
(1) as the classic EMOS. In the literature the errors are considered temporally inde-
pendent. This assumption is common in EMOS and we will discuss it further with 
real data examples. It is important to note that EMOS aims to provide a model for 
the variable of interest at each time based on ensemble forecasts, rather than mod-
eling the dynamics of observed values.

Classic EMOS can also be extended beyond the normal case, allowing for skewed 
or heavier tail distributions like log-normal, truncated normal, gamma, and general-
ised extreme value distributions. The unknown parameters of the chosen distribution 
for Z are then written as suitable functions of the ensemble members X1,… ,Xm . 
We call all these models extended EMOS, in contrast to classic EMOS (1). Two 
examples of the application of EMOS with log-normal and truncated normal distri-
butions are considered in the simulation section of this paper and the application to 
wind speed data, together with the truncated logistic and generalised extreme value 
distributions.

The unknown parameters of EMOS are usually estimated by minimising proper 
scoring rules such as the log-score and the CRPS. Minimisation of the log-score 
corresponds to the well-known maximum likelihood estimator (MLE). The CRPS is 
given by the general formula:

where F is a predictive distribution function to be evaluated at the observed value 
x and �(A) denotes the indicator function of the set A. Minimisation of the CRPS 
gives rise to the minimum CRPS estimator, with good robust properties and predic-
tion ability, see Gneiting and Raftery (2007). The model parameter estimates are 
obtained by minimizing the score functions using observed values and ensemble 
forecasts within appropriately selected training periods (Gneiting et al. 2005). Actu-
ally, sliding training periods are used, consisting of the n most recent days prior to 
the forecast, for which ensemble output X1,…Xm and verifying observations Z were 
available. When considering a pool of weather stations, two approaches can be used: 
local and regional. In the local approach, only observations from a single station 

Z = �0 + �1X1 +…+ �mXm + �,

(1)Z ∼ Φ
( z − �

�

)

,

CRPS (F, x) = �
ℝ

[F(u) − 𝕀(u ≥ x)]2du,



1 3

Environmental and Ecological Statistics 

of interest are considered for parameter estimation, while in the regional approach 
observations from all available stations are considered. Although local estimation 
generally yields better predictive performance, it may suffer from numerical insta-
bility due to the limited availability of training data (Thorarinsdottir and Gneiting 
2010). In contrast, regional estimation has typically no numerical instability issues, 
but, in such conditions, a single set of parameters is found for all the stations, with-
out taking into account geographical and climatological variability (Baran and 
Lerch 2015). An intermediate solution is proposed by Lerch and Baran (2017) with 
similarity-based semi-local models to estimate the EMOS coefficients. Our exempli-
fications are limited to the local estimation approach because our proposal aims to 
address the issue of poor quality of the estimates caused by small sample sizes in the 
training data.

In the classic EMOS, after minimising the log-score or the CRPS, the esti-
mated parameters are replaced in Eq.  (1) obtaining what is known as an esti-
mative distribution for the future weather quantity Z: Φ((z − �̂�)∕�̂�) , with 
�̂� = 𝛽0 + 𝛽1X1 +…+ 𝛽mXm , and �̂�2 = �̂�0 + �̂�1S

2 , where 𝛽0, 𝛽1,… , 𝛽m, �̂�0 , and �̂�1 are 
the estimates of �0, �1,… , �m, �0 , and �1 , respectively. A similar procedure is eas-
ily applied for obtaining estimative predictive distributions in the case of extended 
EMOS.

Unfortunately, estimative distributions may perform poorly, particularly when 
the number of past observations is small in comparison to the number of ensemble 
members because estimates can be highly unstable in this case. In particular, the 
calibration requirement is not met by estimative distributions. In fact, the estima-
tive procedure does not account for the variability introduced by substituting fixed 
parameter values with estimates. Thus, estimative distributions are often under-dis-
persed and too sharp.

2.2  Calibrated predictive distributions

There are many different properties that a good predictive distribution should pos-
sess. As suggested in Gneiting et al. (2007), here we focus on a calibration that is 
a sort of consistency between a predictive distribution and future observations. It 
is based on the fact that a good predictive distribution F̂(z) should resemble the 
true distribution F(z) so that, for the integral transform theorem, F̂(Z) ∼ U(0, 1) , at 
least approximately, where U(0, 1) denotes a uniform distribution in (0, 1). The PIT 
(Probability Integral Transform) histogram is a graphical representation useful for 
checking calibration (Raftery et al. 2005). For the construction of a PIT histogram, 
each observed data z is transformed through the predictive distribution F̂(⋅) , and then 
the histogram of transformed values F̂(z) is displayed. The histogram should be flat 
and similar to the histogram of random values from a uniform distribution in (0, 1).

It can be shown that a predictive distribution whose quantiles give the correct 
coverage probability is always calibrated. Thus, in this subsection, we briefly review 
the calibrating approach proposed by Fonseca et al. (2014), which provides predic-
tive distributions whose quantiles give well-calibrated coverage probabilities. The 
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approach has recently been adapted to the EMOS context in Giummolè and Mameli 
(2020), where only the classic EMOS (1) has been considered.

Suppose that {Zi}i≥1 is a sequence of independent continuous random variables. 
We assume that Z(n) = (Z1,… , Zn) , n > 1 , is observable, while Z = Zn+1 is a future 
or not yet available variable of the process, with probability distribution F(z;�) 
depending on an unknown parameter � . This general setting includes the basic 
EMOS specified in Eq. (1) and all the extended EMOS as particular cases. We indi-
cate with z�(�) the �-quantile of Z, so that z�(�) = F−1(�;�) . Given the observed 
sample z(n) = (z1,… , zn) , an �-prediction limit for Z is a function c�(z(n)) such that, 
exactly or approximately,

for every � ∈ Θ and for every fixed � ∈ (0, 1) . The above probability is called cover-
age probability and it is calculated with respect to the joint distribution of (Z(n), Z).

Consider a suitable asymptotically efficient estimator �̂� = �̂�(Z(n)) for � and the 
estimative prediction limit z𝛼(�̂�) , which is obtained as the �-quantile of the estima-
tive distribution function F(z;�̂�) . The associated coverage probability is

and, although its explicit expression is rarely available, it is well-known that it 
does not match the target value � even if, asymptotically, C(�, �) = � + O(n−1) , as 
n → +∞ , see e.g. Barndorff-Nielsen and Cox (1996). As proved in Fonseca et  al. 
(2014), the function

which is obtained by substituting � with F(z;�̂�) in C(�, �) , is a proper predictive dis-
tribution function, provided that C(⋅, �) is a sufficiently smooth function. Further-
more, it gives, as quantiles, prediction limits with coverage probability equal to the 
target nominal value.

The calibrated predictive distribution (2) is not useful in practice, since it 
depends on the unknown parameter � . However, a suitable parametric bootstrap 
estimator may be readily defined. Let 𝜃b , b = 1,… ,B , be estimates obtained from 
B bootstrap samples generated from the estimative distribution of the data. Since 
C(𝛼, 𝜃) = EZ(n) [F{z𝛼(�̂�(Z

(n)));𝜃};𝜃] , we define the bootstrap calibrated predictive dis-
tribution as

The corresponding �-quantile defines, for each � ∈ (0, 1) , a prediction limit having 
coverage probability equal to the target � , with an error term that depends on the 
efficiency of the bootstrap simulation procedure. This makes Fboot(z;�̂�) a well cali-
brated predictive distribution for Z.

PZ(n),Z{Z ≤ c�(Z
(n));�} = �,

PZ(n),Z{Z ≤ z𝛼(�̂�(Z
(n)));𝜃} = EZ(n) [F{z𝛼(�̂�(Z

(n)));𝜃};𝜃] = C(𝛼, 𝜃)

(2)C{F(z;�̂�), 𝜃},

(3)Fboot(z;�̂�) =
1

B

B
∑

b=1

F{z𝛼(�̂�
b);�̂�} ∣𝛼=F(z;�̂�) .
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In the following, we show that the proposed bootstrap adjustment on the EMOS 
estimative distributions significantly outperforms the estimative EMOS both in terms 
of calibration and sharpness, the most desirable properties that characterise predictive 
models (Gneiting et al. 2007).

3  Simulation studies

In this section, we present two simulation studies to compare estimative predictive dis-
tributions with their calibrated counterparts, in the context of EMOS with log-normal 
and truncated normal distributions. The classic EMOS with normal errors has already 
been considered in Giummolè and Mameli (2020). Both the considered models are 
estimated with the R package ensembleMOS (Yuen et al. 2018). For the optimisation 
of the log-score and of the CRPS over the training data, we use the constrained optimi-
sation algorithm L-BFGS-B (Byrd et al. 1995). In both simulations, we have chosen 
a small training sample size with a quite high number of ensemble members. This is 
a setting where estimates of the unknown parameters suffer instability due to a small 
number of observations. Typically, in this situation the estimative distribution is under-
dispersed with U-shaped PIT histograms. Indeed, this is where the bootstrap calibration 
is more compelling.

3.1  Log‑normal EMOS

In Baran and Lerch (2015) an EMOS approach based on the log-normal distribution is 
proposed for modelling wind speed values. The density of the log-normal distribution 
with parameters � and 𝜎 > 0 is

where �(⋅) denotes the density of a standard normal distribution. The mean m and 
the variance v of the interest variable Z are related to � and � through the equa-
tions m = e�+�

2∕2 and v = e2�+�
2

(e�
2

− 1) , respectively. In the log-normal EMOS 
proposed by Baran and Lerch (2015) m and v are affine functions of the ensemble 
members and the ensemble variance, respectively:

where �0 ∈ ℝ and �1,… , �m, �0, �1 ≥ 0 . Model parameters �0,… , �m and �0, �1 may 
be estimated by optimising the log-score or the CRPS over the training data. Here, 
we show the results of a simulation study based on M = 5000 Monte Carlo replica-
tions, with B = 200 bootstrap samples for calibration. The sample size, that is the 
length of the sliding window of training observations, is n = 25 with m = 10 ensem-
ble members. We have simulated 5025 outcomes of the ensemble, using a multi-
variate normal distribution for the log-transformed ensemble members, with mean 
0 and variance 1 for each component, and pairwise correlation � = 0.75 . The same 

f (z;𝜇, 𝜎) =
1

𝜎
𝜙

(

log z − 𝜇

𝜎

)

, z > 0,

(4)m = �0 + �1X1 +…+ �mXm and v = �0 + �1S
2,
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number of observations for a weather variable following the log-normal EMOS 
has been generated with regression coefficients set to �j = j + 1 , j = 0,… , 10 , and 
�0 = 100 , �1 = 100 . We report the PIT histograms (Fig. 1), the mean values of the 
log-score and the CRPS (Table 1), the coverage probabilities of upper limits of level 
� = 0.9 , 0.95, and 0.99 (Table 2), for the estimative distributions obtained with the 
MLE and the minimum CRPS estimator, together with the corresponding calibrated 
versions. All results show the improvement of the calibrated procedures over the 
estimative ones. We have repeated the simulation study using different correlations 
between the ensemble members. The results, not reported here, are not affected by 
this choice and always show the improvement of the bootstrap calibrated procedure 
over the estimative one. We have also repeated the study varying the sample size 
and the number of ensemble members. The results, not presented here, show a better 

Fig. 1  Log-normal EMOS: PIT histograms of the four predictive distributions. Est log denotes the esti-
mative EMOS with MLE estimates and Est CRPS the estimative EMOS with CRPS estimates, while Cal 
log and Cal CRPS are the respective calibrated counterparts

Table 1  Log-normal EMOS: 
Average log-score and CRPS 
values for the four predictive 
distributions

Standard errors in brackets. Est log denotes the estimative EMOS 
with MLE estimates and Est CRPS the estimative EMOS with CRPS 
estimates, while Cal log and Cal CRPS are the respective calibrated 
counterparts

Est log Cal log Est CRPS Cal CRPS

Log-score 10.45 4.84 14.65 4.90
(0.81) (0.16) (1.27) (0.12)

CRPS 14.34 12.79 15.09 13.15
(0.33) (0.27) (0.35) (0.28)
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improvement when the sample size n is small with respect to the number of ensem-
bles m.

3.2  Truncated normal EMOS

Thorarinsdottir and Gneiting (2010) propose a truncated normal model to model 
wind speed. The truncated normal distribution with location � , scale 𝜎 > 0 , and 
lower truncation at 0, has density function

where �(⋅) is the density function and Φ(⋅) is the cumulative distribution function of 
the standard normal distribution. In the truncated normal EMOS, the location and 
scale are linked to the ensemble members through the following formulas

where �0 ∈ ℝ and �1,… , �m, �0, �1 ≥ 0 . Again model parameters �0, �1,… , �m and 
�0, �1 can be estimated by optimising the log-score and the CRPS over the training 
data.

In order to assess and compare the performance of the estimative and the cali-
brated predictive distributions we have performed several experiments with simu-
lated ensembles. The ensemble members are drawn from a 10-variate truncated nor-
mal distribution with location 0 and scale 1 for each component, and correlation 
� = 0.75 between pairs of the ensemble members. The observations are generated 
from a truncated normal random variable with parameters specified in Eq. (5) with 
�j = j + 1 , j = 0,… , 10 , and �0 = 0 , �1 = 1 . The sample size is n = 25 and the boot-
strap calibrating procedure is based on 200 bootstrap samples. The number of Monte 
Carlo replications is 5000. We evaluate the estimative and calibrated predictive dis-
tributions in terms of coverage probabilities, PIT histograms, and also by using the 
mean log-score and CRPS.

f (z;𝜇, 𝜎) =
1

𝜎
𝜙

( z − 𝜇

𝜎

)

∕Φ
(

𝜇

𝜎

)

, z > 0,

(5)� = �0 + �1X1 +…+ �mXm and �2 = �0 + �1S
2,

Table 2  Log-normal EMOS: 
coverage probabilities of upper 
prediction limits for the four 
predictive distributions

Standard errors in brackets. Est log denotes the estimative EMOS 
with MLE estimates and Est CRPS the estimative EMOS with CRPS 
estimates, while Cal log and Cal CRPS are the respective calibrated 
counterparts

� Est log Cal log Est CRPS Cal CRPS

0.90 0.739 0.887 0.715 0.894
(0.006) (0.004) (0.006) (0.004)

0.95 0.797 0.936 0.772 0.937
(0.006) (0.003) (0.006) (0.003)

0.99 0.872 0.977 0.848 0.975
(0.005) (0.002) (0.005) (0.002)
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Table  3 provides the results of the simulation study for comparing coverage 
probabilities of upper limits of level � = 0.9 , 0.95, and 0.99 obtained from the 
estimative and the calibrated distributions with minimum CRPS and maximum 
likelihood estimates. It can be noted that the coverage probabilities associated 
with the calibrated quantiles are very accurate, being almost equal to the nominal 
values. The same conclusions can be drawn from the PIT histograms (Fig.    2). 
We also assess the improvement of the calibrated predictive distributions over 
the estimative ones by computing the log-score and the CRPS, averaged over the 
5000 replicates, as shown in Table 4. The superior performance of the calibrated 
distributions is evident. Indeed, average values of the scores for estimative distri-
butions are higher with respect to their calibrated counterparts. As in the previous 
example, we do not report the results of other simulation studies performed by 

Table 3  Truncated normal 
EMOS: coverage probabilities 
of upper prediction limits for the 
four predictive distributions

Standard errors in brackets. Est log denotes the estimative EMOS 
with MLE estimates and Est CRPS the estimative EMOS with CRPS 
estimates, while Cal log and Cal CRPS are the respective calibrated 
counterparts

� Est log Cal log Est CRPS Cal CRPS

0.90 0.752 0.898 0.730 0.895
(0.006) (0.004) (0.006) (0.004)

0.95 0.805 0.948 0.785 0.945
(0.006) (0.003) (0.006) (0.003)

0.99 0.889 0.987 0.866 0.987
(0.005) (0.002) (0.005) (0.002)

Fig. 2  Truncated normal EMOS: PIT histograms of the four predictive distributions. Est log denotes the 
estimative EMOS with MLE estimates and Est CRPS the estimative EMOS with CRPS estimates, while 
Cal log and Cal CRPS are the respective calibrated counterparts
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using different settings. However, these results indicate that when the sample size 
is small with respect to the number of ensembles, the improvement of the cali-
brated predictive distribution on the estimative one is more evident.

4  Temperature forecasts in Veneto

In order to assess and compare the performances of different EMOS predic-
tive distributions, we analyse maximum daily temperatures for stations located 
throughout the Veneto region in the northeast Italy, see Fig. 3.

Table 4  Truncated normal 
EMOS: Average log-score 
and CRPS values of the four 
predictive distributions

Standard errors in brackets. Est log denotes the estimative EMOS 
with MLE estimates and Est CRPS the estimative EMOS with CRPS 
estimates, while Cal log and Cal CRPS are the respective calibrated 
counterparts

Est log Cal log Est CRPS Cal CRPS

Log-score 1.88 1.02 2.37 1.05
(0.05) (0.02) (0.07) (0.02)

CRPS 0.39 0.36 0.40 0.37
(0.005) (0.004) (0.005) (0.004)

Fig. 3  Left panel: Geographical location of studied area in Italy. Right panel: Location of the meteoro-
logical stations in the Veneto region. Stations are represented by three dots and a cross, and the four 
elevation zones (elevation quartile base division) are delineated by colors. The darker the tone, the higher 
the elevation. The red cross represents the Illasi station
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4.1  Data description

Two sources of information about maximum daily temperatures are used in this 
application: ground measurements and numerical forecasts. The first includes his-
torical maximum daily temperatures provided by the Italian national system for the 
collection, processing, and dissemination of climate data, created by ISPRA (http:// 
www. scia. ispra mbien te. it/). The second source consists of numerical forecasts (the 
ensemble predictions) available from the Earth System Grid Federation (https:// esgf- 
node. llnl. gov/ search/ cmip6/, last accessed on February 2022). We use the World 
Climate Research Programme’s Coupled Model Intercomparison Project Phase 6 
system (CMIP6). The project delivers a huge number of simulations from global cli-
mate models at high spatial resolution; in fact, it comprises over 120 global climate 
models and approximately 45 universities and organizations globally (https:// pcmdi. 
llnl. gov/ CMIP6). One of the scientific focuses of the CMIP6 experiment is to under-
stand past, present, and future climate changes (Eyring et  al. 2016). The CMIP6 
models used for this study are given in the Supplementary Material. Although some 
CMIP6 models have a large number of members, we use a single member for each 
CMIP6 model as in Kim et al. (2020). Therefore, in this application, each CMIP6 
model is considered a single member of our ensemble. Thus, all ensemble members 
have individually distinguishable physical features and are not exchangeable. The 
ISPRA historical datasets are available from 1850, but, for evaluation purposes, this 
study focuses on the period 2009–2012 to match the timespan of CMIP6 numerical 
simulations. Ground measurement data from ISPRA are used as benchmarks and are 
collected at different meteorological stations in the Veneto region.

The region, which is located in northern Italy, is characterised by large elevation 
variations, with a mountainous area in the northwestern part, an intermediate hill 
zone in the middle, and a broad flat area in the southeastern part. Its elevation var-
ies from sea level (and also below sea level) to around 3,300 meters, resulting in a 
wide range of temperatures. The elevation is used in Fig. 3 (right panel) to classify 
the various zones of the Veneto region based on its quartile division, where higher 
elevation areas are represented in darker tones. Numerical predictions are then inter-
polated to the station level using elevation as a reference.

Our dataset includes information on four stations, one for each of the four zones 
identified by the elevation quartile-based division. The stations are represented as 
three dots and a cross in Fig. 3 (right panel). The cross represents the Illasi station 
(longitude: 11.17178°, latitude: 45.45954°), whose analysis is reported in detail in 
the next subsection. Similar tendencies have also been observed for all the other sta-
tions not reported here.

4.2  Analysis and results for the Illasi station

All CMIP6 climate models considered in this study show bias, namely systematic 
differences between historical ground measurements and numerical simulations, as 
can be observed in Fig. 4. In this figure, the black line is the time series of the true 

http://www.scia.isprambiente.it/
http://www.scia.isprambiente.it/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
https://pcmdi.llnl.gov/CMIP6
https://pcmdi.llnl.gov/CMIP6
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historical maximum daily temperatures at Illasi station collected from the ISPRA 
website and used as benchmarks. Each grey line represents the time series of numer-
ical forecasts from one CMIP6 model (the list of which is given in the Supplemen-
tary Material). The red line is the time series of the numerical forecast obtained by 
averaging the forecasts from the CMIP6 models (ensemble mean). The data cover 
a period of 3 years from 16 May 2009 to 15 May 2012. After removing missing 
observations from the selected station, the sample contains 1079 daily temperature 
observations and 26 ensemble members.

Similar to other weather variables, time series of temperature cannot be consid-
ered stationary. The classic EMOS with normal distribution and the assumption of 
independent observations provide a reasonable model for temperatures when fit-
ted over a short period of time. Short training periods allow for rapid adaptation to 
seasonally varying model biases, changes in the performance of ensemble member 
models, and changes in environmental conditions (Gneiting et al. 2005). Thus, we 
can assume that the marginal distributions of the weather variable depend only on 
the time-varying ensemble forecasts within the short time window. However, due to 
limited information availability, more complex models for temporal dynamics can-
not be specified without risking numerical instability in the estimates. This leads to 
the working hypothesis that the observations are independent.

Following Gneiting et al. (2005), we consider a sliding window of n = 40 obser-
vations as the training set. They are used to estimate the EMOS parameters by opti-
mising both the log-score and the CRPS. The remaining days serve for evaluation 
purpose in the following way. The performance of the two estimative distributions 
derived from the log-score and the CRPS, as well as their bootstrap calibrated coun-
terparts computed as in Eq. (3) are evaluated on the next 1 to 10 observations. Then 
the observation window moves one step ahead and the process is repeated until the 
data is over. The different predictive models are compared at each lead time from 
1 to 10 in terms of the log-score and the CRPS. Figure 5 shows average log-score 
(left) and CRPS (right) values at each lead time for the considered predictive EMOS 
(the smaller the better). The two calibrated EMOS result in the lowest average log-
score and CRPS values, for all lead times, significantly outperforming their estima-
tive competitors. We also evaluate the performances of the four predictive models 

Fig. 4  Temperature case study: differences between historical observations and numerical forecasts. 
Time series of each numerical forecast from one CMIP6 model (gray lines) and the corresponding 
ISPRA historical observations (black line) together with the numerical forecasts obtained by the ensem-
ble mean (red line)
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Fig. 5  Temperature case study: Log-score (left) and CRPS average values (right) for the four predictive 
distributions on different days. Est log denotes the estimative EMOS with MLE estimates and Est CRPS 
the estimative EMOS with CRPS estimates, while Cal log and Cal CRPS are the respective calibrated 
counterparts

Fig. 6  Temperature case study: Coverage probabilities for the four predictive distributions on different 
days for different target nominal levels � = 0.67, 0.90, 0.95, 0.99 . The ideal coverage is indicated by the 
horizontal dashed-dotted line in each plot. Est log denotes the estimative EMOS with MLE estimates and 
Est CRPS the estimative EMOS with CRPS estimates, while Cal log and Cal CRPS are the respective 
calibrated counterparts
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in terms of the coverage probability of central intervals of level 0.67 and the cover-
age probabilities of upper prediction limits of levels 0.90, 0.95, and 0.99; see Fig. 6. 
It can be seen that the two calibrated EMOS result in the best coverage for each 
target nominal level. They are much closer to the nominal coverage level than the 
estimative EMOS. The PIT histograms of calibrated EMOS forecasts, not presented 
here, show the positive effect of calibration, already shown in Fig. 6. They are much 
closer to uniformity than the PIT histograms of the estimative EMOS, confirming 
the results obtained with the coverage probabilities.

The normal EMOS models have been estimated with the R package ensemble-
MOS Yuen et al. 2018. For the optimization of the log-score and of the CRPS over 
the training data, we have used the optimisation algorithm BFGS (Broyden 1970; 
Fletcher 1970; Goldfarb 1970; Schanno 1970).

5  Wind speed forecasts of German daily data

We examine wind speed data for stations in Germany in order to more thoroughly 
evaluate and contrast the performance of various extended EMOS based on non-
normal distributions.

5.1  Data description

This dataset has been recently studied by Chen et al. (2022) and is available from 
https:// doi. org/ 10. 6084/ m9. figsh are. 19453 622. It consists of forecasts of daily 
10-meter wind speed in 315 weather stations located all over Germany, produced by 
the 50-member ensemble of the European Center for Medium-range Weather Fore-
casts (ECMWF). The dataset also contains historical observations from the Climate 
Data Center of the German weather service. In contrast with the previous case study, 
ensemble members in this application can be thought of as exchangeable because 
they lack distinguishing physical characteristics. The mean and standard deviation 
of the ensemble forecasts are then determined and used to specify model parameters. 
A total of 10 years of daily forecasts and observations ranging from 2007 to 2016 
are available. This provides a rich dataset for investigating the performance of the 
ensemble forecasting methods. See Chen et al. (2022) for further details about the 
data.

5.2  EMOS models for wind speed

In the following, we apply the calibration procedure presented in Sect. 2.2 to dif-
ferent extended EMOS for daily wind speed forecasts in Germany. We consider 
extended EMOS already proposed in the literature, such as those based on the nor-
mal distribution left-truncated at zero (Thorarinsdottir and Gneiting 2010), the logis-
tic distribution left-truncated at zero (Messner et al. 2014a, 2014b), the log-normal 

https://doi.org/10.6084/m9.figshare.19453622
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distribution (Baran and Lerch 2015), and the generalized extreme value distribution 
(GEV) (Lerch and Thorarinsdottir 2013; Baran et al. 2021).

Usually, for all these models the unknown parameters are linked to the ensem-
ble members, as in Eqs. (4) and (5); however, in the present case study, ensemble 
members are exchangeable, so unknown parameters are written as functions of the 
ensemble mean X̄ and the ensemble variance S2 . In particular, for the left-truncated 
at zero normal and logistic distributions we modeled the location parameter as

where �0 ∈ ℝ , �1 ≥ 0 . The variance is a linear function of the ensemble variance, 
as already specified in Eq. (5). Similarly, for the log-normal distribution, the mean 
has been modeled as a linear function of the ensemble mean X̄ , and the variance as 
in Eq. (4). In the extended EMOS with the GEV distribution, the location parameter 
is specified as in Eq. (6), the logarithm of the scale parameter is considered as a 
linear function of the logarithm of the ensemble mean, that is log 𝜎 = 𝛾0 + 𝛾1 log X̄ , 
with �0, �1 ∈ ℝ , and the shape parameter is an unknown constant. Different ways for 
modelling the scale parameter have also been considered, but the final results do not 
seem to be much affected by this choice, as also mentioned in Baran et al. (2021). 
In this case, it is possible to obtain non-zero probabilities of negative wind speed. 
However, this rarely happens in this dataset.

In the following subsections, the truncated logistic and the truncated normal 
EMOS models are estimated using the R package crch (Messner et al. 2013, 2016). 
Instead, the log-normal and the GEV EMOS models are estimated using the R pack-
age ensembleMOS (Yuen et al. 2018), with the L-BFGS-B optimisation algorithm, 
and extRemes (Gilleland and Katz 2016), respectively.

5.3  Results

Figure  7 illustrates all the stations that are taken into account in this subsection. 
First, we report the analysis of the two stations represented with blue squares: sta-
tion 90, located in the center of Germany (Longitude: 9.2583, Latitude: 50.7557), 
and station 183, located in the north of Germany (Longitude: 13.4343, Latitude: 
54.6792). These two stations have been selected as examples of different behavior in 
the distribution of wind speed. Finally, in order to show the global effect of calibra-
tion, we fit one extended EMOS for all the stations in Fig. 7.

5.3.1  Station 90

The sample consists of 3576 observations of daily wind speed. The training set is 
a sliding window with 25 observations, and the test set consists of the remaining 
days. Here, we take into account extended EMOS with the GEV distribution (Lerch 
and Thorarinsdottir 2013; Baran et al. 2021), and with the log-normal distribution 
(Baran and Lerch 2015). For both EMOS models, the parameters are calculated by 
maximising the log-score over a training set of 25 observations. The performance 
of the two estimative distributions obtained with the log-score—one based on the 

(6)𝜇 = 𝛽0 + 𝛽1X̄,



1 3

Environmental and Ecological Statistics 

EMOS with the log-normal distribution and the other with the GEV distribution—
as well as the corresponding calibrated counterparts obtained by the bootstrap pro-
cedure of Eq. (3) are then assessed using coverage probabilities for each of the days 
available in the test set. In particular, we consider coverage probabilities of central 
intervals of level 0.67 (Table 5) to assess the calibration and sharpness in the central 
part of the predictive distributions. The log-normal and the GEV distributions show 
similar results. Additionally, we also consider the coverage probabilities of upper 
prediction limits of levels 0.90, 0.95, and 0.99 (Table 5). The findings indicate that, 
when compared to estimative models, calibrated predictive models have better cov-
erage probabilities for both central intervals and upper prediction limits. The PIT 
histograms in Fig. 8, with the log-normal distribution at the top and the GEV dis-
tribution at the bottom, further support the superior performance of the calibrated 
models. For this station, we also considered extended EMOS with the truncated nor-
mal and truncated logistic distributions, but the results are unsatisfactory because 
the two distributions do not adequately fit the data. In fact, the proposed calibration 
procedure is more effective under a good model specification.

5.3.2  Station 183

The sample contains 3610 observations of daily wind speed. We use a sliding 
window of 25 observations as a training set, with the remaining days available 
as a test set. Here, we consider extended EMOS with the normal distribution 

Fig. 7  Location in Germany of 
weather stations considered in 
this study
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left-truncated at zero (Thorarinsdottir and Gneiting 2010), and with the logis-
tic distribution left-truncated at zero (Messner et al. 2014a, 2014b). The EMOS 
parameters for both models are estimated by optimising the log-score over the 
sliding training period. The performance of the two estimative distributions 
obtained with the log-score—one based on the EMOS with the normal distribu-
tion left-truncated at zero and the other with the logistic distribution left-trun-
cated at zero—as well as the corresponding calibrated distributions obtained 
using the bootstrap procedure of Eq. (3) are evaluated in terms of coverage prob-
abilities of central intervals of level 0.67 (Table 6), and upper prediction limits 
of levels 0.90, 0.95, and 0.99 (Table  6). The truncated normal and the truncated 
logistic distributions show similar results. It is important to remark that the cov-
erage probabilities for calibrated predictive models for both the truncated logis-
tic and the truncated normal distributions are much closer to the nominal values 
than those for the corresponding estimative models. The PIT histograms for the 
four investigated predictive models are finally shown in Fig. 9, with the truncated 
logistic distribution at the top and the truncated normal distribution at the bot-
tom. The U-shaped histograms of the estimative models are due to the excessive 
under-dispersion. Instead, the effect of calibration results in a flat PIT histogram, 
very close to the uniform one.

Table 5  Wind case study for 
station 90. (a) Log-normal 
distribution and (b) GEV 
distribution

Coverage probabilities of the central interval of level 0.67 and upper 
prediction limits for the estimative EMOS with MLE estimates (Est 
log), and the respective calibrated counterpart (Cal log). Standard 
errors in brackets

� Est log Cal log

(a) Log-normal
 0.67 0.613 0.667

(0.008) (0.008)
 0.90 0.878 0.906

(0.005) (0.005)
 0.95 0.935 0.956

(0.004) (0.003)
 0.99 0.981 0.992

(0.002) (0.002)
(b) GEV
 0.67 0.593 0.652

(0.008) (0.008)
 0.90 0.865 0.903

(0.006) (0.005)
 0.95 0.916 0.953

(0.005) (0.004)
 0.99 0.959 0.979

(0.003) (0.002)



1 3

Environmental and Ecological Statistics 

Fig. 8  Wind case study for station 90. a Log-normal distribution and b GEV distribution. PIT histograms 
of the estimative EMOS with MLE estimates (Est log), and the respective calibrated counterpart (Cal 
log)

Table 6  Wind case study for 
station 183. (a) Truncated 
logistic distribution and (b) 
Truncated normal distribution. 
Coverage probabilities of central 
intervals of level 0.67 and 
upper prediction limits for the 
estimative EMOS with MLE 
estimates (Est log), and the 
respective calibrated counterpart 
(Cal log). Standard errors in 
brackets

� Est log Cal log

(a) Truncated logistic
 0.67 0.613 0.669

(0.008) (0.008)
 0.90 0.865 0.898

(0.006) (0.005)
 0.95 0.916 0.948

(0.005) (0.004)
 0.99 0.971 0.989

(0.003) (0.002)
(b) Truncated normal
 0.67 0.630 0.690

(0.008) (0.008)
 0.90 0.866 0.901

(0.006) (0.005)
 0.95 0.915 0.945

(0.005) (0.004)
 0.99 0.962 0.984

(0.003) (0.002)
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Fig. 10  Wind case study for 188 stations and a sliding window of n = 20 observations. Boxplots of the 
coverage probabilities of upper prediction limits for the estimative EMOS with MLE estimates (Est log), 
the estimative EMOS with CRPS estimates (Est CRPS), and the respective calibrated counterparts (Cal 
log and Cal CRPS)

Fig. 9  Wind case study for station 183. a Truncated logistic distribution and b Truncated normal distri-
bution. PIT histograms of the estimative EMOS with MLE estimates (Est log), and the respective cali-
brated counterpart (Cal log)
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Fig. 11  Wind case study for 188 stations and a sliding window of n = 40 observations. Boxplots of the 
coverage probabilities of upper prediction limits for the estimative EMOS with MLE estimates (Est log), 
the estimative EMOS with CRPS estimates (Est CRPS), and the respective calibrated counterparts (Cal 
log and Cal CRPS)

Fig. 12  Wind case study for 188 stations and a sliding window of n = 20 observations. Plots of the cov-
erage probabilities of upper prediction limits for the estimative EMOS with CRPS estimates (Est CRPS), 
and the respective calibrated counterpart (Cal CRPS) for various values of �
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5.3.3  All stations

The analysis presented in the previous subsections has been extended to include 
all the stations shown in Fig.  7. A total of 188 stations were included in this 
analysis. The processing time for a single weather station on a working station 
equipped with Intel(R) Xeon(R) 2.30GHz with 37 cores, using R code, is approx-
imately 34  min. As an illustration, we have considered the truncated logistic 
model estimated with a sliding window of 20 and 40 observations. Figures  10, 
11, 12,  13 show that the bootstrap calibrated predictive distributions provide 
more calibrated predictions for all the considered stations, always improving on 
the estimative solutions for all values of the nominal level � . As estimative dis-
tributions tend to perform better with more observations, the benefits are more 
noticeable with shorter training periods. This can be exemplified by comparing 
Figs. 10 and 12.

6  Conclusions

In this work, we compare the estimative EMOS with the bootstrap calibrated 
EMOS. We present some simulation studies and two real case applications to 
temperature forecast in the Veneto region (Italy) and to wind speed forecast in 
Germany. Appropriate verification measures such as CRPS, log-score, and cover-
age probabilities of central and upper prediction intervals are used for assessing 

Fig. 13  Wind case study for 188 stations and a sliding window of n = 40 observations. Plots of the cov-
erage probabilities of upper prediction limits for the estimative EMOS with CRPS estimates (Est CRPS), 
and the respective calibrated counterpart (Cal CRPS) for various values of �
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the calibration and sharpness of the predictive models. From the results of the 
analyses, one can conclude that calibrated EMOS remarkably improves on esti-
mative EMOS in terms of all the most commonly used measures of goodness.

The analysis of maximum temperatures in Veneto and the analysis of wind speed 
in Germany do not include either the temporal or the spatial component in the 
model. As noticed in Gneiting et al. (2005); Gomes et al. (2021), the temporal com-
ponent can be disregarded by using a short enough window of training observations. 
Indeed, in a short period, the process can be assumed to be stationary, and in the 
presence of few observations, the need for calibrating estimative solutions is more 
compelling. The spatial structure could be included by allowing the coefficients to 
depend on the location, as in geo-statistical output perturbation models. This will be 
investigated in future work.

We would also like to note that, for the wind speed data, other stations have been 
analysed. It has been observed that the underlying distribution used to fit the data 
has a significant impact on the results. Indeed, the proposed calibrating procedure 
strongly relies on a good model specification. Anyway, if the chosen model does not 
fit the data well, the bootstrap calibrated solution still improves on the estimative, 
but  is unable to reach good calibration. Further research is needed to develop a cali-
bration method that is more robust to model misspecifications.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10651- 024- 00606-w.

Acknowledgements We acknowledge the World Climate Research Programme that coordinated and pro-
moted CMIP6, the Earth System Grid Federation (ESGF) for archiving the data and providing access. We 
appreciate all the organisations listed in the Supplementary Material for implementing and making their 
models available. Furthermore, we are very grateful to Sebastian Lerch for providing us with the wind 
speed dataset, useful for applying calibration to extended EMOS.

Author contributions FG and VM wrote the main manuscript text and the software for the simulation 
studies and the analyses of the datasets. CG supervised the work and provided advice on real data analy-
ses. All authors reviewed the manuscript.

Funding Open access funding provided by Università degli Studi di Udine within the CRUI-CARE 
Agreement. No funding was received for conducting this study.

Declarations 

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

https://doi.org/10.1007/s10651-024-00606-w
https://doi.org/10.1007/s10651-024-00606-w
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Environmental and Ecological Statistics

1 3

References

Baran S, Lerch S (2015) Log-normal distribution based ensemble model output statistics models for 
probabilistic wind speed forecasting. Q J Royal Meteorol Soc 141:2289–2299

Baran S, Lerch S (2016) Mixture EMOS model for calibrating ensemble forecasts of wind speed. 
Environmetrics 27:116–130

Baran S, Lerch S (2018) Combining predictive distributions for the statistical post-processing of 
ensemble forecasts. Int J Forecast 34:477–496

Baran S, Nemoda D (2016) Censored and shifted gamma distribution based EMOS model for proba-
bilistic quantitative precipitation forecasting. Environmetrics 27:280–292

Baran S, Szokol P, Szabó M (2021) Truncated generalized extreme value distribution-based ensemble 
model output statistics model for calibration of wind speed ensemble forecasts. Environmetrics 
2021:e2678

Barndorff-Nielsen OE, Cox DR (1996) Prediction and asymptotics. Bernoulli 2:319–340
Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numerical weather prediction. Nature 

525:47–55
Byrd RH, Lu P, Nocedal J, Zhu CY (1995) A limited memory algorithm for bound constrained opti-

mization. SIAM J Sci Comput 16:1190–1208
Broyden CG (1970) The convergence of a class of double-rank minimization algorithms. IMA J Appl 

Math 6:76–90
Buizza R (1997) Potential forecast skill of ensemble prediction and spread and skill distributions of 

the ECMWF ensemble prediction system. Mon Weather Rev 125:99–119
Chen J, Janke T, Steinke F, Lerch S (2022) Generative machine learning methods for multivariate 

ensemble post-processing. https:// publi katio nen. bibli othek. kit. edu/ 10001 51932
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the 

coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. 
Geosci Model Dev 9:1937–1958

Fletcher R (1970) A new approach to variable metric algorithms computer. Comput J 13:317–322
Fonseca G, Giummolè F, Vidoni P (2014) Calibrating predictive distributions. J Stat Comput Simul 

84:373–383
Gilleland E, Katz RW (2016) ExtRemes 2.0: an extreme value analysis package in R. J Stat Softw 

72:1–39
Giummolè F, Mameli V (2020) Comparing predictive distributions in EMOS. Book of short papers 

SIS 2020. Pearson, Bloomington, pp 823–828
Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. J Am Stat 

Assoc 102:359–378
Gneiting T, Raftery AE, Westveld AH III, Goldman T (2005) Calibrated probabilistic forecast-

ing using ensemble model output statistics and minimum CRPS estimation. Mon Weather Rev 
133:1098–1118

Gneiting T, Balabdaoui F, Raftery AE (2007) Probabilistic forecasts, calibration and sharpness. J 
Royal Stat Soc: Ser B (Stat Methodol) 69:243–268

Goldfarb A (1970) A family of variable metric methods derived by variational means. Math Comput 
24:23–26

Gomes LES, Fonseca TCO, Gonçalves KCM, Ruiz-Cárdenas R (2021) Space-time calibration of wind 
speed forecasts from regional climate models. Environ Ecol Stat 28:631–665

Haiden T, Janousek M, Vitart F, Ferranti L, Prates F (2019) Evaluation of ECMWF forecasts, includ-
ing the 2019 upgrade. ECMWF, Reading, p 588

Kim YH, Min SK, Zhang X, Sillmann J, Sandstad M (2020) Evaluation of the CMIP6 multi-model 
ensemble for climate extreme indices. Weather Clim Extrem 29:1–15

Lerch S, Thorarinsdottir TL (2013) Comparison of non-homogeneous regression models for probabil-
istic wind speed forecasting. Tellus A Dyn Meteorol Oceanogr 65(1):21206

Lerch S, Baran S (2017) Similarity-based semilocal estimation of postprocessing models. Royal Stat 
Soc Ser C 66:29–51

Messner JW, Zeileis A, Broecker J, Mayr GJ (2013) Probabilistic wind power forecasts with an inverse 
power curve transformation and censored regression. Wind Energy 17:1753–1766

Messner JW, Mayr GJ, Zeileis A, Wilks DS (2014a) Heteroscedastic extended logistic regression for 
postprocessing of ensemble guidance. Mon Weather Rev 142:448–456

https://publikationen.bibliothek.kit.edu/1000151932


1 3

Environmental and Ecological Statistics 

Messner JW, Mayr GJ, Wilks DS, Zeileis A (2014b) Extending extended logistic regression: extended 
versus separate versus ordered versus censored. Mon Weather Rev 142:3003–3014

Messner JW, Mayr GJ, Zeileis A (2016) Heteroscedastic censored and truncated regression with crch. 
R-J 8:173–181

Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to cali-
brate forecast ensembles. Mon Weather Rev 133:1155–1174

Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2019) The ECMWF ensemble prediction sys-
tem: looking back (more than) 25 years and projecting forward 25 years. Q J Royal Meteorol Soc 
145:12–24

Schanno J (1970) Conditions of quasi-Newton methods for function minimization. Math Comput 
24:647–650

Thorarinsdottir TL, Gneiting T (2010) Probabilistic forecasts of wind speed: ensemble model out-
put statistics by using heteroscedastic censored regression. J Royal Stat Soc Ser A (Stat Soc) 
173:371–388

Yuen RA, Baran S, Fraley C, Gneiting T, Lerch S, Scheuerer M, Thorarinsdottir T (2018) Ensemble-
MOS: ensemble model output statistics. R package version 0.8.2

Authors and Affiliations

Carlo Gaetan1 · Federica Giummolè1 · Valentina Mameli2

 * Valentina Mameli 
 valentina.mameli@uniud.it

 Carlo Gaetan 
 gaetan@unive.it

 Federica Giummolè 
 giummole@unive.it

1 Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University 
of Venice, via Torino 155, 30172 Venice, Italy

2 Department of Economics and Statistics, University of Udine, via Tomadini 30/A, 33100 Udine, 
Italy


	Calibrated EMOS: applications to temperature and wind speed forecasting
	Abstract
	1 Introduction
	2 The method
	2.1 Ensemble model output statistics
	2.2 Calibrated predictive distributions

	3 Simulation studies
	3.1 Log-normal EMOS
	3.2 Truncated normal EMOS

	4 Temperature forecasts in Veneto
	4.1 Data description
	4.2 Analysis and results for the Illasi station

	5 Wind speed forecasts of German daily data
	5.1 Data description
	5.2 EMOS models for wind speed
	5.3 Results
	5.3.1 Station 90
	5.3.2 Station 183
	5.3.3 All stations


	6 Conclusions
	Acknowledgements 
	References


