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Abstract
Manymonitoring programsprovide annual indices of relative change over time in some
quantitative measure of ecological status, such as population abundance or species
richness. These indices are usually scaled relative to a reference year so that they
represent change in ecological status compared to this particular year. An issue with
this approach is that uncertainty about ecological status in the reference year can
propagate into large uncertainty in all other index values. Taking instead the mean
of the ecological status over several years as the reference—a reference period—
may reduce uncertainty in indices. At present, this approach is not commonly used
in practice. I quantitatively evaluate how the choice of reference period affects the
uncertainty of two variants of population indices, either estimated independently each
year or smoothed over several years, for 100 bird species using monitoring data. Short
reference periods containing years early in the series lead to reduced uncertainty in
independently estimated index values, but not in smoothed indices, compared to when
using a single reference year. When a long reference period was used, uncertainty was
substantially reduced for independently estimated annual indices in particular, but also
for smoothed indices. An exception to the reduction in uncertainty with the length of
the reference period was found when indices are constrained to be log-linear. Given an
appropriate model and indices that are not strictly log-linear, using smoothing and/or
reference the periods can be useful ways of reducing irrelevant uncertainty in the
presentation of indices.
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1 Introduction

Ecological monitoring programs often produce annual estimates of abundance or bio-
diversity to assess changes in the status of populations or ecosystems (Marsh and
Trenham 2008; Fraixedas et al. 2020). Estimating the total number of individuals in
a population, or species in a community, is however a difficult task. For birds and
butterflies, for instance, regional population estimates may be derived from transect
counts where the proportion of missed individuals cannot be quantified and it may not
be clear which spatial area the individuals counted belong to (Ralph et al. 1995, van
Swaay et al. 2008). Raw abundance estimates therefore often have no easily interpreted
scale. To anchor raw estimates of the ecological quantity of interest, and to put a direct
focus on temporal change rather than absolute level, they are usually rescaled relative
to some baseline into index values. The use of a baseline gives index values a mean-
ingful scale, and indices are interpreted as the proportional change in the ecological
quantity relative to the baseline.

Each choice of baseline gives a different index, and therefore has different associated
uncertainty. A standard choice of the baseline is the first year of study (Gregory et al.
2019) so that indices represent the change in the ecological quantity relative to the
first year. An issue with this approach is that uncertainty in the raw estimate in the
reference year propagates into the uncertainty of all subsequent index values. Thismay
considerably inflate uncertainty (Buckland and Johnston 2017), and is particularly
problematic in cases where uncertainty of the raw estimate in the reference year is
larger than in subsequent years, which is often the case if the reference year is the first
year of the study and sampling effort increases over time. One approach to counter
this effect is to select a year with a somewhat lower uncertainty as the reference (Fedy
and Aldridge 2011), but this still means that uncertainty in the single reference year
propagates into all indices. An alternative is to use themean overmultiple years instead
of a single year as the reference to try to get a more stably estimated baseline. This
kind of reference is not widely used in practice (but see e.g. Carlson et al. 2012, Knape
2016, Gregory et al. 2019). Another approach that has been suggested to reduce the
influence of the choice of baseline (Buckland and Johnston 2017) is to use smoothing
methods (Siriwardena et al. 1998; Fewster et al. 2000; Buckland et al. 2005; Soldaat
et al. 2017; Harrison et al. 2014; Knape 2016). By smoothing indices over multiple
years more stable indicesmay be obtained, but also in this case using a single reference
year to anchor the smoothed index is common practice.

A broader empirical and quantitative assessment of how the choice of reference
affects the uncertainty of population indices is currently lacking, and is the aim of
this study. I compare indices defined from a single reference year to indices defined
from reference periods consisting of sequences of years of varying lengths. I examine
how the choice of reference period affect the uncertainty of annual indices estimated
independently each year, and of smoothed index estimates obtained from GAMMs,
for 100 bird species in Sweden.
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2 Methods

For ease of presentation, I discuss abundance indices in the following sections, but
the general ideas apply more broadly to ecological indices of temporal change, and
particularly to biodiversity indices. Abundance indices are often derived from models
with a log-link and, again for the sake of presentation, we assume that we have raw
unscaled annual abundance indices over time at the log scale, μ̂1, μ̂2, … These may,
for example, be estimated from fixed year effects in a Poisson GLM or, in the case
of smoothed indices, from a GAM with a Poisson response. If year 1 is used as the
reference, then a standard relative abundance index in year t is

Ît = exp(μ̂t )

exp(μ̂1)
(1)

To evaluate the uncertainty of indices we focus on the variance of log( Ît ), from which
approximate confidence intervals and standard errors can be computed. The reason
for focusing on the variance at the log scale is that it is unaffected by simple scaling of
the index, e.g. the variance of log( Ît ) is identical to that of log(100 Ît ). The variance
of log( Ît ) can be expressed as

V(log( Ît )) = V(μ̂t − μ̂1) = V(μ̂t ) + V(μ̂1) − 2Cov(μ̂t , μ̂1) (2)

This shows that the uncertainty of both μ̂1 and μ̂t contribute to the variance of log( Ît ),
and that the variance of μ̂1 will dominate if the uncertainty of μ̂1 is larger than that of
μ̂t , which is often the case in practice.

The approach evaluated here is to try to reduce the part of the variance in log( Ît ) that
is due to uncertainty about the index in the reference year by using multiple reference
years. Using 2 years as the reference we can define an alternative index

Ît = exp(μ̂t )

(exp(μ̂1) + exp(μ̂2))/2
(3)

The arithmetic mean of the raw index in the first 2 years is the reference for this index,
and we would often expect the alternative index to have less uncertainty due to the
denominator being more precisely estimated. This idea can be extended to use the
mean over the first l years as the reference:

Ît = exp(μ̂t )

1
l

∑l
j=1 exp(μ̂ j )

(4)

As l increases wewould expect the uncertainty of log( Ît ) to decrease further.Whether,
and to what extent, this happens in practice is the focus of this paper. I will explore
this in an analysis of monitoring data but first briefly describe how the uncertainty of
the reference period indices may be computed in practice.
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2.1 Computing uncertainty estimates for reference period indices

Compared to single year reference indices, log( Ît ) for reference period indices are
non-linear as a function of μ̂ j in the reference period. This can make it more difficult
to compute uncertainty estimates.One approach to do so is to use a delta approximation
(see Appendix A). A second approach is simulation methods such as bootstrapping
where all μ̂t are generated according to some simulation procedure, and the non-linear
function log( Ît ) is computed from the samples. A third approach is Bayesian methods
based onMonte Carlo integration, used for example for indices for theNorthAmerican
breeding bird survey (Link and Sauer 2002). In such cases, Monte Carlo samples of
the μ̂t will usually be available and log( Ît ) can be computed for each sample to yield
a posterior distribution. A fourth option would be to use the geometric mean of the
exp(μ̂ j ) as the reference instead of the arithmetic mean. Then log( Ît ) would be linear
as a function of μ̂ j and the uncertainty could be computed from contrasts.

Reference period indices are currently implemented in the R-packages rtrim
(Bogaart et al. 2020) and poptrend (Knape 2016). The rtrim package uses a delta
approximation (Appendix A). The poptrend package, used in the case study on
Swedish birds and simulations below, instead uses a simulation approach. Simulated
parameter estimates are drawn from amultivariate normal distribution with covariance
matrix equal to a covariance matrix for the parameter estimates (Wood 2006b; Mandel
2013; Harrison et al. 2014).

2.2 Case study

To investigate howmultiple reference years affect the uncertainty of population indices
in practice, I analyzed data from the SwedishBird Survey (LindströmandGreen 2020).
These data consist of annual line transect counts of birds from about 700 survey routes
spread across a regular grid over Sweden. Not all routes are surveyed in every year. The
survey was initiated in 1996 when 47 routes were surveyed, increasing to 84 in 1997,
166 in 1998, 179 in 1999, and 203 in 2000. The number of routes then continued to
increase and 400–500 routes are now surveyed annually. Because so few routes were
surveyed in the first 2 years, 1998 is used as the single reference year to compute
official indices.

I ranked the species in the survey according to the number of non-zero counts across
all years and routes. I then selected the 100 species with the most non-zero counts
for analyses of the impact of the baseline on index uncertainty. For each species, I
first removed routes that had only zero counts and then fitted (I) a negative binomial
regression model with a log link, and route and year as fixed factors and (II) a negative
binomial GAMMmodel with log link, route as a fixed factor, and year both as a smooth
function and as a random effect (Knape 2016). The smooth function was implemented
as a cubic regression spline. To get a uniform analysis across all 100 species I fixed the
number of degrees of freedom in the GAMM at 8. This conforms with other empirical
studies of bird census data (Fewster et al. 2000). I fixed the degrees of freedom since
model selection of degrees of freedom in the GAMM analysis can lead to smooth
functions that are near linear (1 degree of freedom). In this case there is a simple
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approximate relationship between uncertainty and the choice of reference period,
which is examined further inAppendixB. The random time effect in theGAMMmodel
was included to handle short term variation in abundance, and can affect uncertainty
of the estimated trend (Knape 2016). The overdispersion parameter of the negative
binomial distribution was estimated rather than fixed a priori, but was not included in
the covariance matrix used to estimate uncertainty. Indices were then computed from
the estimated year effects for (I) (hereafter referred to as ‘independently estimated
annual indices’), or from the estimated smooth function evaluated at the years of
interest (see below) for (II) (referred to as ‘smoothed indices’).

To evaluate the effect of choice of reference year or period on uncertainty in the
resulting indices, I compared the uncertainty of index values representing year 2020
computed from different reference periods. I used two sets of reference periods, one
containing years early in the series when the number of surveyed routes was low,
and another containing years in the middle part of the series when more routes were
surveyed. Specifically, the first set had reference periods of varying lengths that all
ended in 2000 (i.e. 2000, 1999–2000, 1998–2000, etc), and the second set had periods
that all ended in 2010 (2010, 2009–2010, 2008–2010 etc). The longest reference period
used all 15 years from 1996 to 2010. For the same species and model, all reference
period indices were computed from the same model fit. In other words, all years were
included in model fits irrespective of the reference period.

For all models and baselines, the amount of uncertainty was measured via the width
of a 95% confidence interval for the log scale index in 2020. Data were analyzed
using the R-package poptrend (Knape 2016), which uses mgcv (Wood 2006a)
as the model fitting engine, and computes confidence intervals using the simulation
procedure described above (Wood 2006b; Mandel 2013).

To complement the case study with a more controlled set up, I also analyzed simu-
lated data. As the results were largely similar to the results of the case study the details
are provided in Appendix C. R-code for the analyses is available in Supplement 1.

3 Results

3.1 Independently estimated annual indices

In the case of reference periods in the start of the series (ending in 2000), increasing
the number of years in the reference period from one to two reduced the width of
confidence intervals by between a few percent and up to almost 60% with a median
of 18% (Fig. 1a). The median reduction when using three years was around 24%
compared to the single year 2000, while also including the first 2 years with fewer
routes sampled on average did not lead to further reductions but instead to slight
increases. In a very small number of cases, a reference period including years early in
the series led to higher uncertainty than for a single reference year.

Using a single reference year (2010) in the middle of the series gave uncertainty
in the same range as when using multiple reference years early in the series (Fig. 1b).
With longer reference periods ending in themiddle of the series thewidth of confidence
intervals were reduced by up to over 60%, with a median of over 40% and with at least
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(a)

(b)

(c)

(d)

Fig. 1 Boxplots of the relative uncertainty of indices for 100 bird species for independently estimated annual
indices (a and b) and for smoothed indices (c and d) when using reference periods of varying length ending
in 2000 (a and c) or ending in 2010 (b and d). Uncertainty is measured via the width of 95% confidence
intervals at the log scale for indices in year 2020. In panels a and b, uncertainty is relative to the uncertainty
of independently estimated annual indices with year 2000 as the baseline, and in c and d relative to smooth
indices with 2000 as the baseline

25% for each species, compared to indices with year 2000 as the reference. Including
the first few years in these reference periods led to only slight increases in uncertainty
(Fig. 1b).

3.2 Smoothed indices

For reference periods in the start of the series, more baseline years did not have a strong
effect on uncertainty in the smoothed indices (Fig. 1c). Indices with reference period
ending in the middle of the series had lower uncertainty (Fig. 1d). This was not only a
consequence of more recent years being included in the reference period as extending
the reference period backwards in time gave less index uncertainty than using only
year 2010 as the reference (Fig. 1d). This is the opposite of what one would expect for
a log-linear index for which uncertainty is mainly determined by the location of the
midpoint of the reference period (Appendix B).

The magnitude of reduction in uncertainty for longer reference periods was lower
than for independently estimated annual indices. The maximum reduction in uncer-
tainty was on average around 15% compared to using year 2000 as the reference
(Fig. 1d).

All results reported above are scaled by the width of confidence intervals for an
index with the single year 2000 as the reference period ((width of the confidence
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Fig. 2 Boxplots of the
uncertainty of indices for year
2020 for 100 bird species and
independently estimated annual
indices and smooth indices when
using the single reference year
2000. Uncertainty is measured
via the width of 95% confidence
intervals at the log scale for
indices in year 2020

interval for index with reference period)/(width of the confidence interval for index
with year 2000 as the reference)). This scaling removes heterogeneity in estimation
errors due to species properties, such as abundance and overdispersion. The variability
in this scaling factor (the denominator of the ratio) is presented in Fig. 2.

An illustration of the different models fitted to data onwillowwarblers can be found
in Appendix D (Fig. 8).

4 Discussion

Choosing a baseline to anchor indices of population or biodiversity status is often
necessary for meaningful presentation of change. The typical baseline choice is a
single year in early parts of the series. The results of this study show that when annual
indices are independently estimated, uncertainty can be greatly reduced by redefining
the index using a longer reference period as the baseline. A single reference year may
give the impression that uncertainty about population change or biodiversity is large,
while in fact the main portion of uncertainty comes from asserting the level in the
specific reference year. A longer reference period may therefore be beneficial and
give a more accurate picture of uncertainty.

Previous studies have suggested that smoothed indices are less sensitive to the
choice of reference year or period (Buckland and Johnston 2017). The results of
this study confirm this empirically in that the length of reference periods had less
impact on uncertainty than for independently estimated annual indices, and for all
baselines there was less variation in uncertainty. Even so, smooth indices with long
reference periods had, on average, around 15% less uncertainty than smooth indices
with a single reference year. Longer reference periods therefore can be useful also for
smooth indices, as long as the smooth index is not near linear in which case there is
not much to gain from using reference periods instead of a single year (Appendix B).

When deciding on a baseline, the first priority should be a choice that reflects the
purpose of the index. If the purpose is to compare the current status to the status in a
specific year in the past, then a single reference year is appropriate despite potentially
high uncertainty. In other cases, a reference period may fit well with the purpose of
the index. Using a moving ten year period as the reference may for example fit well
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with IUCN red list assessments where change during the last 10 year period is an
important criterion, or in the context of consequences of climate change a reference
period coinciding with a climate normal period such as 1961–1990 could be suitable.
Often there may not be an obvious year or period against which comparisons should
be made, as the main purpose of many indices is in understanding how the size of a
population, or the biodiversity of a community, has changed relative to the past in a
more loose sense. In such cases choosing a baseline so that the index does not convey
irrelevant uncertainty should be an important consideration. In light of the results here,
using the mean over a large part, or all, of the series, or over the previous ten-year
period (Buckland and Johnston 2017) seem like reasonable default choices in such
situations.

Alternative suggestions have been to entirely remove the influence of baseline years
by focusing on the slope or curvature of estimated smooth index curves (Buckland
and Johnston 2017). Specifically, p-values for whether the first or second derivative
of the smooth curve deviates from zero may be computed (Fewster et al. 2000), and
one may use these to produce indicators for periods where the change in the curve, or
the slope of the curve, is significant. Such indicators are a highly useful complement
to indices, but address a partially different question. They are indicators for periods of
change in status, but do not provide direct estimates of the cumulativemagnitude of the
change. Both of these are of prime interest for monitoring, and can be simultaneously
presented in displays of indicators.

Uncertainty is an important but sometimes neglected component of population
indices (Fraixedas et al. 2020). It is imperative that uncertainty estimates account for
the main sources of error, which mainly comes down to a sound choice of model for
producing raw index estimates. Given that important sources of error in the data have
been properly accounted for, indices should be presented in a way that does not include
irrelevant uncertainty. Smoothing indices and/or using longer reference periods, are
useful approaches to achieve this.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10651-022-00550-7.

Acknowledgements I am grateful to Andreas Lindén for comments and discussion. This study was funded
by grant 2017-1064 from the Swedish Research Council FORMAS.

Funding Open access funding provided by Swedish University of Agricultural Sciences.

Declarations

Conflict of interest The author has no competing interests to declare that are relevant to the content of this
article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123

https://doi.org/10.1007/s10651-022-00550-7
https://doi.org/10.1007/s10651-022-00550-7


Environmental and Ecological Statistics (2023) 30:1–16 9

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Delta approximations

Delta approximation for reference period indices at the log scale

For a scalar function g taking input in the form of a vector x , the delta approximation
for the variance of g(X) where X is multivariate random variable with mean vector μ

and variance matrix � is Ver Hoef (2012)

V (g(X)) ≈ ∇g(μ)T�∇g(μ) (A.1)

We first assume that we have estimates of abundance or biodiversity at the log scale,
μt , as in the main text, and also that we have estimates of uncertainty for these in the
form of variances V(μt ) and covariances Cov(μ j , μk). The delta approximation gives
us a way of approximating the variance of log(It ) from this information about the μt .

Here, we are interested in the function log(It ) = μt − log(1/m
∑m

j=1 e
μ j ). We

restrict attention to the case t > m, minor adjustments below would be needed to
cover the case t ≤ m. The vector ∇ log(It ) contains the derivatives of log(It ) with
respect to μ j for j = 1, . . . ,m − 1,m, t . For j ≤ m the derivative is

∂ log(It )

∂μ j
= −eμ j

∑m
l=1 e

μl

and for t the derivative is equal to 1. The gradient therefore becomes:

∇ log(It ) =

⎡

⎢
⎢
⎢
⎢
⎣

∂ log(It )
∂μ1
...

∂ log(It )
∂μm

∂ log(It )
∂μt

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

−eμ1

Z
...

−eμm

Z
1

⎤

⎥
⎥
⎥
⎦

where Z = ∑m
l=1 e

μl . The variance matrix � is defined from the variance and covari-
ance terms Cov(μ j , μk). To compute the approximate variance of log( Īt ) in practice it
is often convenient to use (A.1) directly by plugging in the gradient and the covariance
matrix. However, we can also expand thematrix product to arrive at a direct expression
for the variance as shown below.

The 2m + 1 terms involving μt in the sum ∇ log(It )T�∇ log(It ) combine into:

V(μt )

(
∂ log(It )

∂μt

)2

+ 2
m∑

j=1

Cov(μt , μ j )
∂ log(It )

∂μt

∂ log(It )

∂μ j

= V(μt ) − 2
m∑

j=1

Cov(μt , μ j )
eμ j

Z
.
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The m2 terms not involving μt combine into:

m∑

j=1

V(μ j )

(
∂ log(It )

∂μ j

)2

+
∑

j �=k

Cov(μ j , μk)
∂ log(It )

∂μ j

∂ log(It )

∂μk

=
m∑

j=1

V(μ j )
e2μ j

Z2 + 2
m∑

j=1

m∑

k= j+1

Cov(μ j , μk)
eμ j+μk

Z2

Adding the two sums together gives

V(log(It )) ≈ V(μt ) − 2
m∑

j=1

Cov(μt , μ j )
eμ j

∑m
l=1 e

μl
+

m∑

j=1

V(μ j )
e2μ j

(
∑m

l=1 e
μl )2

+2
m∑

j=1

m∑

k= j+1

Cov(μ j , μk)
eμ j+μk

(
∑m

l=1 e
μl )2

.

Delta approximation at the arithmetic scale

The delta approximation can also be used on the arithmetic scale to compute standard
errors of Īt from the variance of Mj := eμ j . This is what the rtrim package does to
compute the uncertainty for reference period indices. In this case the gradient is

∇ It =

⎡

⎢
⎢
⎢
⎢
⎣

∂ It
∂M1
...

∂ It
∂Mm
∂ It
∂Mt

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−mMt
(
∑m

l=1 Ml )
2

...
−mMt

(
∑m

l=1 Ml )
2

m∑m
l=1 Ml

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and � is the covariance matrix for the Mj .

Appendix B: Uncertainty of linear indices

We here examine properties of indices that are strictly linear at the log-scale.When the
trend line is assumed to be log-linear a simple approximate expression can be derived
for the uncertainty of indices as a function of the reference period. One can then show
that the relative uncertainty of the linear indices does not depend on the details of the
sampling model.

Assume that uncertainty is evaluated for year t0 + n (say 2020 = 2010 + 10 in our
case) and that the reference period is (in R-like notation) t0+ (m − l + 1) : m so that
m is the last year of the reference period (relative to t0) and l is the number of years
in the reference period. To simplify notation, assume that t0 corresponds to year 2010
and set t0 = 0, which is equivalent to redefining t as the number of years since 2010.
The reference period then is simply (m − l + 1) : m.
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To derive an approximate estimate of the uncertainty of the index in year n we
compute the variance of the index

μ̂n − 1/l
l∑

k=m−l+1

μ̂k .

Recall that μ̂ was defined at the log scale so that we are effectively using the geo-
metric mean over the reference period rather than the arithmetic mean as in the case
study. This is an approximation of the uncertainty for indices defined from arithmetic
mean reference periods, but it holds approximately if the annual indices do not vary
considerably, i.e. if the slope of the trend line is not steep. It turns out to work quite
well for linear estimates of trends for the 100 species in the case study (Fig. 3).

If the index is derived from a linear model we have

μ̂t = α̂ + β̂t

for some estimated intercept α̂ and slope β̂. The (log-scale) index in year n is then

μ̂n − 1/l
l∑

k=m−l+1

μ̂k = β̂
(
n − 1/l

∑
k
) = β̂

(
n − m + (l − 1)/2

)

and its variance is

V
(
μ̂n − 1/l

l∑

k=m−l+1

μ̂k

)
= V(β̂)(n − m + (l − 1)/2)2.

Uncertainty is measured via the width of confidence intervals for the index in year n,
which should be approximately proportional to the standard deviation of the index.
The uncertainty of the index with reference period (m− l+1) : m relative to the index
with year 0 (corresponding to year 2010) as the reference is then approximately

SD(μ̂n − 1/l
∑l

k=m−l+1 μ̂k)

SD(μ̂n − μ̂0)
= n − m + (l − 1)/2

n
= 1 − 1

n
m + 1

n

l − 1

2

This expression suggests that the reduction in uncertainty for linear indices is mainly
determined by the proximity of the center (midpoint) of the reference period to the
evaluation year. Note that the variance of the slope estimate, which depends on the
details of the sampling model, cancels out of the relative uncertainty calculated above,
so this result is independent of the sampling model.

To check how linear indices behave for the case study of 100 bird species, I fitted
models with a linear effect of year plus random year and site effects at the log-scale and
a negative binomial response distribution (analogously to the setup in the main text).
Relative uncertainty is shown in Fig. 3, and corresponding scaling factors in Fig. 4.
Extending reference periods backwards in time (i.e. keeping m fixed but increasing l)
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Fig. 3 Boxplots of the relative
uncertainty of indices for 100
bird species for log-linear
indices when using reference
periods of varying length ending
in 2000 (top panel) or ending in
2010 (bottom panel).
Uncertainty is measured via the
width of 95% confidence
intervals at the log scale for
indices in year 2020, and is
relative to the uncertainty of
log-linear indices with year 2000
as the baseline. Green dots show
the expected relative uncertainty
computed from the linear
approximation

Fig. 4 Boxplot of the
uncertainty of log-linear indices
for year 2020 for 100 bird
species when using the single
reference year 2000. Uncertainty
is measured via the width of
95% confidence intervals at the
log scale for indices in year 2020

leads to increased uncertainty (Fig. 3), which may seem counter intuitive. However,
this is due to the resulting backward shift of the center of the reference period. If
we alternatively extend reference periods both forward and backward in time while
keeping their centers fixed, the uncertainty of linear indices is largely unaffected by
the length or reference period. This is shown in Fig. 5 where reference periods are
centered at year 2003 and simultaneously extended both forward and backward in
time (2003, 2002–2004, 2001–2005 etc.).
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(a)

(b)

(c)

Fig. 5 Boxplots of the relative uncertainty of indices for 100 bird species for independently estimated annual
indices (a), smoothed indices (b), and log-linear indices (c), when using reference periods of varying length
centered at 2003. Uncertainty is measured via the width of 95% confidence intervals at the log scale for
indices in year 2020, and is is relative to the uncertainty of, respectively, annual, smooth and log-linear
indices with year 2000 as the baseline

Appendix C: Simulations

To check that results from the case study are not simply due to properties of the data
(such as unbalanced and missing data, or deviations from parametric assumptions) I
additionally analyzed simulated data. The simulation set-up mimicked the case study
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(a)

(b)

(c)

(d)

Fig. 6 Boxplots showing the relative uncertainty of indices for 100 simulated data sets for independently
estimated annual indices (a and b) and for smoothed indices (c and d) when using reference periods of
varying length ending in 2000 (a and c) or ending in 2010 (b and d). Uncertainty is measured via the width
of 95% confidence intervals at the log scale for indices in year 2020. In panels a and b uncertainty is relative
to the uncertainty of independently estimated annual indices using year 2000 as the baseline, and in c and
d relative to smooth indices using 2000 as the baseline

with 100 species, 400 sites and for a time period corresponding to 1996–2020, but with
no missing data for any of the site and year combinations. I used an overall intercept of
1 at the log scale and site effects were drawn iid from a normal distribution with mean
zero and standard deviation 0.5. Year effects were composed of two parts, a quadratic
function peaking in 2006, −0.002(year− 2006)2, and added to that random iid draws
from a normal distribution with mean zero and standard deviation 0.1. The negative
binomial size parameter was set to 1 in the simulations. The same models as in the
main text were fitted to each simulated data set.

Fig. 7 Boxplots of the
uncertainty of indices for 100
simulated data sets and
independently estimated annual
and smooth indices when using
the single reference year 2000.
Uncertainty is measured via the
width of 95% confidence
intervals at the log scale for
indices in year 2020
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Results showed similar patterns in reduction of uncertainty with increasing length
of the reference period as for the case study in the main text (Fig. 6, corresponding
scaling factors in Fig. 7). However, as the data were simulated with identical sample
sizes for all years, independently estimated annual indices had similar uncertainty
when the reference period ended in 2000 as when they ended in 2010, and smooth
indices with the single reference year 2010 had slightly higher uncertainty than indices
with the single reference year 2000.

Appendix D: Example indices

Examples of the different models for data on willow warbler are shown in Fig. 8.

Fig. 8 Comparison of indices and their uncertainty (95% confidence intervals) for the willow warbler using
a single reference year early in the series (2000), a reference period with the first five years of the study, a
single reference year in the middle part of the series (2010), and a long reference period consisting of all
years between 1996 and 2010. The first row shows independently estimated annual indices, the second row
shows smooth GAMM indices with 8 degrees of freedom„ and the bottom row shows log-linear indices.
Green segments show periods of significant increase and red segments significant decrease, computed using
finite differences (Fewster et al. 2000)
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