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Abstract
After applying canonical correspondence analysis to metagenomics data with hugely
different library sizes (site totals) it became evident that Canoco and the R-packages
ade4 and vegan can yield (at least up to 2022) very different P-values in statistical tests
of the relationship between taxonomic composition (species composition) and predic-
tors (environmental variables and/or treatments). The reason is that vegan and Canoco
up to version 5.12 apply residualized response permutation (but ignore the model
intercept), whereas ade4 applies predictor permutation. Predictor permutation, when
extended to residualized predictor permutation, is applicable in partial constrained
ordination. This paper shows by simulation that residualized response permutation
can yield a very inflated Type I error rate, if the abundance data are both overdis-
persed and highly variable in site total. In contrast, residualized predictor permutation
controlled the type I error rate and had good power, also when the predictors were
skewed or binary. After square-root or log transformation of the abundance data, the
differences between the permutation methods became small. Residualized predictor
permutation is recommended, particularly in testing trait–environment relationships
using double constrained correspondence analysis, because this method also critically
depends on the species totals, which are generally highly variable. It is implemented
in Canoco 5.15 and the R-code of this paper.
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1 Introduction

Canonical correspondence analysis (CCA) was the first method of canonical or con-
strained ordination to relate ecological community data to environmental and other
predictor variables (ter Braak 1986, 2014; Borcard et al. 2011; Legendre and Leg-
endre 2012). Although many alternatives have been developed since (Legendre and
Legendre 2012), CCA remains attractive as it is an eigenvector method that (1) is able
to analyze unimodal response of multiple species to environmental gradients—it was
derived by ter Braak (1986) as an approximation to maximum likelihood fitting of
a Gaussian species packing model (see Liu et al. (2020) for a recent account in the
context of paleo-environment reconstruction) and (2) is suitable for analyzing environ-
mental effects on count data, particularly for strictly compositional data in which the
site total abundance is irrelevant to the research question (Greenacre 2018). The first
point is also highlighted by ter Braak (1987). Using a non-parametric species packing
model, ter Braak (1987) showed that CCA finds the environmental gradient that max-
imally separates the species niches. The environmental gradient herein is constrained
to a linear combination of environmental variables. The second point follows from
the derivation of (canonical) correspondence analysis as an approximation to fitting
a Poissonian log-linear regression model for small deviations from row-column inde-
pendence (Ihm and van Groenewoud 1984; Goodman 1986; see Appendix A1). As
such, CCA takes a position in-between distance-based (McArdle and Anderson 2001)
and recent model-based methods (Warton et al. 2014; Niku et al. 2019). From the
transition formulas of CCA (e.g. ter Braak 1986; Appendix A1.1.2) it can be deduced
that CCA is insensitive to zero-inflation in the abundance data. The abundance acts
as a weight in these formulas and zero abundance thus does not count. Also, CCA is
relatively insensitive to the site and species totals: where abundance appears in these
formulas, the abundance is either divided by the site total or by the species total. As
CCA can also be seen as a multivariate regression method (ter Braak and Verdon-
schot 1995), it is thus suited for detecting effects of predictors (typically treatments
or environmental variables) on strictly compositional response data with many zeroes
(typically species abundance data and microbiome data) for both long and short envi-
ronmental gradients. A Google search (with quotes) on “canonical correspondence
analysis” returned about 435.000 results, whereas the related methods of “redundancy
analysis” and “canonical correlation analysis” both returned about a million.

In the context of trait–environment relationship, CCA has been extended to double
constrained correspondence analysis (dc-CA) (ter Braak et al. 2018; Gobbi et al.
2022) as the method which finds linear combinations of traits and environmental
variables that maximize the fourth-corner correlation, originally developed for single
trait and single environmental variables (Legendre et al. 1997; Dray and Legendre
2008); dc-CA also generalizes Community Weighted Mean (CWM) trait analysis
to multiple traits (Pinho et al. 2021). Moreover, the fitted inertia of CCA and dc-
CA was recognized as the Rao-score test statistic of a Poissonian log-linear model
in testing the species-environment and trait–environment relationships, respectively
(ter Braak 2017). Score tests are asymptotically equivalent with likelihood-ratio tests
and thus asymptotically most powerful. In practice, however, ecological data are often
overdispersed compared to the Poisson distribution. Thismeans that other test statistics
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maybemore powerful, and,more importantly, the asymptotic distribution of the inertia
(times the total abundance) is not chi-square distributed, as it would be in a test of
association in a contingency table. This is why permutation methods are used in
practice for statistical testing.

CCA included almost from its inception Monte Carlo permutation methods for
testing the statistical significance of the species-environment relation, i.e. to determine
whether the found relation was strong in comparison to the relation found by chance.
The method of permutation changed from predictor permutation (permutation of sites
in the table of predictors) in the Canoco software version 2 (ter Braak 1988) to,
what could be called, response permutation in later versions (ter Braak 1990; ter
Braak and Šmilauer 2018), where, instead of the original response data (the abundance
data), the residuals under the null hypothesis are permuted. Both permutation methods
are equivalent in unweighted analyses, such as in redundancy analysis (Legendre
and Legendre 2012), but are no longer equivalent in partial constrained ordination
(constrained ordination conditioned on covariates) or in weighted analyses as the
residuals are also standardized in this method (ter Braak 2022). It is well known that
CCA is a weighted analysis as it can be carried out by a weighted redundancy analysis
of transformed data, in which the weights are the margin totals of the abundance table
(ter Braak and Verdonschot 1995; Legendre and Legendre 2012). The R packages
ade4 (Thioulouse et al. 2018) and vegan (Oksanen et al. 2022) use predictor and
residualized response permutation, respectively, in the functions randtest.pcaiv and
anova.cca, respectively (Table 1). Consequently, Canoco and vegan can yield results
that differ from those of ade4. This difference has gone unnoticed until we discovered
it when we applied CCA using both ade4 and vegan as an alternative to log-ratio
analysis to metagenomics data with huge differences in site totals (te Beest et al.
2021). We found that CCA using Canoco and vegan could yield grossly inflated type
I error rates (up to 1!) in scenarios where CCA using ade4 adhered to the nominal
significance level. We support the plea in Muff et al. (2021) to report actual P-values
and levels of evidence instead of binary decision (significant, not significant). For this
to be meaningful, P-values, also the ones obtained by permutation, should be correct.

This paper reports on the evaluation of the permutation methods in current use
in CCA and of a neglected permutation method that naturally extends the predic-
tor permutation method so that it can be used in partial constrained ordination; it is
termed residualized predictor permutation (ter Braak 2022). The evaluation is mainly
by simulation and application to real data. R-code of all methods and simulations is
supplied in the Supporting Information and all permutation methods are implemented
in Canoco version 5.15. CCA is available in a number of software packages, but we
study the permutation tests implemented in ade4, Canoco and vegan only.

2 Methods

After introducing CCA as a form of weighted multivariate regression, in particular as
redundancy analysis of transformed data (contingency ratios), this section describes
residualized predictor permutation and residualized response permutation. Tables 1
and 2 summarize these permutation methods and the software and versions thereof
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Table 1 Summary of methods and performance with software versions

Permutation method

Residualized

Predictor permutation Response permutation

Abbreviation RPP RRP LRRP*

What is permuted Predictor residuals Response residuals

Assumption Design-based
randomization; no
standardization of
residuals

Standardization of
residuals based on
properties of a
contingency table
(independent Poisson
counts)

As RRP

Software tested ade4::randtest.pcaiv
version 1.7-18**
Canoco version 5.15

Canoco version 5.15 vegan::anova.cca
version 2.6-2
Canoco version
3-version 5.12

Type I error inflation None detected Yes, if site totals are
highly variable and
abundance is
overdispersed

Yes, slightly worse
than RRP

Recommended
transformation when
both site variability and
overdispersion are high

Square-root to increase
the power in testing
dimensionality (Fig. 3)
and avoid sensitivity to
environmental main
effects (Fig. 4)

Square-root or log so as
to minimize the
danger of Type I error
inflation (Figs. 1, 2,
3, 4)

*LegacyResidual Response Permutation, amethodwhichwrongly ignores the intercept during permutation.
The intercept can be ignored only if the site totals are all equal
**A CCA in ade4 is available via the function pcaiv; to our knowledge, ade4 does not allow for non-trivial
covariates in CCA (partial CCA)

that we compare. The section continues with the description of the simulation study
and real data to evaluate these permutation methods.

We use a notation in which Y = [yi j ]n×m is the site-by-species abundance table of
response data, X = [xik] n×p is the site-by-variable table of p environmental variables
(predictors) andZ= [zil ]n×(q+1) is the site-by-covariate table of q covariate (condition-
ing) variables with a column of ones for the intercept. For notational convenience and
without loss of generality, the abundance values are already preprocessed by division
by their sum, so that the sum of all values in Y is 1. Also, r and k are n- andm-column
vectors containing the marginal totals of Y, and R and K are diagonal matrices with
r and k on their diagonal, respectively. Finally, π(.) denotes a random permutation of
the rows of a matrix.
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Table 2 Summary of methods using matrix algebra

Permutation method*

Residualized

Predictor permutation (RPP) Response permutation (RRP)**

Model C = R−1 Y K−1 ~ Z + X

What is permuted? Predictor residuals Response residuals

Residuals from WLS model X ∼̇ Z C ∼̇Z

Notation for residuals (Errors) EX|Z EC|Z

Assumption Design-based randomization Model-based with var(EC|Z) ∝
(1/rk′)

Standardization of residuals No Yes to R1/2EC|ZK
1/2

De-standardize with R−1/2 in
WLS version

Transformation of X and Z No Yes to
R1/2X and R1/2Z

WLS version:

Null model C ∼̇Z R−1/2π(R1/2EC|ZK
1/2) ∼̇ Z

Alternative model C ∼̇Z + π(EX|Z) R−1/2π(R1/2EC|ZK
1/2) ∼̇ Z +

X

OLS version:

Null model R1/2CK1/2 ~ R1/2Z π(R1/2EC|ZK
1/2) ~ R1/2Z

Alternative model R1/2CK1/2 ~ R1/2Z +
R1/2π(EX|Z)

π(R1/2EC|ZK
1/2) ~ R1/2Z +

R1//2X

*Notation:
Data: Yn×m: taxonomic composition data of m taxa in n sites; Xn×p: data on p predictors under test;
Zn×(q+1): data on q covariates, i.e. predictors to adjust for, including a column for the intercept;
Derived data: R: the diagonal matrix with row totals of Y;K: the diagonal matrix with column totals of Y;
r = diag(R); k = diag(K);
Model formulas:. ~ . denotes that the left-hand argument is regressed using ordinary least-squares
(OLS);•∼̇• indicates that the left-hand argument is regressed using weighted least-squares (WLS) with
row weights r and, for C, also column weights k using the model formula on the right-hand side;
Permutation: π(.): a permutation of the rows of a matrix
**Note that the fit of C due to Z drops out of the F-ratio for the effect of X as it appears in both the null
model and the alternative model

2.1 A linear model for CCA

Whereas CCA was introduced as a method to discover unimodal response of species
to environment (ter Braak 1986; ter Braak and Verdonschot 1995), it is also useful as a
method to detect small log-linear environmental effects on species in count-like data.
InAppendixA1we show the link between thesemodels. In this context, the abundance
table is like a contingency table with expected values under the independence model
giving by the formula ri k j (row total ri times column total k j divided by the overall
total, which is 1, because Y was divided by its total). CCA then fits a linear model to
the contingency ratios C = [yi j/(ri k j )] by weighted least-squares (WLS) with row
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and column weights r and k, respectively, and model formula C ∼ Z + X (ter Braak
and Verdonschot 1995). With Z containing a vector of ones for the intercept only, i.e.
without covariates, the model can thus be written as

ci j = yi j
ri k j

= a0 j + b j1xi1 + · · · + b jpxip + ei j, (1)

where the variance of the error ei j is assumed to be proportional to 1/(ri k j ), which is
the variance of the contingency ratio ci j under row-column independence when yi j is
Poisson distributed (ter Braak and Šmilauer 2018). The weights used in CCA follow
from this variance (for other pertinentmotivations, which require a long environmental
gradient, i.e. a strong unimodal response, instead of row-column independence, see
ter Braak 1986, 1987). But note that the variance of the contingency ratio may differ
from1/(ri k j ), because of overdispersion and row-column dependence. Violation of the
variance assumption underlies the differences in performance between the methods
of permutation testing studied in this paper. Equation (1) is slightly more general
than the usual equation in which a0 j is replaced by 1 (ter Braak & Verdonschot
1995). The replacement is valid, as the WLS estimate of a0 j is 1, when the predictor
variables are r-centered (as they generally are inside the algorithms). For permutation
testing, however, we need the more general formula and also the weighted residual
sum of squares of the null model C ∼ Z and the alternative model C ∼ Z + X,
RSS0 and RSSa , respectively, so as to be able to create a pseudo-F test statistic F =
((RSS0−RSSa)/p)/(RSSa/(n− p−q−1)). Note that RSS0−RSSa is the weighted
regression sum of squares due to X (the fitted inertia), which is, in (partial) CCA, the
inertia explained byX after adjustment for Z. In testing the number of ordination axes
(dimensionality testing), another test statistic is often used in which RSSa is replaced
by the weighted residual sum of squares after fitting the first eigenvalue of the model
for X with covariates Z. In testing the second axis, the first axis is first appended to
the covariates, and so on for later axes (Legendre et al. 2011). The so-calculated P-
values for subsequent axes are adjusted for multiple testing by replacing them by their
cumulative maximum (Winkler et al. 2020). This is a sequential and closed testing
procedure that guarantees that an axis is judged significant only when the earlier axes
are judged significant.

2.2 Residualized predictor permutation

Residualized predictor permutation was independently invented by Collins (1987)
and Dekker et al. (2007) and extended by ter Braak (2022) for statistical testing in
weighted regression and redundancy analysis. It has some popularity in sociology for
data organized in square matrices of relatedness among n cases, the application for
which Dekker et al. (2007) developed the method. Fieberg et al. (2020) mention and
apply the method in a review of resampling methods in ecology. Randomization in
experiments forms a strong basis for predictor permutation as it randomly assigns
treatments (X) to units (cases, sites). In observational studies, X-permutation can be
motivated by assuming exchangeability of the rows of X.
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Residualized predictor permutation for testing the effect of X adjusted for Z has
two initial steps (ter Braak 2022). With C as response table, it.

(1) fits the null model C ∼ Z from which RSS0 is calculated and,
(2) calculates the residuals of X with respect to Z, i.e. of the model X ~ Z, resulting

in ̂EX .
It then performs the following two steps for each permutation; it

(3) permutes the rows of the X-residuals resulting in π
(

̂EX
)

and
(4) fits the model C ∼ Z + π

(

̂EX
)

from which RSSperm
a is calculated.

The explained inertia due to the permuted X-residuals is then RSSperm
a − RSS0,

which can be used directly as a test statistic, because RSS0 is constant across per-
mutations so that it is monotonically related to the pseudo-F test statistic value. Both
test-statistics thus yield the same P-value. Note that WLS is used in this procedure.

The advantage of permuting X-residuals in step (3) instead of permuting X itself
is that the correlation between X and Z remains the same (as it does in residualized
response permutation) so that the explained inertia of each newly created data set
examines the same contrast (specified by the projection of X on the orthocomplement
of Z), whereas the F-ratio in simple X-permutation would examine different contrasts
(ter Braak 1992, 2022).

We now compare this procedure with the permutation method used in the function
randtest.pcaiv of the R library ade4 for Z = 1n, as randtest.pcaiv does not allow
for covariates. Instead of permuting X-residuals, ade4 permutes the raw X, but the
resulting explained inertia is the same. The reason is that in this simple situation, step
(2) simply subtracts the r-weighted column means from X, whereas in step (4) the r-
weighted column means of the permuted X-residuals are subtracted in the calculation
of the explained inertia. The first subtraction of means (or other constants) is therefore
immaterial. In conclusion, the permutation method used for CCA in ade4 is a simple
form of residualized predictor permutation. This equivalence is illustrated on the real
data examples.

2.3 Residualized response permutation

Residualized response permutation, also known as the Freedman and Lane (1983)
method of permutation, was popularized by its implementation in Canoco version 3.1
(ter Braak 1990, 1992). It was singled out as the best out of several other response
permutation versions by Anderson and Robinson (2001). Residualized response per-
mutation is more model-based than residualized predictor permutation in that it
replaces the (unknown) random error in a regression model by permutations of the
regression residuals under the null model. When the error variance varies across sites
(heteroscedastic errors), the regression model is transformed first so as to make the
error variance constant. How the error variance varies may be partially unknown,
making the transformation to constant variance debatable.

Residualized response permutation for testing the effect of X adjusted for Z also
has two initial steps (ter Braak 2022). With C as response table, it.
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(1) replaces the required WLS fitting by equivalent ordinary least-squares (OLS)
fitting, i.e. unweighted least-squares, by multiplication of the rows of the tables
C, X and Z by the square-root of r and the columns of Y also by the square-root
of k, resulting in the transformed data tables

Cw = R
1
2CK

1
2 = R− 1

2YK− 1
2 , Xw = R

1
2X, andZw = R

1
2Z, and

(2) calculates the residuals of Cw with respect to Zw, i.e. of the model Cw ∼ Zw,
resulting in̂EC

w, the residuals under the null model. In the simple case of Z = 1n,
these are standardized chi-square residuals qi j = (yi j−r i k j )/

√

ri k j , which are
a starting point for the computation of a CCA in Legendre and Legendre (2012).
It then performs the following two steps for each permutation; it.

(3) permutes the rows of the Cw-residuals resulting in π
(

̂EC
w

)

,
(4) fits the model π

(

̂EC
w

) ∼ Zw from which RSSperm
0 is calculated, and

(5) fits the model π
(

̂EC
w

) ∼ Zw + Xw from which RSSperm
a is calculated.

The explained inertia of the permuted Cw-residuals is then RSSperm
a − RSSperm

0
and is used to calculate the pseudo-F test-statistic. The explained inertia and pseudo-F
test statistic are not monotonically related in residualized response permutation, as
RSSperm

0 varies across permutations in this method. The pseudo-F test statistic is a
better test statistic than the explained inertia in that it better adheres to the nominal
significance level (Anderson and Robinson 2001). The transformation in step (1) is
motivated by the variance of the contingency ratios of a contingency table under inde-
pendence (ter Braak and Šmilauer 2018), but their variance may differ from 1/(ri k j )
for other models and overdispersed data, whichmay lead to invalidP-values (ter Braak
2022).

We now compare this procedure with the permutation method used in the function
anova.cca of the R library vegan. Starting from the standardized chi-square residuals
[qi j ], r-centeredX andZ, the function anova.cca uses an efficient algorithm to calculate
the explained inertia due toX in a permutation. However, the function does not include
an intercept in Z, so that RSSperm

a is the same or slightly higher and the pseudo F
test statistic the same or slightly smaller than in residualized response permutation,
yielding a P-value that is systematically somewhat smaller, unless the site totals are
all equal. This introduces a small amount of Type I error rate inflation in CCA with
unequal r in scenarioswhere residualized response permutation adheres to the nominal
significance level. However, the error is minor compared to the differences between
residualized response and predictor permutation (e.g. Fig. 1).

Canoco versions 3.1 up to 5.12 used an algorithm different from that in vegan, but
yield precisely the same P-value when these programs were given the same set of
permutations. We show the equivalence by including the version without intercept in
our R-code.

2.4 Simulation study

The simulation study is designed to discover when residualized response permutation
(the current (2022) method of permutation in vegan and Canoco, see Table 1) does and
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Fig. 1 Influence of noise types on the rejection rates (Type I error rate if effect size = 0, power otherwise) of
three permutation methods for testing the effect of twelve predictors (X) on abundance data (Y) using CCA
with the model Y ~ X (n = 30, m = 50, p = 12) (data generated using the loglinear simulation model of
Appendix A2; Effect size = overall effect size; noise types: (1) site total sd = standard deviation of the site
main effect, (2) overdispersion = overdispersion parameter of the negative binomial (0 = Poissonian), (3)
size rank 1 noise = size of the effect of an unobserved predictor that is independent of X). The horizontal
solid line is at the nominal significance threshold; rates (from 1000 simulations) above the dashed line (at
0.064) are significantly greater than 0.05. A small amount of jitter was applied to the effect size points so
as to avoid a total overlap of points

does not maintain the nominal significance level and to demonstrate that residualized
predictor permutation provides a solution to the issues found and that it is about equally
powerful in realistic (i.e. noisy) data as residualized response permutation when the
latter maintains the nominal level. The study is carried out in three series of simulation
(Tables 3 and 4) by varying the data properties of the abundance data and by varying
the applied data transformation (none, square-root, log).

The first series of simulations is about testing the overall null hypothesis (X had
no effect on Y), the second series is about testing the dimensionality of the effects,
and the third series is on the (lack of) sensitivity of CCA to log-linear environmental
main effects (environmental effects that are common to all species). CCA is suited for
strictly compositional data, if it is insensitive to such effects.

Data with n = 30 sites, m = 50 species and p = 12 predictors was simulated using
a model with two true constrained ordination axes. A detailed description and R code
can be found in Appendix A2. In short, all predictors are multivariate normal. The first
four predictors define the first axis but, in the data, have added noise so that 10% of
their variance was noise. The second set of four predictors define the second axis, but,
in the data, have some contribution from the first axis so that their correlation with
the first axis is 0.7. The third set of four predictors contains noise variables without
any effect on the species, but have a correlation of 0.7 with the second axis. These
correlations with the previous axis make it more difficult for methods to maintain the
nominal significance level when testing dimensionality. The subsequent predictors
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Table 3 Aims of the simulation study with null hypotheses and test statistic

Series 1 2 3

Figure 1 2 3 4

Aim, null hypothesis and test statistic

Aim How the fraction rejected* by each permutation method depends on:

effect size,
site total
variability and
noise level
(overdispersion
and rank 1
noise)

effect size and
data transforma-
tion for

high site variabil-
ity and

noise

effect size of an
axis when there
is a stronger
earlier axis, for
high site
variability and
noise

effect size of
environmental
main effect, so
as to determine
whether CCA
is sensitive to
main effects**

Null Hypothesis
tested

Overall null Dimensionality Overall null

The
environmental
variables have
no effect on the
taxonomic
composition***
of the ecological
community

As in Fig. 1 The
environmental
variables have
no effect on the
taxonomic
composition***
beyond the
effects collected
in axis 1

Test statistic(s) Total inertia

Inertia of axis that
is tested

*i.e. Type I error rate if effect size = 0 and power if effect size > 0
**An environmental main effect implies equal environmental effects on the species (on the log-linear
scale); all species-specific environmental effects are then identical. The theory of CCA says that it should
be insensitive to site main effects (so that it is suited for strictly compositional data) and we check here
whether this property holds or does not hold true with and without data transformation
***Composition in the sense that only fractions are of interest and their row total (i.e. the site total) is not

within each set have a correlation of 0.7. Additional structured noise was generated
from an independent third axis (rank 1 noise).

The abundance data were drawn from a negative binomial distribution with mean
(μ) log-linearly defined by the three axes, random site and species main effects and
a intercept of log(10). The variance was μ + φμ2 where φ is the overdispersion
compared to the Poisson distribution. In the second series (on dimensionality testing),
the first dimension had Gaussian responses with exponentially distributed tolerances
with mean 1. In the third series, with n = 60 sites andm = 100 species, environmental
main effects were introduced in the model of the first series by making the log-linear
site main effects correlated with the first predictor (x1) for a fixed value (0.5) of the
standard deviation of these site effects. In the first series, the site main effect are pure
size effects (Greenacre 2017), independent of the predictors.

In the first series, the rejection rate of the permutation methods was studied as a
function of (1) the effect size, with the first axis having twice the effect of the second
or no effect for effect size zero, (2) the amount of overdispersion φ, (3) the variability
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Table 4 Set-up of the simulation study: data generation and parameters that are varied. For details see
Appendix A2 and Table A1 in the Supplementary material

Series 1 2 3

Figure 1 2 3 4

Data generation and transformation

Abundance data Y Negative binomial with mean μ and variance μ + φ μ2

Sites 30 60

Species 50 100

Model If effect size > 0, μ
depended on log-linear
effects of rank 2 by 8
environmental
variables*. In addition,
there were 4
environmental
variables without any
effect on the species.
Environmental
variables were
correlated up to a
correlation of 0.7

As in Series 1 but first
axis had Gaussian
responses for the
species with
exponentially
distributed tolerance
with parameter 1

As in Series 1, but with
environmental main
effects

Site main effects random: N(0,σ 2
1 )

σ1 is the parameter for site total variability**
Correlated with first
environmental variable

Species main effects random: N(log(10), 0.25)

Transformation none none, square-root, log(y + 1)

Parameter settings

Effect size 0–1 0–1.5 Fixed to 0

σ1** 0 and 0.5 Fixed to 0.5

Overdispersion φ 0 and 0.2 Fixed to 0.2 0,0.2

Rank 1 noise*** 0,0.5 Fixed to 0.5 0,0.5

*The effects matrix of regression coefficients [bjk ]j=1…m; k =1…p in Eq. 1 had thus rank 0 (no effect) or
rank 2 (effect > 0)
**σ1 is the standard deviation (sd) of the log-linear site main effects; this is approximately the coefficient
of variation of the site totals
***Effect of a third axis that was independent of the environmental variables in the data (an unconstrained
axis), yielding structured noise in Y as compared to the unstructured noise by the negative binomial distri-
bution

of the site main effects, expressed by their standard deviation σ1, (4) the size of the
rank 1 noise, and (5) the type of transformation of Y (none, square-root or log(y +
1)). In the second series, their rejection rate for the second and third axis was studied
in dependence of (1) the effect size of the second dimension, (2) type of test statistic,
and (3) transformation of the abundance data. In the third series, the rejection rate was
studied similarly in dependence of the correlation of x1 with the site main effects.

For each scenario, 1000 data sets were generated, with 199 random permutations
applied to each data set. Each permutation used in residualized predictor permutation
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was the inverse of that in residualized response permutation. (The inverse, π−1, of
a permutation π applied to a permutation π yields the identity, i.e. no permutation).
Applying the inverse permutation to the predictors yields the same data as applying
the permutation to the response except for a rearrangement of rows, so that the result-
ing P-values are identical when the site totals would be all equal, despite the small
number of permutations. All series were again run with the predictor data binarized,
or exponentiated, so that the predictor data were skewed like concentration data.

2.5 Case studies

For the first case study, we searched for an ecological data set in which residual
response and predictor permutation lead to a different conclusion on whether the
predictor tested has any effect on the taxonomic composition when CCA is used. A
data set we found is the public Dryad data of Pinho et al. (2021). As the full data on 417
forest plots and 3417 species across South America were proprietary and could not be
disclosed, the plots were aggregated in to 59 clusters of plots that are within 50 km of
another. In order to make sure that the analysis—a double constrained correspondence
analysis—of the aggregated data would result in a similar ordination diagram as the
same analysis of the original data, the abundance data were summed over plots in
a cluster, whereas the environmental data were averaged. In the aggregated data on
Dryad, the site totals (i.e. the cluster total) ranged from 35 to 36,915 trees, particularly
as some biodiversity hotspots were highly sampled (the number of plots per cluster
is not in the data but we know that it ranged from 1 to about 100). This make these
data suited as an example in our paper because the site total herein is of no interest
to any research question. The environmental data consisted of five climatic variables
and three geographic variables. As an illustration, we wish to investigate whether
forest composition shows an east–west gradient after taking account of the climatic
variables which measure the current climate. Such a difference could be caused by
the historical biogeography of the region (Pinho et al. 2021). In particular, we test
the null hypothesis that longitude has no effect on the tree composition with and, for
completeness, without adjustment for the climatic variables.

In addition, 24 public data sets available in the R packages ade4, vegan, mvabund
(Wang et al. 2012) and TraitEnvMLMWA (ter Braak 2019) are analyzed without
transformation and after square-root and log-transformation by the R code developed
for this paper and by the current permutation methods for CCA in ade4 and vegan.
These analyses allow to compare residualized response and predictor permutation in
real data sets.

3 Results

3.1 Simulation study

Residualized predictor permutation (red lines in Figs. 1, 2, 3, 4) controls the Type I
error rate of the test of the effect of the predictors on the abundance data in all scenarios
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Fig. 2 The influence of data transformation and noise on the rejection rates (Type I error rate if effect size
= 0, power otherwise) of three permutation methods for testing the effect of twelve predictors (X) on
transformed abundance data with CCA using model Y ~ X (n = 30, m = 50, p = 12). Data generated using
the loglinear simulation model with overdispersion 0.2 and a standard deviation of 0.5 of the site main
effect. For effect size and size rank 1 noise, see legend Fig. 1. The horizontal solid line is at the nominal
significance threshold; rates (from 1000 simulations) above the dashed line (at 0.064) are significantly
greater than 0.05

Fig. 3 Rejection rates of testing the second and third axes against the effect size of the second axis by CCA
using two alternative test statistics (Feig and Ftrace) with n = 30, m = 50, p = 12. The rejection rate for
the first axis, which had Gaussian response in this simulations series, was close to 1 everywhere. Data
generated using overdispersion 0.2, a standard deviation of 0.5 of the site main effect and rank 1 noise of
0.5. The horizontal solid line is at the nominal significance threshold; rates (from 1000 simulations) above
the dashed line (at 0.064) are significantly greater than 0.05
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Fig. 4 Type I error rate of testing the effect of twelve predictors (X) on transformed abundance data with
CCA using model Y ~ X (n = 60, m = 100, p = 12) in relation to the correlation of one of the predictors
(x1) with the log-linear site main effect, with the influence of data transformation, overdispersion and rank 1
noise. Data generated as in Fig. 1 with effect size= 0, except that the site main effects were made correlated
with x1. The standard deviation of the site main effects was 0.5. For size rank 1 noise, see legend Fig. 1.
The horizontal solid line is at the nominal significance threshold; rates (from 1000 simulations) above the
dashed line (at 0.064) are significantly greater than 0.05

of Fig. 1 (effect size= 0) and its power increases naturally with the effect size (Fig. 1).
Residualized response permutation (dark blue lines in Figs. 1, 2, 3, 4) gives grossly
inflated Type I error rates in the presence of variability in the site totals, overdispersion
and/or additional structured (rank 1) noise (effect size= 0 in Fig. 1) except when there
is little more noise than Poissonian noise (Fig. 1: all dashed blue lines start at around
(0,0.05) in Fig. 1 and almost coincide with the dashed red lines with same symbols,
except for the dashed dark blue and light blue lines with blue squares which start
around (0,0.50), whereas the corresponding dashed red line with red squares starts at
(0,0.05), as required). Additional unstructured noise behaved similar to an increase
in the overdispersion and thus gave similar Type I error inflation (results not shown).
The implementations without correction for the intercept (light blue lines in Figs. 1,
2, 3, 4) in Canoco versions 3-5.12 and in anova.cca in the R-library vegan (up to the
current version which is version 2.6-2) led to slightly more Type I error inflation than
its corrected form (i.e. residualized response permutation).

Whereas residualized response permutation gave a highly inflated type I error rate
on untransformed data (Fig. 1), it showed no and only a minor type I error inflation
after square-root or log(y + 1) transformation of the abundance data (Fig. 2). Its
small type I error inflation for the square-root transformed data with rank 1 noise was
compensated by a higher power than for the other transformations (Fig. 2: the solid
blue line with circles is above the corresponding solid red line for all effect sizes in
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Fig. 2). As highly variable count data are often square-rooted or, as recommended in
the Canoco adviser, log-transformed, the type I error rate inflation with residualized
response permutation is not as dramatic in practice as it is in Fig. 1.

With residualized predictor permutation, the fraction of rejections was almost inde-
pendent of the data transformation, includingno transformation, particularly in the case
with rank 1 noise (Fig. 2). The square-root transformation had equal or slightly higher
power than the log transformation in this series. After transformation, the difference
between residualized response permutation and its current implementation in Canoco
and vegan is so small that their lines and points are hardly distinguishable in Fig. 2.

In testing the second and third dimension, residualized response permutation
showed type I error rate inflation without response data transformation (Fig. 3) and
neither method could reach a power of 1 for a large effect size of the second dimension
(Fig. 3). After a square-root or log transformation, large effect sizes resulted in a power
close to 1 and no type I error rate inflation was observed (except for testing the third
dimension on square-rooted data using residualized response permutation when the
effect size of dimension 2 was large). The test statistic based on the first eigenvalue
performed better for dimensionality testing in this series than the one based on the
trace (all inertia explained by X given Z).

CCA is insensitive to environmental main effects, at least on untransformed or
square-rooted data (Fig. 4: all lines are about horizontal, except those with triangles
indicating the log(y + 1) transformation). After log-transformation, there is some
sensitivity when there is no additional rank 1 noise (the red and blue dashed lines
with triangles in Fig. 4), with residual predictor permutation being more sensitive than
residual response permutation. The sensitivity decreases with increasing noise due to
overdispersion (compare left and right panels in Fig. 4) and rank 1 noise (compare solid
and dashed red lines in both panels of Fig. 4). As in Figs. 2, 3, the type I error inflation
of residual response permutation using untransformed data (the six out of eight blue
lines with blue squares in Fig. 4; the two exceptions are the two dashed ones in the
left panel which are without any overdispersion and which are hardly visible as they
show no type I error inflation and overlap with the red lines) largely disappears after
square-root and log-transformation (Fig. 4: all blue lines without squares).

With predictor datamade binary or skewed, the results on type I error rate and power
were qualitatively similar to those of the normal predictor data, except that the power
was less and that, for the skewed predictor data, therewas sensitivity to sitemain effects
without response transformation when there was overdispersion (Appendix A3).

3.2 Case studies

With residualized response permutation, the effect of longitude on Neotropical forest
composition in the first case study is significant with and without adjustment for
climate (Table 5). However, with residualized predictor permutation the conditional
effect of latitude is no longer significant (P = 0.40). By repeated simulation of a
random predictor (so that we know for sure that it has no effect) we verified that
residualized response permutation shows Type I error inflation whereas residualized
predictor permutation does not (Table 5).
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Table 5 P-values for statistically testing the east–west gradient (Longitude) in neotropical forest compo-
sition (n = 59 clusters; m = 3417 tree species) with and without adjustment for climate by residualized
response (RRP) and predictor (RPP) permutation in comparison with the rejection rates of such tests in
1000 simulations of a completely random predictor (199 permutations)

Longitude Random predictor

Adjustment by climate Yes No Yes No

RRP 0.005 0.005 0.830 0.888

RPP 0.400 0.010 0.058 0.059

These results suggest that there is strong statistical evidence that tree composition
varies with longitude, but little evidence that it varies with longitude after present-day
climate is taken into account. However, after square-root or log transformation there is
some evidence for the conditional effect of longitude with residualized predictor per-
mutation (P = 0.065 and 0.045, respectively, Appendix A4). A somewhat speculative
ecological conclusion is that historical biogeography plays a bigger role for the sub-
dominant tree species than for the dominant ones. The firm statistical conclusion is that
residualized response permutation cannot be trusted in data with such a wide range
of site totals (in this extreme case, not even after square-root or log-transformation,
see Appendix A4), whereas residualized predictor permutation maintains the nominal
significance level.

In the additional 24 analyses of the real data from R packages, the differences in
P-values between residualized response and predictor permutation or between types
of transformation were unremarkable as most would lead to the same conclusion about
the evidence for the effects investigated (Appendix A5). Exceptions are as follows. In
the Revisit data of the TraitEnvMLMWA package with highly variable species totals,
the relation between abundance and the species trait of this data is highly significant
using residual response permutation, but, using residual predictor permutation, only
clearly seen after square-root or log-transformation. In the solberg data of themvabund
package the site totals are almost constant, but the species totals are so variable that it
is only after square-root or log-transformation that the differences between treatments
are evident. Apparently, the treatments have effects only on the sub-dominant species.
The differences between permutation methods was minor in this data and all the other
data sets (Appendix A5).

Supplied with the same set of Monte Carlo permutations, the P-values issued by
vegan (version 2.6-2) are exactly equal to those of residualized response permutation
without accounting for the intercept, and those issued by ade4 (version 1.7-18) are
exactly equal to those of residualized predictor permutation (Appendix A5).

4 Discussion

The permutation test inCCAused in vegan andCanoco 5.12 is based on the assumption
that the greater the site total, the more accurately the fraction of each species in a site is
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estimated. However, the test is not robust against violation of this assumption, as this
paper shows by simulating overdispersed count data with highly variable site totals. In
contrast, the permutation test used in ade4 is not dependent on this assumption, does not
suffer from Type I error rate inflation where the other test does, and is approximately
equally powerful in realistic (i.e. noisy) data when both tests maintain the nominal
significance level. With a slight correction of the first and an extension to covariate
data for the second test, the tests are known as residualized response and residualized
predictor permutation tests.

The difference between Canoco/vegan and ade4 remained unnoticed so far, pre-
sumably because their P-values can be expected to differ as both are Monte Carlo
tests. Moreover, they do not differ that much in practice, for the reason that highly
variable data are often square-rooted or, as recommended in the Canoco adviser, log-
transformed.

Without data transformation, residualized response permutation yielded grossly
inflated type I error rates in testing the number of constrained axes. The power of
both methods did not reach 1 for a large effect size of the tested axis, a feature that
we do not fully understand. After square-root or log-transformation, both methods
performed much better in terms of both power and Type I error rate. The test statistic
based on the first eigenvalue performed better than that based on the trace (i.e. based
on all constrained eigenvalues). The choice of test statistic may need further research,
as ter Braak (2022) concluded the opposite in his simulations of weighted redundancy
analysis.

After log-transformation, CCAbecomes somewhat sensitive to environmental (log-
linear) main effects, as noted by te Beest et al. (2021). Log-transformation is therefore
less suited for strictly compositional data, because the predictor variables may acci-
dentally be correlated to the site total which is a technical artefact in such data and
would then be detected as true effects, even if it is a pure size effect. This issue does
not appear of much importance in ecological applications outside (current) metage-
nomics, also because the data are typically rather noisy, in which case there is hardly
any sensitivity. If not a sampling or other technical artefact, a regression analysis of
site totals against the environmental variables may complement a CCA.

Significance tests of trait–environment relationships require both a site-level and
a species-level test to control the type I error. The tests are combined by taking the
maximum of their P-values (max test) as first proposed using permutation tests with
the fourth-corner correlation as the test statistic (ter Braak 2019), which is a special
case of double constrained correspondence analysis relating a single trait with a single
environmental variable. However, the P-values are similar to those in the papers on
the fourth-corner correlation (Peres-Neto et al. 2017; ter Braak 2019) only when
(residualized) predictor permutation is used, in which the environmental and trait data
are permuted in the site- and species-level test, respectively. Alternatively, one can
permute the row of the abundance table in the site-level test and columns of this table
in the species-level test, but this does not make it (residualized) response permutation,
as the weights (the margin totals of the abundance table) come with the permutation
and there is no link with standardized chi-square residuals. Species totals generally
vary much more than site totals. As in the related analysis of CWMs, the analysis
proceeds often without data transformation, so that residualized response permutation
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will likely turn very liberal. The message of this paper is thus even more relevant
to double constrained correspondence analysis as it is to canonical correspondence
analysis.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10651-022-00545-4.
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