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Abstract
Modelling and applying multivariate distributions is an important topic in ecology.
In particular in plant ecology, the multidimensional nature of plant traits comes with
challenges such as wide ranges in observations as well as correlations between several
characteristics. In other disciplines (e.g., finances and economics), copulas have been
proven as a valuable tool for modelling multivariate distributions. However, applica-
tions in ecology are still rarely used. Here, we present a copula-based methodology
of fitting multivariate distributions to ecological data. We used product copula mod-
els to fit multidimensional plant traits, on example of observations from the global
trait database TRY. The fitting procedure is split into two parts: fitting the marginal
distributions and fitting the copula. We found that product copulas are well suited to
model ecological data as they have the advantage of being asymmetric (similar to the
observed data). Challenges in the fitting were mainly addressed to limited amount of
data. In view of growing global databases, we conclude that copulamodelling provides
a great potential for ecological modelling.
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1 Introduction

In the last two decades the concept of copulas has becomewell-established for describ-
ing multivariate relationships between several attributes of a system. Copula models
have been successfully applied in many fields, for instance in the fields of finance
(Embrechts 2009), econometrics (Fan and Patton 2014), system reliability (Zhang and
Wilson 2016) and astronomy (Vio et al. 2020) giving deep insights in the multivariate
structure of the data. Copula-based approaches allow to split the structure of multi-
variate distributions into two parts: first, the one-dimensional marginal distributions of
the attributes separately, and secondly, the copula which provides a complete descrip-
tion of the dependencies of all attributes among each other. For example in finance,
copula approaches enables to estimate the risk of port-folios of assets more precisely,
by providing insights on the dependencies between assets.

Recent studies have emphasized the potential of copulas for modelling multivariate
distributions in ecology (Ghosh et al. 2020, and 2021; Anderson et al. 2019). Copula
approaches have been utilized to model the relationship between several environmen-
tal quantities. Thereby, studies broaden knowledge on copulas presenting methodical
frameworks to use copulas (Anderson et al. 2019), and discussing new findings and
challenges applying them in ecology (Ghosh et al. 2020). She and Xia (2018) mod-
elled the relationship between drought duration and severity by standard Archimedean
copulas to investigate drought processes on the Loess Plateau of China, see also Dayal
et al. (2020). In Anderson et al. (2019), fish population abundances are considered.
Emura and Michimae (2017) analyzed data of salamander metamorphoses where the
copula describes the dependence of the two variables in the censoring setup. The paper
by Chang and Joe (2019) deals with vine copulas and their application to abalone data,
see also Michimae et al. (2020). Since copulas have only been applied to a limited
number of ecological field data yet, insights are still lacking on the generality of those
statements, concerning different modelling approaches as well as regarding different
types of observations.

Earlier studies mostly considered Archimedean or/and elliptical copulas (Ghosh
et al. 2020; Anderson et al. 2019; She and Xia 2018 among others). One main char-
acteristic of these copulas is that they are exchangeable, which means that the copula
remains the same if the components are permuted. As a consequence of exchange-
ability, their bivariate marginal distributions are symmetric with regard to the main
diagonal, and all bivariate correlations are identical. However, scatterplots and empir-
ical correlations of practical data often do not show these symmetries. Recent studies
show that copulas in ecology are typically asymmetric (see for instance Ghosh et al.
(2020), Dayal et al. (2020)). In the paper by Ghosh et al. (2020), the rationale behind
the asymmetries in the empirical copula is investigated. Here asymmetry of copulas
means that they do not feature symmetric properties explained in Section 5.1. In this
paper, we employ product copula models according to Liebscher (2008) to overcome
the disadvantages of Archimedean or elliptical copula models. We show the great
potential of product copulas for modelling the distribution of ecological data.

The aim of this paper is twofold: first we introduce a copula-based methodology of
fitting multivariate distributions. We consider data vectors of an arbitrary dimension
contrary to most papers on this subject. Secondly, we analyze data from a widely used
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ecological database of vegetation attributes to give an example of how to utilize the pro-
posed methodology. In contrast to other papers, the model parameters are fit by means
of a minimum distance method by use of Cramér-von-Mises divergence. This method
exhibits some advantages. We do not need copula densities having a sophisticated
and numerically inconvenient structure in many cases, especially in higher dimen-
sions and for product copulas. Moreover, the minimum distance method provides an
approximation coefficient assessing the fit quality. Earlier studies have focused on the
maximum likelihood method to fit the copulas (see Hofert et al. (2021) and Ghosh
et al. (2020), for example) which appears to be an alternative method. The maximum
likelihood method gives theoretically best results whenever the underlying distribu-
tion belongs to the model family. The latter is rather seldom the case in practice. The
minimum Cramér-von-Mises distance estimation method puts emphasis on fitting the
copula rather than parameters, seeWeiß (2011) for a comparison of several estimation
methods.

The proposed approach is used to describe dependencies of a plant community.
In vegetation ecology, a community of interacting plants can be described by the
distribution of abundant plant traits. Plant traits (measured at the individual plant
level) specify morphological, anatomical, biochemical, physiological or phenological
properties of a plant (Violle et al. 2007) and characterize, for example, growthdynamics
and functions of the vegetation (Kattge et al. 2011, 2020; Violle et al. 2007). The
development of large databases like the global plant trait network GlopNet (Wright
et al. 2004), the plant trait data-base for invasive species BiolFlor (Kü hn et al., 2004),
the LEDA data-base of life-history traits (Kleyer et al. 2008), and the global plant trait
database TRY (Kattge et al. 2011, 2020) enabled new insights on plant properties at
the local scale, across biomes and to the global scale. Earlier studies found that the
(marginal) distributions of plant traits tend to be lognormal (Kattge et al. 2011), but
can markedly change due to climate (Butler et al. 2017), management regime (Herz
et al. 2017), and fine-scale soil conditions (Bruelheide et al. 2018).

To investigate links between plant traits, one typical approach was to correlate
empirical trait data pairwise (e.g., by using linear or power-law regression) and inves-
tigate the coefficient of determination (Paul et al. 1999; Reich et al. 1992, 1997).
Theories about plant strategies (e.g., (Grime 1979)) were tested and revealed trade-
offs between plant traits related to environmental conditions. For example, plants with
large seeds tend to have a higher chance to establish in a community. In turn, the num-
ber of their seeds is usually lower resulting in a reduced probability that soil conditions
promote their establishment (Heisse et al. 2007).More recent studies investigated plant
traits not only pairwise but also in a higher dimension (Wright et al. 2004) and showed
trade-offs in multivariate distributions.

However, going to higher dimensions is still challenging. Firstly, datasets can have
limitations in the number of pairwise corresponding trait samples for each species.
A method to reduce the range of attributes to those that have a high influence is,
for example, the Principal Component Analysis (PCA) (Lever et al. 2017). Studies
revealed plant traits associated with resource management (leaf traits that determine
capture, usage and release of resources like light, carbon and nitrogen) as well as
size related traits (e.g., leaf size, canopy height) to mainly determine plant ecosystem
functioning (Díaz et al. 2004).
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Second, skewed (marginal-) distributions of traits can span large ranges. In con-
trast to other multivariate statistics, which exclude outer ranges of observed values as
outliers, copulas are able to cover any distribution (Anderson et al. 2019), not only
separately but also combined in a variable number of dimensions.

Here we used a Germany-wide dataset of measured plant traits with a focus on 20
herbaceous species (Herz et al., 2017) and investigate marginal distributions of plant
traits independently and combined in copulas to answer the following questions:

• Which statisticalmarginal distributions canbeused to describe plant attributes?
• How do plant traits differ in their marginal distributions?
• Which plant traits correlate with each other under the given marginal distribu-
tions?

The analyzed dataset is part of the global trait database TRY (Kattge et al. 2011,
2020)which covers plant ecosystems like forests, croplands and grasslandsworldwide.
We introduce a newmethodology ofmodelingmultivariate distributions of data vectors
from natural science applications. This methodology is rather general and flexible for
datawith diverse origins, and is demonstrated here on the example of theTRYdatabase.
By this, we developed a novel copula not modeled so far.

The paper is structured as follows: In Section 2 we present a description of the
database used for numerical studies. Section 3 is devoted to the modelling of marginal
distributions where the focus is on the Weibull distribution and on the Gamma distri-
bution. Modelling the copula is subject of Section 4. Details to the results are collected
in the appendices.

2 Ecological trait data: An exemplary data set from TRY

TRY plant trait database is one of the main plant trait databases (Kattge et al. 2011,
2020). The globally collected data includes plant attributes on an individual level
across different ecosystems such as forests, crops and grasslands, and across climatic
gradients.

In this study, we used a dataset on individual plant traits of 20 species (10 grass
species and10 forbs) inmanagedgrasslands (Herz et al. (2017), two censusesmeasured
in 2014 and 2015). Plant traits were measured across a climatic gradient in Germany
covered by three study sites of the German Biodiversity Exploratories ((Fischer et al.
2010), Schorfheide-Chorin, Hainich, Schwäbische Alb). We focused the analysis on
five plant traits explained in Table 1.

RSRwas calculated as the fraction of themeasured ‘drymass abovegroundbiomass’
[g] and ‘dry mass roots total’ [g] (Herz et al. 2017). SLA was determined as leaf area
per leaf dry mass. LCNC was calculated by the ratio of leaf carbon concentration
to leaf nitrogen concentration and RCNC analogously by the ratio of root carbon
concentration and root nitrogen concentration. HW was determined by the ratio of
plant standingheight [mm] and themaximumof plant diameter in north-south direction
[mm] and east-west direction [mm]. All traits were derived for each census and each
study site separately. The analyzed data are presented in a shortened form in Table 4.
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Table 1 Table of attributes

Trait Description Unit

RSR Ratio of aboveground plant biomass to belowground biomass –

SLA specific leaf area m2/kg

RCNC Carbon–nitrogen ratio of roots –

LCNC Carbon–nitrogen ratio of leaves –

HW Height–width ratio of plant –

3 Multivariate distributions

Let Y = (Y (1), . . . , Y (d))T be a d-dimensional random vector having the joint distri-
bution function H :

H(y1, . . . , yd) = P

{
Y (1) ≤ y1, . . . , Y (d) ≤ yd

}
for yi ∈ R.

In our context Y (1), . . . , Y (d) are the measured values of the traits. They are comprised
in the data vectorY . All probabilities related to the randomvectorY can be computed in
terms of H .Wedenote themarginal distribution function ofY ( j) by Fj ( j = 1, . . . , d):

Fj (t) = P

{
Y ( j) ≤ t

}
for t ∈ R.

We assume that the marginal distributions are continuous. Then f j denotes the
marginal density of Y ( j):

f j (t) = F ′
j (t) for t ∈ R.

Sklar’s theorem (Sklar, 1959) implies that

H(y1, . . . , yd) = C(F1(y1), . . . , Fd(yd)) for yi ∈ R. (1)

This formula shows that the joint distribution function comprises two parts: the
marginal distribution functions F1, . . . , Fd and the so-called copula C . The copula
C describes the dependence of the attributes irrespectively of the marginal distribu-
tions. Therefore, the methodology is divided into two parts related to the modeling of
the marginal distributions and the copula, respectively. The challenge of the approach
is to find suitable parametric models for F1, . . . , Fd and C . Using these functions,
probabilities of rectangles [y1, z1] × . . . × [yd , zd ] can be evaluated by

P

{
y1 ≤ Y (1) ≤ z1, . . . , yd ≤ Y (d) ≤ zd

}

=
1∑

δ1=0

. . .

1∑
δd=0

(−1)d+δ1+...+δd C(F1(wδ1,1), . . . , Fd(wδd ,d)),
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where w0, j = y j , w1, j = z j . This formula shows how to compute probabilities using
F1, . . . , Fd and C .

In the next section we consider the problem of modelling and fitting the marginal
distributions by use of the data. Modeling and fitting the copulas is then the subject of
Section 5.

4 Analysis of themarginal distributions

4.1 Methodology of fitting themarginals

In a first step the data is divided into several subsets. Each subset corresponds to one
class, here to one species. mc denotes the median (alternatively the mean) of class c.
In the following we consider the measured values of trait j . Let Z1, . . . , Zn be the
data sample of the considered trait; i.e. Zi is the i-th measured value of the trait under
consideration. c(1) . . . c(n) denote the classes of the sample items. For each class c,
we compute the empirical median m̂c.

In the second step we normalize the data by:

Z̃i = Zi

m̂c(i)
(2)

for i = 1, . . . , n in order to make the data comparable. Normalized data have the
property that the empirical median equals 1.

In the last step, the Weibull distribution or the gamma distribution (see Appendix
A) is fit to the transformed data Z̃1, . . . , Z̃n using the maximum-likelihood method.
According to the maximum-likelihood method, the estimated parameters of θ j are
evaluated by:

θ̂ = arg max
θ∈�1

n∑
i=1

ln f j (Z̃i | θ) (3)

where f j (. | θ) denotes density model of trait j and f j is the Weibull or the gamma
distribution. In case of Weibull or gamma distribution, no explicit formulas for the
estimators are available. The minimization problem (3) has to be solved numerically
deploying an efficient optimization algorithm (see e.g. Meeker and Escobar (1998),
Chapters 8 and 11). To find the best model, one can compare the values of the Akaike
and the Bayesian information criterion (AIC, BIC). The smallest value gives the best
model in the considered case.

Finally, f j (. | θ̂ ) is the best-fit model density for the normalized marginal data.
For the original data, the best-fit density for the original marginal data of class c is
t �→ m̂−1

c f j (t m̂−1
c | θ̂ ) and its median is about m̂c.

The computations were performed using R software. For distribution fitting and
goodness-of-fit, the packages MASS (function fitdistr) and goftest are available in R.
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4.2 Results for marginal distributions of the observed data

Looking at the density plots of the variables for the various species, we see that shapes
of these curves are rather similar, see Figure 5 in Appendix A2 depicting the densities
of the variable RSR. Further in case of some species, there is a sizable difference
between the mean and the median being an indicator for the presence of outliers (cf.
Table 5 in Appendix A2, exemplified for variable RSR and several grass species). We
found similarities between species in density plots of all tested traits. Hence, the whole
transformed data of any trait can be regarded all as coming from the same statistical
population of the trait. Its distribution can be considered as a baseline one.

The results of the baseline distribution fitting are provided in Tables 6 and 7, see
Appendix A2. All the estimated distribution models are checked using the Anderson-
Darling goodness-of-fit test (AD-Test in Tables 6,7). All checks were successful since
all p-values are higher than 0.05. Additionally, the AIC and BIC show mostly a small
difference such that both models, gamma and Weibull distribution, are reasonable for
modeling marginal distributions in most cases. Throughout the results reveal that the
estimated models give good approximations of the marginal distributions.

4.3 Discussion

Themean iswidely used as location parameter of the distribution. If outliers are present
in the dataset, then the median should be preferred over the mean as description of
the location since the median represents a more robust statistic. Because of the variety
of the species medians m j , normalization according to (2) makes the trait values
comparable.

In our investigations concerning the marginal distributions, we found that two types
of one-dimensional distributions are relevant in the context of the TRY database: the
Weibull distribution and the Gamma distribution. These two distribution families play
an important role in modelling positive random variables in the framework of biology
and ecology. This is shown in the papers by Taubert et al. (2013), byHagey et al. (2016)
and by de Freitas Costa et al. (2021), for example. The Anderson-Darling goodness-
of-fit test is proved to be a powerful method for testing how good the distribution
fit is, see Stephens (1986). In this book alternative tests are discussed such as the
Kolmogorov test and the Cramér-von Mises test.

5 Methodology of modeling and fitting the copula

5.1 Basics of copulas

Formula (1) provides a link between the joint distribution function H of the random
vector Y = (Y (1), . . . , Y (d))T and the copula. Suppose that the marginal distributions
are continuous (i.e. Fm has a density fm). Then the copula C is uniquely determined.
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Fig. 1 three-dimensional plot of a bivariate Frank copula C(u1, u2)with parameter 6, see Table 8 of copula
models

A function C : [0, 1]d → [0, 1] is a copula if it has the following properties (cf.
Nelsen 2006, p. 45):

1) C(u) = 0 if u j = 0 for any j,

2) C(u) = u j if ul = 1 for all l �= j and any j,

3)
1∑

δ1=0

. . .

1∑
δd=0

(−1)d+δ1+...+δd C(u + δ · h) ≥ 0

for all u, h ∈ [0, 1]d : u + h ∈ [0, 1]d , where δ = (δ1, . . . , δd)T , u = (u1, . . . , ud)T .
Condition 3) ensures that C is a multivariate distribution function. This implies

that C is increasing in each component. Moreover, according to condition 2), C has
marginals which are uniformly distributed on [0, 1] (see Fig. 1). Concerning the theory
of copulas we refer to the monograph by Nelsen (2006).

We introduce

U j = Fj (Y
( j)) for j = 1 . . . d.

Then U j has a uniform distribution on [0, 1]. The random vector U = (U1, . . . , Ud)T

has the distribution function C . Thus the random vector U involves the information
about the dependence of the attributes. In bivariate copula plots this idea is utilized.

There are several copula-based measures describing the dependence of two com-
ponents. Spearman’s ρS and Kendall’s τ are the most popular coefficients in this
framework. The formulas for the population version of the coefficients are given by

ρS = 12
∫ 1

0

∫ 1

0
C(u, v) dudv − 3,
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τ = 4
∫ 1

0

∫ 1

0
C(u, v) dC(u, v) − 1,

where C is the copula of two attributes under consideration. Both association coeffi-
cients can be estimated by use of the data.

Two multivariate copulas are of special interest, especially in Proposition 5.1:

independent copula: �(u) = u1u2 . . . ud ,

comonotonicity copula : M(u) = min{u1, u2, . . . , ud}

The copula M is also known as Fréchet-Hoeffding upper bound copula. If U has
distribution M , then U1 = U2 = . . . = Ud holds with probability 1. Theorems
2.10.14 and 5.1.9 in Nelsen (2006) lead to the following proposition:

Proposition 5.1 1) If Y (1), . . . , Y (d) are independent then
a) U1, . . . , Ud are independent and C = �,
b) all bivariate Spearman’s ρS and Kendall’s τ of two components of Y are equal to

0.
c) If C = � then Y (1), . . . , Y (d) are independent.
2) Each of the variables Y (1), . . . , Y (d) is a strictly increasing function of any of the

others with probability 1 if and only if C = M. Furthermore, in this case, all
Spearman’s ρS and Kendall’s τ of two components of Y equal 1.

From the point of view of the visualization of the distribution and the dependence,
a diagram of the copula density gives more information, see figure below. The copula
density is evaluated by

c(u) = ∂d

∂u1 . . . ∂ud
C(u) for u ∈ [0, 1]d .

Several concepts of symmetry of copulas can be distinguished (see Nelsen (1993)).
We mention only two of them here. A copula is referred to as exchangeable, if

C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d))

for any permutation (π(1), . . . , π(d)) of (1, . . . , d) and all u ∈ [0, 1]d . Interchanging
two components u j leads to the same copula. Especially in the case d = 3, exchange-
ability means

C(u, v, w) = C(v, u, w), C(u, v, w) = C(u, w, v),

C(u, v, w) = C(w, v, u) for u, v, w ∈ [0, 1].

Corresponding equalities hold true for copula densities. Exchangeability is one kind
of symmetry of a copula. As a consequence, all bivariate correlations of exchangeable
copulas are identical. All the commonly used copula models of Table 8 in Appendix
B are exchangeable.
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Fig. 2 three-dimensional plot of the density c(u1, u2) of a bivariate Frank copula with parameter 6

A copula is called radially symmetric (or tail symmetric), if (U1, . . . , Ud)T and
(1 − U1, . . . , 1 − Ud)T have the same distribution. In the case d = 2, bivariate
copulas are radially symmetric if C coincides with the survival copula:

C(u, v) = u + v − 1 + C(1 − u, 1 − v) for u, v ∈ [0, 1].

The bivariate Frank copula is the only one of Table 8 which is radially symmetric.
Elliptical copulas are radially symmetric, too.

5.2 Product copula models

The classical copulas of Table 8 in Appendix B are used as basic models for the
construction of product models. The theory of this model class of asymmetric copulas
was established in Liebscher (2008). Let C1 and C2 be two copulas. Then the formula
for the product copula is given by

C(u) = C1(u
α1
1 , . . . , uαd

d ) · C2(u
1−α1
1 , . . . , u1−αd

d ) (4)

where α1, . . . , αd ∈ [0, 1] are parameters inducing the asymmetry of C . In summary,
the copula in (4) has d + 2 parameters: the two parameters of the copulas C1, C2, and
the exponents α1, . . . , αd . Identity (4) gives the basic model for fitting it to ecological
data from TRY database. The copulas C1 and C2 will be taken then from Table 8.

Notice that most of the copulas of Table 8 have pairwise positive correlation. If
negative correlations occur, then one should transform some variables to obtain pair-
wise positive correlations. To achieve this, one simple idea would be to consider the
negative of some variables instead of these variables. The methodology of fitting is
the subject of the next sections.
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5.3 Fitting the copula

Let Y1, . . . , Yn be the sample of d-dimensional random vectors with distribution func-
tion H and copula C . Vector Yi = (Yi1, . . . , Yid)T includes the normalized values of
the traits of the i-th sample item (i-th measurement). Yi is the normalized i-th row
of the data matrix (see Table 4). Note that the data preprocessing described in Sec-
tion 4.1 has to be performed before the copula fitting. We denote the joint empirical
distribution function by Ĥn (estimator for H ):

Ĥn(y) = 1

n

n∑
i=1

1 {Yi1 ≤ y1, . . . , Yid ≤ yd}

for y = (y1, . . . , yd)T ∈ R
d , where 1 {A} is the indicator of the event A; i.e. 1 {A} = 1

if A occurs and = 0 if A does not occur. Let F̃n(y) = (F1n(y1), . . . , Fdn(yd))T be
the vector of the marginal empirical distribution functions

Fjn(t) = 1

n

n∑
i=1

1
{
Yi j ≤ t

}

for t ∈ R. The values Fjn(Y1 j ), . . . , Fjn(Ynj ) represent a permutation of the relative
ranks {i/n : 1 = 1 . . . n}, and they mimic so the uniform distribution. Now a copula
plot of the j-th and the μ-th component can be drawn to show the dependence of
both variables. The plot contains the points (Fjn(Y1 j ), Fμn(Y1μ)), . . . , (Fjn(Ynj ),

Fμn(Ynμ)) (see Figure 6, Appendix D).
The empirical copula Ĉn estimates the copula and its formula is given by

Ĉn(u) = 1

n

n∑
i=1

1 {F1n(Yi1) ≤ u1, . . . , Fdn(Yid) ≤ ud}

for u ∈ [0, 1]d . In the case d = 2, Ĉn(u1, u2) is just the relative frequency of points
in the copula plot lying in [0, u1] × [0, u2].

We consider now the family {Cγ : γ ∈ �} of copulas where γ is the q-dimensional
parameter vector and� ⊂ R

q the parameter space. To fit this family to the given data,
we search for a copula Cγ̂ of the family that fits best to the data. In this paper the fit
of the copulas is based on the Cramér-von-Mises divergence, see Liebscher (2009). A
divergence is something like a distance, but it does not fulfil some of the mathematical
requirements of a distance. The estimated Cramér-von-Mises divergence is given by:

D̂n(Cγ ) = 1

n

n∑
i=1

(
Ĥn(Yi ) − Cγ (F̃n(Yi ))

)2
(5)

for γ ∈ �. This divergence measures the distance between the nonparametrically
estimated distribution function and the parametric model of it. It is an interesting
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feature that we do not need Ĉn in (5). Fitting the copula model means minimizing
D̂n(Cγ ) with respect to the parameter γ . The minimizer γ̂ of γ �→ D̂n(Cγ ) is called
a minimum-distance estimator for γ (cf. Tsukahara 2005; Liebscher 2009) if the
following identity holds true:

D̂n(Cγ̂ ) = min
γ∈�

D̂n(Cγ ). (6)

Assessing the goodness-of-approximation is discussed in Liebscher (2015). For com-
parisons, we compute the approximation coefficient:

ρ̂ = 1 − D̂n(Cγ̂ )

D̂n(�)
. (7)

D̂n(�) is the Cramér-von-Mises divergence ( 5) for the independent copula � intro-
duced in Section 5.1. Since ρ̂ ≤ 1 holds, the coefficient ρ̂ is a normed measure and
can be regarded as a counterpart to the coefficient of determination in regression. If
� ∈ {Cγ } then ρ̂ ∈ [0, 1]. Ideally, ρ̂ is close to 1 indicating a perfect fit.

Using R software the computations for fitting the copulas were performed. We
deployed the function optim (R package stats) for optimization.

5.4 Discussion

There are several alternative construction concepts for asymmetric copulas. Among
them, nested Archimedean Copulas (McNeil 2008) are asymmetric in general but they
have the disadvantage being exchangeable in some components, see also Grimaldi and
Serinaldi (2006).

We apply the Cramer-von Mises divergence to fit the copulas. Alternatively, one
can use maximum-likelihood estimation for fitting. This may lead to rather differ-
ent parameters in comparison to minimum-distance method especially in the often
occurring case that C does not belong to the family {Cγ : γ ∈ �}. Maximum-
likelihood estimation has the disadvantage that one needs the density of the model
copula. According to formula (5), the Cramér-von-Mises divergence needs only the
empirical distribution functions Ĥn, F1n, . . . , Fdn for computations. Concerning esti-
mation, we refer to Hofert et al. (2012) and Liebscher (2015).

6 Fitting copulas to the observed ecological data

6.1 Results

First we give some comments on the choice of the data. To comprise species with
similar bivariate correlations, we concentrate on the grass species Al.pr, An.od, Ar.el,
Av.pu, Cy.cr, Da.gl, Fe.pr, Lo.pe and the herb species Ga.mo, Ru.ac, Ce.ja, Ga.ve, Pl.la
(see Appendix C for abbreviations of species). From a glance at the correlations, it is
evident that variable RCNC can be regarded as independent of the remaining variables
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Table 2 Fitting results (copula of variables RSR, SLA and minus HW): the approximation coefficient ρ̂

(defined in (7)) for various basic copula models abbreviated according to Table 8

Category n Copula ρ̂ Category n Copula ρ̂

Grass 546 F 0.924 Herbs 356 AMH 0.864

GH 0.921 C 0.860

AMH 0.906 C 0.848

Table 3 Fitting results (copula of variables RSR, SLA and minus HW): the approximation coefficient ρ̂

(defined in (7)) for various product copula models with copulas C1 and C2 abbreviated according to Table 8

category n C1 C2 ρ̂ Category n C1 C2 ρ̂

Grass 546 J F 0.974 Herbs 356 C C 0.907

F GH 0.972 C F 0.905

GH GH 0.970 C � 0.904

(confidence intervals cover zero), see Table 9 in Appendix B2. The variable LCNC is
omitted because of a lack of sufficient amount of data. Therefore, in this section, we
consider the 3-dimensional distribution of the normalized data vector (Y (1), Y (2), Y (3))

including the variables RSR, SLA, andminusHW (normalization according to Section
4.2).

Next we fit copulas C from Table 8 and product copulas according to (4) to the data
vector of the variables RSR, SLA and minus HW. The copulas C1 and C2 in (4) are
taken from Table 8. Y (3) is taken to be the negative of HW in order to obtain positive
bivariate correlations (see Table 12 for correlations) which are present for most of the
copula models in Table 8. The parameter vector of product copulas consists of the
parameters γ1, γ2 of C1 and C2, and the exponents α1, α2, α3. The best fitting results
are given in Tables 2 and 3, in Tables 10 and 11 in more detail.

Approximation coefficients greater than 0.9 indicate a very good fitting accuracy,
and the best fits of Tables 2 and 3 exhibit this property. Next we focus on the grass
data. The estimated copula density of the components SLA and minus HW depicted
in Figure 3 reveals a significant asymmetry with respect to the main diagonal. This
effect is especially shown in Figure 4where the difference�(u1, u2) = c(u1, s(u1))−
c(s(u1), u1) (u1 ∈ [0, 1]) of copula density values along cross sections u2 = s(u1) is
depicted. In case of a symmetrical bivariate density, we have C(u, v) = C(v, u) for
u, v ∈ [0, 1], and therefore � ≡ 0.

Next we show the asymmetry of the distribution of RSR, SLA andminus HWusing
probabilities and tail indices λL , and λU (for the definition see Ghosh et al. (2020), p.
420). For this purpose, we calculate the following two quantities

γ1 = P {0.75 ≤ U1 ≤ 1, 0 ≤ U2 ≤ 0.25} = 0.25 − C(0.75, 0.25),

γ2 = P {0 ≤ U1 ≤ 0.25, 0.75 ≤ U2 ≤ 1} = 0.25 − C(0.25, 0.75).
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Fig. 3 estimated bivariate copula density of RSR and SLA, product model J-F from Table 3

Fig. 4 sections parallel to the secondary diagonal (section along u2 = 1 − u1 in red, section along u2 =
1.5 − u1 in green, section along u2 = 0.5 − u1 in blue) of the estimated bivariate copula density of RSR
and SLA, model J-F from Table 3

In case of a symmetric copula, γ1 and γ2 are identical. The corresponding results are
given in Table 12 together with the empirical bivariate Spearman correlations and
these correlations in the estimated copula model. The results provided in Table 12
exhibit that the multivariate distribution is non-exchangeable and with regard to the
tails (upper and lower). The correlations are significantly different which is not the
case for the commonly used basic models (see Table 8, Appendix B1). The noticeable
difference between γ1 and γ2 for the pair SLA and -HW gives a further evidence for
asymmetry. Furthermore, we see from Table 12 that the combination of small SLA
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and small HW is less probable in comparison to large SLA and large HW. Table 12
reveals that the difference between empirical correlations and estimated model-driven
ones are reasonably small showing the good quality of estimation results. On the other
hand, bivariate Spearman’s ρS coefficients differ from each other significantly which
also exhibits the asymmetry of the multivariate distribution.

6.2 Discussion

Looking at the results of the previous section, the dependence structure of the copula
fit reflects the asymmetric dependence structure in the data. Similar results can be
obtained by incorporating variable LCNC. Since symmetric copulas exhibit identi-
cal Spearman coefficients for all pairs of variables, it is comprehensible that the use
of asymmetric copulas gives better fitting results in our context. A further analysis
showed that the dependence structure varies over the species. To identify these differ-
ences more data are needed. We omitted to perform goodness-of-fit tests for several
reasons. In higher dimensions they are hard to apply because of a sophisticated struc-
ture of variances of test statistics (often bootstrapping has to be applied). Moreover,
goodness-of-fit tests do not yield a ranking of the models under consideration based
on appropriate statistics.

Typically, copulas are fitted using big data (for example in finance sciences using
daily stock exchange data). Ecological plant measurements are limited because of
high efforts for data gathering. In our study, we used a state-of-the art data set, having
(60-80 samples per species). If sample size is too small, then there will be a degree of
uncertainty in the results.

7 Conclusions

The paper provides a methodology for analyzing environmental data. The description
of the multivariate distribution is split up into the one-dimensional marginal distri-
butions and the copula. In the case of the example data set from the TRY database,
the data analysis exhibits good to very good accuracy of fitting results. The results
have demonstrated that copulas are a valuable tool to analyze ecological data. Product
copulas according to Liebscher (2008) prove to be flexible model classes for accurate
fitting even in the case of higher dimensions d > 2. Product copulas have not been
considered up to now in the context of ecological data to our knowledge. They are also
flexible to describe asymmetries in several directions occurring in most applications.

We see challenges in the accuracy, due to the limited number of samples and
mainly caused by the exclusion of samples in which some traits were missing. General
approaches on how to deal with missing data would be a first step towards more reli-
able estimates. In light of the increasing effort in observing traits reflected by growing
trait databases (e.g., TRY) we see a high potential to combine ecological data with
copulas to gain deeper insights in measured characteristics.
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Appendix A1: Models for marginal distributions

In Appendix A1 we introduce parametric models for the marginal distribution func-
tions Fj and their density f j , j = 1, . . . , d. In the paper the focus is on the following
two specific classes of distributions:

1) Weibull distribution with shape parameter β and scale parameter τ : β, τ > 0:
The density is given by

ϕθ (t) =
{

τ−ββtβ−1e−(t/τ)β for t ≥ 0
0 for t < 0.

The parameter τ is the scale parameter having the property that with a probability of
63.2%, the random variable is smaller than τ . The expectation is equal to τ�(1+1/β)

where � is the Gamma function.
2) Gamma distribution with shape parameter β and scale parameter τ : β, τ > 0:

The density reads as

ϕθ (t) =
{

1
τβ�(β)

tβ−1 exp(−t/τ) for t ≥ 0

0 for t < 0.

The expectation is equal to βτ .
For both models, θ = (β, τ )T ∈ �1 is the parameter vector where �1 = (0,∞) ×

(0,∞). The corresponding distribution function is evaluated by

�θ(t) =
∫ t

0
ϕθ (u)du.
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Appendix A2: Data structure and results for marginal distributions

Table 4 Data structure. species according to Appendix C, year=year of mesurement, explo=location
of plants, variables RSR...HW according to Section 2, NA=missing data, SCH=Schorfheide-Chorin,
ALB=Schwäbische Alb

Case no. Species Year Explo Class RSR SLA RCNC LCNC HW

1 Ac.mi 2014 ALB Herb 2.0965517 47.813043 24.84785181 NA 1.1666667

2 Al.pr 2014 ALB Grass 1.6901172 46.396631 37.31636093 NA 0.2692308

3 An.od 2014 ALB Grass 10.6013513 60.880000 46.32642950 NA 0.3076923

4 Ar.el 2014 ALB Grass 0.9147059 41.738247 56.89432999 NA 0.1153846

5 Av.pu 2014 ALB Grass 4.1107595 40.357500 0.13203634 NA 0.5625000

6 Ce.ja 2014 ALB Herb 1.2247557 40.233897 33.21107228 NA 0.5454545

7 Cy.cr 2014 ALB Grass 1.6989568 28.933615 25.60340398 NA 0.5333333

8 Da.gl 2014 ALB Grass 0.4216145 39.252406 56.42985378 NA 0.1794872

9 Fe.pr 2014 ALB Grass 5.0397422 32.543976 33.32396372 NA 1.0000000

10 Lo.pe 2014 ALB Grass 2.9369369 42.614286 34.85883363 NA 0.6666667

11 Pl.la 2014 ALB Herb 1.8306773 36.148805 0.09060719 NA 0.4000000

12 Po.pr 2014 ALB Grass 2.7578125 30.450000 0.37286034 NA 0.1304348

13 Po.tr 2014 ALB Grass 49.4000000 19.450000 28.07972777 NA 0.3076923

14 Ra.ac 2014 ALB Herb 4.8484849 43.162121 16.90244166 NA 2.0000000

… …

1858 Ru.ac 2015 SCH Herb 1.328375 25.259630 32.93124 14.48004 1.1016949

1859 Ve.ch 2015 SCH Herb 1.326945 36.069670 25.88047 22.08081 0.5652174

Table 5 Mean and median of
RSR trait for several grass
species (see Appendix C for full
Latin names of abbreviations for
species)

Species Number of items Mean Median m̂ j

Al.pr 64 6.0758 3.8494

An.od 73 1.9031 1.3719

Ar.el 67 6.8079 2.0636

Av.pu 73 2.7255 1.7663

Cy.cr 69 1.6819 1.0523

Da.gl 94 2.4613 1.2039

Fe.pr 64 4.8886 1.4413

Lo.pe 73 1.6383 1.0231

Po.pr 73 2.8481 2.0231

Po.tr 67 5.0539 1.7865
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Fig. 5 non-parametric kernel density estimator for variable RSR, left: unnormalized, right: normalized;
colors of the lines indicate the different species: black=An.od, red=Cy.cr, blue=Da.gl, green=Lo.pe,
brown=Po.pr; for abbreviations, see Appendix C

Table 6 Detailed fitting results for marginal distributions of grass species: estimated parameters (standard
errors in parentheses), p-values of the Anderson-Darling test of goodness-of-fit, values of AIC and BIC
criterions for model selection

Trait Sample
length n

Model Shape parameter Scale parameter p-value of
AD test

AIC BIC

RSR 717 Gamma 1.7854 (0.0893) 0.6955 (0.0829) 0.244 1541.1 1550.1

Weibull 1.3466 (0.0388) 1.3621 (0.0411) 0.258 1564.8 1573.9

SLA 691 Gamma 6.055 (0.319) 0.1776 (0.0097) 0.879 734.2 743.2

Weibull 2.3602 (0.0610) 1.2114 (0.0208) 0.873 838.8 847.9

RCNC* 730 Gamma 12.639 (0.658) 0.08398 (0.00446) 0.907 262.8 272.0

Weibull 3.5457(0.0953) 1.1754 (0.0132) 0.410 367.4 376.6

LCNC 226 Gamma 19.032 (1.717) 0.05410 (0.00494) 0.940 −15.22 −8.379

Weibull 4.2449 (0.1986) 1.1262 (0.0187) 0.467 26.38 33.22

HW 688 Gamma 2.6457 (0.1357) 0.4510 (0.0255) 0.432 1318.2 1327.3

Weibull 1.6342 (0.0457) 1.3416 (0.0334) 0.434 1364.1 1373.1

Remark: Outliers greater than 5 are removed from analysis.
* 24 very small data values < 0.1 are excluded from the analysis
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Table 7 Detailed fitting results for marginal distributions of herb species: estimated parameters (standard
errors in parentheses), p-values of the Anderson-Darling test of goodness-of-fit, values of AIC and BIC
criterions for model selection

Trait Sample
length n

Model Shape parameter Scale parameter p-value of
AD test

AIC BIC

RSR 668 Gamma 1.9231 (0.1014) 0.6280 (0.0378) 0.919 1343.7 1352.6

Weibull 1.3957 (0.0417) 1.3329 (0.0407) 0.0372 1369.4 1378.2

SLA 632 Gamma 4.8369 (0.2636) 0.2226 (0.0128) 0.626 800.7 809.6

Weibull 2.2560 (0.0643) 1.216 (0.0227) 0.524 847.1 856

RCNC* 690 Gamma 9.992 (0.533) 0.1052 (0.0057) 0.656 386.7 395.8

Weibull 3.2414 (0.0886) 1.1690 (0.0147) 0.193 453.4 462.4

LCNC 228 Gamma 16.994 (1.539) 0.06023 (0.00553) 0.900 6.657 13.52

Weibull 3.9733 (0.1804) 1.1222 (0.0198) 0.528 48.54 55.40

HW 648 Gamma 2.5584 (0.1350) 0.4627 (0.0270) 0.114 1245.4 1254.3

Weibull 1.6210 (0.0472) 1.3297 (0.0344) 0.328 1282.4 1291.3

Remark: Outliers greater than 5 are removed from analysis.
* 15 very small data values < 0.1 are excluded from the analysis

Appendix B1: Copula Models

Table 8 Copulas (the abbreviations are given below the family name) and their parameters

Family Formula for C(u) Parameter C = � for C = M for

Clayton
C

(
d∑

i=1
u−γ

i − d + 1

)−1/γ

γ > 0 γ → 0 γ → ∞

Frank
F

− 1
γ ln

(
1 + (

e−γ − 1
) d∏

i=1

e−γ ui −1
e−γ −1

)
γ �= 0 γ → 0 γ → ∞

Joe
J

1 −
(
1 −

d∏
i=1

(
1 − (1 − ui )

γ
))1/γ

γ ≥ 1 γ = 1 γ → ∞

Ali-Mikhail-
Haq
AMH

(1 − γ )

(
d∏

i=1

1−γ (1−ui )
ui

− γ

)−1

−1 ≤ γ < 1 γ = 0 -

Gumbel-
Hougaard

GH
exp

(
−

(∑d
i=1 (− ln ui )

γ
)1/γ )

γ ≥ 1 γ = 1 γ → ∞

M is the comonotonicity copula. We refer to Hofert et al. (2012) for a long list.
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Appendix B2: Results of copula fitting

Table 9 Empirical Spearman
correlations with RCNC and
95%-confidence intervals for
grass data

Correlations

RSR
0.02637

[-0.05782, 0.11019]
SLA

-0.000006
[-0.084073, 0.08406]

HW
0.00223

[-0.08185, 0.08629]

Table 10 Fitting results for
various basic copula models
(copula of variables RSR, SLA
and minus HW): estimated
parameters and the
approximation coefficient ρ̂

Category n Copula ρ̂ Estimated parameter

grass 546 F 0.924 1.5377

GH 0.921 1.2114

AMH 0.906 0.60313

herbs 356 AMH 0.864 0.49490

C 0.860 0.28428

C 0.848 1.1459

Table 11 Fitting results for various product copula models (copula of variables RSR, SLA and minus HW):
estimated parameters and the approximation coefficient ρ̂ (defined in (7)); in the last line γ̂2 is not present;
copulas C1 and C2 are chosen for model (4) and abbreviated according to Table 8

category n C1 C2 ρ̂ estimated parameters γ̂1, γ̂2, α̂1, α̂2, α̂3

grass 546 J F 0.974 1.6627, 2.5963, 0.03237, 0.37216, 0.92333

F GH 0.972 3.4219, 1.3201, 0.86894, 0.44546, 0.00439

GH GH 0.970 1.3919, 1.4199, 0.06256, 0.40173, 1

Herbs 356 C C 0.907 0.11768, 7.1482, 0.88526, 0.66026, 0.54809

C F 0.905 0.13309, 4.1267, 0.82187, 0.46801, 0.34606

C � 0.904 3.3265, 0.21626, 0.44266, 0.63990
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Table 12 subset of grass species: indicator variables for asymmetries, empirical Spearman correlations ρ̂S
(including 95% confidence intervals) and the Spearman correlations using the best model fit; lcb=lower
confidence bound, ucb=upper confidence bound

Pair of variables best fit model empirical correlation

λL λU γ1 γ2 ρS ρ̂S lcb ucb

RSR, SLA 0 0.02852 0.03011 0.03277 0.31931 0.32578 0.24867 0.39879

RSR, -HW 0 0.03026 0.05439 0.05291 0.08222 0.05581 −0.02823 0.13907

SLA, -HW 0 0.25449 0.04155 0.03198 0.27146 0.22419 0.14297 0.30241

Appendix C: Names of species in the database

Grass
Al.pr...Alopecurus pratensis
An.od...Anthoxanthum odoratum
Ar.el...Arrhenatherum elatius
Av.pu...Helictotrichon pubescens
Cy.cr...Cynosurus cristatus
Da.gl...Dactylis glomerata
Fe.pr...Festuca pratensis
Lo.pe...Lolium perenne
Po.pr...Poa pratensis
Po.tr...Poa trivialis

Herbs
Ac.mi...Achillea millefolium
Be.pe...Bellis perennis
Ce.ja...Centaurea jacea
Ga.mo...Galium mollugo
Ga.ve...Galium verum
Pl.la...Plantago lanceolata
Ra.ac...Ranunculus acris
Ra.bu...Ranunculus bulbosus
Ru.ac...Rumex acetosa
Ve.ch...Veronica chamaedrys
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Appendix D

Fig. 6 pairwise copula plots of herb species, the variables are RSR, SLA, RCNC, LCNC, HW
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