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Abstract
Monitoring waterbird populations in Australia is challenging for reasons of count-
ing logistics, and because population aggregation and dispersion can shift rapidly in
response to large spatio-temporal variations in resource availability. The East Aus-
tralianWaterbird survey has conducted annual, aerial, systematic counts of waterbirds
over eastern Australia for almost 40 years. It was designed to monitor waterbird pop-
ulations using design-based inference though for many species this form of inference
appears inadequate in the face of these challenges. Here we develop a state-space
model-based Bayesian approach that, in addition to explicitly incorporating process
noise and observation uncertainty, uses random effects and rainfall-derived covariates
tomodel the year-to-year variation in the proportion of the total (super) population that
is present on surveyed wetlands, and available to be counted. We use this model-based
approach to estimate the superpopulation size of 45 waterbird species annually, and
model the rate of population increase as a function of antecedent rainfall. The results
confirm the strong positive effect of antecedent rainfall on population growth rates for
nearly all species, and illustrate that species respond to rainfall differently in terms
of habitat use, which influences whether they are present on surveyed wetlands. For
many species, the year-to-year variation in the estimated proportion of the population
on surveyed wetlands is very high. The results have implications for making infer-
ences on population trends from these data, with the ability to model the year-to-year
sampling variation a key requirement before the rate of population increase can be
estimated with any precision. This study illustrates how to progress this approach,
and infers that under average rainfall conditions, the general trend is for estimated
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superpopulation rates of increase to be negative, though for only a few species is this
occurring with strong belief.

Keywords Bayesian inference · Monitoring · Trend · Waterbird

1 Introduction

Making inferences on population trends of highly mobile animals inhabiting variable
environments is challenging. Accurate assessment of population trends in long-lived,
nomadic waterbirds capable of moving long distances requires assessment at a conti-
nental scale (Johnston et al. 2015). The Eastern AustralianWaterbird Survey (EAWS),
consisting of 10 survey bands sampling c. 11% of wetlands within a c. 2.7× 106 km2

survey region of eastern Australia, theoretically makes such estimation possible. The
EAWS was designed by the late Graeme Caughley1, to enable the estimation of total
abundance across the sample area (methods as described by Caughley 1977) (see Sect.
2.1 for details).

To date, however, the EAWS has not been used to estimate the total abundance of
any species of waterbird within the sampled region of eastern Australia, despite some
analyses suggesting this to be the case (e.g. see Figs. 2–4 in Kingsford and Porter
2009). This is in contrast to North America, where estimates of breeding populations
derived from large-scale surveys date from 1955 for some species (e.g. mallard Anas
platyrhynchos) (Nichols et al. 1995). InAustralia, themost recent and detailed analysis
of the EAWS data examined trends in counts between the largely unregulated Lake
Eyre Basin and the more highly regulated Murray-Darling Basin (Kingsford et al.
2017), despite populations being known to be highly connected between these river
basins (Roshier et al. 2002;Kingsford et al. 2010). Counts fromwetlandswithin survey
bands outside these basins, including coastal wetlands, were ignored. Most Australian
waterbirds are essentially nomadic and use wetlands across eastern Australia and
beyond. For example, depending on prevailing conditions, very large populations of
many species may occur in Western Australia (Halse et al. 1998, 2005), the Alligator
Rivers regions (e.g. Morton et al. 1993) and southern Papua New Guinea (Halse et al.
1996). To analyse population trends, there is a need to make inferences based on
the estimated total population, including the unobserved component. This requires
analysis of the EAWS survey data that accommodates vagaries such as population
movement.

Sampling-based methods applicable to estimating total abundance from the EAWS
data are detailed in Caughley (1977), who noted the key role of the book “Sampling
Techniques” by Cochran (1963). In particular, the “Ratio Estimate” described by
Caughley (1977) is at first glance appropriate for the transect design of the EAWS
(see Eq. 7 and 8 in Appendix A for details). However, a preliminary application of the
method points to a possible reason as to why the approach has not been used. Figure
1 illustrates a problem in relation to applying the method to EAWS counts for the

1 Obituary from the Australian Academy of Science available at https://www.science.org.au/fellowship/
fellows/biographical-memoirs/graeme-james-caughley-1937-1994 .
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Fig. 1 Estimated population size (solid points and solid lines) and associated 95% confidence intervals
either from the Ratio Method (yellow shading) or bootstrapped (grey shading) of glossy ibis (Plegadis
falcinellus) calculated using the Ratio Method

glossy ibis (Plegadis falcinellus) (see Sect. 2.1 for survey details), whereby the 95%
design-based confidence intervals for the estimated population are less than zero in a
high proportion of survey years. This is not surprising, given the variance formula is
a large-sample approximation (noted by Caughley 1977), and the small sample size
(n = 10 bands) (Fig. 1). Applying the Ratio Estimator to bootstrapped counts (now
easily applicable, but not during the early 1980s; see Manly 2007) produces better-
behaved confidence intervals in that negative values are avoided, but the coverage is
poor (too narrow), particularly in yearswith low counts (Fig. 1). These problems repeat
for a substantial proportion of the other species. There is also a need for regularization,
as some of the changes in the estimated population size are biologically implausible,
such as a 50-fold increase in population size between 1989 and 1991 (Fig. 1).

Sampling variation, amplified by the ability of waterbirds to move in response to
variablewetland condition, is one explanation for the high variation in counts, but there
is also a structural design issue that needs addressing. The EAWS sampling design
essentially involves two strata (“wetland” and “non-wetland”) (see Sect. 2.1), but with
the important difference from the usual approach to stratified sampling being that the
non-wetland stratum is not sampled. There are arguably good logistical reasons for
this, on the basis of the vastness of the non-wetland stratum and expected sparseness
of the counts, and the sampling design would seem appropriate for species that are
strongly tied to wetlands, such as fish-eaters (e.g. the Australian pelican Pelecanus
conspicillatus), or aquatic herbivores (e.g. the black swan Cygnus atratus). However,
such a sampling design creates unique challenges for the estimation of abundance
for the many waterbird species that are not obligate users of the wetland stratum (as
definedby theEAWS). For example, straw-necked ibis (Threskiornis spinicollis) spend
considerable periods of time away from wetlands foraging on terrestrial prey, though
predominantly use wetlands to breed (typically in colonies), while grey teal (Anas
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gracilis) are noted for their use of shallowephemeralwetlands (Roshier 2009).Grazing
species of waterfowl such as wood ducks (Chenonetta jubata) are increasingly using
small farm dams as breeding and roosting habitat (Kingsford 1992) that do not meet
the minimum one hectare threshold to be considered as part of the wetland stratum.
Clearly, methods for estimating the total abundance of these more problematic species
need to also model their choice of habitat, and in the current context, how this relates
to surveyed and non-surveyed strata. This is somewhat analogous to the “temporary
availability” issue within a survey plot as modelled by Chandler et al. (2011), who
also use the term “superpopulation” (after Kendall et al. 1997) to describe the total
number of individuals that could possibly be present on the plot surveyed.

The EAWS is an “observational experiment”, subject to variation and trend in rain-
fall, the most important driver of waterbird dynamics and movements through the
provision of wetlands (creation and expansion, filling and drying) and ultimately food
resources (Crome 1986, 1988). Rainfall needs to be accounted for, such that we can
estimate population growth rates under specified (e.g. average) conditions (recognis-
ing the uncertainty that a warming climate may bring), rather than marginalised over
the conditions during the study period. This enables inferences on whether species
are undergoing population decline driven by underlying negative growth rates. This is
particularly pertinent in the Australian context where the high inter-annual variability
of rainfall (Morton et al. 2011) makes it unlikely that starting and finishing conditions
over the survey period will be equivalent. Indeed, the early counts within the East Aus-
tralianWaterbird Survey were notably high (see Sect. 3 and Supplementary Material),
and this has been postulated to result from the preceding period (1970s) being notably
wet, leading to increases in both wetland areas in inland Australia (e.g. Roshier et al.
2001), and waterbird populations.

In this paper we analyse the EAWS data as was originally intended: to make infer-
ence on trends in abundance of thewaterbird superpopulations that the survey transects
sample. Our aim is to develop a method that is generic enough to be applied to those
species with sufficient non-zero yearly observations. This requires a model-based
approach (see Borchers et al. 2002) that accounts for drivers and sources of variation
in: (1) The underlying “state” of the population including demographic processes;
and (2) The observation (counting) process and the survey design (spatial sampling
process). Results of the analyses are considered in light of published information on
population trends of several species, both those using the data in the EAWS (Kingsford
et al. 2017) and independent sources (e.g. Australian white ibis Threskiornis molucca:
Martin et al. 2010; Smith et al. 2013).

2 Methods

2.1 Data sources: the East AustralianWaterbird Survey

Background: The East Australian Waterbird Survey (EAWS) began in 1983 (Braith-
waite et al. 1986), and has continued annually since (Kingsford and Porter 2009;
Kingsford et al. 2017). An early aim of the EAWS was to gather information on
the distribution and abundance of waterfowl to better inform controls on harvesting
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Fig. 2 Locations (blue dots) of surveyed wetlands within bands surveyed by the East Australian Waterbird
Survey, with the extent of the Lake Eyre Basin (pink shading) and Murray-Darling Basin (yellow shading)
shown

(“duck hunting”), which at the time was increasing rapidly. The ultimate objective
had been envisaged as, “the provision of data enabling the measurement of the relative
effects of weather and hunting on waterfowl population and the estimate of optimal
yields and appropriate levels of hunting pressure.”(Braithwaite et al. 1985). Since then,
concerns regarding hunting pressure have somewhat abated following restrictions on
recreational duck hunting (particularly in New South Wales), and the EAWS counts
have been increasingly used as environmental indicators of wetland health, within a
broader debate regarding water use (e.g. Kingsford 1999; Kingsford et al. 2017). We
analysed the first 36 years of survey data, 1983–2018, accessed from the publicly
available National Waterbird Survey Database (https://aws.ecosystem.unsw.edu.au/)
(Kingsford et al. 2020).
Sampling design: The sampling design is described in detail by Braithwaite et al.
(1986). The survey design involves ten survey bands, each 30 km wide, spaced at
intervals of 2◦ latitude from 20◦30′S to 38◦30′S, starting from 136◦E to the eastern
coastline of Australia (Fig. 2). Within each survey band, wetlands and waterways
> 1 hectare were identified using 1 : 250, 0000 topographic maps, for which the
underlying aerial photography was dated between 1944 and 1980 (Braithwaite et al.
1986). Only this wetland stratum within bands is surveyed, which contains c. 11%
of wetlands within a c. 2.7 × 106 km2 survey region of eastern Australia. Counting
is undertaken from a fixed-wing (overhead) aircraft flown at a height of 30–46 m
and a speed of 167–204 km hr−1 (Kingsford and Porter 2009). The counting method
depends on the nature of each wetland, with transect methods used for sub-sampling
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within extensive wetlands (Braithwaite et al. 1986). Not all waterbirds have visual
characteristics and behaviours that allow reliable identification to species from the air.
We acknowledge there are methods that can account for systematic variation in the
counted population, but addressing this is not central to our arguments. Furthermore,
the data are not readily available in disaggregated (i.e. within wetland) form.
Species selection: More than 50 waterbird species have been recorded during the
EAWS.We restricted the data set to 45 individual species for which at least two-thirds
of the yearly total counts were non-zero. Species that were pooled together within the
dataset (e.g. “Small Waders”), due to species discrimination being difficult from the
air, were also excluded from the analysis. For reporting purposes, species were classi-
fied into the following functional groups: “Ducks”, “Gulls and Terns”, “Herbivores”,
“LargeWaders”, “Pelicans, Darters and Cormorants”, and “SmallWaders” with group
membership detailed in Table 2, Appendix B.
Covariate selection: Rates of increase of game species of waterbirds in eastern Aus-
tralia have been shown to be significantly related to changes in antecedent rainfall
(Briggs and Holmes 1988). We used the deviation from average rainfall over the
antecedent 12-month period (October-September) as a covariate to model the rate of
population increase with yearly time-steps, and the deviation from the average rain-
fall over the antecedent 6-month period (April–September) to model habitat selection
with respect to the wetland stratum. In doing so, we sought to illustrate the use of
covariates that were broadly applicable to the 45 species involved, without engaging
in species-level optimisation. It would be possible to tailor covariates for particular
species based on their predominant geographic distribution and critical life history
needs, but that is beyond the scope of this analysis, given such a large number of
species. Antecedent rainfall data were calculated from 5 km rainfall grids (Bureau
of Meteorology: http://www.bom.gov.au/climate/maps/rainfall) for areas of the Aus-
tralian mainland bounded to the west by 134◦0′E and to the north by 18◦0′S using the
period 1969–2018 (50 years) as a baseline. The rainfall data features runs of above
and below average conditions in response to La Niña and El Niño conditions (see Fig.
1 within Supplementary Material). Prior to the waterbird surveys starting, the 1970s
featured 7 consecutive years of above average conditions (including the 1974 floods),
whilst the 2000s featured 7 consecutive years of below average conditions (“The Mil-
lennium Drought”, amongst the most severe on record). We return to the impact of
different choices of baseline on the results in Sect. 4.

2.2 Model detail

Considering each species as a separate analysis, let:

Nt = the size of the superpopulation that is sampled by the survey in year t ,
nt = the number of individuals counted on all bands in year t (we return to this in
Sect. 4),
φt = the proportion of the superpopulation within the surveyed bands in year t
(following the nomenclature of, Chandler et al. 2011),
rt = the exponential rate of superpopulation increase in year t ,
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x1t = deviation of antecedent 12-month rainfall for eastern Australia in year t from
the mean over the period 1969–2018.
x2t = deviation of antecedent 6-month rainfall for eastern Australia in year t from
the mean over the period 1969–2018.

State model: The unknown (latent) superpopulation Nt , grows exponentially with
log-normal process noise. The exponential rate of increase in year t is linearly related
to the anomaly in antecedent rainfall in the current year (Eq. 1), where r0 can be
interpreted as the rate of increase of the population under average rainfall conditions
(i.e. x1t = 0). For a previous example of this approach to rescaling the covariate
see Hobbs and Hooten (2015). Process noise (W ) around population growth is log-
normally distributed (as rt is already on a logarithmic scale). That is:

log(Nt ) = log(Nt−1) + rt , where

rt = r0 + β1x1t + W , and

W ∼ N (0, σ 2
W ). (1)

We did not fit a growth model that includes carrying capacity (e.g. a Ricker type), as in
such a variable environment it is hard to justify a constant carrying capacity (McLeod
1997). We note that there are approaches that accommodate time-varying carrying
capacity (e.g. Hone et al. 2007) and Gompertz-style density-dependent population
growth. These are not explored here.
Sampling model: The proportion of the superpopulation on surveyed wetlands within
bands (φt ) is specified by a prior for population coverage (πc) based on the sampling
fraction, combined with a linear effect of rainfall anomaly in the antecedent 6 months,
and a random effect (τ ) for year, with the effects modelled on a logit scale:

logit(φt ) = logit(πc) + β2x2t + τ, where

πc ∼ Beta(a, b), and

τ ∼ N (0, σ 2
τ ). (2)

Observation model: Total counts of waterbirds on surveyed wetlands within bands are
a proportion (φt ) of the superpopulation, with log-normal observation error:

log(nt ) = log(φt Nt ) + V , where

V ∼ N (0, σ 2
V ) (3)

Zero counts were replaced with a count of one, affecting 14 of the 45 species, typically
in a minor way. For 5 species (gull-billed ternGelochelidon macrotarsa, black-necked
stork Ephippiorhynchus asiaticus, musk duck Biziura lobata, pied cormorant Pha-
lacrocorax varius, purple swamphen Porphyrio porphyrio) this substitution was only
needed for a single year (median non-zero counts 260, 9, 30, 1149, 163 respectively).
For three species (chestnut teal Anas castanea, magpie goose (Anseranas semipal-
mata), plumed whistling duck Dendrocygna eytoni) the substitution was made in
2 years (median non-zero count 229, 2762, 1033). For two species (banded stilt
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Cladorhynchus leucocephalus, great crested grebe Podiceps cristatus) it was 4 years
(median non-zero counts 955 and 31 respectively). For 1 species (dusky moorhen
Gallinula tenebrosa) it was 8 years (median non-zero counts 20), and for 2 species
(Cape Barren goose (Cereopsis novaehollandiae), rajah shelduck (Radjah radjah)) is
was 9 years (median non-zero counts 74 and 22). In the case of the banded lapwing
(Vanellus tricolour) there were zero counts on 11 years (median non-zero count 17).
Given the low percentage of zero counts, and the typical count being an order of mag-
nitude greater than the substitution value, we were confident of not having introduced
significant bias.

Finally, implicit in this model formulation (Eq. 3) is that posterior samples of the
superpopulation ̂Nt can be estimated using the derived quantity:

̂Nt = nt
̂φt

. (4)

This is essentially a model-based implementation of the Ratio Method (Caughley
1977), where the sampling fraction is treated as a parameter coming from a distribution
(c.f. a fixed scalar) within an observation model (see Borchers et al. 2002, p.44). Also
implicit in this estimator is that the probability of detection within a surveyed wetland
is certain (i.e. p = 1). This is revisited in Sect. 4.

2.3 Model priors

The priors chosen for model parameters along with their rationale are given in Table
1. For priors on variances, following Gelman (2006) we used a uniform prior on the
scale of the standard deviation. The truncated normal prior for r0 (rate of increase
under average antecedent rainfall) may initially appear highly informative, but we
note it provides considerable support well beyond the range (– 0.18 to 0.29 year−1)
of empirical observation of long-term rates of increase collated by Saether and Engen
(2002).

2.4 Model fitting

Models were fitted separately for each species using the “rjags” library (Plummer et al.
2016) for the software R (R Core Team 2018). To account for possible effects of prior
conditions on the starting population size, model runs were all started from 1973 (a
10-year lead-in). Each model run consisted of 3 Monte Carlo Markov chains, with
a posterior of 100,000 samples drawn following a burn-in period of 20,000 samples
and an adaptive phase of 1000 samples. Convergence of chains was assessed using the
convergence diagnostic of Gelman and Rubin (1992) that calculates potential scale
reduction factors.

The full posterior to be sampled is:

[Nt , β1, β2, φt , r0, πc, σ
2
τ , σ 2

W , σ 2
V |nt , Nt−1, x1t , x2t , a, b]

∝ [nt |Nt , φt , σ
2
V ]
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× [Nt |Nt−1, rt ] × [rt |r0, β1, x1t , σ
2
W ]

× [φt |πc, β2, x2t , σ
2
τ ] × [πc|a, b]

× [r0][β1][β2][σ 2
V ][σ 2

W ][σ 2
τ ] (5)

Posterior distributions for parameters were summarized by themean (e.g. r̄0) and cred-
ibility intervals (C.I.). For posterior plots of the coefficients β1, β2 and r0 we present
90% credibility intervals, and hence a credibility interval excluding zero implies c.
> 95% belief the parameter differs from zero (assuming symmetric posterior distri-
butions).

2.5 Model evaluation

We evaluated the model within the context of its purpose to estimate the population
growth rate under average conditions (r0). To do this we compared the width of the
credibility intervals around r0 for the full model (Eq. 5) with those from a reduced
model that had neither a model-based antecedent rainfall effect, nor yearly random
effect for the proportion of the superpopulation available to be counted, while retaining
the effect of rainfall on rate of increase (Eq. 6). Given the importance of rainfall to
wetland availability, comparisons with a model without rainfall-driven demographics
would not be useful.

[Nt , β1, φt , r0, πc, σ
2
W , σ 2

V |nt , Nt−1, x1t , a, b] ∝ [nt |Nt , φt , σ
2
V ]

× [Nt |Nt−1,rt ] × [rt |r0,β1,x1t ,σ
2
W ]

× [φt |πc] × [πc|a, b]
× [r0][β1][σ 2

V ][σ 2
W ] (6)

As β1 and β2 are both functions of measures of antecedent rainfall that are likely
correlated, it could be questioned whether β1 and β2 are identifiable. They are. Briefly,
a year-on-year change in population when antecedent conditions are the same will be
ascribed to rt (and hence informing β1 as in Eq. 1), as the proportion available to be
counted will be modelled as remaining the same (as per Eq. 2), and vice versa. In
addition, the correlation between β1 and β2 is surprisingly low (r = 0.46, see Fig. 1
and Fig. 2 in Supplementary Material). We further checked for the identifiability of
β1 and β2 by examining joint posterior plots for the presence of ridges.

3 Results

Graphical summaries of all effects for the 45 species and plots of inferred population
trajectories for a limited number of species are presented in Figs. 3, 4, 5, 6, 7, 8, 9,
10. Full summary details of fitted models for all species, including 95% C.I.s for all
parameters, plots of counts, inferred proportions on the surveyed stratum, and inferred
population trajectories, are contained in the Supplementary Materials (Figs. 3–47).
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Fig. 3 Estimated coefficient (β2) for the effect of antecedent 6-month rainfall anomaly from the 50-year
mean on the proportion of waterbird populations that were on the wetland stratum within bands sampled
by the East Australian Waterbird Surveys. Intervals are 90% credibility intervals

3.1 Model evaluation

For 44 of the 45 species assessed, adequate convergence (Gelman&Rubin’s R < 1.1)
was reached for the key parameters of interest (r0, β1 and β2), the exception being
the white-faced heron (Egretta novaehollandiae). Joint posterior plots confirmed that
β1 and β2 were uniquely identifiable for all species (see Supplementary Material Fig.
48), and that the prior values for r0 were strongly informed by the data (see Fig. 49
in Supplementary Material). The full model performed better in estimating r0 for 35
of the 45 species assessed, with 95% credibility intervals reduced on average by 25%
(range [−14%, 68%]), compared with the model without the sampling model.
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3.2 Proportion of superpopulation on surveyed wetlands

Effect of rainfall: The effect of rainfall on the proportion of waterbirds on surveyed
wetlands ranged from strongly negative (e.g. freckled duck Stictonetta naevosa, pink-
eared duckMalacorhynchus membranaceus) to strongly positive (e.g. gull-billed tern)
(Fig. 3). At the functional group level, ducks tended to have strongly negative values of
β2, providing model-based evidence for their dispersal across the landscape (beyond
the sampled wetland stratum) in response to recent rain, as did the pelicans, darters
and cormorants group (Fig. 3). Large waders exhibited a mixed response, with some
of the colonial nesting species (e.g. ibis and spoonbill species) showing large positive
effects of rainfall on the proportion of the superpopulation onwetlandswithin surveyed
bands, though others (e.g. glossy ibis) having a strong negative response (Fig. 3).
Unexplained variation: The standard deviation (στ ) for the random effect (τ ) in Eq. 2
can be considered as a proxy for the unexplained year-to-year variation in the propor-
tion of the superpopulation present on surveyed wetlands. This varied considerably,
generally being lowest for the piscivores (e.g. Pelicans, darters and cormorants group)
and some of the aquatic herbivores (e.g. black swan), followed by large waders, ducks
and small waders (Fig. 4). Two species with high unexplained variation—the banded
lapwing and gull-billed tern—forage extensively in dryland environments outside of
the surveyed stratum (e.g.Marchant andHiggins 1990, 1993). Species of conservation
interest that have a reasonably high unexplained variance include the glossy ibis and
freckled duck (Fig. 4).
Overall effect: The estimated year-to-year variation in φ is a result of the combined
effects of the antecedent rainfall term and the yearly random effect. For some species,
such as the black swan, both these effects are small and variation inφ fromyear-to-year
is correspondingly small (Fig. 5a). For the glossy ibis, the combination of a strong
effect of rainfall-driven absence from the surveyed stratum and unexplained variation
leads to moderately high year-to-year variation in φ (Fig. 5b). Finally, for the banded
stilt, despite there being no clear effect of rainfall on φ, the estimated year-to-year
variation in φ is very large due to unexplained variation, including runs of low years
(Fig. 5c). We return to this in Sect. 4.

3.3 Rates of increase

Rainfall response: The effect of antecedent rainfall on the rate of population increase
was estimated to be positive with strong belief (i.e. P(β1 > 0) > 0.95) for about half
the species examined. Of the remaining species, all but two had a positive estimate for
β1, though with lesser belief of a positive effect (Fig. 6). The estimated effect sizes are
non-trivial. For example, the La Niña conditions of 2010 and 2011 delivered rainfall
c. 200 mm above average across the survey region for the October–September period.
For a value of β1 = 0.3 (the typical response for about one third of the species), this
equates to an increase in r of c. 0.6 yr−1 compared with average conditions (r0). In
linear terms, this corresponds to a finite growth rate of λ � 2 yr−1. The effects of dry
conditions are of similar magnitude though in the other direction. For example, the
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Fig. 4 Estimated standard deviation (στ ) for the N (0, στ ) additive random effect for the proportion (on a
logit scale) of the total waterbird population that were on the wetland stratum within bands sampled by the
East Australian Waterbird Surveys. Intervals are 95% credibility intervals

drought conditions of 2018, with a negative anomaly of c. 120 mm compared to the
long-term mean, equates to a finite growth rate of λ � 0.7 yr−1 for β1 = 0.3.
Estimates under average rainfall: Under average antecedent rainfall conditions, the
rates of increase were negative for most of the species assessed, though for no species
was the belief in an ongoing decline (i.e. r0 < 0) greater than 95% (Fig. 7). That said,
there were several species for which the estimated rate of increase was substantially
negative though imprecise, including the freckled duck, Australasian shoveler (Anas
rhynchotis),whiskered tern (Chlidonias hybrida), pink-earedduck andglossy ibis (Fig.
7). The species with the strongest belief of decline under average conditions was the
black-winged stilt (Himantopus himantopus) (r̄0 = −0.06 year−1, P(r0 < 0) = 0.92)
followed by the Australasian shoveler (r̄0 = −0.09 yr−1, P(r0 < 0) = 0.90). The
estimates of r0 for ducks tended to be at the lower end of the scale (Fig. 7). For
some functional groups, such as the piscivorous pelicans, darters and cormorants, the
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(A)

(B)

(C)

Fig. 5 Estimated proportion (φ̂) of the waterbird superpopulation on the wetland stratum within bands
sampled by the East AustralianWaterbird Survey for a black swan (Cygnus atratus), b glossy ibis (Plegadis
falcinellus) and c banded stilt (Cladorhynchus leucocephalus). Note the scale of the y-axes differs between
plots

inferred population trajectories suggest fluctuating though stable populations (see Fig.
7, 8 and Supplementary Material). Finally, there was a single species, the Cape Barren
goose (Cereopsis novaehollandiae), for which there was strong belief in an increasing
population trend under average rainfall conditions (r̄0 = 0.14 yr−1, P(r0 > 0) =
0.97).

4 Discussion

We have presented a new model-based approach to making inference on population
size and trends for 45 waterbird species commonly observed by the EAWS. For most
species, the model estimates substantial effects of antecedent rainfall on population
growth rate and/or the proportion of the population available to be counted onwetlands
contained within survey transects, with random effects additionally used to account
for sampling variation. A striking result across the 45 species assessed was the general
lack of strong belief in either a decreasing or increasing long-term population trend.
This result is somewhat at odds with previous publications that have inferred major
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Fig. 6 Estimated coefficient (β1) for the effect of antecedent 12-month rainfall anomaly from the 50-year
mean on the rate of increase of waterbird populations sampled by the East Australian Waterbird Surveys.
Intervals are 90% credibility intervals

declines in waterbird species populations in eastern Australia using either all the
EAWS data (Kingsford and Porter 2009), or the Murray-Darling Basin subset of the
data (e.g. Kingsford et al. 2017; Bino et al. 2020). We explore reasons for these
differing conclusions after first discussing some aspects of our modelling approach
and potential improvements in terms of additional covariates andmodel specifications.
We then discuss some of the design issues inherent in the EAWS, before concluding
with fruitful lines of future inquiry.

4.1 Model specification

Our decision to ignore band-to-band variation invites criticism as wasting informa-
tion. We have taken the view that these data are more likely to mislead than inform,
typically by underestimating variation when counts are sparse. The greater the spatial
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Fig. 7 Estimated median exponential rate of increase (r0) for waterbird populations sampled by the East
AustralianWaterbird Surveys subject to average antecedent rainfall conditions (baseline 1969–2018). Inter-
vals are 90% credibility intervals

aggregation, the higher the chances that yearly estimates of band-to-band variationwill
be biased downward: the information such variation provides is not currently useful.
For species with sparse counts, a higher sampling fraction (which is logistically chal-
lenging) would be needed to reduce bias, but in the current context will not alleviate
problems arising from waterbirds using non-surveyed strata at the time of survey or
moving outside the survey region. Developing methods for using band-to-band varia-
tion to help inform the uncertainty around the proportion of waterbirds available to be
counted would appear a useful avenue for further research. In the meantime we have
focussed on exploring how the proportion of the population that was not available to be
counted can be estimated. Although we have presented one approach, we note that we
have not explicitly accounted for the inter-annual variability in extent and productivity
of wetlands across the whole of Australia and southern Papua New Guinea.
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Fig. 8 For the Australian pelican (Pelecanus conspicillatus), a inferred median superpopulation size (solid
line) with 95% credibility intervals (grey shading) estimated from b summed counts on wetlands surveyed
within the East Australian Waterbird surveys (blue bars)

4.2 On explaining variation

We have taken a one-model-fits-all approach (i.e. with the same structure and covari-
ates) for the 45 waterbird species considered here. Even within this simple model
structure, it is illuminating how species varied in their utilisation of the surveyed
wetland stratum. This finding agrees with Roshier et al. (2002) who found changes
in abundance of most functional groups of waterbirds in north-western New South
Wales changed in response to changes in wetland distribution, and that some groups
responded immediately to wetland distribution and area flooded (e.g. dabbling ducks)
whereas others responded to sequences of wetting and drying, both within the focal
region and neighbouring river basins. Models tailored for individual species would
consider different covariates (possibly including specific threats and pressures), and
different spatial scales. This is an area for future research.

Our model does not currently distinguish between uncounted individuals being
outside the surveyed stratum though within the survey area, and those outside the
survey area altogether. The high unexplained variances for the radjah shelduck,magpie
goose and plumed whistling duck are likely caused by the latter, as their typical range
straddles the northern boundary of EAWS survey area, with greater movement into the
survey area on occasion in response to seasonal conditions. Likewise, recent studies
suggest that the entire population of banded stilt can move into and out of the survey
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region (Pedler et al. 2014, 2018), which explains the high year-to-year variation in
φ, including very low (and sometimes zero) counts in some years (particularly during
the Millennium Drought: see Fig. 5c and Fig. 37 in Supplementary Material).

4.3 On inferring trend

Our approach for analysing trend accounts for serial dependence in the counts through
the population being sampled, and the effect of time-varying rainfall covariates on
population demographics and movements. Rainfall will not necessarily be stationary
over the period of the observational experiment. Indeed, our results for a number of
species confirm that the above average rainfall during the 1970s could well explain
the exceptionally high counts recorded during the early years of the EAWS. The
grey teal is one such example, whereby the estimated superpopulation size in the
1970s is higher than at any other time period (Fig. 9). The structure of our model
enables estimation of the rate of population increase under average conditions. This
is an improvement on simply estimating population trend effectively marginalised
over the environmental conditions experienced during the observation period. The
resulting estimate, however, is influenced by the time-window over which the average
is calculated. The baseline period we have presented here (1969–2018) includes the
run of above average rainfall years in the 1970s. If, for example, only the EAWS survey
years are included (1983–2018) to calculate baseline conditions, the deviations below
the estimated mean are less, and the inferred rate of increase under average conditions
(r0) is lower. An exploration of what the future average rainfall may be is beyond the
scope of this work.

An early analysis of trends in the EAWS for a selection of species2 byKingsford and
Porter (2009) ignored serial dependence in counts when estimating exponential rates
of increase from log-linear regression, resulting in the precision of estimates being
overestimated (with increased risk of Type I errors). This problem is well known
(Humbert et al. 2009), with better methods readily available (e.g. Holmes et al. 2012),
as has been previously pointed out when analysing East Australian Waterbird Survey
counts (Colloff et al. 2015). A subsequent analysis of Kingsford et al. (2017) using the
EAWS data to compare rates of increase between Lake Eyre Basin and the Murray-
Darling Basin again ignored such serial dependence in counts; both within log-linear
regression, and additionally in linear models comparing mean counts between the first
and last decades of the EAWS. The risk of not accounting for serial dependence is
that the strength of inference (as typically expressed by p-values in relation to null
hypothesis tests of significance) is overstated.

In our modelling efforts, the effect of accounting for rainfall, observation error, and
serial dependence in the data when making inferences around population trend, has
been to greatly reduce the certainty around what appeared to be compelling declines
in some species. For example, visualising the trajectory of counts for the Australasian

2 Note that data in Fig. 4b of Kingsford and Porter (2009) are incorrectly ascribed to the Australian pelican
when in fact they are for grey teal (data are identical to Fig. 4a, only with the 1984 count adjusted to account
for uncertainty around the survey coverage of the Lake Galilee count), and Fig. 4c actually depicts data for
the Australian pelican (not pink-eared duck as stated). The inference on rates of increase for pelican and
pink-eared duck populations (p. 35 in Kingsford and Porter 2009) are similarly affected.
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Fig. 9 For the grey teal (Anas gracilis), a inferred median superpopulation size (solid line) with 95%
credibility intervals (grey shading). Note the logarithmic (base 10) scale for the population estimates. b
Summed counts on wetlands surveyed within the East Australian Waterbird surveys (blue bars). Note that
the first survey counts start from 1983

shoveler, and inferred superpopulation size (Fig. 10), would leave little doubt in most
minds that the population has decreased “significantly”. Indeed, comparing the poste-
rior distribution for the initial and final inferred population size supports this (Fig. 10b
and Fig. 10c). Our model however, after correcting for rainfall effects is more reserved
as to whether there is a long-term downtrend underway, with P(r0 < 0)=0.90. It
could be reasonably argued from a management perspective that a 90% belief in a
long-term decline provides strong grounds for taking action to reverse the trend (e.g.
Field et al. 2004). The Australian white ibis is another species that appears to have
undergone a dramatic decline based on visually inspecting the counts (see Fig. 7 and
Fig. 24 in Supplementary Material), yet the 90% credibility intervals still contain zero
(P(r0 < 0) = 0.88). In this case, however, any concern that this is a true decline is
tempered by the observation that the ecology of this species has shifted from natural
wetlands towards urban habitat over the period of this study (Martin et al. 2010; Smith
et al. 2013). These urban habitats are not part of the surveyed stratum.

Regarding the single specieswith strong belief to be increasing in numbers, theCape
Barren goose, this increase is explicable on the basis of the population recovering
following severe declines by the 1930s that resulted from persecution for grazing
crops and fouling pastures, and use as a food source. Under protective measures, the
population began to recover in early 1960s (Parker et al. 1985).

123



22 Environmental and Ecological Statistics (2022) 29:3–31

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

Po
pu

la
tio

n 
es

tim
at

e
(A)

3

4

5

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

Po
pu

la
tio

n 
es

tim
at

e 
 (l

og
10

 s
ca

le
)

(B)

0

5000

10000

15000

20000

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

To
ta

l c
ou

nt

(C)

Fig. 10 For the Australasian shoveler (Anas rhynchotis), a inferred median superpopulation size (solid line)
with 95% credibility intervals (grey shading), and b inferred median superpopulation size (solid line) and
95% credibility intervals (grey shading) on a logarithmic (base 10) scale, and c summed counts on wetlands
surveyed within the East Australian Waterbird surveys (blue bars)

There is a difference between an ongoing, genuine population decline (i.e. negative
population growth rate being driven by an underlying negative rate of increase) and a
population decrease arising from fluctuations in time-varying covariates. The former
will eventually lead to a small and endangered population unless the cause of the
decline can be identified and mitigated (Caughley and Gunn 1996), whereas the latter
may not be of concern. The inference fromour results is that there is no strong belief for
a declining or increasing trend in any of the 45 species modelled, after correcting for
rainfall and if adopting the (arbitrary) 95% credibility interval as “strong evidence”. It
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appears likely that a component of the previously inferred decline in the abundance of
waterbirds over the period of the EAWS is driven by high starting populations arising
from a run of wet years during the 1970s. Note that any effect of changed water
extraction (e.g. for irrigated agriculture) on wetland availability is subsumed within
our estimation of r0. Increasing rates of water extraction for irrigation over the survey
period has been argued (e.g. Kingsford et al. 2017; Bino et al. 2020) to be impacting on
the number of waterbirds utilising the Murray-Darling Basin. A concomitant decline
in the superpopulation would be expected given that the Murray-Darling Basin is a
substantial component of the range for many species. However, our analysis suggests
that such declines in the superpopulation are less certain. Some possible reasons for
this discrepancy include that the analysis of Bino et al. (2020) did not account for the
effect of rainfall in driving fluctuations in waterbird abundance, and that data were
pooled across species within functional groups prior to analysis (thus smoothing over
much of the sampling variation seen at a species level). Alternatively, and despite our
modelling efforts, the high unexplained year-to-year sampling variation is undoubtedly
impacting on the ability of the dataset to be used to detect trends for some species.

4.4 Accuracy of population estimates

Aerial surveys of waterbirds (and most other animal taxa) usually underestimate
population size, as measured from ground counts (e.g. Kingsford 1999) or aerial
photography (e.g. Bayliss and Yeomans 1990). With regard to estimating the total
population, the bias associated with the EAWS counting methods has not been cali-
brated, so we are reluctant to incorporate such a correction for detection probability
(e.g. by putting a prior on p). The expectation, however, would be that the estimates
are underestimates. Aerial counts of waterbirds have also been found to vary by at
least an order of magnitude between different observers and different species (Morton
et al. 1993). Such imprecision may limit the spatial resolution at which these data can
be analysed, though the sums of the counts across all wetlands and bands (as we have
done here) should have considerably better precision. If the accuracy of the population
size is of importance, then future surveys should include a calibration component (e.g.
Morton et al. 1993), such as taking ground counts at a modest number of discrete
wetlands along the aerial survey bands.

Australian pelicans represent one of the better species for assessing how accurate
the population estimates are, because they are large, conspicuous, piscivorous (and
hence an obligate wetland species), relatively slow-moving and typically do not occur
in very large (and possibly mixed) flocks, other than in breeding aggregations (see
below), that makes counting extremely challenging. The population of pelicans in
Australia is thought to number around 300,000–500,000 (Jaench unpubl., quoted by
Reid 2009). The estimate for the population sampled by the EAWS ranges over c.
50,000–250,000 (Fig. 8). There are few independent data to test the accuracy of the
population estimates. InApril 2002, therewere an estimatedminimum80,000 pelicans
nesting in a single colony on Lake Machattie (south-west Queensland), within the
survey region following flooding in the Lake Eyre Basin (Reid 2009). In comparison,
the estimated superpopulation for late 2002 was c. 54,000 (95%C.I. 24,000–121,000).
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4.5 Issues with the design of the EAWS

A feature of the data arising from the EAWS is the very high year-to-year variation
in counts, of which much is caused by sampling variation. Variation in the proportion
of the total population within survey bands could be driven either by rarity, spatial
aggregation (even if species are not rare), and the use by waterbirds of non-surveyed
strata. There are other, largely irreducible sources of variation such as waterbirds being
in transit between wetlands at time of survey, or moving between wetlands during the
period (c. 4weeks) of the survey. This leads to high samplingwithin- and between-year
variation within the surveyed stratum. For some species such as the larger piscivores
(e.g. Australian pelican), and herbivores (e.g. black swan), our analyses suggest that
the current wetland stratification is probably adequate, in that the year-to-year random
effect for the proportion of these populations on the surveyed stratum is small. How-
ever, a substantial proportion of waterbird species spend considerable periods outside
of the surveyed wetland stratum, leading to additional sampling variation (Fig. 4).
Banded stilt, black-tailed native-hen (Tribonyx ventralis) and plumed whistling duck
are good examples, being uncommon in some years, subject to clumping behaviour
and, in the latter two cases, disposed to terrestrial foraging. For such problematic
species, we could simply choose to accept this variation, and continue to gather addi-
tional data and make inferences on trend regardless. Indeed, a common response to
lack of power in statistical studies arising from sampling variation is to increase the
number of samples, and/or in the case of longitudinal monitoring, tomonitor for longer
(Gerrodette 1987). Increasing the number of survey bands within a given year will cer-
tainly help (though would be logistically difficult), but would not solve the problem of
species using non-wetland habitat at the time of survey. For many species, this appears
to generate such high year-to-year variation that no amount of additional years of sur-
veying will improve the statistical power sufficiently to detect trends. Accounting
for sampling variation appears to be a key research need for the statistical power of
analyses to be improved.

A possible alternative solution to the movement in and out of the surveyed stratum
(a “temporary emigration” problem, see Chandler et al. 2011), and one that we have
explored here, is to explicitly model yearly changes in the proportion of the population
that is available to be counted within the observation model. The covariate we have
used for this (antecedent 6-month rainfall), is a proxy measurement of wetland area
and resource availability, and could be improved on. More generally, improvement
necessitates making inferences for the considerable area (c. 89% of wetlands) that is
not surveyed, both in terms of resource availability and waterbird abundance. Rel-
evant environmental layers are increasingly becoming available that can be used to
help model this unobserved component. One useful example would be wetland area
availability, at an appropriate spatial and temporal resolution to fit with the EAWS sur-
vey design. Such covariates may add considerably to our understanding of waterbird
population dynamics at continental scale. Other ancillary data sources of waterbird
abundance such as bird lists could also be of assistance (e.g.Wen et al. 2016). A further
complication arises due to the change in breeding season of many waterbirds, largely
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spring breeding in southern Australia to late summer-autumnal breeding in the north
(see Marchant and Higgins 1990, 1993).

Extra information gained from additional surveys of waterbird populations outside
the current survey coverage (though still within the designatedwetland stratum)will be
most easily captured and incorporated into inference if these areas are surveyed using
the same methods as the EAWS. Band rotation would be one way of achieving this,
without greatly altering the cost of the current surveys. For example, rotating 20% of
bands each yearwouldmean each bandwould be surveyed consecutively for five years,
with all the survey area covered over c. 50 years. To continue with the status quo and
survey the same bands indefinitely would miss the opportunity to reveal what might be
occurring in the remaining 90% of the study area, thus providing ameans of improving
inference. How to estimate waterbird numbers not on the wetland stratum is an open
question. The overall density of waterbirds outside of the current wetland stratum is
expected to be low (despite the numbers involved potentially being high), so extending
the aerial surveying to all these non-wetland areaswill probably be inefficient.An alter-
native approach is to improve on the current model-based estimate of φ. Independent
data on φ could be obtained from habitat use studies, with selection of the existingwet-
land stratum modelled as a function of measurable covariates. Incorporation of such
information into the existingBayesianmodelwould be straightforward, and the animal
tracking technology to collect such data already exists (e.g. Roshier and Asmus 2009).

As would be expected with a sample-based survey approach, there are major wet-
lands not included in the EAWS survey bands. Having large numbers of individuals
not on survey bands is not an issue if this phenomenon is occurring at random, how-
ever this may not be the case for aggregations of waterbird associated with breeding.
These sometimes dense aggregations tend to recur at specific locations. Knowledge
of the locations of such breeding locations has built since the original design of the
EAWS. For example, in the Murray-Darling Basin, several Ramsar wetlands listed
for their importance as waterbird breeding sites are not included, including Narran
Lakes, Gwydir Wetlands, Hattah Lakes and Barmah-Millewa Forest. In the Lake Eyre
Basin, major wetlands in the Georgina, Diamantina and Cooper Creek catchments
are excluded, including all of the Coongie Lakes. In 2001 (a La Niña year), Reid
and Jaensch (2004) estimated there to be c. 4 million waterbirds in Lake Eyre Basin
wetlands that were not part of the EAWS survey bands. Such breeding locations could
qualify as an additional survey stratum if the survey was to be redesigned. Of course,
the large number of species involved makes identifying useful strata (e.g. breeding
sites) that cover off on all species difficult. Alternatively, incorporating band rotation
using the existing survey protocol would be a means to start learning about waterbird
populations more widely in a structured way, without precluding comparisons with
previous surveys.

4.6 Conclusions

Our analysis is the first to use the EAWS data to provide yearly estimates for the total
population of individual waterbird species being sampled; the main purpose for which
it was designed. To do this we developed a model-based framework to better explain
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variation in the observation and state processes using readily available rainfall data.
This has enabled us to make inferences on long-term rates of increase that avoid issues
of (1) serial dependence in the data, (2) sampling variability arising fromwaterbirds not
exclusively being confined to the surveyed stratum, and (3) fluctuations in population
size driven by large fluctuations in resource availability over the course of the study.We
expect that generating better covariates (e.g. annual fine-scalemapping ofwetland area
across Australia and southern PapuaNewGuinea) tomodel waterbird habitat selection
and how this relates to the surveyed stratum can lead to further model improvements,
and hence better inferences from this important dataset.
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Appendices

A Details of Ratio Estimator

Following the formulation of Caughley (1977) though using the nomenclature of
Borchers et al. (2002), let:
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T = the total number of units constituting the area under survey;
J = the number of units selected for survey;
ni = number of animals in the ith unit;
ai = the area of the ith unit;
A = area under survey
Total numbers in a survey area are estimated by the Ratio Estimator as

N̂ = RA (7)

where R = ∑J
i=1 ni/

∑J
i=1 ai , the ratio of the sum of counted animals to the sum of

the area of surveyed units. For sampling without replacement (a necessity for surveys
where animal disturbance arising from the survey method is an issue), a formulation
for the estimate’s variance is:

Var(N̂ ) = T (T − 1)

J (J − 1)

(

J
∑

i=1

n2i + R2
J

∑

i=1

a2i − 2R
J

∑

i=1

niai
)

(8)

B Functional group assignments

Functional group membership is adapted from Kingsford et al. (2017), though with
“Piscivores” split into “Pelicans, Darters and Cormorants” and “Gulls and Terns”,
duskymoorhen (Gallinula tenebrosa) classified as a herbivore, and Cape Barren goose
(Cereopsis novaehollandiae) and radjah shelduck (Radjah radjah) added (Table 2).

Table 2 Assignment of waterbird species analysed in this study to functional groups based on foraging
behaviour

Functional group Common name Scientific name

Ducks Duck, Australian wood Chenonetta jubata

Duck, freckled Stictonetta naevosa

Duck, musk Biziura lobata

Duck, Pacific black Anas superciliosa

Duck, pink-eared Malacorhynchus membranaceus

Grebe, great crested Podiceps cristatus

Hardhead Aythya australis

Shelduck, radjah Radjah radjah

Shoveler, Australasian Anas rhynchotis

Teal, grey Anas gracilis

Teal, chestnut Anas castanea

Gulls and Terns Gull, silver Chroicocephalus novaehollandiae

Tern, Australian gull-billed Gelochelidon macrotarsa

Tern, caspian Hydroprogne caspia

Tern, whiskered Chlidonias hybrida
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Table 2 continued

Functional group Common name Scientific name

Herbivores Coot, Eurasian Fulica atra

Goose, Cape Barren Cereopsis novaehollandiae

Goose, magpie Anseranas semipalmata

Moorhen, dusky Gallinula tenebrosa

Native-hen, black-tailed Tribonyx ventralis

Shelduck, Australian Tadorna tadornoides

Swamphen, purple Porphyrio porphyrio

Swan, black Cygnus atratus

Whistling duck, plumed Dendrocygna eytoni

Large waders Brolga Grus rubicundus

Egret, great eastern Ardea alba

Heron, white-necked Ardea pacifica

Heron, white-faced Egretta novaehollandiae

Ibis, Australian white Threskiornis molucca

Ibis, glossy Plegadis falcinellus

Ibis, straw-necked Threskiornis spinicollis

Spoonbill, royal Platalea regia

Spoonbill, yellow-billed Platalea flavipes

Stork, black-necked Ephippiorhynchus asiaticus

Pelicans, darters and cormorants Cormorant, great Phalacrocorax carbo

Cormorant, little black Phalacrocorax sulcirostris

Cormorant, little pied Microcarbo melanoleucos

Cormorant, pied Phalacrocorax varius

Darter, Australasian Anhinga novaehollandiae

Pelican Pelecanus conspicillatus

Small waders Avocet, red-necked Recurvirostra novaehollandiae

Lapwing, banded Vanellus tricolour

Lapwing, masked Vanellus miles

Stilt, banded Cladorhynchus leucocephalus

Stilt, black-winged Himantopus himantopus
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