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Abstract
Species distribution modelling (SDM) is a family of statistical methods where species
occurrence/density/richness are combinedwith environmental predictors to create pre-
dictive spatial models of species distribution. However, it often turns out that due to
complex multi-level interactions between predictors and the response function, differ-
ent types of models can detect different numbers of important predictors and also vary
in their predictive ability. This is why we decided to explore differences in the pre-
dictive power of two most common methods, such as the Generalised Additive Model
(GAM) and the Random Forest (RF) on the example of the Great SpottedWoodpecker
Dendrocopos major and the Great Grey Shrike Lanius excubitor, as well as on the tax-
onomic and functional species richness. For each of the two bird species’ densities
and for two measurements of biodiversity, two sets of SDMs were generated: One
based on the GAM, and the other on the RF. According to the out-of-bag, the Akaike
Information Criterion (AIC) and an independent evaluation, we demonstrated that the
GAM is the best method for predicting density of the Great Spotted Woodpecker and
taxonomic species richness, whereas the RF has the lowest prediction error for the
density of the Great Grey Shrike and functional species richness. It also becomes
apparent that the GAM is responsive to taxonomic species richness and species with
broad tolerance to environmental factors, i.e. the Great Spotted Woodpecker, while
the RF detects more subtle relationships between density and environmental variables,
rendering it more suitable for functional species richness and species with a narrow
tolerance range to habitats factors, i.e. the Great Grey Shrike. Thus, effective predic-
tive modelling of animal distribution requires considering several different analytical
approaches to produce biologically realistic predictions.
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1 Introduction

Predicting species distributions on the basis of species distribution modelling (SDM),
often referred to as “predictive mapping”, has become a tool which is widely used
not only in macroecological studies, research on niche evolution, interactions and
co-evolution of species, but also in planning conservation areas (Warren et al. 2008;
Esselman and Allan 2011; Drew et al. 2011; Fourcade et al. 2017). So, it comes
as no surprise that the methodological aspect of developing models has been much
discussed in the latest scientific literature (Fourcade et al. 2017). From the analytical
point of view, the SDM is a group of statistical tools based on ecological niches theory,
which describe non-linear relationships between species occurrence/density/richness
and environmental layers in order to build statistical models which reflect processes
that drive species distribution on a large geographical scale (Guisan and Zimmermann
2000; Elith and Leathwick 2009; Franklin 2010). Such models, projected in space
or time, can predict not only species occurrence and density, range shifts under cli-
mate and habitat changes (Hijmans and Graham 2006), but also evaluate biodiversity
surrogates and estimate invasive species distribution (Jimenez-Valverde et al. 2011).
Thus, if the SDM has become a standard tool in macroecological studies (Guisan et al.
2013), it is vital to ensure the uniqueness of the process of machine learning methods
both for species occurrence and other population and community parameters.

In recent years the number and complexity of statistical tools used to predict species
distribution has grown exponentially (Hegel et al. 2010; Lobo et al. 2010). However,
having analysed research results obtained with these tools, one comes to a conclusion
that when varied analytical methods are not included in the SDM predictive process,
the ecological value of results might be limited (Elith and Graham 2009; Elith et al.
2006; Segurado and Araújo 2004; Guisán and Theurillat 2000; Mattsson et al. 2013).
For example, predictive occurrence of the European grayling (Thymallus thymallus
L.) was provided by a number of different predictors coming from different models
(Fukuda et al. 2013).

Therefore, we decided to compare the performance of two methods, i.e. the Gen-
eralised Additive Model (GAM) and the Random Forest (RF) to predict density of
two bird species as well as two measures of bird biodiversity. From a wide spectrum
of SDM methods, the GAM and the RF are considered to be among the most power-
ful machine learning algorithms used to predict species distribution. However, their
effectiveness in projecting different levels of ecological systems, such as density and
species richness, has not been fully confirmed (Araújo and New 2007; Hardy et al.
2011; Heikkinen et al. 2012; Elith et al. 2006; Wisz et al. 2008; Williams et al. 2009;
Lei et al. 2011). Both algorithms can handle a large number of predictors and identify
which of them are important via the out-of-bag procedure for the RF and the Relative
Importance (RI) for the GAM (Breiman 2001; Hastie and Tibshirani 1990; Hastie
et al. 2008). However, the output of both models can vary, because the RF creates a
lot of specific models based on randomly perturbed data (Grimm et al. 2008; Lawler
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et al. 2006; Mutanga et al. 2012; Prasad et al. 2006; Virkkala et al. 2010), whereas
the GAM constructs one “best model” (Breiman 2001, Hastie and Tibshirani 1990;
Hastie et al. 2008). So, both models can detect the influence of the same predictor,
but with a varying power, which in turn may suggest that relationships between pre-
dictors and species distribution may partly reflect a spatial structure of predictors,
especially climate and topography, rather than a real ecological process (Bahn and
Mcgill 2007; Beale et al. 2008; Chapman 2010). Furthermore, in the ecological mod-
elling approach the problem with comparing models with one another increases along
with spatial complexity (Hof et al. 2012; Carrasco et al. 2014; Seppelt and Voinov
2002; Kosicki 2018). When a lot of predictors affect species density and/or species
richness in different ways (positive/negative and/or linear/non-linear), and models’
output is transferred to new areas, more rigorous tests are indispensable. For that rea-
son, an independent test dataset should be used to evaluate the quality of the GAM
and the RF so as to obtain more realistic models (Fourcade 2016). Therefore, the
proposed approach should indicate whether the GAM or the RF can or cannot reveal
environmental drivers underlying species distribution (Petitpierre et al. 2017). Other-
wise speaking, the aim of this study is to test a hypothesis that the choice of machine
learning methods is crucial for ensuring the high quality of SDMs.

Consequently, spatial distribution models of farmland (Great Grey Shrike) and
forest (Great Spotted Woodpecker) breeding bird species’ densities were developed
along with an analysis of spatial distributions of taxonomic (expressed as the num-
ber of bird species) and functional species richness (expressed as species occurrence
linked with the ecosystem’s functioning and environmental components (Hillebrand
and Matthiessen 2009; Cernansky 2017). According to a small spatial scale study, the
Great Grey Shrike prefers large areas of heterogeneous farmland, where arable fields
are interspersed with meadows and small forests (Antczak et al. 2004), while the
Great Spotted Woodpecker favours areas dominated by large areas of all forest types
(Kosiński et al. 2006, 2018). Taxonomic species richness is associated with a habitat’s
arrangement, however, functional species richness is often linked with an interplay
between habitat, topography and environmental conditions (Kosicki and Hromada
2018). By using two different modelling approaches, we determine whether a given
procedure produces variables which are incidentally or indirectly linked to species
distribution on a large spatial scale (Dormann et al. 2012) or whether the selection of
relevant predictors is compatible with the species’ ecology (Petitpierre et al. 2017).
Thus, a pragmatic question arises: What type of models should be used to predict
density and species richness? In other words, this study aims to determine the extent
to which GAM or RF models produce similar spatial predictions.

2 Materials andmethods

2.1 Bird data

Bird density and the number of bird species were derived from the Common Breeding
Birds Monitoring Scheme (Chylarecki and Jawińska 2007). This database is based on
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Fig. 1 Distribution of census grid cells according to the Common Breeding Birds Monitoring Scheme

field data collected in Poland in years 2000–2013 in 970 1 km2 grid cells, which were
randomly chosen out of 312,679 km2 squares covering the whole of Poland (Fig. 1).

In each breeding season each grid cell was surveyed twice: between 10 April
and 15 May, and between 16 May and 30 June. Each survey started between the
dawn and 9 a.m. and lasted about 90 min. Ornithologists-volunteers noted birds
perpendicular to two parallel 1-km transects along an east–west or north–south
axis, and recorded them in three distance categories (<25 m, 25–100 m,>100 m).
During the fourteen-year span each square was inspected on average 6.5 times
(SD � 3.9). As the number of individuals in a given grid cell we used the
highest recorded number of individuals during either of the two inspections
in each season. Then, these values were averaged out for all the years of
study.
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2.2 Environmental data source

For modelling purposes we used various environmental predictors related to topog-
raphy, climatic conditions, land cover, vegetation indices, forest stand structure and
landscape configuration metrics (see details: Appendix A). All these data came from
different GIS databases, and all of them were converted into the GRASS GIS file
format (GRASS Development Team 2015) with the grid size of 1 km2 (corresponding
to bird survey plots) and re-projected to the co-ordinate system EPSG4284 projection
(http://spatialreference.org/ref/epsg/4284/).

2.3 Data processing and analysis

Bird density in grid cells depended on the transect’s length and the distance from
the observer (Krebs 1999). Therefore, the Hayne estimator of bird density was used
according to the equation below (Hayne 1949; Krebs 1999):

�

DH � n

2L

(
1

n

∑ 1

ri

)

where, H � Hayne’s estimator of density, n � number of animals seen, L � length of
transect, ri � sighting distance to each animal i.

The measure of avian biodiversity comprised (1) Bird species richness (BSR),
expressed as the number of bird species noted in a given grid cell, and (2) Functional
richness (FRic), representing the amount of functional space occupied by species in
grid cells. A low value of a component shows a low number of species whose niches
(functional space) do not overlap, while a high value indicates a high number of species
within a given functional space whose niches overlap considerably due to the fact that
particular species can use the same resources in the same way without limiting one
another. Functional diversity was calculated with avian niche traits (Pearman et al.
2014) based on 52 variables that described the niche of each bird species, i.e. food
types (13 variables), behaviour while acquiring food (9 variables), substrate from
which food was taken (9 variables), period of the day when a species foraged actively
(3 variables), and nesting habitats (18 variables). All variables were binomial 0 or 1
(Pearman et al. 2014). The calculationwas performed using FD library for R (Laliberté
et al. 2015).

In order to avoid multicollinearity among particular predictors, the Principal Com-
ponents Analysis (PCA) was employed with the Varimax normalised rotation for two
(climatic and habitat) environmental datasets (Dormann et al. 2012) (Appendix B,
Table S1, S2). We used two separate PCAs for two data types to enhance the interpre-
tation of new loadings. The PCA of climate variables produced two axes (Appendix
B, Table S1) which explained 83.7% of the original variation in climate variables.
Habitat variables produced eleven components (Appendix B, Table S2) and explained
85.4% of the variation.

The first axis (CFIELD-CCFOR) represents a gradient from the core of non-
irrigated arable land to the core of coniferous forest. The second axis (MFIELD-
CCFOR) is related to a gradient from mixed arable fields and the buffer zone of
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non-irrigated arable land to the core of coniferous forest. The third axis (NOVEG-
ETAT) has the highest loadings on areas without vegetation. The fourth axis
(MEAD-CFIELD) corresponds to a gradient frommeadows to the core of non-irrigated
arable land.Thefifth axis (CDFOR-CFIELD) shows agradient from the core of decidu-
ous forest to the core of non-irrigated arable land. The lowvalue of the sixth component
(FRUIT) points to areas with fruit trees, while the low value of the seventh compo-
nent (PEAT) reflects peats. Then, the low value of the eighth component (MARSH)
reflects marshland. The ninth component (CFIELD-BBUSHE) relates to the core of
non-irrigated arable landwith a low value, while the high one shows the core of bushes.
The tenth axis (MFOR-CBFIELD) is a gradient from mixed forest to the core of non-
irrigated arable land. Finally, the low value of the eleventh axis (URB-BCFOR) shows
urban areas, while a high value reflects the buffer zone of coniferous forest.

Furthermore, Pearson correlation coefficients and the Variance Inflation Factor
(VIF) were applied to assess relationships between predictors which came from two
separate PCA analyses, as well as other predictors not included in the PCA, i.e. topog-
raphy measurements, Normalized Difference Vegetation Index (NDVI) and the shape
of patches (Dormann et al. 2012) (Appendix B, Table S3). In the present study the VIF
ranged from 1.1 to 22.7, so following Naimi et al. (2014) predictors with VIF≥ 10
were excluded from the analysis.

2.4 Generalised Additive Models (GAM)

The GAM (Hastie and Tibshirani 1990), (mgcv library in R; Wood 2013; R Develop-
ment Core Team 2017) is an extension of the Generalised Linear Modelling (GLM)
and provides a flexible non-linear relationship between the response variable and the
predictor (Austin and Meyers 1996; Guisan et al. 2002). Response variables include
(1) the Hayne estimator of the Great Grey Shrike, (2) the Hayne estimator of the Great
Spotted Woodpecker, (3) bird species richness, and (4) functional species richness.
Themost parsimoniousmodel was selected with the Akaike information criterionwith
the lowest AIC and consequently the highest Akaike weight (Burnham and Anderson
2002). All possible models using the ‘dredge’ procedure, i.e. 2n where n � number
of variables, were analysed with the MuMIn library in R (Bartoń 2013; Hastie and
Tibshirani 1990).

The probability of including a variable in the best parsimonious model was esti-
mated as the Relative Importance (RI) by summing theAkaikeweights of all candidate
models in which the variable was included (Burnham and Anderson 2002; Reino et al.
2010). Moreover, the Gamma distribution for modelling density was used, while for
species richness we used the Poisson distribution. To allow some complexity in the
functions, while avoiding data over-fitting, the basic dimension was defined as k � 4
(Santana et al. 2012). We used R2, expressed as percentage of the explained variance
which is a quality measure of the model’s fit to the training data (Weisberg 1980).
Finally, as the measure for the best model we applied: (1) evidence ratio (ER), defined
asAkaikeω1/ω2 (BurnhamandAnderson 2002), and (2)minimised generalised cross-
validation (GCV) score which showed measure smoothness. Smaller values of GCV
indicated better models fitting (Wood 2006).
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2.5 Random Forest approach

The RF (Breiman 2001; RandomForest library in R Liaw and Wiener 2002; R Devel-
opment Core Team 2017) was developed in a regression setting, in which—similarly
to the GAM—the Hayne estimator of two species density and two avian biodiversity
measures were treated as the model’s response. This method is a machine learn-
ing technique (Breiman 2001; Elith et al. 2008) linked to classification/regression
trees (CART) and bagging methods (Breinman et al. 1984; Breinman 1996; Breiman
2001). Thus, instead of constructing a single tree (CART), it constructs multiple trees
formed on random samples of cases by bootstrapping technique, i.e. sampling with
replacement, and each split (in each tree) from the random sample of predictors. This
procedure ensures that a 1/3 of the observations is left out in the fitting process and
used to calculate the prediction error, i.e. out-of-bag (OOB). We examined also the
RF model’s performance as Root Mean Square Errors (RMSE) and calculated the
percentage of the explained variance (R2).

The RMSE and R2 measured the model’s performance when predicting population
density and/ormeasurement of species richness in the studied grid cells. Bothmeasures
were estimated on the basis of the training dataset. On the other hand, the OOB
measured the performance of predicted densities for the whole country, and it was
estimated according to the test dataset. The RF procedure also provided (1) a ranking
of predictors’ importance based on specified changes of mean decrease in accuracy
(MSEOOB), i.e. predictors were removed one by one from the model (Berk 2008;
Breiman 2001), thus revealing their adequacy; and (2) partial dependence plots which
showed how each predictor was related to the response variable when other predictors
were held constant (Berk 2008). Then, a selection of variables (Guyon and Elisseeff
2003) was performed with the VSURF library for R (Robin et al. 2010), which made
it possible to identify the smallest number of predictors that offered the best predictive
power for the final model (Kohavi and John 1997). The search function commenced
with all environmental variables (n � 27), and then progressively eliminated the least
promising ones. Finally, a subset of environmental parameters with the lowest RMSE
was selected (Kosicki 2017).

The RF regression required defining three parameters, such as ntree (number of
trees), mtry, and the nodesize. The lowest RMSE was for ntree � 1000, mtry � 1/3 of
variables (default value), and the nodesize � 5 (default value) (Vincenzi et al. 2011).

2.6 Generalised Additive Models vs. Random Forest

In order to compare two different results coming from the twomethods, an independent
dataset was used. Before developing GAM and RF models, 20% of the observations
that had not been included in the modelling procedure were randomly chosen. For
model validation, we used a correlation coefficient between predictive (from the best
GAM and/or RF model) and real species densities and richness measurements (20%
of observations were not included in the model fitting). Thus, the higher the value of
the correlation coefficient, the higher the predictive power of the model.

123



280 Environmental and Ecological Statistics (2020) 27:273–292

Table 1 Comparison of GAM and RF predictive effectiveness

Gatunek/species richness GAM RF

ER GCV R2 r (n � 175) RMSE OOB R2 r

GGS 33.3 1.03 0.23 0.30 0.24 0.44 0.69 0.95

GSW 2.12 0.97 0.55 0.94 0.53 0.36 0.27 0.59

TSR 998 0.93 0.24 0.97 0.77 0.70 0.25 0.53

FRic 16.3 27.0 0.23 0.52 0.56 0.30 0.77 0.97

The better model given in bold
ER evidence ratio, GCV general cross-validation, R2 explained variance by independent variables, r corre-
lation coefficient

2.7 Spatial autocorrelation

Residuals coming from best GAM and RF models were checked for their spatial
autocorrelation by using the Moran’s I statistics (Library: ape for R, Paradis 2016).
The Moran’s index ranged from − 1 (negative spatial autocorrelation) to 1 (positive
spatial autocorrelation), with non-significant values close to zero.

3 Results

3.1 Population size

Themean number of theGreat Grey Shrike (number of birds in each grid cell) was 1.62
individuals/km2 (95% CL 1.54–1.70, n � 970), while the mean Hayne estimator of
density (ĎGGS) was 0.36 individuals/km2 (95% CL 0.29–0.43). On the other hand, the
mean number of the Great Spotted Woodpecker was 0.54 individuals/km2 (95% CL
0.49–0.59, n � 970), while the mean Hayne estimator of its density (ĎGSW) was 1.66
individuals/km2 (95% CL 1.60–1.72). Finally, the mean value of taxonomic species
richness (BSR) was 58.40 (95% CL 57.26–59.54), while functional species richness
(FRic) amounted to 0.12 (95% CL 0.11–0.12).

3.2 Models for the Great Grey Shrike (ĎGGS)

Out of all analysed Generalised Additive Models (GAM), only five gained support
using information-theoretic criteria, showing AIC weights>0 (Appendix A, Table S4,
model GGS2). Themost parsimonious model (Table 1) included 7 environmental vari-
ables with the Relative Importance RI>0 (Appendix A, Table S5, Fig. S1). According
to this model, a predictive map of spatial density distribution was created (Fig. 2a). In
turn, in the Random Forest (RF) approach, the model with selected predictors based
on MSEOOB ≥14.0 explained a higher percentage of variation than the full model
(Appendix A, Table S6). The best, i.e. the selected model (Table 1), included 7 pre-
dictors (Appendix A, Table S5, Fig. S2). Similarly to the most parsimonious model
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for the GAM, a predictive map of density distribution was also developed for the best
RF model (Fig. 2b). According to the model evaluation procedure (Table 1, Figs. 3a,
b, Fig. 4a, b), the RF model had higher predictive power than the GAM.

3.3 Models for the Great SpottedWoodpecker (ĎGSW)

In this casefiveGAMs showedAICweights>0 (AppendixA,Table S4,modelGSW2).
Model selection procedures resulted in 6 predictors with the Relative Importance
RI>0, but only 5 were included in the best-supported model (Appendix A, Table S5,
Fig. S3). On the other hand, the RF model included 8 predictors based on MSEOOB
≥22.0, and itwas better than the fullmodel (AppendixA,Table S6, Fig. S4). Following
the best RF and GAM, two predictive maps for the D̂ GSW were developed (Fig. 2c, d).
However, the model evaluation procedure showed that—contrary to the Great Grey
Shrike—the GAM had higher predictive power for the Great Spotted Woodpecker’s
predictive density than the RF (Table 1, Figs. 3c, d, 4c, d).

3.4 Models for Bird Species Richness (BSR)

Three GAMs gained support in BSR models using information-theoretic criteria with
AICweights>0 (Appendix A, Table S4, model 2BSR). The most parsimonious model
included five predictors, but six variables showed RI>0 (Appendix A, Table S5,
Fig. 5S). In the RF approach, the selected model with 7 predictors based on MSEOOB
≥9.0 had a relatively higher importance than the full model (Appendix A, Table S6).
According to best GAM and RF models, we created predictive maps of spatial BSR
distribution (Fig. 2e, f). Having evaluated the models (Table 1), we reached a con-
clusion that in this case the GAM had higher predictive power than the RF (Table 1,
Figs. 3e, f, 4e, f).

3.5 Models for functional species richness (FRic)

For the second measurement of species richness, i.e. FRic, four GAMs showed AIC
weights>0 (Appendix A, Table S4, model FRic2). The most parsimonious model
included six predictors (Appendix A, Table S5, Fig. S7), and on its basis we created a
predictive map (Fig. 2g). On the other hand, the selection procedure for the RFmethod
showed that the best model included 9 predictors (Appendix A, Table S6, Fig. S8), all
of which had MSEOOB ≥9.0 (Appendix A, Table S5). Similarly to the best GAM, we
developed a predictive map based on the best RF model (Fig. 2h). Here the evaluation
procedure (Table 1, Figs. 3g, h, 4g, h) showed that the RF had higher predictive power
than the GAM.

3.6 Spatial autocorrelation

In all cases the Moran’s I statistics for residuals coming from each model were very
low. We found statistically significant positive autocorrelation for the GAM and the
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RF model of the Great Grey Shrike density (M � 0.021, p � 0.02 and M � 0.011,
p � 0.04, respectively) and bird species richness (M � 0.014, p � 0.04 and M �
0.033, p � 0.03, respectively). Residuals from the Great Spotted Woodpecker models
indicated spatial autocorrelation only for the GAM (M � 0.012, p � 0.05), while for
the RF we found no statistical significance in the Moran’s I statistics (M � 0.009,
p � 0.06). Finally, for the FRIc we found opposite results, i.e. there was no spatial
autocorrelation in the GAM (M� 0.007, p� 0.07), while in the RF the positive spatial
effect was low (M � 0.019, p � 0.03).

4 Discussion

The study supports a hypothesis that the choice of a machine learning modelling tech-
nique may influence predictive accuracy of bird density as well as species richness.
Apart from the fact that in both variants of the models relationships between envi-
ronmental variables and response functions were both linear and non-linear and also
similar, the Random Forest (RF) detected a larger number of important predictors
than the Generalised Additive Model (GAM). Consequently, in each case predictive
maps were qualitatively different. This result corresponds to earlier studies based
on occurrence models, where different predictive models based on machine learning
methods often detected different numbers of important predictors (Pourtaghi et al.
2016). On the one hand, it was proved that the RF approach often had the lowest
prediction error (Prasad et al. 2006; Cutler et al. 2007; Syphard and Franklin 2009;
Vorpahl et al. 2012; Oliveira et al. 2012), but on the other, the effectiveness of the
GAM had also been repeatedly confirmed (Ferguson et al. 2006; Vilchis et al. 2006;
Becker et al. 2010; Mannocci and Catalogna 2014; Mannocci and Laren 2014). Our
results are consistent with both of the above conclusions, because we found that the
GAMwas the best method for the Great SpottedWoodpecker density and bird species
richness, whereas the RF had the highest predictive power for the Great Grey Shrike
and functional species richness. So, we put forth an important question: What drives
the differences between the two kinds of models? At first, we assumed that differences
betweenmodels resulted from inherent spatial autocorrelation of species distributions,
which could be driven in different ways in different models (Lichstein et al. 2002).
However, the results from the Moran’s I statistics obtained in this study (in all cases)
were low (range − 0.040 to 0.021), while α-probabilities, i.e. the probability of the
study to reject the null hypothesis, were relatively high, leading to a conclusion that
spatial autocorrelation did not affect particular models. Thus, we conjectured that
differences between models’ predictive power resulted from different ecology of the
studied species, which could be described by various methods of analysis. Here the
results confirm such a speculation, because in this study the effectiveness of a given
method depends on the number of predictors (environmental components) that affect
density and/or species richness. The highest density of the Great Spotted Woodpecker
was observed in the core of all forest types (deciduous, mixed and coniferous), while
other habitat components, e.g. aspect, ndvi-jun, altitude, temperature, played only a
marginal role. Correspondingly, taxonomic bird species richness was associated with
the ecotone between open and forest habitats, while other environmental elements, e.g.
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ndvi-jun, precipitation, shape of forest, only slightly improved the models. However,
the Great Grey Shrike and functional species richness responded positively to more
detailed elements of the environment. In both cases the most important components
included the complicated shape of open habitats, the topographical gradient and the
level of green vegetation. Both the density of the Great Grey Shrike and FRic are asso-
ciated with mixed arable fields, where small forests are interspersed with small arable
fields and meadows with a high level of green vegetation at the beginning of spring
as well as a high roughness index. Additionally, FRic depends also on habitat and
topography configuration metrics, i.e. relationships between the core and the buffer
zone in the preferred habitats. Therefore, we conclude that the GAM is the most suit-
able method for species density and measures of species richness that require habitat
requirements with sharp boundaries in the landscape (specialist species), i.e. the Great
Spotted Woodpecker, and taxonomic species richness (increased efficiency as com-
pared to the RF by 27% and 42%, respectively), while the RF method has the lowest
prediction error for functional species richness and more generalist species, such as
the Great Grey Shrike (increased efficiency as compared to the GAM by 34% and
30%, respectively). Hence, the results of this study confirm earlier suggestions (Oppel
et al. 2012) that different analytical assumptions of models combined with species’
specific ecology do influence the predictive power of machine learning methods.

Both methods are very useful for modelling many kinds of ecological phenomena,
because they do not need assumptions about the distribution of predictors, and they
allow for a mixed use of categorical and numerical variables. They are also capable of
considering nonlinearities between variables (Becker et al. 2010;Hastie andTibshirani
1990; Breiman 2001). Nevertheless, from the biological point of view, the biggest
differences between these methods concern the assessment of predictors’ importance
as well as the development of partial models which are subsequently included in the
final model.

TheGAMproduces one “best”model based on forward or backward selection inde-
pendent variables, where particular predictors are linearised or included in the model
as a polynomial spline (Hastie and Tibshirani 1990). The evaluation of the model and
the estimation of predictors’ importance are based on information-theoretic criterion,
i.e. the AIC and relative importance (RI, Burnham and Anderson 2002). Although this
approach can be criticised (Whittingham et al. 2005; Reino et al. 2010), an analysis of
all possible models (based on a dredge procedure in mgcv library for R) is often used
when there is not enough a priori information to develop a small set of models (Reino
et al. 2010) or it can be useful in exploratory analyses or even when ecologists have
vague ideas how a functional form relates explanatory variables to response variables
(Pourtaghi et al. 2016). However, in this case the GAM underestimates densities of
generalist species and functional species richness by underrating structures related to
landscape configuration, such as topography, vegetation, geometry of patches, just as it
had been previously noted for specialist species (Kosicki 2017). Therefore, a plausible
conclusion is that it would be a better solution in the presented predictive perspective
to average models with weights>0 rather than choose one most parsimonious models
(Grenouillet et al. 2010). When models are averaged, predictors, such as elevation,
ndvi-may and/or precipitation, detect in the second and third candidate models partial
influence of the response function, which is then indirectly reflected in the predictive
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map. However, the process of averaging many GAMs comes at a cost, because when
there is a plethora of predictors an average model is usually difficult to interpret.

On the other hand, instead of the “best model” the RF constructs multiple models,
formed on random samples based on the bootstrap technique (sampling with replace-
ment) (Breiman 2001). The assessment of predictive importance is not based on the
information-theoretic criterion, but on specified changes mean decrease (MSEOOB) in
accuracy where one predictor is removed from the model (Berk 2008; Breiman 2001),
a procedure which results in a ranking of predictors. Then, by using a backward elimi-
nation search function implemented in the VSURF library for R (Ismail and Mutanga
2010;Mutanga et al. 2012), it is possible to identify theminimumnumber of predictors
that offer the best predictive accuracy. Such an approach helps simplify the modelling
framework without the risk of reducing R2 (Guyon and Elisseeff 2003; Kohavi and
John 1997). Thanks to this approach, we found only 8 environmental parameters out
of total 48 predictors for the Great Grey Shrike and 11 for FRic, still achieving the
best overall predictive accuracy. However, for the Great Spotted Woodpecker and tax-
onomic species richness, 9 and 6 independent variables, respectively, were taken into
account, and they displayed moderate predictive performance when compared with
the GAM.

It should be noted that we also used an additional biological evaluation of mod-
els. Standard methods, such as the AUC or the TSS (Jimenez-Valverde 2014; Lobo
et al. 2008; Smith 2013) are inadequate, because this type of evaluation can be useful
for occurrence models rather than density/richness models. Besides, the AUC and/or
the TSS fail to show biological significance of models (Fourcade et al. 2014; Sto-
lar and Nielsen 2015). In this study the AIC for the GAM and the OOB for the RF
provide information only about a model’s fit, but not statistics that would indicate
biological reality of the model (Araújo et al. 2005). Therefore, before developing the
models, 20% of the observations that would be left out had been randomly chosen and
treated as an independent dataset. The correlation coefficient between real densities
and densities estimated according to the results from the RF and the GAM procedures
safeguarded this semi-independent assessment. Although this approach is debatable
(James et al. 2013) as evaluation data is only a subset of the training data (Elith
et al. 2006), this subset was randomly selected from 970 grid cells which had been
inspected for 13 years, thus the data can be deemed unbiased. Finally, this simple pro-
cedure intuitively indicates the predictivemodel’s biological ability without going into
complicated algorithms (Howard et al. 2014), such as Monte-Carlo validation, which
is a robust estimation of a model’s performance, but very complicated to interpret
(James et al. 2013).

5 Conclusion

The study shows that the effectiveness of different Species Distribution Modelling
methods depends on the ecology of the studied species. Predominantly, the Gener-
alised Additive Model is responsive to eurybiont (generalists) i.e. species with a broad
tolerance range, whereas the RandomForest detectsmore subtle relationships between
density and environmental variables, making it more suitable for stenobiont (special-
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ists) species with a low tolerance range. Our study clearly indicates that effective
modelling of bird species richness, as well as taxonomic and functional species rich-
ness on a large spatial scale is contingent upon the recognition of habitat preferences on
a small and meso-geographical scale. The findings contribute significantly to applied
ecology by showing that the predictive power of several bird species’ models depends
on an ecological complexity of systems, including a complex interplay between many
environmental components that can only be captured by means of diversified mod-
elling techniques.
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