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Abstract Wildfire behaviors are complex and are of interest to fire managers and
scientists for a variety of reasons. Many of these important behaviors are directly
measured from the cumulative burn area time series of individual wildfires; however,
estimating cumulative burn area time series is challenging due to the magnitude of
measurement errors and missing entries. To resolve this, we introduce two state space
models for reconstructing wildfire burn area using repeated observations from mul-
tiple data sources that include different levels of measurement error and temporal
gaps. The constant growth parameter model uses a few parameters and assumes a
burn area time series that follows a logistic growth curve. The non-constant growth
parameter model uses a time-varying logistic growth curve to produce detailed
estimates of the burn area time series that permit sudden pauses and pulses of
growth. We apply both reconstruction models to burn area data from 13 large wild-
fire incidents to compare the quality of the burn area time series reconstructions
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and computational requirements. The constant growth parameter model reconstructs
burn area time series with minimal computational requirements, but inadequately
fits observed data in most cases. The non-constant growth parameter model better
describes burn area time series, but can also be highly computationally demand-
ing. Sensitivity analyses suggest that in a typical application, the reconstructed
cumulative burn area time series is fairly robust to minor changes in the prior dis-
tributions.

Keywords Data reconciliation - Gibbs sampling - Isotonic regression - Logistic
difference equation - Missing data - State space model - Wildfire growth

1 Introduction

Understanding and quantifying wildfire behaviors is of interest to the fire management
and research communities for numerous reasons. Fire managers are often asked to pre-
dict how large an incident will grow, how long it will continue, or when rapid growth
may threaten public safety or hamper firefighter effectiveness. Fire researchers analyze
how these behaviors are influenced by the environment, monitor long-term impacts,
and assess existing scientific theories. Regardless of the audience, an often-valuable
piece of information is a complete and accurate record of wildfire growth. Fire man-
agers use this information as a training aid, decision-making guide, and prediction tool
(Alexander and Thomas 2003) and it is also used by the research community for a vari-
ety of purposes including the validation and improvement of spread models (Andrews
et al. 2007; Alexander and Thomas 2003; Taylor et al. 2013), estimation of wildfire
emissions (Veraverbeke et al. 2015; Turquety et al. 2007; Mangeon et al. 2015; Lavoué
et al. 2008) and associated health effects (Moeltner et al. 2013), relating meteorology
to extreme growth (Billmire et al. 2014), and identifying correlated wildfire behaviors
(Birch et al. 2014). Important quantities such as final burn area (Turetsky et al. 2004),
area burned per day (Billmire et al. 2014; Birch et al. 2014; Turner et al. 1994) and the
classification of high and low growth days (Finney et al. 2009) are easily calculated
from this kind of information. Records of growth throughout an incident’s lifetime are
relatively rare in comparison to other kinds of information such as size, occurrence
and duration, but are sometimes available from a combination of written and spatially
explicit sources.

Written growth records may come from case studies, historical accounts, admin-
istrative records (Taylor et al. 2013), newspaper reports (Johnston et al. 2006), and
social media services (De Longueville et al. 2009). In the United States, the incident
status summary (ICS 209) details information regarding natural disasters occurring
on federally owned lands and are a rich source of written growth records for wild-
fire incidents. ICS 209 reports provide near-daily updates to agency managers who
make decisions at broad geographic scales regarding the planning, allocation, and
prioritization of resources. Each report contains 47 blocks of information including
incident name, date and time, coordinates, management strategy, fuel types, values-
at-risk, firefighting resources, estimated costs, containment dates, and incident size.
While sometimes possible to construct a complete daily wildfire growth record from
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ICS 209 reports, they are not compiled for every incident and may be based on rough
estimates of burn area.!

Information similar to that contained in written growth records can often be derived
from other spatially explicit growth records, which have become increasingly avail-
able with technological improvements in burn area mapping. Prior to these advances,
spatially explicit growth records had to come from hand-drawn maps based on obser-
vations from ground-level (Petersen 2014; Callister et al. 2016), a highly subjective
and unreliable process. The use of aerial surveys and later Global Positioning Systems
alleviated these limitations somewhat by allowing mappers to quickly and sometimes
more accurately map the burn perimeters (Kasischke et al. 2002; Conese and Bonora
2005). Infrared imaging systems that detect wildfires through darkness and smoke
(Hirsch 1965) dramatically improved the accuracy of aerial imagery and are incorpo-
rated into a variety of sophisticated technologies and products widely used in modern
wildfire perimeter mapping (Allison et al. 2016). Satellite instrumentation was first
used to monitor wildfire activity in the 1970’s (Taylor et al. 2013) and many other
space-based instruments have been launched since then, taking regular samples of burn
area and active fire detections globally (Joyce et al. 2009). Satellite coverage is cur-
rently sufficient to monitor daily fire activity across North America (McNamara et al.
2004), providing a useful spatially explicit growth record when alternative sources are
incomplete (Veraverbeke et al. 2014; Parks 2014) or nonexistent (Zhang et al. 2011).

Observation errors, missing data, and disagreement among sources suggest that no
single data source can be trusted as authoritative and we can often improve data quality
by integrating information across multiple data sources into a unified, but still uncertain
estimate of the growth curve (Magnani and Montesi 2010). We explore the problem
of reconstructing growth curves from incomplete and corrupted data in Sect. 2, where
we present two state space models for reconciling data from multiple data sources
into a coherent growth curve. In Sect. 3, we apply the models to wildfire growth data
to assess the relative fit and computational requirements of both models. Section 4
presents the results of a sensitivity analysis that compares the effects of substituting
priors. Section 5 closes the paper with a discussion of the potential applications of
both models as data reconciliation tools and suggests future research directions.

2 Model assumptions

We address the problem of reconstructing growth curves from incomplete and cor-
rupted data through the use of state space models, which have separate components
to describe the underlying process and the observations. Specifically, we assume the
actual burn area over time, x = {X¢, X1 ..., X7_1}, is the underlying process and
follows deterministically from a growth model that accepts parameters in the vec-
tor 6, and we assume the observations from data source i € {1,2,..., N}, denoted
yi = {Yio, Yi1, ..., YiT—1}, are noisy realizations of the underlying process and are
related via probability distributions that accept parameters in the vector y; (Godsill
et al. 2004).

1 https://www.predictiveservices.nifc.gov/intelligence/ICS209_User_Guide_2016.pdf.
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Given known aspects of wildfire behavior and growth records, we assume the growth
model to be discrete-time, non-decreasing, non-negative, and sigmoidal. The standard
Beverton—Holt difference equation, described by Eq. (1), follows these constraints and
we assume it to be a reasonable model of the process.

re—1 X1

Xl = .
I+ — 1D X

ey

The resulting growth curve is controlled by the inherent growth parameters, r; and the
initial condition, Xo (Beverton and Holt 1957; De La Sen 2008), and if 0 < Xy < 1
and r; > 1, then the process will be discrete, begin at size X, and approach size one
according to a sigmoidal function.

We present two versions of the standard Beverton—Holt difference equation: the con-
stant growth parameter (CGP) model and the non-constant growth parameter (NGP)
model. The CGP model uses only one inherent growth parameter to describe the dis-
tribution of growth over the wildfires’ lifetime, assuming an underlying process that is
a discrete-time analog of the logistic equation (Berezansky and Braverman 2004). The
NGP model has a time-varying inherent growth parameter, producing curves that bet-
ter describe processes which deviate from the simple sigmoid growth curve. The NGP
model allows time-varying growth by letting the inherent growth parameter follow the
difference equation described in Eq. (2),

rp =140 —Do;. (2)

Here the shifted inherent growth parameter is multiplied by lognormal noise, @y, that
has geometric mean 1 and geometric standard deviation 7. Note that for a process of
length 7', the last value of the inherent growth parameter, r7_1, is arbitrary and we
set X7_1 = 1. Also note that the number of parameters in 6 depends on the growth
model under consideration, with the CGP model accepting 8cgp = (Xo, r) and the
NGP model accepting Oygp = (Xo, ro-7—1)-

The observation equations can relate the actual burn area to our data through deter-
ministic or stochastic means, with rescaling procedures being an example of the former
and regression models the latter. We assume a stochastic relationship between the pro-
cess and observations, with multiplicative rather than additive observation errors due
to the presumed nonnegativity of burn area data and the use of proportional errors in
existing validation studies (Kolden et al. 2012; Sparks et al. 2015). We also assume
that observation errors are larger during periods of high-growth than in low-growth
and weigh the observations according to Eq. (3).

Yi; ~ Lognormal(In(K; X;), o/ X:/ X:—1). 3)

Here K; is the final burn area parameter for data source i and rescales the process.
The observation error parameter, o, represents the geometric standard deviation of
observations generated from a wildfire that is not growing. The observation equations
have the same structure in the CGP and NGP models with a final burn area parameter
specific to each data source and a common observation error parameter.
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The parameter values are not known with certainty, therefore, we describe them with
probability distributions, or priors, that represent our beliefs regarding their values.

Xo~ U1+ Y271 (14,7327, )
m ~ Beta(2.37, 1.65). (5)
o ~U@3.219 x 1077, 1.175). (6)
In(K /404) ~ Gen.Gamma(0.396, 0.298, 2.357). (7)
T ~ Lognormal(—6.827, 5.214). ®)

The distribution shown in Eq. (4) constrains the possible growth curves so that the
largest daily size increment occurs during the reconstructed burn area time series. The
CGP model forces the time step of the largest daily size increment, arg max,(X; —
X;_1), to an integer, #,,,, > 1, by initializing at X¢ = (1 + p(tmax—=1/2y—1 Assuming
that the largest daily size increment occurs within the observation window implies
that I <t < T — 1, or equivalently, (1 4+r/?)~! < Xg < (14+r773/2)"1, which
form the limits of a uniform distribution.

The inherent growth parameter prior is shown in Eq. (5) and is elicited by fitting to
independent data of peak growth, m = max;co,1,..., 7—2)(X;4+1 — X;)/K, which under
the CGP model, is related to the inherent growth parameter viar = (m+1)2/(m —1)%.
Peak growth estimates come from 2013 ICS 209 records? of large (> 404 ha) wildfires
occuring within the continental United States during the years 2002-2013. The beta
distribution is fit via maximum-likelihood and adequately describes the peak growth
data as confirmed upon visual inspection of the QQ-plot.’

The observation error parameter prior shown in Eq. (6) places finite bounds on the
range of possible errors using a uniform distribution. The upper bound represents a
scenario where a multiplicative error of a factor of 10 or greater occurs in 1 in 20
observations. For context, the largest overestimate of burn area in a survey of eight
relevant ICS 209 reports was by a factor of 1.8, with values less than 1.05 being
more common. The lower bound represents a scenario where a multiplicative error of
1-1/1585000 or greater happens occurs in 1 in 20 observations, which suggests the
observations of a Yellowstone sized wildfire are largely accurate to within an acre.

Equation (7) describes the final burn area parameter prior, which is a general-
ized gamma distribution® fit to transformed burn area (B A) data from the same ICS
209 records as the peak growth prior. The generalized gamma distribution is fit via
maximum-likelihood and adequately describes the distribution of the transformed burn
area data as confirmed via visual inspection of the QQ-plot. In some cases it is natural
to use an unscaled final burn area parameter prior, which equals one with probability
one, to represent a scenario in which the observations are simply noisy realizations of
the underlying process.

In the NGP model, we require a so-called noise prior to describe the process noise,
7, which we construct using two extreme scenarios to bound the distribution’s central

2 https://fam.nwcg.gov/fam-web/hist_209/report_list_209.

3 Maximum-likelihood results and QQ-plots are omitted for brevity, but are available upon request.
- b

4 If Z ~ Gen.Gamma(r, A, b), then fz(x) = bax?"—1e=0G-07 /P ().
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90th percentile. To set the lower bound on the noise prior, we consider near identical
levels of peak growth, m and my, convert them to r; — 1 and r» — 1 and find the
the multiplicative difference. The Sth percentile of the noise prior then corresponds
to a scenario in which the incremental difference of the inherent growth parameter
is of that scale or greater occurs with probability 0.002, or about once every 500
time steps. We calculate the upper percentile using a similar process, but with very
dissimilar levels of peak growth, representing the scenario where process variability
is extremely high. Specifically, the 95th percentile of the noise prior corresponds to
a scenario in which the incremental difference in the inherent growth parameter of
that scale or greater happens with probability 0.2, or about every 5 time steps. The
quantities m; = 1/1,585,000 and m, = 1/1,585,001 are used to calculate the lower
bound and m; = 1/1000 and my = 1/1,585,001 for the upper bound, resulting in the
final noise prior described in Eq. (8).

3 Application
3.1 Data and computational methods

To illustrate the application of the state space models, we reconstruct wildfire growth
curves from 13 incidents from the 2014 wildfire season (Table 1) using N = 2 data
sources: burn area estimates from GeoMAC wildfire perimeters.’ and cumulative
hotspot detects from the Hazard Mapping System (HMS).

For each incident k, there are two observation vectors of length 7}, where T} is the
number of days between the incident’s first and last perimeter plus a six day buffer
period to capture information outside the lifetime of GeoMAC measurements. One
observation vector is populated with burn area estimates extracted from the “area”
feature of GeoMAC perimeters, retaining only the largest perimeter when two exist
on the same day. The other observation vector is populated with the percentage of the
total HMS hotspot detects occurring within the incident boundary, where we define
the incident boundary to be the largest perimeter with an 8-kilometer buffer. Note that
the priors in the previous section are fit to data that are independent of those used in
this application.

Both the CGP and NGP models are fit using JAGS software with the runjags pack-
age in R (R Development Core Team 2008) on a MacBook Pro with a 2.7 GHz Intel
Core i7 processor. We first compute an initial Markov chain Monte Carlo (MCMC)
using three parallel chains with a nominal sample size of 1000, thinning interval of
100, burn-in period of 10,000 and adaptive phase of 10,000. Convergence is moni-
tored visually and by calculating the potential scale reduction factor of the range of
the central 90% of the marginal posteriors (Brooks and Gelman 1998). If neccesary,
the simulations are continued in batches of 1000 iterations until the maximum poten-
tial scale reduction factor falls below 1.01 (Gelman and Shirley 2011). We assess
the relative fit of the reconstruction models by using the expected log Bayes factor,

5 https://www.geomac.gov/.

6 ftp://satepsanon.nesdis.noaa.gov/volcano/FIRE/Anca/.
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ER2In(Pr(x, OnGp, vi2|¥1:2) /Pr(X, 0cGp. yi2ly1:2))] (Kass and Raftery 1995) and
assess model quality using the root mean square error (RMSE), mean absolute error
(MAE), mean absolute percent error (MAPE), and mean bias error (MBE) between
the GeoMAC observations and the median reconstructed growth curve (Cruz and
Alexander 2013).

3.2 Computational requirements and fit

The computational requirements of the CGP model are substantially less than the NGP
model in terms of the number of Gibbs iterations required, time required and sampling
efficiency (Table 1), with even the slowest CGP model reconstruction completing in far
less time than any NGP reconstruction. In the NGP model, longer duration incidents
require more Gibbs iterations, more time to converge, and fewer Gibbs iterations per
unit time compared to shorter duration incidents. In CGP models, longer duration
incidents took more time to converge, fewer Gibbs iterations per unit time, but did not
require substantially more iterations to converge. In general, applying the CGP model
will require at most a few minutes to converge, while the NGP model takes between
13 min to 9 h.

With the exception of the Somers fire, the increased computational requirements
of the NGP models are compensated by noticeable improvements in fit to observed
data, as evidenced by the log Bayes factor scores (Table 2), goodness-of-fit statistics
(Table 3), and graphical comparisons of both models (Fig. 1). While the NGP model
provides a superior fit compared to the CGP model, the overall accuracy varies across
incidents. For instance, the range of MAPE statistics under the NGP model are quite
variable, with high accuracy in the Snag Canyon (10%), King (14%), and Eiler (16%)
wildfires, but poor goodness-of-fit in other cases such as Carlton (9109%), South Fork
(1532%), and Buzzard (1498%).

Table 1 Computational requirements of both NGP and CGP models

Firename Iterations until convergence (x 1000) Iterations per second  Total time
CGP NGP CGP NGP CGP NGP

(a) Beaver 3 9 61.1 2.0 49 4517
(b) Big Cougar 1 77 111.3 8.8 9 8715
(c) Buzzard 3 8 129.2 10.2 23 785
(d) Carlton 3 18 70.4 2.5 43 7284
(e) Devils Elbow 2 64 107.1 4.7 19 13,561
(f) Eiler 2 46 96.7 39 21 11,655
(g) French 3 36 92.8 39 32 9328
(h) Happy Camp 1 6 35.2 1.1 28 5364
(i) Johnson Bar 2 13 33.9 0.6 59 22,659
(j) King 2 20 56.9 1.8 35 11, 186
(k) Snag Canyon 2 84 72.8 2.6 27 32,475
(1) Somers 1 5 81.7 6.0 12 833
(m) South Fork 3 23 40.7 0.8 74 27,803
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Table 2 Log Bayes factor, sample size and GeoMAC burn area

Firename 2In(BF) NGeoMAC Nums KGeoMAC
(a) Beaver 215.3 25 38 13,139
(b) Big Cougar 27.1 12 18 26,397
(c) Buzzard 20.5 9 19 159,992
(d) Carlton 92.3 21 33 104,731
(e) Devils Elbow 66.8 11 24 9751
(f) Eiler 83.6 15 26 13,426
(g) French 64.0 15 26 5611
(h) Happy Camp 201.2 45 53 54,782
(i) Johnson Bar 247.8 29 69 5383
(j) King 48.0 30 37 39,295
(k) Snag Canyon 149.3 23 31 5169
(1) Somers 0.32 17 26 14,644
(m) South Fork 39.9 27 58 26,780

4Negligible difference in goodness-of-fit of constant growth parameter and non-constant growth parameter
model (Kass and Raftery 1995)

Table 3 Goodness-of-fit summaries

Firename RMSE MAE MAPE MBE
CGP NGP CGP NGP CGP NGP CGP NGP

(a) Beaver 1368 306 657 165 202 104 — 468 146
(b) Big Cougar 7772 7485 3455 2918 720 135 968 1290
(c) Buzzard 62,360 54,474 37,876 28,635 1013 1498  — 6049 3286
(d) Carlton 32,042 41,422 13,341 34,901 9986 9109 9887 34,828
(e) Devils Elbow 1584 430 914 267 50 97 —910 —267
(f) Eiler 3381 3373 1163 1112 23 16 679 649
(g) French 1364 1415 513 468 1903 32 374 382
(h) Happy Camp 9973 8611 5446 3282 810 109 —2723 538
(i) Johnson Bar 1362 1133 929 671 467 317 — 266 664
(j) King 1945 2489 954 1372 1501 14 20 892
(k) Snag Canyon 541 266 329 144 25 10 —221 02

(1) Somers 5264 5267 2931 2932 177 174 392 380
(m) South Fork 1758 1971 811 1046 1443 1532 427 814

AMBE is approximately — 0.5, rounding to zero

4 Sensitivity analysis

Multiple defensible priors can often be applied to the same problem for reasons such
as differences in philosophies regarding their purpose in Bayesian analysis, variation

in elicitation techniques, and diverse individual levels of uncertainty (Spiegelhalter
et al. 2004). Given that priors are both subjective and influential on the final results, it
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Fig.1 Observed burn area estimates from GeoMAC and the Hazard Mapping System are shown as square
and circular points, respectively. The median and central 90th percentile of the marginal posterior distribu-
tions of the growth curve estimates are shown under the constant growth parameter (blue) and non-constant
growth parameter (red) model. Letters correspond to the wildfire incidents in Table 2

is valuable to determine how changes to the priors may influence our burn area time
series reconstructions. To that end, we perform a sensitivity analysis to gauge how the
choice of priors influences the results from the Johnson Bar fire, which we reconstruct
multiple times under multiple model configurations.

Five of these configurations exchange the final burn area prior, two of which are
distributions based on simple assumptions about the bounds of the parameter, while
the remaining three are fit to burn area data. The first distribution is called the lower-
truncated inverse-uniform (LTIU) prior, 404 x K —1 ~ U(0, 1), which sets no upper
limit on final burn area but does set a lower limit of 404 ha. Strict upper and lower
limits are imposed using the bounded inverse-uniform (BIU) prior, K ~! ~ U (6.41 x
1073, 404_1), which constrains the burn area to be between 404 ha and the size
of the 1988 Yellowstone wildfires. The remaining final burn area parameter priors

@ Springer



334

Environ Ecol Stat (2018) 25:325-340

'
|
150 |
|
|
r 100 ‘ Model
50 O Constant growth
é O Non-constant growth
T
0 —= == 18 <= =& T
I S S B E B D N R B B R
a b cde f gh i j k I m
- T i
0.05 | s i
I ;1L
0.04 | T 121810 — T
T
0.03 P i
Xo * ‘ E | K 81342
0.02 . L !
T I j 40873 ™
| | — ey
0.01 bt ? ﬂ g ! ? HE . .
1 - - 5
000 #= F= da . _ Ul = - - s ! _ - - - -
I S B B E B B N N B B B 405 | N N S B I R N B B B .
a b cde f gh i j k I m ab cde f gh i j k I m
40 ! 0.5 T
! 0.4 ; :
30 | - 1 TT
. ' : 4
0.3 1 T
© 20 5,8 ;
o ] T 1B 7Ll
0.2 Lo gr i I g
104 : B, T8 & ? LT ! %%
0.1 1p 188 % 4
! 7 Tt S
od * 2 % 1 b L S % z 1= . +
T T T T T T T T T T T 00 T T T T T T T T T T T
a b c de f g h i j k I m a b c de f gh i j k I m

Fig. 2 Boxplots of each model parameter’s marginal posterior for each reconstruction model and fire. The
left shows process component parameters incuding the inherent growth parameter (top); initial conditions
(middle) and the process noise (bottom). The right shows the observation component parameters including
final burn area (top) and the observation error (bottom). Outliers are omitted. Letters correspond to fires in
Table 2

are based on burn area data from the monitoring trends in burn severity project’
dataset, which includes 9050 fires larger than 404 ha across the conterminous U.S.
and from the years 1984-2010. The lower-truncated inverse-beta (LTIB) prior, 404 x
K~ ~ Beta(0.964, 1.152) and the bounded inverse-beta (BIB) prior 404 x (K -1
6.41 x 10’5)/(1 /404 —6.41 x 1073) ~ Beta(0.958, 1.149), are maximum-likelihood
estimates of the transformed burn area data and similarly, the Pareto prior, K ~
Pareto(404, 1.13), is fit to the untransformed data.

Four of these configurations exchange the original peak growth prior with an alter-
native distribution. The four alternatives are called the uniform (U), mode-zero triangle
(MZT), mode-one triangle (MOT) and arcsine priors, each being a special case of the
beta distribution: my ~ Beta(1, 1), myz7 ~ Beta(1,2) , myor ~ Beta(2, 1), and
M aresine ~ Beta(0.5, 0.5) (Fig. 2).

We also propose three new configurations for observation error priors and noise pri-
ors, which we elicit using slight variations of the techniques used to form the original
distributions. We originally construct the observation error parameter prior by finding
the uniform distribution with endpoints corresponding to specific error exceedance

7 http://www.mtbs.gov, data acquired April, 2013.

@ Springer


http://www.mtbs.gov

Environ Ecol Stat (2018) 25:325-340 335

scenarios. We propose alternative priors for the observation error parameter by repeat-
ing this process using different exceedance probabilities for the extreme observation
error variability scenario, generating a new upper-bound on the uniform distribution.
Specifically, the upper-truncation points are recalculated under small (0.01) medium
(0.1) and high (0.5) exceedance probabilities, resulting in the alternative upper limits
of 0.89, 1.40 and 3.41. Similar to the elicitation of new observation error priors, the
alternative noise priors assume that the central 90th percentile of the original distri-
bution represents a different amount of probability mass. Specifically, in our three
alternative noise priors, we reinterpret the original bounds as the central 99th, 95th
and 50th percentile of a lognormal distribution: 4 ~ Lognormal(—6.827, 3.330),
Tmiddle ~ Lognormal(—6.827,4.376), and 7j4,gc ~ Lognormal(—6.827, 12.716).
Depending on the reconstruction model, we reanalyze the Johnson Bar fire using
either 12 or 15 new configurations, where each new configuration is identical to the
original, except that the prior for one of the five parameters is exchanged with an
alternative. All sensitivity analysis computations use the same hardware and software
as Sect. 3.

The computational requirements are largely invariant to the majority of substitu-
tions, with the exception of the MOT prior in the NGP model, which converges in
about 20-30% of the iterations and time compared to the original configuration. For
the CGP model, the largest response occurs in the final burn area parameter when
substituting the LTIU distribution, increasing the posterior mean by 1%. In the NGP
model, the largest response occurs in the noise parameter when substituting the MOT
distribution, reducing the posterior mean by 2% (Fig. 3). The Johnson bar growth
curve reconstructions are fairly robust changes in the priors, with the most dramatic
responses occurring early in the time series, where little or no data are available. The
largest change to the growth curve is associated with substituting the arcsine distri-
bution, which inflates the initial condition parameter by about 1%. The sensitivity to
prior substitutions decreased shortly after the ignition, reducing to near-zero levels in
the last days of the reconstruction (Fig. 4).

5 Conclusions

Our two reconstruction models represent novel methods of improving the quality of
burn area time series and have a number of desirable features. Our growth model
generates reconstructions that have behavior consistent with the underlying process:
non-decreasing, non-negative, and sigmoidal. The priors incorporate additional infor-
mation from independent historical growth records, providing the reconstructions with
a guide of typical wildfire growth curve characteristics and uncertainty. These state
space models are also attractive because they incorporate multiple data sources, reflect-
ing the uncertainty in the growth curve and also permitting information borrowing
when needed. They are easily modifiable to accommodate a variety of other data gen-
erating and growth processes beyond those explored here. The state space approach
is also ideal because the model output is fairly easy to interpret as the probability
distribution of likely growth curves given the observed data and known fire behavior.
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Fig.3 Boxplots of four model parameter’s marginal posterior with the original and new prior configurations,
under the non-constant growth parameter (left panels) and constant growth parameter (right panels) models.
The x-axis labels denote the type of prior substitution

The NGP model is particularly well-suited for capturing daily variation in fire
growth, but the computational requirements are much higher than in the CGP model.
If the computational requirements are too burdensome in a given application, a couple
of mitigation strategies are available. For instance, the marginal convergence tends to
be slower towards the end of the time series and the introduction of an extinguish-
ment parameter would lessen parameter space redundancy and by extension could
increase speed. The use of better hardware and more efficient sampling algorithms,
like Hamiltonian MCMC, are also obvious strategies for reducing this burden (Neal
2011). In some cases, such as with short duration fires, the NGP model may not be
needed and strategic use of the CGP model can substantially reduce overall time and
computational requirements.

These reconstruction models and variations of them, have a number of potential
applications in fire management and research. A wildfire growth curve database could
be organized using these reconstruction models, where all available data are aggregated
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Fig.4 The ratio of the non-constant growth parameter model’s median burn area time series reconstruction
under the original (Fig. 1j) and alternative prior configurations. Values greater than one represent burn area
estimates that are larger in the new prior configuration than in the original

to produce high quality growth curve estimates with uncertainty. By relaxing the
constraints on the initial conditions as to allow peak growth events beyond the range of
observations, the reconstruction models can be modified to simulate the future growth
of not yet extinguished fires. Future iterations of the model could also incorporate
environmental covariates into the reconstruction estimates, describe spatially explicit
wildfire growth processes and behaviors, and explore how the models can be useful
for other non-wildfire applications. Although we explore the sensitivity of the models
to perturbations in the prior choice in Sect. 4, the flexibility of the state space models
suggests that many other structural changes could also be applied, influencing the
parameter estimates in unknown ways. Other model customizations could include
changes to the process error structure, the use of additional variables for other behaviors
such as extinguishment, changing the observation error structure, adding or omitting
data, and using alternative growth models.

In closing, our reconstruction models offer a natural way of integrating prior knowl-
edge and data from multiple sources into a single coherent estimate of the underlying
growth curve that includes estimates of associated uncertainties. Data quality issues
are handled elegantly, managing missing and erroneous data without discarding poten-
tially useful information. We do not recommend one of the two models over the other,
but wish to highlight the unique circumstances in which each approach may be most
beneficial. The NGP model is particularly well-suited for describing the daily variation
in wildfire growth and improves the quality of the growth curves based on satellite and
ground-based observations alone. However, the relatively high computational require-
ments of the NGP model suggest that the CGP may be appropriate in situations where
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processing time is a constraint. While further sensitivity analysis is recommended,
the results of the Johnson bar fire are robust to a range of prior substitutions, suggest-
ing that under typical applications of this model configuration, prior sensitivity is not
likely a serious issue. We recommend that future research explore the potential of these
models as data reconciliation tools, as well as how these models may be modified to
meet other research and management needs.
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