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Abstract Count data on a lattice may arise in observational studies of ecological phenom-
ena. In this paper a hierarchical spatial model is used to analyze weed counts. Anisotropy is
introduced, and a bivariate extension of the model is presented.

Keywords Markov random fields · Anisotropy · Multivariate count data ·
Precision agriculture

1 Introduction

In precision agriculture, an efficient and environmentally friendly treatment of weeds is a
major challenge (Rew and Cousens 2001; Kropff et al. 1997; Stein 2001). Weeds in a field are
a threat for valuable crops, as their quality may be affected, either by the presence of damag-
ing substances or by the reduction in yield. To optimize yield, spraying of herbicides is often
required, which in most cases is still done by applying the same dosage to the whole field.
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Environmental and economical considerations, however, require a minimization of herbicide
use and hence dose amounts that vary with location.

Precision agriculture may contribute to this aim by using high-technology equipment to
optimize herbicide application. A requirement is that weeds are properly characterized, both
in species and in location. Spatial statistics allows the characterization of weed patterns based
on a quantitative analysis. Attention has also been given to an integrated approach toward site
specific weed management (SSWM) (Kropff et al. 1997). As many weeds occur in patches, it
is natural to separate the abundance into trend and noise components as in Hess et al.’s (2001)
investigation of the weed Striga hermonthica (Del.) Benth. in a Sahelian farmer’s field. Such
an approach is of interest in precision agriculture, as weeds with a uniform pattern require a
uniform treatment, whereas obvious site-dependencies will require a site-specific application
of herbicides. By making this distinction, a reduction in herbicide use may be achieved.

We extend this model by introducing anisotropy and by linking results for different weed
species, in an attempt to model weed occurrence in a concise, economically more viable way.
The aim of this study is to develop a spatial statistical model that is suitable for describing
weed occurrence in a farmer’s field. Our study will be illustrated with data of three different
weed species observed in 2001 in a single field in Wageningen, The Netherlands.

2 Methodology

Our starting point is the model used by Hess et al. (2001), which is a modified version
of the model introduced by Besag et al. (1991). As concerns notation, stochastic variables
are denoted by capitals and their realizations by lower case characters. We analyze data
collected on contiguous quadrats (Diggle 2003, p. 23). The set of quadrats S is labeled
S = {1, 2, . . . , n}. To specify spatial dependence, a pre-defined neighborhood structure is
used. For every pair (i, j), the quadrats associated with i and j are neighbors (i ∼ j) if
they are adjacent in two orthogonal directions, say the y- and the x-directions. For the set
of i’s neighbors we write Si = {i1, i2, . . . , imi }. The summation

∑n
i=1

∑
j∈Si

denotes the
summation over all pairs of neighboring quadrats (i, j). Note that in this summation every
pair is included twice. Let the elements of an n × n matrix A be denoted by ai j , with At as
its transpose. Finally, mi equals the number of neighbors of quadrat i , i.e., mi = 2 if the i th

quadrat is a corner quadrat, mi = 3 if it is an edge quadrat and mi = 4 otherwise.

2.1 Model specification

Our model includes a spatial autoregressive process U = (U1, U2, . . . , Un) representing
spatial variation, and a noise vector V = (V1, V2, . . . , Vn) to allow for extra variation. Given
U = u and V = v , the observed counts yi are realizations of independent Poisson random
variables Yi , with intensities

λi = β · eui +vi . (1)

The parameter β expresses the overall mean, whereas the factors eui +vi account for local
deviations from this mean. In disease mapping, β is often referred to as the relative risk. In
this paper it will be fixed, and assumed to be equal to the mean of the observed counts.

We assume that U follows a multivariate normal distribution with covariance matrix A−1,
where A is symmetric with aii = τ1mi on the diagonal, ai j = a ji = −τ1γ if i ∼ j and
ai j = 0 otherwise. The parameter γ specifies the strength of spatial dependence and τ1 is the
precision of the process U . We only consider the case that γ ∈ (0, 1), leading to an invertible
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precision matrix A. The vector U is a conditional autoregressive (C AR) process (see, for
example, Cliff and Ord 1980, Sect. 6.2) with density

√|A|
(2π)n/2 exp

(

−1

2
ut Au

)

=
√|A|

(2π)n/2 exp

⎧
⎨

⎩
−1

2

⎛

⎝τ1

n∑

i=1

mi ui
2 − τ1γ

n∑

i=1

∑

j∈Si

ui u j

⎞

⎠

⎫
⎬

⎭
.(2)

The conditional distribution of Ui given its occurrence at the other locations, therefore, is the
following univariate normal distribution :

Ui | {U j = u j , j �= i} ∼ N

⎛

⎝ γ

mi

∑

j∈Si

u j ,
1

miτ1

⎞

⎠ . (3)

In contrast to U , V has no spatial structure. The Vi are i.i.d normal with precision τ2, and
independent of U .

One could also directly consider U + V , which is normally distributed with covariance
matrix A−1 + 1

τ2
In . The present decomposition into U and V however, facilitates the esti-

mation of τ1 and τ2. A Bayesian approach is taken to obtain estimates of τ1,τ2,γ and β. In
Sect. 2.4 we specify priors p(τ1), p(τ2) and p(γ ), and describe the Gibbs sampler we use to
sample from

p(u, v, β, γ1, γ2, τ1, τ2 | y) ∝

p(u | γ1, γ2, τ1)p(v | τ2)p(γ1, γ2)p(τ1)p(τ2)

n∏

i=1

p(yi | ui , vi ),
(4)

Also estimates of u and v can be obtained from the Gibbs sampler.

2.2 Introducing anisotropy

Given values U j = u j , j �= i , the distribution of Ui is normal with mean γ
mi

∑
j∈Si

u j , as

is stated by (3). In this sum, all neighbors u j receive weights γ
mi

. In this section, we vary
these weights. The motivation to do so is that the spatial dependence in one direction may be
stronger than that in the other direction. It would then be reasonable to assign larger weights
to the direction with the strongest dependence. In this case we replace γ by γ1 and γ2, and

write i
x∼ j if i and j are adjacent in the x-direction and i

y∼ j if they are adjacent in the
y-direction. Our aim is to define A such that for every quadrat i not located on an edge or
corner, the y-neighbors of i receive weights γ1

4 and the x-neighbors of i receive weights γ2
4 .

We could define A as the sum of A1 for the y-direction and A2 for the x-direction, with A1

and A2 defined as in Sect. 2.1. For A1, for example, ai j = a ji = −τ1γ1 if i
y∼ j . Up to a

factor τ1, the diagonal contains the number of neighbors in the y–direction. With a similar
definition for A2 however, a complication occurs on the edges. In fact, a quadrat with two
y-neighbors and only one x-neighbor has a sum of weights that could be larger than one. Take,
for example, γ1 = 1.7 and γ2 = 0.2. Then the sum equals 1.7+1.7+0.2

3 = 1.2, suggesting that
the distribution might not exist. To obtain a positive definite matrix, we modify the γ1 and

γ2 by a varying γi j . For all inner quadrats i and j , we define γi j = γ1 if i
y∼ j and γi j = γ2

if i
x∼ j . It is assumed that γ1 ≥ 0 and γ2 ≥ 0 are constants such that γ1 + γ2 = 2 − 2δ

for a small constant δ > 0. In our application we set δ = 0.005. First, consider the case
γ1 ≥ γ2. For quadrats i and j both located on either the minimal or maximal x-edge, we
define γi j = γ1

′ = 3−3δ−γ2
2 . For quadrats i and j both located on either the minimal or
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maximal y-edge, we define γi j = γ2
′ = 3−3δ−γ1

2 . The latter modification is not necessary
to obtain positive definitess as discussed in Sect. 4. The case γ2 > γ1 is handled similarly:
γi j = γ2

′ is defined if i and j are on the minimal or maximal y-edge, and γi j = γ1
′ is

defined if i and j are on the minimal or maximal x-edge. These modifications are motivated
by Geršgorin’s disc theorem (Sain and Cressie 2003).

Theorem (Geršgorin) Let T be an n × n matrix with complex elements ti j . For 1 ≤ i ≤ n
define Ri (T ) = ∑

1≤ j≤n, j �=i |ti j |. Then the eigenvalues of T are located in the union of discs
given by

⋃n
i=1{|z − tii | ≤ Ri (T )}.

A proof can be found in many linear algebra or matrix analysis textbooks, see for example
Lancaster and Tismenetsky (1985, pp. 371–372).
For our matrix A, the condition

mi >
∑

j∈Si

γi j ∀i

guarantees that all eigenvalues are positive, implying that A and A−1 are positive-definite
and non-singular. For all quadrats i and j , the condition mi + m j ≤ 6 is equivalent to i and
j being both located on an edge. Using this fact we summarize the above definitions. For
γ1 ≥ γ2,

γi j = −ai j

τ1
= −a ji

τ1
= γ1

′1{(i y∼ j)∧(mi +m j ≤6)} + γ11{(i y∼ j)∧(mi +m j ≥7)}
+γ2

′1{(i x∼ j)∧(mi +m j ≤6)} + γ21{(i x∼ j)∧(mi +m j ≥7)} (5)

and for γ2 > γ1,

γi j = −ai j

τ1
= −a ji

τ1
= γ2

′1{(i x∼ j)∧(mi +m j ≤6)} + γ21{(i x∼ j)∧(mi +m j ≥7)}
+γ1

′1{(i y∼ j)∧(mi +m j ≤6)} + γ11{(i y∼ j)∧(mi +m j ≥7)} (6)

For γ2 = γ1, the isotropic case, (5) and (6) both imply that γi j = 1 − δ for all i ∼ j . In
the anisotropic case, we have 1

mi

∑
j∈Si

γi j = 1 − δ for any quadrat i , except for the four
corners. For the covariance structure described above, the distributions given by (2) and (3)
can be refined to

p(u) = 1

(2π)n/2
√|A−1| exp

⎧
⎨

⎩
−1

2

⎛

⎝τ1

n∑

i=1

mi ui
2 − τ1

n∑

i=1

∑

j∈Si

γi j ui u j

⎞

⎠

⎫
⎬

⎭
(7)

Ui | {U j = u j , j �= i} ∼ N

⎛

⎝ 1

mi

∑

j∈Si

γi j u j ,
1

miτ1

⎞

⎠ . (8)

2.3 The bivariate model

In this section a bivariate model is described. We are given counts Y A
i and Y B

i , and given
U A = u A, U B = u B , V A = v A and V B = v B , these are assumed to be independent Possion
random variables with intensities
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λA
i = βA · eu A

i +v A
i , λB

i = βB · eu B
i +v B

i . (9)

We refer to model (9) as the bivariate model, in contrast to the univariate model defined
by (1). The processes V A = {Vi

A}i=1,2,...,n and V B = {Vi
B}i=1,2,...,n are independent and

normally distributed with precisions τ2
A and τ2

B . Also U A and U B have normal distribu-
tions, with parameters specified later in this section. This model is motivated by the idea
that the conditional specification in expression (8) should be replaced by a bivariate nor-
mal distribution. It has variance 1

τ1mi
, and we can write the exponent in the right hand side

of (7) as

− 1

2

⎛

⎝τ1

n∑

i=1

mi ui
2 − τ1

n∑

i=1

∑

j∈Si

γi j ui u j

⎞

⎠ = −1

2

(
n∑

i=1

mi ui

(
1

τ1

)−1

ui

−
n∑

i=1

∑

j∈Si

γi j ui

(
1

τ1

)−1

u j

⎞

⎠ .

Let the correlation between A and B be controlled by the parameter c ∈ (−1, 1), and define

� =
⎛

⎝

1
τ1

A
c√

τ1
Aτ1

B

c√
τ1

Aτ1
B

1
τ1

B

⎞

⎠ .

The column vector (Ui
A, Ui

B)t is denoted Ui
A,B . Similarly we write ui

A,B and yi
A,B ; U A,B

denotes the column vector (U1
A, U1

B , . . . , Un
A, Un

B)t . For the joint density of U A and U B

the extension of (2) is defined as

p(u A,B) ∝ exp

{

−1

2
((u A,B)t�(u A,B))

}

= exp

⎧
⎨

⎩
−1

2

⎛

⎝
n∑

i=1

mi (ui
A,B)t�−1(ui

A,B) −
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j∈Si

γi j (ui
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⎞

⎠

⎫
⎬

⎭
,

(10)

where � is the 2n × 2n block-matrix consisting of 2 × 2 blocks �i i = mi�
−1 and

�i j = −γi j�
−1 for i �= j . For every i ∼ j , the terms

γi j
2 (ui

A,B)t�−1(u j
A,B) and

γi j
2 (u j

A,B)t�−1(ui
A,B) occur in (10). Hence the conditional density can be written as

p(ui
A,B | {u j

A,B} j �=i ) ∝ exp

{
1

2
(ui

A,B)t
(

1
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�

)−1
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2
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i )t
(

1
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�

)−1

(ui
A,B) − 1

2
(ui

A,B)t
(

1

mi
�

)−1

ui
A,B

}

∝ exp

{

−1

2
(ui

A,B − ū A,B
i )t

(
1

mi
�

)−1

(ui
A,B − ū A,B

i )

}

, (11)

in which ū A,B
i = ( 1

mi

∑
j∈Si

γi j u j
A, 1

mi

∑
j∈Si

γi j u j
B)t . This is proportional to the bivar-

iate normal density with mean ū A,B
i and covariance matrix 1

mi
�. The process U A,B is a

two-dimensional Gaussian Markov Random Field (MRF). Such processes were studied by
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Mardia (1988) and used in various Bayesian models by Pettitt et al. (2002), Gelfand and
Vounatsou (2003), Sain and Cressie (2003), and by Jin et al. (2005). In case the spatial
correlation between more than two variables is studied, extension of the bivariate model to
a multivariate model is straightforward. The bivariate normal density defined by (11) then
becomes a multivariate normal density.

2.4 Gibbs sampling

We now turn to Gibbs sampling. In Sect. 2.4.1 we address the univariate case. The extension
to the bivariate case is discussed in Sect. 2.4.2.

2.4.1 Univariate sampling

We assume the following prior distributions the parameters β,τ1,τ2 and γ1. The anisotropy
parameter γ1 is discretized , and uniformly distributed on the set

G = {0, 0.01, . . . , 1.99}. As we assumed that γ2 = 1.99 − γ1, γ2 also has a uniform
distribution on G. Note that in this construction, either γ1 ≥ 1 > γ2 or γ2 ≥ 1 > γ1.
Alternatively we could choose a discretization with, for example, 201 points, containing the
case γ1 = γ2 = 0.995. The parameters τ1 and τ2 are given identical exponential priors with
mean 1

µ . In the present application we set µ = 1. Given τ1, τ2, and γ1, U has the density
given by (7) and the Vi are uncorrelated normal random variables with mean 0 and variance
1
τ2

. For every quadrat i ∈ {1, . . . , n}, the vector uSi = (ui1 , . . . , umi ) contains the values of
u at adjacent quadrats. To sample from (4) the following conditional distributions need to be
sampled.

p(ui | uSi , y, γ1, τ1) ∝ p(yi | ui , vi )p(ui | uSi , γ1, τ1) (12)

p(vi | y) = p(vi | yi ) ∝ p(yi | ui , vi )p(vi | τ2) (13)

p(γ1 | u, τ1) ∝ p(u | γ1, τ1)p(γ1) (14)

p(τ1 | u, γ1) ∝ p(u | γ1, τ1)p(τ1) (15)

p(τ2 | v) ∝
n∏

i=1

p(vi | τ2)p(τ2)

The conditional density in (12) is proportional to

(βevi eui )yi exp
{
−βevi eui − miτ1

2
(ui − ūi )

2
}

∝ exp
{

yi ui − βevi eui + (miτ1ūi )ui − miτ1

2
ui

2)
}

(16)

First u∗, the mode of p(ui | uSi , y, γ1, τ1) is determined numerically. We use a second order
Taylor approximation around u∗, eui ≈ eu∗

(1+(ui −u∗)+ 1
2 (ui −u∗)2). Instead of sampling

(12) exactly, we take the approximating normal density with mean (b − ceu∗
(1−u∗))/(2a +

ceu∗
) and variance 1/(2a + ceu∗

), for a = τmi
2 , b = yi + τmi ūi and c = βevi . A similar

normal approximation is used for (13).
The main difficulty in sampling (14) is the determinant of A. It is more convenient to

work with Q = 1
τ1

A, not depending on τ1. For all γ1 ∈ G, |Q| is calculated before running
the Gibbs sampler, and stored in a table. For the current values of u and τ1, p(u | γ1, τ1) ∝√

τ1
n |Q| exp{− τ1

2 ut Qu} is then evaluated for all γ1 ∈ G. After normalization, a new γ1 is
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drawn according to this vector. The density given by (15) is proportional to

e−u∗τ1
√

τ1
n |Q| exp

{

−1

2
utτ1 Qu

}

∝ τ1
n
2 exp

{

−(u∗ + 1

2
ut Qu)τ1

}

,

also a gamma density. The same holds for the conditional density of τ2.

2.4.2 Bivariate sampling

Using the same priors for the parameters, updating the vi
A’s, vi

B ’s and the parameters τ A
2 ,τ B

2
and γ1 can be done exactly as in the univariate sampler. The parameter c is discretized, and
sampled from the set {−0.99,−0.98, . . . , 0.99}, on which a uniform prior is assumed. Addi-
tionally, we need to sample from

p(ui
A|u A

Si
, u B

Si
, yi

A, γ1, τ1
A, τ1

B , c) ∝ p(yi
A | ui

A)p(ui
A | u A

Si
, u B

Si
, γ1, τ1

A, τ1
B , c)

p(τ1
A | u AB , τ1

B , c, γ1) ∝ p(u AB | γ1, τ1
A, τ1

B , c)p(τ1
A). (17)

Similar factorizations hold for p(ui
B | u A

Si
, u B

Si
, yi

B , γ1, τ1
A, τ1

B , c) and p(τ1
B | u AB , τ1

A,

c, γ1). Since p(ui
A | u A

Si , u B
Si

, γ1, τ1
A, τ1

B , c) is normally distributed, (17) is of the same

form as (16). The density p(τ1
A | τ1

B , c, u AB , γ1) is of the form (τ A
1 )

n
2 e−c1τ

A
1 −c2

√
τ A

1 , with
constants c1, c2 depending on u AB ,c,τ B

1 and µ, and can be sampled using a rejection scheme.

2.5 Software

All calculations were performed in R. The code is available on request to the first author.

3 Application

3.1 Data

Weeds were observed within an arable field of 64 m wide and 281 m long, on a clay soil
located near Wageningen, The Netherlands, in 2001 (Heijting et al. in preparation). The field
was planted with maize. Weed plants were counted within a rectangular plot of 50.25 m long
(y-direction) and 12 m wide (x-direction). This plot was partitioned into a contiguous grid
of 0.75× 0.75 m quadrats, corresponding in size to the 0.75 m spacing between the rows of
maize plants. The plot contained n = 1, 072 quadrats with 67 and 16 quadrats in the y- and
x-direction, respectively. Quadrats are the units for sampling. Because of the strong trend in
the data, we restricted our analysis to the plot of 16×16 quadrats, located along the Northern
boundary of the observation area.

Weed plants were counted from 18 to 21 June. More than 20 different weed species were
found in the plot. For practical reasons, such as computation time, we restrict ourselves in
this study to three of these: Chenopodium album L. (Fat hen), Solanum nigrum L. (Black
nightshade) and Taraxacum officinale Weber (Dandelion). Figure 1 contains a graphical rep-
resentation of the data. The orientation is such that the left sides of the images are facing the
West. Descriptive statistics of the counts can be found in Table 1.

The distribution of the weed counts is highly skewed. Having a maximum equal to 44 and
a minimum equal to 0, the median of the C. album counts is only 2, whereas for the two other
species the median equals 0. Large peak densities occur for C. album and S. nigrum. In an
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Fig. 1 Numbers of weed plants of T. officinale (left), C. album (middle) and S. nigrum (right), in 2001. The
dark grey tones represent high counts

Table 1 Quantiles, minimum, maximum and median and mean of the numbers of weed plants observed on
16 × 16 quadrats in 2001

Species Min. 1st Qu. Median Mean 3rd Qu. Max.

T. officinale 0 0 0 0.2305 0 4
C. album 0 2 5 7.887 11 44
S. nigrum 0 0 1 2.004 2 19

experimental plot in Canada, Goudy et al. (2001) observed, among others, C. album and T.
officinale. The former had a density of 0.09 plants m−2 in 1998 and 1.30 plants m−2 in 1999.
For T. officinale, a mean density of 0.62 plants m−2 was observed in 1998. Note that in the
present study, weeds are counted within areas sized 0.75m × 0.75m = 0.5625m2.

3.2 Results

3.2.1 Estimation of the processes

The 2001 counts of T. officinale were analyzed using the univariate model. In addition, the
bivariate model was applied to the C. album and S. nigrum counts. In both cases the Gibbs
sampler was run for 70,000 iterations, after a burn-in period of 1,000 iterations. Every 70th
iteration was taken as a sample from the posterior distribution, hence 1,000 samples were
stored. The posterior density estimates are given in Fig. 2. The posterior means of the param-
eters can be found in Table 2. We notice that the distributions are relatively wide, although
mostly showing a sharp mode, which may be caused by the fact that the underlying process
does not fully obey the conditions imposed by the statistical model. The estimates of τ1 and
τ2 measure the relative magnitudes of spatial and non—spatial variation, respectively. For
all species the spatial variation is considerably larger than the non—spatial variation. The
anisotropy apparent in the counts of C. album and S. nigrum is reflected in the estimate of
γ1. The posterior mean of c is 0.5747, substantially larger than the correlation between the
actual counts, which is 0.2088.

Figure 3 displays images of the posterior means of U , V and β exp(U + U ), which are
denoted as ũ, ṽ and λ̃, respectively. The image of ṽ is merely included as a check on ran-
domness. Indeed sudden variations appear in ṽ , although for S. nigrum it still possesses some
spatial structure. Generally ũ and β exp(ũ + ṽ) have the same spatial structure as is apparent
in the data, but in a more smoothed fashion.
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Fig. 2 Posterior densities of the parameters τ1 (top line), and τ2 (middle line) for T. officinale (left), C. album
(middle) and S. nigrum (right). On the bottom line: the posterior densities of γ1 for T. officinale (left), γ1 for
C. album and S. nigrum (middle) and the posterior of the correlation c between C. album and S. nigrum (right)

Table 2 The posterior means of γ1,τ1,τ2 and c

Species τ1 τ2 γ1 c

T. officinale 0.0661 1.2641 1.0017
C. album 3.2201 9.4576 1.8130 0.5747
S. nigrum 2.1353 5.3999 1.8130 0.5747

In the bivariate model, C. album and S. nigrum have the same γ1 and c

4 Discussion

The models described in this paper can be useful in the analysis of count data on a lattice.
For further application, the approach taken in this paper could be extended by incorporating
covariables.

For quadrats on the edges the γi j ’s can be defined in various ways. For instance if γ1 ≥ γ2,
and i and j are located on the minimal or maximal y-edge, γi j = γ2 could be defined instead
of γi j = γ ′

2 = 3−3δ−γ1
2 > γ2. Numerical experiments with isotropic test data indicate,

however, that this model only performs well on square lattices, but is biased for rectangu-
lar lattices. More precisely, this model favors a stronger spatial dependence in the longest
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Fig. 3 The posterior mean of U (top line), the posterior mean of V (second line) and the estimated Poisson
intensities β exp(u + v) (bottom line), for the 2001 counts of T. officinale (left), C. album (middle) and S.
nigrum (right). The dark grey tones represent large values

direction of the field. With the current definition, this problem does not occur. Although our
dataset is not rectangular, this improves the applicability of the model.

The models presented in Sect. 2 can be used to quantify the spatial- and non-spatial var-
iation in the data. For the application of SSWM, images of ũ are easier to interpret than
images of the original data, which exhibit much small scale variation. This may lead to a
more efficient use of resources.

Our method is not restricted to grids of contiguous quadrats, and also applicable to data
obtained with discrete area sampling, or to observations at grid points. The grid does not
need to be rectangular. In order to define first- and higher-order neighbors, however, dis-
tances between the observation areas, or points, need to be regular or at least, it must be
possible to distribute them over distance classes.

Christensen and Waagepetersen (2002) takes a geostatistical approach, considering weed
counts as point observations. Instead of an autoregression process U , defined on a lattice,
he assumes a geostatistical process, defined for every point in the area. Prior distributions
for the regression parameters are specified, and posterior distributions are estimated by
MCMC simulation. An advantage of this approach is that predicting at unsampled locations is
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straightforward. Hrafnkelsson and Cressie (2003) compare approaches based on lattice and
geostatistical processes and describe how MC MC-simulations can be made.

Another open question is the possibility of having different degrees of anisotropy for the
two species. Parameters γi j

A’s and γi j
B ’s have to introduced such that � remains positive-

definite.
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