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Abstract
The present study examines secondary school students’ geometrical figure apprehension 
based on Duval’s theoretical framework regarding perceptual, operative, and discursive 
apprehension. The aim is to explore the cognitive structure of the geometrical figure 
apprehension dimensions (operative, discursive, and perceptual) in three grades of 
secondary school students. The tasks in the present study were completed by a sample of 
881 students attending public secondary education in Cyprus. Confirmatory factor analysis 
indicated the stability of the structure of the model concerning secondary school students’ 
geometrical figure apprehension. However, differences were found in the interrelations 
among the three main aspects of the model in the examined grades (9, 10, and 11). 
Moreover, it was observed that students find it easier to solve tasks involving perceptual 
apprehension compared to discursive apprehension tasks, indicating a possible hierarchical 
structure of figure apprehension. The present study acts as a pilot study of the constructed 
instrument. Finally, the results are interpreted in relation to the type of geometrical 
paradigm in which students work at each hierarchical level.
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Geometry and spatial reasoning are a critical mental foundation for learning other topics in 
mathematics (Clements et al., 2018). Figures play a predominant role. Lemonidis (1997) 
analyzed the characteristics of geometrical figures and described the way in which students 
use the figures in order to learn basic mathematical concepts (e.g., area). A figure is a 
representation of a geometrical situation easier to understand compared to a representation 
with linguistic elements only. From understanding the data in a given figure to using it 
for reasoning, proving, and solving problems, there is a path (Daher & Jaber, 2010). The 
geometrical figure is used for constructing either the arguments or the proof. In Japan, 
constructing arguments as part of reasoning is introduced at an early age, and later on, in 
Grades 7–9, students are also introduced to the significance and methodology of a formally 
structured geometric proof (Fujita & Jones, 2014).

Although geometry is an important part of the mathematics curriculum (Clements et al., 
2018), students do not show strong conceptual knowledge and sometimes consider it to be a 
different domain. A known characteristic of geometry is “its dual nature as simultaneously 
a theoretical domain and perhaps the most reality-linked part of mathematics” (Fujita 
et  al., 2010, p. 3). As a consequence, when examining the properties of geometrical 
objects, students generate various conjectures based on experimental verification. Kaur 
(2015) argues that many of the difficulties that students face in geometry occur during 
the transition from primary to secondary education. Despite the fact that many changes 
regarding students’ knowledge, abilities, and performance (Commission for Educational 
Reform, 2005) occur in the transition from lower to upper secondary school, research has 
paid limited attention.

Teaching methods, students’ performance, and misconceptions, as well as the use 
of different representations in relation to spatial abilities, are a few of the geometrical 
understanding perspectives which are usually investigated. In order to manage students’ 
misconceptions, researchers suggest technology (e.g., Chivai et al., 2022; Laborde et al., 
2006; Sinclair et al., 2017) or alternative teaching methods (Abdeen et al., 2022). There 
are studies examining students’ learning achievements in geometry in relation to their 
motivation, beliefs, and attitudes (e.g., Pambudi, 2022). Additionally, other studies relate 
geometrical figure apprehension to geometrical proof (Miyazaki et  al., 2022) or present 
different models which include the role of visualization (e.g., Dundar et  al., 2012). 
There are approaches focusing explicitly on figures and visualization and have therefore 
established the theoretical frameworks for the learning of geometry (e.g., Duval, 1988; 
Fischbein, 1993; Houdement & Kuzniak, 2003; van Hiele, 1986).

The present study examines lower and upper secondary school students’ cognitive 
understanding of the geometrical figure based on Duval’s approach (Duval, 1995, 1998). 
Duval’s starting point is the use of a geometrical figure as a helpful tool to solve a 
geometrical problem. According to his theory, students’ performance is analyzed according 
to the various types of geometrical figure apprehension: the perceptual, the operative, 
the sequential, and the discursive type. We consider that such a large-scale quantitative 
study on students’ performance would be useful to interpret students’ understanding of 
geometrical figures. Having in mind the difficulties observed in the transition from one 
educational level to another, such as changes in students’ attitudes regarding school 
subjects, self-confidence, beliefs, competence, and performance (Mullins & Irvin, 2000), 
with this study, we aim to identify similarities, differences, and problems that may occur in 
the transition from lower to upper secondary education.

We believe that there is a need to investigate students’ cognitive processes and the type 
of apprehension they use during the resolution of geometrical tasks and examine whether 
these lead to a proper way of “looking” at a geometrical figure. There are many factors 
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that can inhibit these visual operations, which can be studied experimentally. Thus, the 
present study constitutes an attempt to identify the factors relating to the apprehension of 
geometrical figures. The following research questions were posed:

1.	 Can the cognitive structure of geometrical figure apprehension, as proposed by Duval, 
be confirmed empirically?

2.	 What are the interrelations between the different types of geometrical figure 
apprehension?

3.	 How do lower and upper secondary school students perform in geometrical figure 
apprehension tasks?

1 � Theoretical framework

Geometrical research in the 1970s concentrated on the relationship between spatial abilities 
and mathematical learning and problem solving (Owens & Outhred, 2006). During the 
next decades, visual representations as well as the process of visualization gained an 
important role in geometry learning (Zakelj & Klancar, 2022). Several theoretical models 
about geometry learning look at geometrical figures and their use, but the figure itself is 
not the main target of their inquiry. Only a few approaches study figures explicitly (e.g., 
Duval, 1988; Fischbein, 1993; van Hiele, 1986). Van Hiele (1986) developed a model 
referring to levels of geometric thinking (visualization, analysis, abstraction, deduction, 
and rigor) which led to a hierarchical teaching of geometry. The emphasis was not on 
the cognitive processes but rather on the cognitive characteristics of each age and the 
respective teaching content. This specific model has led to the belief that students who have 
difficulties understanding geometrical concepts are being taught at a higher Van Hiele’s 
level (geometrical thinking level) than the one they are ready for. Students use geometrical 
figures according to their cognitive abilities: for example, in the first level, the figure is 
recognized as an image, while in the second level, mathematical properties are recognized 
through the figure.

Fischbein (1993) introduced the theory of figural concepts and Samara and Clements 
(2009) proposed a six-level theory about the composition and decomposition of 
geometrical figures, according to which children begin forming a conceptual understanding 
of geometric figures in the early childhood years (Clements et  al., 2018). Fischbein 
(1993) attempted to interpret geometrical figures as mental entities with both conceptual 
and figural properties. He observed that while a geometrical figure can be described as 
having intrinsically conceptual properties, it is not solely a concept, but it is an image too. 
He argues that all geometrical figures represent mental constructs which possess both 
conceptual and figural properties, and that geometrical reasoning is characterized by the 
interaction between the figural and the conceptual aspects.

Parzysz (1988) has described the distinction between drawings and figures. In the first 
case, there is a presentation of a picture, while in the second case, the object is represented 
by the drawings as a tool that students must manage in order to make productive use of a 
diagram in formulating a geometric argument. He noted that students’ activity in geometry 
involves “knowing” and “seeing” as a mix of observational deduction (Mithalal & Balacheff, 
2019). As Karpuz and Atasoy (2019) claim because geometric figures cannot be considered 
independent of concepts, students need to establish accurate relationships between a 
geometric figure and its properties which are used for mathematical proof. Duval (2005) 
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explains that there are two modalities of visualization which guide the exploration and the 
interpretation of a figure: the iconic and the non-iconic. In the first case, one recognizes an 
object because its shape is similar to an already known object. In the second case, the figure 
is a representation of a geometrical object.

1.1 � Duval’s cognitive approach: types of geometrical figure apprehension

Duval (1988) analyzed the different possible ways of seeing a geometrical figure. He 
suggested that in order to analyze the heuristic role of geometrical figures, a figure must be 
seen through cognitive apprehension. He distinguished four apprehensions of a geometrical 
figure: the perceptual, the sequential, the operative, and the discursive. Each type of 
apprehension has its specific laws of organization and processing of the visual stimulus 
array (Panaoura & Gagatsis, 2008).

According to Duval, the perceptual apprehension of a figure is an organization of 
elements, which, depending on the number of its dimensions, can be points, lines, areas, 
or planes. Points and lines are respectively characterized by their discrete or continuous 
character, while areas are characterized by their form (Duval, 1988). People recognize 
something (a shape, a representation of an object, etc.) in a plane or in depth at first glance. 
Figural organization laws and pictorial cues determine what the perceived figure shows 
(Duval, 1994). The perception of the figure results from an unconscious integration, and 
thus, the perceived figure can differ from the retinal image. The retinal image can change, 
while the perceived properties of the figure (shape, size, brightness, etc.) remain the same. 
This is called perceptual constancy. People are also able to name what they recognize and 
to discriminate and recognize several subfigures in the perceived figure.

Sequential apprehension happens when a construction of a figure or its description 
is needed. The different figural units that emerge by the construction of the figure occur 
following a specific order. The organization of the elementary figural units does not depend 
on pictorial cues and laws but on technical constraints and mathematical properties. These 
technical constraints depend on the tools that are used for the construction of figures, which 
can be a ruler and compass or available primitives in geometrical software.

Duval states that operative apprehension becomes a starting point in order to investigate 
other configurations that can be obtained by visual operations. A related difficulty is due to 
the fact that for a given figure, various figural modifications are possible, as well as many 
operations to bring them out (Duval, 1995). Also, the ability to divide the geometric figure 
into parts is one of the outward signs of operative apprehension (Duval, 1999).

Discursive apprehension of a figure corresponds to the explicitness of other 
mathematical properties of the figure besides those that are indicated from the stated 
hypothesis (which make certain properties explicit and presented in the figure). Sometimes, 
the properties that are seen in a geometric figure are not the same for everyone (Duval, 
1995). What the figure can represent depends on the deductive dependence between 
statements. For this reason, it is possible to have a gap between what the figure shows and 
what it represents (Duval, 1995). Duval claims that the transition from the geometry of 
drawing to the geometry of figures requires a double transition from iconic to non-iconic 
visualization and from instrumental deconstruction to dimensional deconstruction.

The students’ apprehension of a mathematical concept is not independent of the 
corresponding teaching methodology. The present study has been conducted in a 
centralized educational context where the teaching methodology is based on suggestions 
proposed through the textbooks which are commonly used. The textbook analysis which is 
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presented in the following section was necessary in order to construct an instrument which 
could take into consideration the expected students’ geometric figure apprehension.

1.2 � Textbook analysis

For the present study, we relied on Michael’s (2013) textbook analysis to decide which 
types of Duval’s geometric figure apprehension could be included. The educational system 
in Cyprus is centralized in the sense that the curriculum, the textbooks, and the teaching 
materials are all common and produced by the Ministry of Education (Maths Curriculum, 
2010). It is widely acknowledged that school textbooks reflect the aims of the curriculum 
(Pepin & Haggarty, 2002), so if someone needs to understand the teaching methodology 
of a mathematical concept, he/she can study the structure which is presented in a textbook. 
The analysis focused on the last grade of lower secondary and the first two grades of 
upper secondary school textbooks. Michael (2013) analyzed the content of mathematics 
textbooks regarding geometry and placed each example, exercise, or task in one of the 
four categories according to the type of apprehension that was required for its solution. 
Michael–Chrysanthou found that most of the exercises for Grades 9, 10, and 11 require 
the activation of perceptual apprehension and that the number of exercises demanding 
perceptual apprehension decreases from lower to upper secondary school. On the other 
hand, the number of exercises involving discursive and operative apprehension increases 
from lower to upper secondary school. The analysis of the presented examples in the 
textbooks gave different results. The majority of examples in the mathematics textbooks 
of all three grades involved perceptual apprehension, while only a small percentage of 
examples required operative apprehension. As for discursive apprehension, a small number 
of examples mobilizing this type of apprehension appear in Grade 9 only. Usually, the 
examples presented for the understanding of a concept and the exercises are analogous. In 
this specific case, the number of exercises requiring operative and discursive apprehension 
increased from lower to upper secondary grades, while the number of presented examples 
decreased. According to the geometry content examined, perceptual apprehension was 
the dominant type of apprehension required in both the exercises and the examples, as it 
intervened in the solution of most of the textbook tasks.

It is noteworthy that in all three grades examined (Grades 9, 10, and 11), the perceptual, 
operative, and discursive apprehension types were mainly involved in the different figures 
presented. For this reason, we excluded the examination of sequential apprehension 
from the specific study. It was almost absent from the secondary education curriculum 
in Cyprus, and we therefore assumed that students would not be able to solve tasks 
demanding sequential apprehension. The results of the specific analysis together with 
Duval’s theoretical framework were the base for the model presented and examined in this 
study.

1.3 � Hypothesized model of students’ geometrical figure apprehension

The two-level hierarchy model examined the three different grades about the role of 
perceptual, operative, and discursive figure apprehension types, as defined in Duval’s 
theoretical perspective. The model involved three first-order factors: perceptual (PE), 
operative (OP), and discursive (DI) geometrical figure apprehension which were 
regressed on a second-order factor that stands for geometrical figure apprehension. 
The model was examined based on the hypothesis that interrelations exist among the 
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three first-order factors (Fig.  1), rather than a second-order model. The instrument 
given to the students consisted of two perceptual apprehension tasks (PE1, PE2), four 
operational apprehension (OP1, OP2, OP3, OP4) tasks, and four tasks involving dis-
cursive apprehension (DI1, DI2, DI3, DI4). The theoretical model examined had to 
be consistent with the expected cognitive processes. The qualitative analysis of stu-
dents’ answers led us to discriminate between two ways of solving OP2 (OP2op and 
OP2al), and therefore, the examined model was constructed accordingly. The specific 
task (OP2) enabled students to work on it in two different ways. The first was based 
on the functional understanding of the figure (denoted as OP2op); it concerns the 

Fig. 1   The hypothesized model 
of interrelations of the three first-
order factors

PE2

OP1

OP2op

OP4

PE1

DI4

PE

OP

DI

OP2al

OP3

DI1

DI2

DI3

PE = perceptual apprehension, 

OP = operative apprehension, 

DI = discursive apprehension, 

The number indicates a different task
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transformation of the original figure, and therefore, it naturally belongs to the opera-
tive apprehension category. However, many students chose the algorithmic way of 
solving the task, used the formula of finding the area of the trapezoid, and solved 
the equation (OP2al). We assume that students who choose this solution either do not 
“see” the functional transformation of the shape of the trapezoid into a rectangle or 
follow the implicit teaching contract, according to which they need to use a formula 
to solve a problem. Two indicative examples of the different types of solutions for 
task OP2 are presented below (Figs. 2 and 3).

2 � Methodology

2.1 � Participants

The study examines secondary school students’ geometrical figure apprehension, with 
a special interest in the changes that occur during students’ transition from lower 
to upper secondary school. Lower secondary school courses are mandatory for all 
students. However, starting from Grade 10, students can choose their major courses 
with respect to their future plans. Mathematics can be chosen as a major course for 
students who intend to study engineering, economics, and natural sciences.

The study was conducted with 881 students from 17 urban and 4 rural secondary 
schools in Cyprus. The sample consisted of 312 Grade 9 (15 years old, 170 girls), 304 
Grade 10 (16 years old, 170 girls), and 265 Grade 11 (17 years old, 163 girls) students. 
The sample was not representative of the respective population, as the schools were 

Fig. 2   An example of a solution 
based on the operational proce-
dure (OP2op)

The area of the trapezium is calculated 
based on the formula. The areas of the 
trapezium and the rectangle is equal, so 
the unknown side of the rectangle is
calculated by using the area of the 
rectangle

Fig. 3   An example of a solution based on the formula (Op2al)
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chosen based on the researchers’ network as well as the positive disposition of the 
school community to take part in a study without compensation.

2.2 � Description of the instrument

We requested permission from the Ministry of Education in order to conduct the study. 
Participants’ parents gave their consent, and teachers agreed to administer the instrument 
according to the researchers’ instructions. The tasks included in the instrument were 
chosen after the researchers’ careful examination of the curriculum and after completing 
the content analysis of the mathematics textbooks presented previously. Our aim was 
to use tasks relevant to perceptual, operative, and discursive apprehension. We used 
tasks from our previous studies and modified them in order to fit the educational level 
of the participants (Deliyianni et al., 2010; Elia et al., 2009). The final paper and pencil 
instrument was administered by the mathematics teachers at each school. The teachers did 
not intervene during the solution of the tasks, and the duration was 80 min.

The instrument consisted of ten tasks examining perceptual (first group of tasks), 
operative (second group), and discursive (third group) apprehension. We present one task 
for each of the three modes of apprehension in order to explain how we score students’ 
responses (see all the tasks in the supplementary materials). The first group consisted of 
two tasks examining students’ perceptual apprehension (PE) that is students’ ability to dis-
criminate, recognize, and name several subfigures in a complex figure. In task 1 (PE1), 
students were asked to identify the type of subfigures in the given figures. In task 2 (PE2), 
students were asked to identify and then name each square they recognize in the given 
figure (Fig. 4). For PE2, students identifying and naming correctly all squares (the seven 
squares HUST, UIKS, SKLM, TSMN, FXRS, SRPO, and HILN) were given a score of 1. 
Students identifying any number of false squares and giving a wrong total number were 
given a score of 0.

The second group of tasks consisted of four tasks that were expected to examine 
students’ operative apprehension of the geometrical figure. These tasks tested students’ 
ability to modify a geometrical figure, because figure reconfiguration was needed for their 
solution. In task 1 (OP1, see supplementary material), students were asked to compare 
the area of figures A and B. A reconfiguration of figure B, and the realization that by 
cutting its left part and moving it to the right, a rectangle similar to figure A is formed, 
led to the expected solution. Two different types of responses were identified, indicating 
different types of apprehension: when a student used the strategy of counting to find the 
answer, perceptual apprehension was activated, whereas when a student added some new 
lines to the figure, the operative approach was activated, since this strategy involved figure 
modification.

Look at the figure carefully and answer the questions: 

1. How many squares can you distinguish in the figure? 

2. Name the squares in the given figure.

Fig. 4   Task examining students’ perceptual apprehension (PE2)
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In task 2 (OP2), students were asked to find the length of the missing side of the rec-
tangle, using the idea that the area of the rectangle is equal to the area of the trapezium 
(Fig. 5). Based on students’ solutions, we made assumptions about their way of think-
ing. Students were expected to reconfigure the trapezium pieces into a rectangle and 
solve the task by visualization only, using operative apprehension (OP2op) and without 
the need for formulas or calculations. However, there were students who recognized the 
trapezium as a whole figure, and they solved the task using the formula of the area of 
the trapezium. In this case, we assumed that the solution revealed a discursive perspec-
tive (OP2al), mainly related to an algebraic approach.

In task 3 (OP3), students were asked to compare the perimeter of two figures (see 
supplementary material). In this task, it was anticipated that students would reconfigure 
the pieces by dividing and moving them in order to get two identical figures and then 
check the equivalence of their perimeters. Additionally, there could be students who 
solved the task by “flipping” the small curves mentally.

Task 4 (OP4) of this group includes a rectangle, divided into different subfigures 
(triangles and rectangles) (see supplementary material). In figure ABCD, the diagonal 
AC divides the rectangle into two equal right-angled triangles (ADC and ABC). Each 
of these triangles includes two other right-angled triangles, resulting from the division 
of the two white rectangles shown in figure ABCD respectively. From the triangles 
ADC and ABC, equal parts are subtracted, and thus, rectangle 1 and rectangle 2 
have equal areas. For this solution, operative apprehension was necessary in order to 
discriminate the different reconfigurations and recognize the relations between these 
subfigures.

Next, four tasks examined discursive apprehension. In task DI1, students were asked 
to evaluate a statement related to the length of a segment (NH) and explain their choice 
(see supplementary material). Students’ answers were considered correct when a correct 
proof that NH = MH was given. In task DI2, students were given information about sub-
figures that were included in a whole figure and had to prove that three sides (AC, LF, 
and FG) were equal. Thus, students were expected to make an inference, based on the 
properties of the geometrical figures.

In task DI3, students were expected to make an inference using Thales’ theorem and 
prove the statement by explaining that the segment that joins two midpoints is paral-
lel to the opposite segment and equal to its half. In this task, the mathematically cor-
rect answers involved proofs using this theorem with each of the three parallelograms 
(Fig. 6).

The areas of the trapezium and the rectangle are equal. Find the length of the missing side of the 

rectangle and explain your answer. 

3 cm

3 cm

4 cm

3 cm

5 cm 5 cm

4 cm

Fig. 5   Task 2 (OP2) examining students’ operative apprehension
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Task DI4 assesses students’ ability to construct a figure based on data (Fig.  7). 
Students’ success in this task is determined by whether the arc they construct is 
equal to the one given. Although it is a construction task, students are also asked to 
describe the way they constructed the geometrical figure, to ensure that they followed 
a mathematically correct procedure and that they did not draw a random arc. Thus, 
the use of discursive apprehension is necessary for the successful description of the 
construction procedure, as students need to base their answers on a theoretical system of 
reference and give mathematical properties through language.

The initial content validity of the instrument was assessed by two mathematics super-
visors working at the Ministry of Education (holding a PhD) and three mathematics 
teachers (who were teaching in Grades 9, 10, and 11 the previous year). The mathemat-
ics teachers confirmed that the wording of the tasks was clear and that the time partici-
pants would have to complete the instrument was adequate. The two supervisors con-
firmed that the tasks assessed the different types of apprehension we were investigating. 
The reliability of the research instrument can be considered to be satisfactory, as the 
calculation of Cronbach a, after conducting the study, gave a value higher than 0.75 
(Cronbach’s a = 0.803, p < 0.05) (Cronbach, 1990).

There are two methodological limitations of the study. First, even though the 
sample was large, it was not representative of the respective student population at this 
age (almost 18,000 students), as schools and students were not selected randomly. 
However, we are talking about a small country, with a centralized educational system, 
and the results are interpreted in a specific context. The participation of schools which 
indicated a positive disposition toward the aim of the study enables us to assume that 
students probably completed the instrument by putting in the necessary effort. As for 
the second limitation, our analysis was based on participants’ written responses only, 
while cognitive interviews could have revealed the involvement of specific cognitive 
processes. Based on this limitation, a follow-up study could be conducted, characterized 
by a qualitative perspective.

Draw an arc AB with center C, equal to arc MN with center O. Then describe the �gure’s construction.

Fig. 7   Task 4 (DI4) examining students’ discursive apprehension

In the triangle ABC, M, N and P are the midpoints of its 

sides. Prove that the quadrilaterals APMN, BMNP, and 

CNPM are parallelograms.

Fig. 6   Task 3 (DI3) examining students’ discursive apprehension
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3 � Results

In this section, we present the results of the statistical analyses addressing the research 
questions of the study. First, we present the cognitive structure and the respective inter-
relations between the different types of the geometrical figure apprehension model 
examined. Then, we discuss students’ performance in geometrical figure apprehension 
tasks by focusing on the differences in students’ geometrical figure apprehension in 
lower and upper secondary school.

3.1 � Cognitive structure and the respective interrelations between the different 
types of geometrical figure apprehension

The examination of the structure of geometrical figure apprehension was conducted by 
using the confirmatory factor analysis, through the use of structural equation modeling. The 
tenability of the models for the sample in total and the different grades were determined by 
using the accepted measures of goodness of fit: χ2/df < 2, CFI > 0.90, and RMSEA < 0.06 
(Kline, 1998). Three models were tested in order to ensure that the theoretical model fits 
the data better than other models: the first-order factor structure of geometrical figure 
apprehension was first investigated in order to confirm that all the variables do load on only 
one first-order factor associated with all the tasks. This model tests the assumption that a 
single source of variance is sufficient to account for performance on all tasks addressed 
to the participants of the research. The fit of this model was poor [χ2(34) = 7.156, 
CFI = 0.852, RMSEA = 0.32].

Then, the theoretical model about the structure of geometrical figure apprehension was 
examined for the total sample and the three grades independently (Fig. 8). A chi-squared 
difference test indicated a significant improvement in fit between the first (with all the vari-
ables loaded on one factor) and the second model (Δχ2(7) = 21.401, p < 0.05) due to the 
second-order factor. The first first-order factor included the two perceptual apprehension 
tasks in which students were asked to recognize and name geometrical figures that were 

PE = perceptual apprehension, 

OP = operative apprehension, 

DI = discursive apprehension, 

GFA= geometrical figure apprehension. 

The number indicates a different task

GFA

PE OP DI

PE2PE1 OP1 OP2op OP4

.814

.885 

.848
.734 
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.744 
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Fig. 8   The structural model of geometrical figure apprehension
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included in a geometrical figure (PE1 and PE2). The second first-order factor consisted of 
tasks (OP1, OP2op, OP3, and OP4) that examined students’ operative apprehension of a 
geometrical figure. The third group of tasks examined students’ discursive apprehension 
(OP2al, DI1, DI2, DI3, and DI4). These three first-order factors corresponded to percep-
tual, operative, and discursive apprehension respectively and were regressed on the sec-
ond-order factor standing for geometrical figure apprehension. The fit of the model was 
acceptable in all cases [Grade 9: χ2(27) = 52.741, CFI = 0.972, RMSEA = 0.25; Grade 10: 
χ2(27) = 49.221, CFI = 0.984, RMSEA = 0.27; Grade 11: χ2(27) = 51.506, CFI = 0.956, 
RMSEA = 0.31]. The instrument seems to distinguish between three types of geometrical 
figure apprehension.

In the last model (Fig. 9), the majority of the loadings of the observed variables on the 
first-order factors are higher for the upper secondary school students, especially for Grade 
11. It is also noteworthy that some loadings of the first-order factors on the second-order 
factor are higher in the group of the upper school students (Grades 10 and 11) suggesting 
that the specific structural organization potency increases across the two educational levels 
(the loadings of OP on geometrical figure apprehension are lower than 0.800, and the load-
ings of DI on GFA are lower than 0.900 only in the case of Grade 9). More importantly, 
the loadings are higher in Grade 10 than in Grade 11 indicating that the model fits better at 
this age.

In a third model, we examined the interrelations among the three first-order factors 
(Fig. 10). As it was expected, the fit of the model was acceptable [Grade 9: χ2(30) = 51.201, 
CFI = 0.973, RMSEA = 0.27; Grade 10: χ2(30) = 48.153, CFI = 0.982, RMSEA = 0.26; 
Grade 11: χ2(30) = 55.127, CFI = 0.964, RMSEA = 0.35]. Two extremely high and statisti-
cally significant interrelations were found: (a) between perceptual and operative apprehen-
sion and (b) between perceptual and discursive apprehension. This phenomenon could have 
two possible explanations: the instrument’s tasks involved different types of apprehension 
at the same time (it is rejected due to the lack of good fit in the case of a one-factor model) 
or students with high operative apprehension are students who also show high perceptual 
apprehension (while the relation with discursive apprehension is not so strong). It seems 
that perceptual apprehension has a predominant role among the other two types of geomet-
ric apprehension. The interrelations between operative and discursive apprehension were 
not so strong, indicating that there are students who have high performance in operative 
tasks and lower performance in discursive tasks, and vice versa.

PE = perceptual apprehension, 

OP = operative apprehension, 

DI = discursive apprehension. 

The number indicates a different task
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Fig. 9   Interrelations among the three first-order factors for the total sample and the three grades
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3.2 � Lower and upper secondary school students’ performance in geometrical figure 
apprehension tasks

The interrelations between the types of apprehension in the different grades 
indicated that there were differences which could be further examined through the 
use of descriptive analysis. In order to be able to further analyze the different types 
of understanding among the three grades, we calculate the mean performance and 
the standard deviations of the three main apprehension types which were confirmed 
previously (Table 1).

An analysis of variance (ANOVA), using Scheffe’s test, revealed that in the case 
of perceptual apprehension (F2,879 = 17.888, p < 0.05) and operative apprehension 
(F2,879 = 18.497, p < 0.05), there were statistically significant differences between the 
participants’ scores in Grade 9 and the two other grades. In the case of the mean scores 
in discursive apprehension (F2,779 = 14.625, p < 0.05), there were statistically significant 
differences between all grades. As it is obvious in Fig. 10, there is an increase from the 
lower to the upper secondary grades, especially in perceptual and operative apprehension, 
which seems to stabilize in upper secondary education. The scores in the discursive 
apprehension tasks have a continuing increase, despite the means being low.

Because the discursive apprehension scores are the lowest across the three grades, 
we suggest that discursive apprehension requires a higher-order cognitive process. 
By using cluster analysis, we divided participants into three groups based on their 
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Fig.10   Mean scores of the three groups in the three types of apprehension

Table 1   Mean performance and 
the standard deviations of the 
three types of apprehension by 
grades

Grade 9 Grade 10 Grade 11

Mean SD Mean SD Mean SD

Perceptual 0.28 0.13 0.44 0.22 0.45 0.18
Operative 0.44 0.18 0.52 0.23 0.56 0.17
Discursive 0.23 0.15 0.29 0.14 0.35 0.21
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performance in the discursive apprehension tasks. In the low-performance category, 
there were 245 participants; in the medium-performance category, there were 439 
participants; and in the high-performance category, there were 197 participants. The 
mean performance of students with low, medium, and high discursive apprehension 
in perceptual and operative apprehension is presented in Fig. 11. The differences were 
statistically significant between all the groups in the case of perceptual apprehension 
(F2,779 = 54.443, p < 0.05) and the operative apprehension (F2,779 = 56.663, p < 0.05). 
Students with high scores in discursive apprehension have high scores in both perceptual 
and operative apprehension. In contrast, students with low or medium discursive 
apprehension scores have lower scores in perceptual than in operative apprehension. 
This confirms the previous finding that there are students with high scores in operative 
and low scores in perceptual tasks.

We pursued a similar analysis in order to investigate differences by grade. In lower 
secondary education (Grade 9), the differences concerning perceptual apprehension 
were statistically significant between all three groups (F2,311 = 20.271, p < 0.05). 
Similarly, in upper secondary education (Grade 10), the differences were statistically 
significant between all the groups (F2,303 = 9.107, p < 0.05). As far as operative 
apprehension is concerned, statistically significant differences were found between 
the group with low scores in discursive apprehension and the two other groups 
(with medium and high scores) (F2,311 = 16.495, p < 0.05). Finally, in Grade 11, the 
differences were statistically significant between all the groups (F2,264 = 20.983, 
p < 0.05), both in perceptual and operative apprehension (F2,264 = 20.923, p < 0.05). 
The scores between the groups with low and medium performance were similar 
(Fig. 12).

Results indicated that, in all cases, students with high scores in discursive apprehension 
are students with high scores in perceptual and operative apprehension and that those types 
of apprehensions are at the same level. However, students with medium or low discursive 
apprehension have higher performance in operative than in perceptual apprehension.
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Fig. 11   Mean scores of the three groups of all participants in perceptual and operative apprehension. 
PE = perceptual apprehension, OP = operative apprehension, DI = discursive apprehension
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4 � Discussion

Geometry is related to various spatial skills, and geometrical problems are usually accom-
panied by figures which have to be understood and used (Gridos et al., 2021). Duval’s cog-
nitive model theorizes processes experienced during figure apprehension which he named 
figure apprehension processes. The present study constitutes an effort to confirm students’ 
geometrical figure apprehension dimensionality via the use of an instrument that assesses 
three different types of apprehension: the perceptual, the operative, and the discursive type. 
This instrument can be used in the future for relating geometrical figure apprehension to 
other cognitive processes. We used the instrument to investigate the possible differences 
in geometrical figure apprehension of students transitioning from lower to upper second-
ary school. The confirmed structure of the instrument is independent of age, although 
there are differences in the loadings of the variables and tasks that highlight its value as a 
research tool. However, it seems to be more stable in Grade 10 (with higher loadings). The 
low means of correct responses in the different types of apprehension tasks confirmed the 
recent results of Karpuz and Atasoy (2019) that the perceptual, discursive, and operative 
types of students’ apprehension can be further improved. In fact, this seems to continue 
after secondary education, as Ramatlapana and Berger (2018) revealed the difficulties of 
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Fig. 12   Mean performance scores in perceptual and operative apprehension of the three age groups (Grades 
9, 10, and 11). PE = perceptual apprehension, OP = operative apprehension, DI = discursive apprehension
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prospective mathematics teachers in connecting visualization and reasoning, because of 
their weak perceptual and discursive apprehension. The present study indicated interrela-
tions between the different types of geometrical figure apprehensions, without examining 
any relations of causality which could lead to specific teaching interventions. This could be 
the main purpose of a follow-up study which will further enrich the respective theoretical 
framework.

Three out of the four types of geometrical figure apprehension examined through this 
instrument seemed to corroborate a hierarchical level (Fig. 13). Based on Duval’s theory, 
in order for any drawing to act as a geometrical figure, it must provoke perceptual appre-
hension and at least one of the other types of apprehension. However, on its own, percep-
tual apprehension is not a predictor of the other types of apprehension. Students with high 
scores in discursive apprehension have at the same time similar and high scores in percep-
tual and operative apprehension. On the contrary, students with low scores in discursive 
apprehension have lower scores in perceptual tasks than in operative tasks. This finding 
underlines the predominant role of discursive tasks in order to ensure the success of the 
other types of geometric apprehension and probably the didactic emphasis which has to be 
given to the specific type of apprehension. It seems to contrast with the teaching practice 
of emphasizing the use of perceptual apprehension examples and tasks, with respect to 
Michael’s (2013) textbook analysis.

At the perceptual apprehension level, according to Duval’s theory, information 
about the geometric elements of a figure can be obtained at first glance, and this first 
impression is what leads to either a correct or a wrong solution. This level is assumed to 
be a prerequisite for operative apprehension tasks which ask for either a decomposition 
of a given geometric figure or the concentration on some parts of a figure independently 
of position or direction. Discursive apprehension presupposes the presence of perceptual 
apprehension. In the tasks of the perceptual and operational factors, there is evidently the 
common element of perceptual apprehension. However, this is not sufficient for solving 
the three tasks of the operational apprehension level. Additionally, in the first task of the 
trapezium (OP1), additional mental or design movement of one triangle is required so 
that the figure is transformed into its equivalent rectangle. In the second task (OP2), it 
additionally requires the mental rotation or the redesign of the curves of the second figure 
so that it becomes apparent that there is equality of perimeters. Finally, in the third figure 
(OP3), a mereological approach is required, namely, the removal of equivalent shapes from 
other equivalent shapes in order to obtain the desired result.

Students’ scores in the different types of geometrical apprehension tasks allow for 
an interpretation relative to Houdement and Kuzniak’s (2003) theoretical framework by 
defining the types of geometry in which students’ work is situated. Our results indicate 
that three levels of geometrical skills can be determined as described in Table 2. There is 
a relation between the different clusters of students and school grades (9, 10, and 11). We 
expect many students to be fluent in recognizing and naming figures and in decomposing 

Fig. 13   The hierarchical levels of 
geometrical figure apprehension discursive

opera�ve

perceptual 
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a given figure (mereological apprehension), while few of them will properly relate their 
theoretical geometrical knowledge and reach a formal proof, under the control of the 
discursive figure apprehension. We expect that students with high scores in geometric 
apprehension tasks are mostly Grade 11 students. In the second cluster, we expect students 
with the lowest scores in perceptual recognition. They are not restrained to what the eye 
captures at the first glance of a figure, and the system of reference does not always seem 
to be necessary. Thus, it seems that students with low perceptual figure apprehension will 
show moderate ability in solving geometrical problems. We expect that Grades 9 and 10 
students belong to this second group. Finally, in the third group, we expect students with a 
weak perceptual figure apprehension. A prerequisite for a drawing to function as a figure is 
perceptual apprehension, and the students with low scores will show low ability in solving 
geometrical problems and low perception, visualization, and discursive processes. As 
Kuzniak and Rauscher (2011) claim, students’ work is mostly produced using arguments 
based on perception. Overall, the transition from lower to upper secondary education 
seems to be related to a progression from Natural Geometry GI toward Natural Axiomatic 
Geometry GII.

5 � Conclusion

The present study is exploratory; we plan to replicate the findings after conducting cognitive 
interviews so as to investigate the cognitive load of the different processes used. Second-
ary education curricula need to include activities that develop students’ figure apprehension 
processes in order to help them understand and construct geometrical proofs. Geometrical 
tasks addressing different types of apprehension need to be included on purpose taking into 
consideration students’ difficulties with each type of geometric apprehension during differ-
ent secondary school ages. The instrument which was conducted in the present study can be 
used in other studies in order to confirm the structure of the geometric figure apprehension 
at the specific ages, identify causal relations, and then intervene didactically by accepting 
those different forms of apprehension with the aim to improve the related students’ geo-
metrical performance. The possible hierarchical structure of figure apprehension reveals the 
necessity to study further the curriculum in order to examine the degree of identification. 
A future study can focus on other characteristics of students, teachers, and schools such as 
gender, learning or cognitive style, teaching style, and type of school.
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