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Abstract
Using a mixed methods approach, we explore a relationship between students’ graph rea‑
soning and graph selection via a fully online assessment. Our population includes 673 
students enrolled in college algebra, an introductory undergraduate mathematics course, 
across four U.S. postsecondary institutions. The assessment is accessible on computers, 
tablets, and mobile phones. There are six items; for each, students are to view a video ani‑
mation of a dynamic situation (e.g., a toy car moving along a square track), declare their 
understanding of the situation, select a Cartesian graph to represent a relationship between 
given attributes in the situation, and enter text to explain their graph choice. To theorize 
students’ graph reasoning, we draw on Thompson’s theory of quantitative reasoning, which 
explains students’ conceptions of attributes as being possible to measure. To code students’ 
written responses, we appeal to Johnson and colleagues’ graph reasoning framework, 
which distinguishes students’ quantitative reasoning about one or more attributes capable 
of varying (Covariation, Variation) from students’ reasoning about observable elements 
in a situation (Motion, Iconic). Quantitizing those qualitative codes, we examine connec‑
tions between the latent variables of students’ graph reasoning and graph selection. Using 
structural equation modeling, we report a significant finding: Students’ graph reasoning 
explains 40% of the variance in their graph selection (standardized regression weight is 
0.64, p < 0.001). Furthermore, our results demonstrate that students’ quantitative forms of 
graph reasoning (i.e., variational and covariational reasoning) influence the accuracy of 
their graph selection.

Keywords Quantitative reasoning · Graphs · Structural equation modeling · Mixed 
methods · College algebra · Covariation · Variation · Qualitative analysis

By conducting studies that employ quantitative methods, mathematics education research‑
ers can test hypotheses generated from smaller scale studies, and thereby work to engender 
systemic change (Kilpatrick, 2001). Developing and validating assessments, researchers 
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have tested hypotheses related to students’ whole number multiplicative reasoning (Kosko, 
2019; Tzur et al., 2022), and students’ and teachers’ fractional (Izsák et al., 2019; Norton 
& Wilkins, 2009; Pantziara & Philippou, 2012) and covariational reasoning (Carlson et al., 
2010; Thompson et al., 2017). With this mixed methods study, we expand these efforts to 
examine undergraduate students’ graph reasoning, with a focus on quantitative and covari‑
ational reasoning (Carlson et  al., 2002; Thompson, 1994, 2022; Thompson & Carlson, 
2017). The purpose of our study is to propose and test a conceptual model relating stu‑
dents’ graph reasoning and graph selection on a fully online assessment.

Bakker et al. (2021) have identified online assessment as a research challenge deserving 
further attention in mathematics education. Our study addresses this challenge, investigat‑
ing an understudied population, U.S. college algebra students. College algebra is one of the 
earliest credit‑bearing U.S. undergraduate mathematics courses. It is notorious for being 
packed with content (Gordon, 2008), and many course textbooks emphasize the appli‑
cation of procedures over concept development (Mesa et al., 2012). Not only are graphs 
central to college algebra, the value of graph reasoning extends beyond school mathemat‑
ics, to include interpretation of trends of change and variation depicted in graphs in the 
news media. In smaller scale qualitative studies, researchers have examined students’ graph 
reasoning, spanning middle, secondary, advanced undergraduate students, and preservice 
mathematics teachers (e.g., Carlson et  al., 2002; Ellis et  al., 2016; Johnson et  al., 2020; 
Moore et  al., 2019b). Using an online assessment, we examine early undergraduate stu‑
dents’ graph reasoning and draw connections to their graph selection.

We have developed and validated a fully online measure of students’ graph selec‑
tion and reasoning for dynamic situations (MGSRDS) (Johnson et  al., 2018, 2021). By 
“dynamic situations,” we mean situations in which some object is changing, such as a toy 
car moving along a square track. The six‑item MGSRDS contains video animations of situ‑
ations, followed by a set of graph choices and a text box to explain the graph choice. By 
“graph reasoning,” we mean people’s reasoning regarding the sketching and/or interpreting 
of graphs; for our purposes, we focus on Cartesian graphs. To operationalize the construct 
of graph reasoning, we use the framework from Johnson et al. (2020), which distinguishes 
students’ quantitative reasoning about one or more attributes capable of varying from stu‑
dents’ reasoning about observable elements in a situation. By “graph selection,” we mean 
the process of choosing a graph given a fixed set of options. Students’ graph choices and 
text responses on the MGSRDS serve as observable indicators for the larger constructs of 
graph selection and graph reasoning.

Our large sample size (n = 673) allows for the use of rigorous statistical techniques, such 
as structural equation modeling (SEM). SEM is a regression‑based technique that allows 
researchers to analyze the correlational and predictive nature of latent variables, which 
are not directly observable (Byrne, 2016). Measurement is key to SEM; assessments that 
undergird researchers’ use of SEM need to be valid and reliable measures of the constructs 
in their model. Using SEM, researchers can confirm and/or modify a conceptual model 
relating different variables, representing constructs grounded in theoretical and empiri‑
cal research (Kline, 2023). It is a valuable technique to explore relationships that may be 
assumed (e.g., it may seem predictable for there to be a relationship between graph reason‑
ing and selection), but not strongly supported with statistical models.

Our research question is: To what extent does evidence of students’ graph reasoning 
relate to the accuracy of their graph selection? Two research hypotheses underlie this 
question. The first is broad: Students’ graph reasoning will influence the accuracy of their 
graph selection on the MGSRDS. To test the first hypothesis, we use SEM. The second 
is more specific: Students’ quantitative graph reasoning (i.e., variational and covariational 
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reasoning) will relate to more accurate graph selections. To test the second hypothesis, we 
use chi‑square tests of independence.

To organize this article, we begin with theoretical and conceptual background to under‑
gird our conceptual model. Next, we address the design and validation of the MGSRDS, to 
explain how we measure the constructs of graph reasoning and graph selection. Then we 
describe our methods and results, reporting significant findings for both research hypoth‑
eses. We conclude with discussion and implications.

1  Theoretical and conceptual background

Thompson’s theory of quantitative reasoning (Thompson, 1994, 2022; Thompson & Carl‑
son, 2017) explains quantities in terms of students’ conceptions of attributes as being pos‑
sible to measure. For example, a student may conceive of a toy car’s distance traveled along 
a square track as something possible to measure. Per Thompson’s theory, conceiving of 
some attribute as a quantity is not the same as finding amounts of measure of that attribute. 
For example, students may imagine the toy car leaving a trail of dust as it moves along and 
conceive of the car’s total distance traveled as the length of that trail (see also Frank, 2017). 
Hence, students can engage in quantitative reasoning even if they do not actually measure 
some attribute of an object. Through quantitative reasoning, students mathematize attrib‑
utes (Johnson, 2022), and can sketch or select graphs to represent relationships between 
those attributes.

1.1  Students’ graph reasoning

Decades ago, researchers identified two early conceptions that students may have for graphs 
that represent attributes in dynamic situations (Clement, 1989; Kerslake, 1977; Leinhardt 
et al., 1990). One was that graphs represent an iconic interpretation of a physical situation 
(Clement, 1989; Leinhardt et al., 1990). For example, a student might expect a graph of a 
Ferris wheel situation to look round like the Ferris wheel itself. Another was that graphs 
would represent the physical motion in a dynamic situation (Kerslake, 1977). For example, 
a student might expect a graph representing a person’s bike trip to show the literal path 
that the person rode. While both conceptions reflected students’ attempts to make sense of 
graphs, the physical constraints imposed did not necessarily align with the structure of the 
Cartesian coordinate system, in which graphs could look quite different from objects or 
motion in a physical situation (see also Lee et al., 2020).

Working within the Cartesian coordinate system, students can distinguish attributes of 
physical objects represented in dynamic situations (e.g., a toy car’s distance from a station‑
ary object) and conceive of how they may measure those attributes and how those attrib‑
utes may vary. Variational reasoning refers to students’ conceptions of variation in a single 
attribute (Thompson & Carlson, 2017). For example, a student may conceive of how the 
height of a Ferris wheel cart can increase and decrease during a revolution of the wheel. 
Covariational reasoning refers to students’ conceptions of relationships between attrib‑
utes that they conceive to be possible to measure and capable of varying (Carlson et al., 
2002; Thompson & Carlson, 2017). For example, a student may conceive of a relation‑
ship between the height of a Ferris wheel cart from the ground and the total distance the 
cart travels in one revolution of the wheel. Thompson and Carlson (2017) have posited 
frameworks identifying levels in students’ variational and covariational reasoning. Gross 
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variation and gross coordination of values are two early levels in each framework. With 
gross variation, students can conceive of the direction of change in an attribute (e.g., height 
increases, then decreases). With gross coordination of values, students can conceive of a 
loose relationship between the direction of change in attributes (e.g., height increases and 
decreases while distance continues to increase). When we refer to variational or covari‑
ational reasoning, we mean there is evidence of at least gross variation or gross coordina‑
tion of values.

Distinguishing attributes of objects could help students to sketch and interpret graphs, 
and to make sense of why graphs often have observable differences from physical features 
or motion in a dynamic situation (Johnson et  al., 2020). To characterize students’ graph 
reasoning, Johnson et al. (2020) put forward a framework, laying out four forms of graph 
reasoning for dynamic situations: Covariation, Variation, Motion, and Iconic. Covariation 
and Variation referred to at least a gross coordination of values or gross variation in an 
attribute, per Thompson and Carlson’s (2017) frameworks. Covariation indicated reasoning 
in terms of relationships between quantities (e.g., a graph represents a relationship between 
height and distance). Variation indicated reasoning in terms of single quantities (e.g., a 
“height” graph), with experiential time (Thompson & Carlson, 2017) as an implicit vari‑
able. Motion and Iconic referred to the physical movement (Kerslake, 1977) or physical 
features (Clement, 1989; Leinhardt et al., 1990) in a situation. Motion indicated reasoning 
such that graphs resemble an object’s physical movement in a dynamic situation (e.g., a 
graph shows a path of a moving object). Iconic indicated reasoning such that graphs resem‑
ble physical objects or observable attributes of those objects (e.g., if an object is curved, 
then a graph associated with that object also would curve). The framework represented 
a range of graph reasoning, distinguishing students’ quantitative reasoning about one or 
more attributes capable of varying (Covariation, Variation) from students’ reasoning about 
observable elements in a situation (Motion, Iconic).

1.2  Students’ graph selection

On a task or assessment, students can engage in graph selection when they are faced with 
a fixed set of options from which to choose. The result of students’ graph selection is the 
option that students pick, which an outside observer or instructor may deem to be correct 
or incorrect. Yet, graph selection contains processes that can be unobservable. Students 
may have preconceived notions about what a graph “should” look like, based on their own 
encounters with graphs in school or other media (Johnson et al., 2020). For instance, stu‑
dents may expect graphs to follow conventions to which they are accustomed (see also 
Moore et al., 2014; Moore et al., 2019a), even if the conventions are tacit for the students. 
Furthermore, students may eliminate graph options prior to selecting a single graph. In 
addition, students may not think any graph in a given set of choices is viable, but are forced 
to opt for one. The result of students’ graph selection (i.e., their final answer) does not 
reveal the fuller process. Hence, we treat graph selection as a latent construct, including 
unobservable processes that contribute to an observable answer choice.

1.3  Relating students’ graph selection and graph reasoning

Previously, researchers drew connections between undergraduate students’ graph selection 
and their covariational reasoning. The Precalculus Concept Assessment (PCA) (Carlson 
et  al., 2010), used to assess students’ calculus readiness, had an intended population of 
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college algebra and precalculus students. The PCA contained a multiple choice graphing 
item, converted from an interview‑based task. Given a static image of a spherical bottle, 
with written instructions to assume the bottle is filling with water at a constant rate, stu‑
dents were to select a graph that best represented a relationship between the height and 
amount of water. There were 5 graph choices, all monotonically increasing; two pairs had 
curved graphs with similar physical features but different concavities, and one graph was 
linear. In a validation study for the PCA, all students who selected the correct graph also 
demonstrated the ability to engage in covariational reasoning. Yet, there was a range of rea‑
soning linked to students’ graph selections.

Given the importance of quantitative and covariational reasoning for students’ concep‑
tions of key mathematical ideas, including function (Thompson & Carlson, 2017), and 
the prevalence of Cartesian graphs in college algebra, we have developed the MGSRDS. 
Because the MGSRDS is fully online, it allows for the incorporation of digital elements. 
In addition to written descriptions of dynamic situations, there are video animations of the 
situations. Furthermore, alongside graph choices, there is a text box for students to explain 
their graph choice. This has allowed us to examine a range of graph reasoning and link that 
reasoning to students’ graph selection in the MGSRDS implementation.

2  The MGSRDS: design and validation

To use SEM, researchers must address issues of measurement, which includes establishing 
validity and reliability for measures of constructs involved (Kline, 2023). Next, we discuss 
the design and validation of the MGSRDS.

2.1  Measure design: assessing students’ graph reasoning and selection

To assess students’ graph reasoning and selection, we use the MGSRDS (Johnson et al., 
2018, 2021). There are six assessment items, each containing a different dynamic situation: 
a turning Ferris wheel, a person walking toward a tree and back, a fishbowl filling with 
water, a toy car moving along a square track, a changing cone expanding and contracting, 
and two insects crawling back and forth along a path. Each item has four parts: a video ani‑
mation depicting the situation, a student declaration of understanding (i.e., Do you under‑
stand this situation?), four graph choices, and a text box to explain the graph choice. The 
MGSRDS is accessible across mobile phones, tablets, and computers (Fig. 1), with each 
assessment item appearing in random order.

Table 1 shows the six assessment items (Ferris Wheel, Nat & Tree, Fishbowl, Chang‑
ing Cone, Toy Car, Ant & Ladybug). For the first five items, one of the attributes varies in 
its direction of change (e.g., increases and decreases), while the other attribute’s direction 
of change stays constant (e.g., only increases), and there is a correct and partially correct 
graph choice (one piecewise linear and one curved). Each partially correct graph choice 
represents gross covariation (Thompson & Carlson, 2017) in the attributes, but does not 
accurately represent a relationship between values of each attribute. To illustrate, on the 
Ferris Wheel item, the cart (represented by the small red dot, Table 1, upper left) moves 
counterclockwise for one revolution. Both graphs B (piecewise linear) and D (curved) rep‑
resent gross covariation in the attributes (i.e., the cart’s distance from the ground increases, 
decreases, then increases, while the cart’s total distance traveled continues to increase). 
However, given a small change in distance, the associated amounts of height are greater 



392 H. L. Johnson et al.

1 3

near the rightmost edge of the wheel and less near the top of the wheel. Hence, graph D is 
correct, and graph B is partially correct. The Ant & Ladybug item differs from the first five 
items; both attributes vary in their direction of change (i.e., both insects’ distances from 
home increase and decrease), and there is no partially correct graph choice.

For each item, graph choices come in related pairs. For the first five items in Table 1, 
there are two piecewise linear graphs followed by two curved graphs. For the Ant & 

Fig. 1  Changing Cone item, optimized for computers/tablets (left) and mobile phones (right)

Table 1  MGSRDS assessment items, directions, and graph choices
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Ladybug item, there are two monotonic linear graphs followed by two piecewise linear 
graphs. This design move of paired graph choices shares similarities with graph choices 
on the PCA filling bottle item (Carlson et  al., 2010). Across the MGSRDS items, the 
correct and partially correct choices span graphs A‑D. Furthermore, to engender stu‑
dents’ conceptions of change in progress, which Castillo‑Garsow et  al. (2013) call 
smooth images of change, none of the graph choices includes numerical amounts on the 
axes.

Theoretical considerations included whether objects in the situations (or observ‑
able attributes of those objects) resembled graphs (or portions of graphs) in the set of 
graph choices (see Johnson et al., 2020). Across the items, correct and partially correct 
graph choices never resembled the objects themselves, to guard against iconic reason‑
ing leading to a correct graph choice (e.g., The incorrect graph A in the Changing Cone 
item resembles the cone itself.). For three items (Ferris Wheel, Nat & Tree, Fishbowl), 
portions of the correct graphs shared similarities with observable attributes of objects 
in the situations. The Ferris wheel and fishbowl had curved portions, like the correct 
graphs, and Nat’s path was straight, like the correct graph. These items included uncon‑
ventional graphs (see Moore et  al., 2014; Moore et  al., 2019a) as all or some of the 
graph choices, to guard against students selecting a correct graph just because it looked 
familiar. In each, the attribute whose direction of change was constant (e.g., distance 
traveled) was represented on the vertical axis, which contrasted with typical graphs rep‑
resenting elapsing time on the horizontal axis. For the Changing Cone and Toy Car 
items, the correct graphs did not share similarities with observable attributes of objects 
in the situations. The changing cone and the toy car’s track had no curved portions, but 
the correct graphs were curved. These items included more conventional graphs, with 
the attribute whose direction of change was constant (e.g., diameter) being represented 
on the horizontal axis.

Theoretical considerations also included whether graph choices represented the physical 
movement and/or locations of objects in the animation (see Johnson et al., 2020), which is 
not a necessary feature of the Cartesian coordinate system. For the Nat & Tree item, the 
turning point on the two incorrect graphs (B and D) occurred in the right hand portion 
of the coordinate plane, similar to the location of the tree in the animation. However, if 
Nat were to move toward the tree, Nat’s distance from the tree would shrink, not grow, as 
represented by graphs B and D. For the Ant & Ladybug item, the insects moved back and 
forth along straight paths, yet the correct graph was a single line segment. Furthermore, 
the incorrect graphs C and D showed “out and back” portions, like the insects that moved 
toward and away from home.

We view our theoretical considerations to share some overlap with students’ spatial con‑
ceptions of coordinate systems (Lee et al., 2020; Paoletti et al., 2022), in which students 
conceive of coordinate systems as representing the physical space in which phenomena 
occur. For example, imagine coordinate systems overlaid on the dynamic situations shown 
in Table 1. For the Nat & Tree item, the lower right portion of the incorrect graph B resem‑
bles Nat’s path to the tree. Furthermore, like Paoletti et al. (2022) contend, we assume that 
there is not necessarily a one‑to‑one correspondence between a particular graph and a form 
of student’s graph reasoning. Therefore, while we anticipate that particular graph choices 
likely associate with certain forms of graph reasoning (e.g., Students engaging in iconic 
reasoning seem more likely to select the incorrect graph D for the Fishbowl because it 
resembles the contour of the bowl.), we leave room for different possibilities.
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2.2  Establishing validity and reliability of the MGSRDS: setting the stage for SEM

Following Devellis’ (2003) process, we established validity and reliability for the 
MGSRDS (Donovan et al., accepted). Our steps included field administration, explora‑
tory factor analysis, and Rasch modeling. We showed content validity through analysis 
of individual student interviews (n = 31) conducted via videoconference, with Johnson 
serving as the interviewer (Johnson et  al., 2021). During the interviews, each student 
worked on the MGSRDS and talked about their thinking. A graduate research assistant 
(GRA) attended each interview to observe and take field notes and later produced ver‑
batim transcripts. Through exploratory factor analysis (Comrey & Lee, 1992), we con‑
firmed the validity of the internal structure of the MGSRDS. Via Rasch modeling (Bond 
& Fox, 2001), we gathered evidence to support valid and reliable scales of students’ 
graph reasoning, graph selection, and item difficulty.

Table 2 shows the five graph reasoning codes used for qualitative analysis: Covaria‑
tion (COV), Variation (VAR), Motion (MO), Iconic (IC), and Limited Evidence (LE). 
The first four codes align with the graph reasoning framework from Johnson et  al. 
(2020). The fifth code describes responses providing limited evidence of reasoning. For 
each, there is a description of the code and a sample response to illustrate.

To show content validity, we gathered evidence that the MGSRDS was measuring the 
intended constructs of graph selection and reasoning. For graph selection, we used the 
correctness of students’ graph choices for each item. For graph reasoning, we conducted 
qualitative analysis of student interviews using the codes in Table 2. This resulted in a 
total of 186 codes (31 students * 6 items/student). We used a consensus coding process, 
which was more time consuming, but supported deeper accuracy (Olson et al., 2016). 
First, Johnson coded students’ reasoning on each item. Then, to guard against expecta‑
tion bias, two GRAs also independently coded students’ reasoning on each item. After 
independent coding, the team met to calibrate codes and come to agreement.

Conducting Rasch modeling (Bond & Fox, 2001), we tested the theoretical order‑
ing of the graph reasoning framework from Johnson et al. (2020), the coding for graph 
selection, and the item difficulty levels (Donovan et al., accepted). Results showed that 
the graph reasoning codes form a hierarchical scale in the order theoretically proposed 
by Johnson et al. (2020): COV, VAR, MO, and IC. Responses demonstrating LE (e.g., 
“Makes the most sense to me”) worked well as a zero code to form a five code scale. To 
create a graph selection scale, coding for three levels (incorrect/partially correct/cor‑
rect) worked better than coding for two levels only (incorrect/correct). Results showed 
that the graph selection codes (incorrect/partially correct/correct) form a hierarchical 
scale. We organized the items in Table 1 in the order of difficulty level of graph selec‑
tion, with the Ferris Wheel being the easiest to select the correct graph and the Ant & 
Ladybug being the most difficult.

Reliability refers to how consistently a tool or person is being measured; Cronbach’s 
alpha is the standard analysis to explore internal consistency of items for a person’s 
response (Tavakol & Dennick, 2011). The graph selection scale has an alpha of 0.55, 
indicating low reliability. This means that across items, students are selecting a range 
of correct and incorrect graph choices. The graph reasoning scale has an alpha of 0.83, 
indicating strong reliability across a student’s written response and the qualitative rea‑
soning code. By establishing reliability and validity for the MGSRDS, we demonstrate 
the viability of our use of SEM.
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3  Methods

This study is part of a larger, U.S. National Science Foundation‑funded research project 
to promote mathematical reasoning and instructional transformation in college algebra. 
Using mixed methods, we integrate qualitative and quantitative approaches in our design 
and analysis (Tashakkori & Creswell, 2007). Per Leech and Onwuegbuzie’s (2009) typol‑
ogy, our study is a fully mixed, concurrent, equal status design. This means that we mix 
qualitative and quantitative approaches across the research objective, the types of data, the 
data analysis processes, and the inferences drawn from analyses. Figure 2 shows the logic 
model for our study.

3.1  Methodological background: SEM

SEM is based on classical test theory (DeVellis, 2006), where one assumes that a person’s 
observed score (e.g., their written response explaining their reason for selecting a graph) is 
equal to their true score (e.g., their actual graph reasoning) plus error (e.g., the gap between 
what they wrote and their actual reasoning ability). Unlike multiple regression techniques 
that “wash out” such variance by forcing a mean or total score, SEM accounts for variance 
between student responses across items (Kline, 2023). Furthermore, SEM is a rigorous sta‑
tistical technique, requiring a larger sample size than multiple regression models. A benefit 
of structural equation models is that they provide statistical evidence to support the viabil‑
ity of larger, systematic patterns stemming from qualitative studies or smaller quantitative 
studies.

SEM must be grounded in theory, whereas multiple regression and other intermediate 
statistical analysis can explore connections without strongly supported theoretical under‑
pinnings (Kline, 2023). After creating a model based on theory, researchers calculate 
statistics to examine model fit, to ensure that patterns in the data fit the patterns in the 
hypothesized model. If model fit is not satisfactory, researchers then adapt or reevaluate the 
model. A goal of SEM is to provide a model that makes theoretical sense, is as bare‑bones 
as possible, and has an acceptably close correspondence to the data (Kline, 2023).

Fig. 2  Logic model
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3.2  Using SEM to test a conceptual model

Using SEM, we tested a conceptual model relating the constructs of graph reasoning 
and graph selection. For graph reasoning, we used students’ written explanations of why 
they chose a graph as proxies for their reasoning. For graph selection, we used the cor‑
rectness of students’ choices as a proxy for their selection. Drawing on the Johnson et al. 
(2020) framework, we made two hypotheses. First, we hypothesized students’ graph rea‑
soning to influence the accuracy of their graph selection. Second, we hypothesized that 
students who demonstrated quantitative forms of graph reasoning (i.e., covariational 
and variational reasoning) would have greater accuracy in their graph selection.

We grounded our hypotheses in Thompson’s theory of quantitative reasoning 
(Thompson, 1994, 2022; Thompson & Carlson, 2017), as well as results of empirical 
studies investigating participants’ covariational reasoning. Conducting smaller‑scale 
qualitative studies, researchers identified the utility of covariational reasoning for stu‑
dents’ graphing activity, with participants spanning middle grades (e.g., Ellis et  al., 
2016), secondary (e.g., Johnson et  al., 2020), and university students (e.g., Carlson 
et al., 2002; Moore et al., 2019b). In an empirical study, Thompson et al. (2017) asked 
teachers from the U.S. and South Korea (n = 487) to sketch a Cartesian graph to rep‑
resent a relationship between two variables that were varying unsystematically. They 
found strong evidence that teachers’ placement of an initial point on a graph influenced 
their graph’s accuracy. Furthermore, in a validation study for the PCA, Carlson et  al. 
(2010) found that students who selected the correct graph on a bottle problem item also 
were engaging in covariational reasoning. Hence, we viewed our hypotheses to have a 
strong foundation in the literature.

3.3  Data collection, setting, and participants

Our sample included 673 students’ responses to the MGSRDS from students enrolled 
in a college algebra course, across four U.S. postsecondary institutions. At the start 
of the study, each institution was designated as Hispanic Serving, which meant that at 
least 25% of the undergraduate population identified as Hispanic or Latino. Further‑
more, at least 45% of undergraduate students at each institution identified as students 
of color. The courses varied in meeting times and delivery methods (in person, remote 
synchronous via video conference, and online asynchronous), in part due to the global 
pandemic. We collected responses throughout four consecutive fall and spring semes‑
ters (Fall 2020, Spring 2021, Fall 2021, Spring 2022). To facilitate data collection, the 
project team developed an online module that instructors could include in their course 
learning management system. The module included a video introducing the research 
project, a video describing the MGSRDS, and a link for access. Students completed the 
MGSRDS near the end of each semester, either during class or on their own time; indi‑
vidual student demographics were not collected.

3.4  Qualitative analysis: coding students’ written explanations and graph choices

As we had done when establishing the validity and reliability of the MGSRDS, we used 
consensus coding (Olson et  al., 2016) for graph reasoning, with three GRAs working 
together under Johnson’s supervision. GRAs began by familiarizing themselves with 
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each form of graph reasoning in the Johnson et al., (2020 framework), along with sam‑
ple student responses evidencing each form of reasoning. Given identical sample data 
sets, individual GRAs coded using a priori codes in Table 2. Next, all three GRAs met 
to discuss their codes, taking reflective notes to capture their questions and insights, 
then meeting with Johnson to calibrate their codes. After training, analysis occurred in 
four rounds, with coding occurring after each semester of administration. Two GRAs 
coded each written explanation, and after coding they met to calibrate any codes for 
which they disagreed. If they could not agree, they brought in a third GRA, or as a last 
step, consulted Johnson to resolve the disagreement. Hence, the consensus coding pro‑
cess yielded 100% interrater agreement for the set of 4038 responses (673 students * 6 
responses/student).

GRAs coded students’ graph choices along three categories: correct, partially correct, 
and incorrect (see Table  1), based on their multiple choice response. To guard against 
potential bias in coding, we used spreadsheets that separated students’ graph selection 
from their graph reasoning. After coding was complete, we linked students’ graph selection 
codes to their graph reasoning codes to examine patterns in responses.

3.5  Quantitative analysis: scoring the MGSRDS, conducting SEM

To address our first hypothesis, we conducted SEM. To prepare the data set, we quan‑
titized (Sandelowski et al., 2009) qualitative codes for students’ graph reasoning and selec‑
tion. For graph reasoning, we used the five‑point scale shown in Table 2 (4‑COV, 3‑VAR, 
2‑MO, 1‑IC, 0‑LE). For graph selection, we used a three‑point scale (2‑correct, 1‑partially 
correct, 0‑incorrect).

Power analysis revealed that a minimum of 200 was required to detect a small effect 
size; hence our sample size (n = 673) was sufficiently large. Using IBM SPSS AMOS 27 
(IBM Corp., 2020) with raw scores, we assessed model fit with three statistics: Chi‑square 
goodness of fit, the Comparative Fit Index (CFI), and the Root Mean Square Error of 
Approximation (RMSEA). With the CFI, we estimated the relative fit of the model in com‑
parison to a null baseline model of uncorrelated variables. CFI values should range from 
0–1 with values of 0.90 and above being sufficient evidence of good fit (Bentler & Bonett, 
1980). With the RMSEA, we examined absolute fit, which considers how far our concep‑
tual model is from the ideal, with values of 0.08 and below being acceptable fit (Browne 
& Cudeck, 1992). After assessing model fit, we examined whether assessment items con‑
tributed to the intended constructs of graph reasoning and graph selection. To verify, items 
should contribute at values of 0.30 or above, with higher values indicating stronger contri‑
butions (Leech et al., 2014).

3.6  Quantitative and qualitative analysis: integrated meta‑inferences

To address our second hypothesis, we examined what the qualitative and quantitative 
data analyses could indicate when taken together, to develop integrated meta‑inferences 
(Tashakkori et al., 2020). SEM addressed high level, systematic patterns in the data (i.e., 
treating graph reasoning and selection as holistic constructs). To explore specific patterns 
in students’ graph reasoning and selection on each item (e.g., COV + correct, COV + par‑
tially correct, COV + incorrect), we conducted six chi‑square tests of independence. In the 
chi‑square analyses, we examined whether the observed values in the data differed from 
statistical expected values, noted at 95% confidence (Leech et al., 2014). For example, if 
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the observed “COV + correct” values differed from the expected value, we could claim 
that students demonstrating covariational reasoning were more likely to select the correct 
graph than was statistically expected. This allowed us to explore whether different forms 
of students’ graph reasoning on individual items contributed to greater accuracy in graph 
selections. After conducting chi‑square analyses, we reflected on the potential for theory to 
explain our results.

4  Results

4.1  Hypothesis 1: graph reasoning and graph selection: a structural equation 
model

Figure 3 shows our structural equation model. The constructs of graph reasoning and graph 
selection are represented by the circles in the middle. The arrow going from graph reason‑
ing to graph selection indicates the prediction pathway. The rectangles on the left and right 
represent the six MGSRDS items. From graph reasoning and graph selection, the arrows 
extending to each item indicate that each item contributes to each construct.

Fit indices showed that data fit the model well, with χ2 (54) = 75.17, p = 0.03; 
CFI = 0.99; RMSEA = 0.02. The CFI showed evidence of good fit, being well above the 
threshold of 0.90. The RMSEA also showed evidence of good fit, being well below the 
threshold of 0.08. Furthermore, the standardized regression weight of the graph reason‑
ing → graph selection pathway was 0.64, p < 0.001. This meant that 40% of the variance in 
the graph selection construct was being explained by the graph reasoning construct. The 
graph reasoning → graph selection pathway statistic of 0.64 (Table 3) showed a moderate 
effect size. Based on the units in this model, a one unit increase on the reasoning scale 
(e.g., MO to VAR) would predict a 0.64 unit increase in accurate graph selection, moving 
almost into the next step on the correctness scale (e.g., from incorrect to partially correct).

Next, we examined each MGSRDS item to determine how items contributed to the 
intended constructs of graph selection and graph reasoning (see Table 3). All items con‑
tributed significantly (p < 0.007) to both constructs.   For graph reasoning, all items contrib‑
uted at values above 0.56. For graph selection, items contributed at somewhat lower values; 
all were below 0.47, and two items (Nat & Tree, Ant & Ladybug) contributed below the 
recommended threshold of 0.30. Per Leech et al. (2014), if items contributed below 0.30 
and were not significant, they might be potential ‘problem items’ that would contribute less 

Fig. 3  Graph reasoning and selection: structural equation model
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to the construct. Although two items contributed to graph selection below 0.30, they both 
were significant. Furthermore, removing them did not improve model fit, so we chose to 
keep all MGSRDS items. Hence, with our SEM analysis, we confirmed our first hypoth‑
esis, that students’ graph reasoning influences their graph selection on the MGSRDS.

4.2  Hypothesis 2: linking graph selection and forms of graph reasoning

Table 4 shows frequencies of students’ graph reasoning and graph selection, pairing each 
graph reasoning code (COV, VAR, MO, IC, LE) with each graph selection code (Cor‑
rect, partially correct, incorrect). Using six chi‑square tests of independence, we examine 
whether the association between graph selection and graph reasoning for each item is sta‑
tistically supported along with which observed values differ from expected values. Five 
items, indicated with asterisks in Table  4, show significant associations (Ferris Wheel: 
χ2 (8) = 50.21, p < 0.001; Fishbowl: χ2 (8) = 31.55, p < 0.001; Toy Car: χ2 (8) = 42.50, 
p < 0.001; Changing Cone: χ2 (8) = 60.17, p < 0.001; Ant & Ladybug: χ2 (4) = 12.87, 
p = 0.01). Notably, those associations include only COV, VAR, and LE reasoning codes.

For the Ferris Wheel, Fishbowl, Toy Car, and Changing Cone items, more LE codes 
associated with incorrect graph selection, and for the Ferris Wheel, Fishbowl, and Chang‑
ing Cone, fewer LE codes associated with correct graph selection. This meant that students 
who demonstrated limited evidence of reasoning were more likely to get these items incor‑
rect (and for the Ferris Wheel, Fishbowl, and Changing Cone, less likely to get the items 
correct). Also, for the Ferris Wheel and Toy Car, fewer LE codes associated with partially 
correct graph selection.

For the Ferris Wheel and Toy Car items, more VAR codes associated with correct graph 
selection, and fewer VAR codes associated with incorrect graph selections. This meant that 
students who demonstrated variational reasoning were more likely to get these items cor‑
rect (and less likely to get these items incorrect). For the Fishbowl, Changing Cone, and 
Ant & Ladybug items, more COV codes associated with correct graph selection, and for 
the Fishbowl and Changing Cone, fewer COV codes associated with incorrect graph selec‑
tion. This meant that students who demonstrated covariational reasoning were more likely 

Table 3  Pathway statistics Pathway Std. Reg. Weight p

Reasoning → Correctness 0.64  < 0.001
Ferris Wheel → Reasoning 0.71  < 0.001
Nat & Tree → Reasoning 0.71  < 0.001
Fishbowl → Reasoning 0.76  < 0.001
Toy Car → Reasoning 0.66  < 0.001
Changing Cone → Reasoning 0.62  < 0.001
Ant & Ladybug → Reasoning 0.56  < 0.001
Ferris Wheel → Correctness 0.35  < 0.001
Nat & Tree → Correctness 0.15 0.006
Fishbowl → Correctness 0.37  < 0.001
Toy Car → Correctness 0.43  < 0.001
Changing Cone → Correctness 0.47  < 0.001
Ant & Ladybug → Correctness 0.29  < 0.001
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to get these items correct (and for the Fishbowl and Changing Cone, less likely to get these 
items incorrect).

Table 4  Frequencies of students’ graph reasoning and selection across MGSRDS assessment items

***p < 0.001, *p < 0.05

Graph Selection

Assessment Item Reasoning Code Correct (2) Partially Cor‑
rect (1)

Incorrect (0) Total

Ferris Wheel (FW)*** COV (4) 85 14 30 129
VAR (3) 99 5 22 126
MO (2) 79 11 41 131
IC (1) 50 4 30 84
LE (0) 86 27 90 203
Total 399 61 213 673

Nat & Tree (NT) COV (4) 56 13 28 97
VAR (3) 71 12 42 125
MO (2) 116 24 94 234
IC (1) 27 7 11 45
LE (0) 70 29 73 172
Total 340 85 248 673

Fishbowl (FB)*** COV (4) 138 55 61 254
VAR (3) 49 31 39 119
MO (2) 20 13 28 61
IC (1) 23 11 13 47
LE (0) 64 42 86 192
Total 294 152 227 673

Changing Cone (CO)*** COV (4) 86 108 62 256
VAR (3) 22 30 20 72
MO (2) 21 30 26 77
IC (1) 11 21 34 66
LE (0) 28 62 112 202
Total 168 251 254 673

Toy Car (TC)*** COV (4) 11 17 14 42
VAR (3) 38 56 34 128
MO (2) 34 102 71 207
IC (1) 13 48 38 99
LE (0) 27 62 108 197
Total 123 285 265 673

Ant & Ladybug (AL)* COV (4) 21 52 73
VAR (3) 3 32 35
MO (2) 59 242 301
IC (1) 10 54 64
LE (0) 25 175 200
Total 118 555 673
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These results confirm our second hypothesis, that students’ quantitative graph reason‑
ing (i.e., variational and covariational reasoning) relates to more accurate graph selections. 
In doing so, we acknowledge nuances with this claim. First, we interpret the association 
between VAR codes and accuracy in graph selection on the Ferris Wheel and Toy Car 
items to indicate that variational reasoning may be sufficient to get these items correct. One 
reason may be that students are thinking of total distance, represented in each of the items, 
as if it were experiential time (Thompson & Carlson, 2017), and hence when they explain 
their reasoning, it seems sufficient just to mention the attribute that is changing direction.

Second, we interpret the design of the Fishbowl and Changing Cone situations to con‑
tribute in part to the association between COV codes and accuracy in graph selection. In 
particular, we consider whether there is an “actor” in the situation that links each of the 
attributes. In the Ferris Wheel, Nat & Tree, Toy Car, and Ant & Ladybug situations, there 
is an actor that can be represented by a single point, to which both attributes are linked. 
For example, in the Ferris Wheel item, the cart (i.e., the “actor”) is represented by a single 
point, and the height from the ground and the total distance traveled are linked to the cart. 
In contrast, for the Fishbowl and Changing Cone situations, there is no actor linking the 
attributes, only the situation itself.

5  Discussion and implications

5.1  Summary and support of hypothesis

At the outset, we asked: To what extent does evidence of students’ graph reasoning relate 
to the accuracy of their graph selection? We confirmed two hypotheses. First, we found that 
students’ graph reasoning significantly influenced their graph selection on the MGSRDS, 
with graph reasoning explaining 40% of the variance in graph selection. Second, we found 
that students’ quantitative graph reasoning (i.e., variational and covariational reasoning) 
related to more accurate graph selections, with significant associations on five MGSRDS 
items.

While we are encouraged that students’ graph reasoning can explain 40% of the vari‑
ance related to the accuracy of their graph selection, we acknowledge that 60% is left unex‑
plained. We provide a few reasons to account for this. The first is the setting itself; while 
students complete the MGSRDS as part of their course, they still may view the assessment 
to be outside the scope of college algebra and may be less invested in their responses. The 
second is our source of data; we use students’ written responses as a proxy for their reason‑
ing. Hence, students may engage in reasoning that their written work may not evidence. 
Third, our findings reveal only COV, VAR, and LE reasoning are associated with accurate 
(or inaccurate) graph selection. Thus, MO and IC reasoning less clearly associate with the 
accuracy of students’ graph selection. An additional framework from a different theoretical 
perspective, such as students’ perceptions of their competence with graphs, may help to 
explain more of the variance.

5.2  Structural equation model: impact of measurement error

Our results highlighted the benefits of latent variable modeling techniques (e.g., Ledgerwood 
& Shrout, 2011). At first, we used Pearson’s correlation to examine a relationship between 
graph selection and graph reasoning, which meant we treated those constructs as observed, 
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rather than latent variables. We found only a small correlation between the observed mean 
scores, r(671) = 0.39, p < 0.001, indicating that only 15% of the variance in graph selection 
was being explained by graph reasoning. We concluded that measurement errors between and 
within items were influencing the relationship. Hence, we needed to treat these constructs as 
latent variables, which required the use of SEM. In our view, a primary source of the meas‑
urement error was due to our use of written responses as a proxy for students’ graph reason‑
ing, because students might be engaging in reasoning not captured by their written responses. 
Furthermore, by design, the MGSRDS forced students to select a graph choice, so given the 
option, students might not have selected any of the graphs as a viable choice. Our results high‑
lighted the utility of latent variable modeling techniques for testing hypotheses generated from 
smaller scale studies of students’ reasoning.

5.3  Implications for design and implementation of graphing tasks

To increase the complexity of graphing tasks, designers could include attributes that both vary 
in their direction of change (i.e., both increase and decrease). Notably, Thompson et al. (2017) 
suggested that such tasks may be best included in small scale teaching experiment studies 
(Steffe & Thompson, 2000). Because students were selecting, rather than sketching graphs on 
the MSGRDS, we decided to include such an item. The difficulty of the Ant & Ladybug item 
illuminated the challenge for students when both attributes vary in their direction of change. 
Despite differences between the Ant & Ladybug and other MGSRDS items, it was very close 
to fitting our structural equation model, and students demonstrating covariational reasoning 
were more likely to get the item correct than statistically expected. Thus, our results demon‑
strated the viability of including such tasks in research settings beyond teaching experiments.

Across the MGSRDS items, three included unconventional graphs (Moore et al., 2014), the 
Ferris Wheel, Nat & Tree, and Fishbowl. The unconventional graphs did not pass the verti‑
cal line test, a common technique students use to determine if a graph represents a function 
given by y = f(x), with x and y represented on the horizontal and vertical axes, respectively. 
Moore et al. (2014) contended that breaking conventions could support students’ quantitative 
reasoning. Notably, the Fishbowl item included the largest numbers of VAR/COV codes of 
all MGSRDS items. Furthermore, students’ variational reasoning on the Ferris Wheel item 
and covariational reasoning on the Fishbowl item significantly associated with the accuracy 
of their graph selection. Hence, our results provided quantitative corroboration to support the 
findings from Moore et al. (2014).

Students’ spatial conceptions of the Cartesian coordinate systems (Lee et al., 2020; Paoletti 
et al., 2022) likely are interwoven with their MO and IC reasoning. Paoletti et al. (2022) allude 
to this when they describe the possibility for a student to represent a relationship with a coor‑
dinate system different from the one intended (e.g., students using a spatial coordinate sys‑
tem instead of a quantitative one). In future studies, researchers can explore interconnections 
between students’ quantitative and spatial conceptions of coordinate systems and the different 
forms of graph reasoning in the Johnson et al. (2020) framework.

6  Concluding remarks

Our results underscore the value of variational and covariational reasoning, even at early 
levels of gross variation and gross coordination of values, per Thompson and Carlson’s 
(2017) framework. Our study has implications for incorporating a focus on covariational 
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reasoning into early undergraduate mathematics courses, such as college algebra, to fos‑
ter students’ conceptions of graphs as representing relationships between variables. Fur‑
thermore, instructors can use the MGSRDS in combination with the Johnson et al. (2020) 
framework to diagnose students’ graph reasoning and selection. In future studies, research‑
ers can investigate links between graph reasoning and graph selection for different student 
populations (e.g., secondary students).

This study adds to research efforts using quantitative methods to corroborate findings 
from qualitative studies investigating students and teachers’ reasoning (Izsák et al., 2019; 
Kosko, 2019; Norton & Wilkins, 2009; Pantziara & Philippou, 2012; Tzur et al., 2022). We 
offer two recommendations for designing assessment items linking dynamic situations and 
graphs. First, it is useful to include items like the Fishbowl item, that do not incorporate an 
actor that can be represented by a single point, to which both attributes are linked. Second, 
if items do include such an actor, it is valuable to have both attributes vary in their direc‑
tion of change, like the Ant & Ladybug item.

Bakker et al. (2021) posit a broad challenge, namely “to assess what we value, rather 
than valuing what we assess” (p. 11). The value of graph reasoning extends beyond school 
mathematics, to include students’ roles as educated citizens. Employing a broad concep‑
tualization of graph reasoning with the Johnson et  al. (2020) framework, we have dem‑
onstrated that college algebra students’ graph reasoning significantly contributes to their 
graph selection, with quantitative forms of graph reasoning (i.e., variational and covari‑
ational reasoning) significantly associating with increased accuracy in graph selection.
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