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Abstract
It is well-known that a key to promoting students’ mathematics learning is to provide oppor-
tunities for problem solving and reasoning, but also that maintaining such opportunities in 
student–teacher interaction is challenging for teachers. In particular, teachers need support 
for identifying students’ specific difficulties, in order to select appropriate feedback that sup-
ports students’ mathematically founded reasoning without reducing students’ responsibility 
for solving the task. The aim of this study was to develop a diagnostic framework that is 
functional for identifying, characterising, and communicating about the difficulties students 
encounter when trying to solve a problem and needing help from the teacher to continue the 
construction of mathematically founded reasoning. We describe how we reached this aim by 
devising iterations of design experiments, including 285 examples of students’ difficulties 
from grades 1–12, related to 110 tasks, successively increasing the empirical grounding and 
theoretical refinement of the framework. The resulting framework includes diagnostic ques-
tions, definitions, and indicators for each diagnosis and structures the diagnostic process in 
two simpler steps with guidelines for difficult cases. The framework therefore has the poten-
tial to support teachers both in eliciting evidence about students’ reasoning during problem 
solving and in interpreting this evidence.
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1 Introduction

Problem solving has always been an important object of study within mathematics educa-
tion research, and it has been known for at least 30 years that increasing opportunities for 
problem solving is beneficial for students’ learning (Boaler, 2002; Lester & Cai, 2016). 
Problems are meant to require struggle (Hiebert & Grouws, 2007), but given the hetero-
geneity of mathematics students and teachers’ limited time for selection and adaptation of 
tasks, some students will encounter difficulties that they cannot overcome on their own. 
To provide appropriate support, the teacher needs to understand the student’s specific dif-
ficulty, but this can be challenging for teachers (Black & Wiliam, 2009).

There are several models for the complex processes problem solving entails (e.g., Pólya, 
1945; Schoenfeld, 1985; Yimer & Ellerton, 2010), but these describe successful processes 
rather than difficulties. In addition, these frameworks are mostly based on studies of adult 
students or mathematicians and may not adequately describe what many school students do 
(Rott et al., 2021). In consequence, they may also be insufficient for characterising the diffi-
culties school students’ encounter during problem solving. In this study, we apply cycles of 
design experiments in collaboration with teachers, developing a diagnostic framework for 
the difficulties primary and secondary students face when constructing their own solutions 
to mathematical problems.

2  Background

2.1  Mathematical problems, reasoning, and learning

A mathematical problem is defined as a task for which the student does not have a given 
solution method, that is, a rule, template, or algorithm (Lithner, 2008; Schoenfeld, 1985). 
This means that the student must construct the significant parts of the solution themselves, 
by means of their own mathematical reasoning. Tasks that can be solved by applying given 
algorithms are denoted routine tasks (Schoenfeld, 1985). Problems and routine tasks elicit 
different types of reasoning (Boesen et al., 2010; Stein & Smith, 1998; Stein et al., 1996), 
which support learning to different extents (Brousseau, 1997; Jonsson et al., 2014; Stein 
& Lane, 1996). Problem solving can be seen as one type of productive struggle (Hiebert 
& Grouws, 2007) and even necessary for effective learning of mathematics (Schoenfeld, 
1985).

We define mathematical reasoning as “the line of thought adopted to produce assertions 
and reach conclusions in task solving” (Lithner, 2008, p. 257). When solving any task, 
reasoning includes making a strategy choice and implementing the chosen strategy. Here, 
“strategy” ranges from local procedures to general approaches, and “choice” is seen in a 
wide sense, including also mere guesses. The choice can be supported by predictive argu-
mentation—reasons why the strategy will solve the task—and the implementation can be 
supported by verificative argumentation—reasons why the strategy did solve the task—and 
a conclusion may be obtained. The properties of the predictive and verificative argumenta-
tion characterise different types of reasoning.

Solving routine tasks utilises a pool of algorithms and mental schemes that identify 
the task type and a suitable algorithm. Two cognitive faculties are required: the ability to 
identify similarities and the ability to imitate an algorithm (Vinner, 1997). The important 
point is that the strategy choice can be made through identification of similarities between 
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the task at hand and tasks with known solution algorithms based on superficial proper-
ties, without basing predictive and verificative argumentation on conceptual mathematical 
understanding (Lithner, 2008). In contrast, problem solving requires more complex cogni-
tive faculties. In terms of mathematical reasoning, solving a problem entails one or more 
sub-tasks that the student has no given method for (Lithner, 2008). When encountering 
such sub-tasks, the student cannot successfully apply a solution algorithm based on super-
ficial connections between the sub-task and previously solved tasks but need to construct 
a solution method on their own. To do so successfully, they have to support their strategy 
choice and implementation by predictive or verificative argumentation anchored in intrin-
sic mathematical properties of the mathematical components involved in the task. Thus, the 
student’s reasoning needs to be mathematically founded and is therefore likely to develop 
mathematical understanding (Lithner, 2017).

2.2  Students’ difficulties during problem solving

Whilst problems provide opportunities for students to engage in reasoning based on math-
ematical meaning, they do not guarantee that students do so. If students are unaccus-
tomed to problem solving or the problem is too challenging, they might resort to imitative 
approaches—such as trying methods haphazardly or copying a friend’s solution—or give 
up altogether (Boesen et  al., 2010; Sidenvall et  al., 2015). Students may also engage in 
mathematically founded reasoning without succeeding in solving the problem. In all these 
cases, the students have encountered difficulties where they need help to commence or con-
tinue their own construction of mathematical reasoning.

Students’ difficulties can be characterised in different ways and for different purposes. 
Students’ errors can be analysed to reveal their understanding of concepts (Radatz, 1980) 
or patterns in their failure to solve word problems (Clements, 1980) and students’ solutions 
can be categorised as showing different levels of skill (Cai et  al., 1996). General learn-
ing difficulties of struggling students can be studied to reveal cognitive, neurological, and 
motivational causes. In this study, we do not focus on such underlying causes or levels of 
difficulties but on the types of specific and in-the-moment difficulties students have whilst 
constructing their own line of reasoning for the purpose of solving a problem, hereafter 
denoted  specific reasoning difficulties. Specific reasoning difficulties can arise at differ-
ent points in the problem-solving process. This process has often been described in phase 
models (Rott et  al., 2021). The models most widely used are Pólya’s (1945) four-phase 
model and Schoenfeld’s (1985) six-phase model, where the latter can be seen as an elabo-
ration of the former.

Schoenfeld’s first phase is reading and rereading the task text. This is not seen as a sepa-
rate phase in any other model and is often disregarded when Schoenfeld’s model is used 
(Rott et  al., 2021). However, studies in error analysis of younger students’ solutions to 
word problems find that reading is not trivial for school students (Clements, 1980; Whang, 
1996). The second phase is analysis. If the student sees no apparent way to continue the 
problem solving, they may try to fully understand the problem, select an appropriate per-
spective, and reformulate the problem in those terms. The third phase is exploration. In this 
phase, the student explores the situation in the problem to get acquainted with the math-
ematical properties of concepts and relations and draw conclusions that may be useful for 
solving the problem, for example, by constructing representations from the information in 
the problem. In the fourth phase, the planning phase, the student uses conclusions drawn 
during exploration to plan for a solution method, and in the fifth phase, the solution method 
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is implemented. The sixth and last phase is verification. In this phase, the student reviews 
their solution and evaluates the validity of the result.

Phase models explicitly identify places in the problem-solving process where students 
may run into difficulties. However, most models are theoretical or based on data from adult 
students or professional mathematicians (Rott et al., 2021), which means that they may not 
accurately describe the problem-solving processes of younger students. For example, it has 
been repeatedly observed that students seldom engage in verification (Koichu et al., 2021), 
and that phases that are trivial for expert problem solvers, such as reading and perform-
ing standard calculations, may require considerable effort from school students (Clements, 
1980; Wijaya et al., 2014).

2.3  Teacher support during problem solving

The quality of student–teacher interaction and its influence on student learning depends on 
the teacher’s understanding of the student’s thinking (Lee & Cross Francis, 2018; Teuscher 
et al., 2016). When supporting students’ problem solving, the teacher needs to understand 
students’ specific reasoning difficulties and be able to differentiate between them. If the 
teacher does not identify the specific difficulty, they risk either revealing a substantial 
part of the solution and depriving the student of productive struggle, the responsibility to 
solve the problem, and the opportunity to learn from it (Brousseau, 1997), or providing too 
vague feedback that does not help the student’s construction of reasoning. Previous studies 
show that teachers’ support often reduces problems to routine tasks during implementa-
tion in classrooms, especially for students unused to problem solving, and that this hinders 
students’ engagement in mathematically founded reasoning (Stein & Smith, 1998; Stein 
et al., 1996). A long-term intention of developing tools for diagnosis of students’ specific 
reasoning difficulties is therefore to help teachers provide feedback that is both sufficiently 
supportive for students to continue their own reasoning and sufficiently restricted that the 
responsibility to solve the problems remains with the students.

Identifying students’ difficulties for the purpose of providing feedback that supports stu-
dents’ reasoning is a matter of assessing students’ learning needs for formative purposes 
(Black & Wiliam, 2009). This is not an easy endeavour, especially when this assessment 
is carried out in the complex context of a classroom where other students are competing 
for the teacher’s attention. This assessment involves eliciting evidence about the student’s 
reasoning up to the point when they requested help and about what hinders them from con-
tinuing the construction of reasoning (Black & Wiliam, 2009). Such evidence is often not 
revealed by the student spontaneously and inspecting the student’s written work may also 
be insufficient (Cai et al., 1996). Therefore, the teacher needs to elicit evidence from care-
fully crafted questions and prompts. The assessment also involves interpreting the available 
evidence and making inferences about the student’s thinking and understanding (Black & 
Wiliam, 2009). These inferences may then be used for adapting feedback that meets the 
student’s learning needs. Failure in this process of assessment weakens the basis for feed-
back that is tailored to the student’s specific learning needs, and successful student reason-
ing and learning is therefore less likely to occur (Bennett, 2011; Gu, 2021).

2.4  Support for teachers

To master and successfully carry out the processes involved in formative assessment is 
difficult and requires a variety of teacher skills (Brookhart, 2011; Datnow & Hubbard, 
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2016; Gummer & Mandinach, 2015; Means et al., 2011). Consequently, there have been 
calls to develop support for teachers on both how to elicit evidence about students’ 
thinking and how to interpret this evidence for instructional purposes (Mandinach & 
Gummer, 2016; Schneider & Gowan, 2013). Still, despite many attempts at professional 
development aimed at building teachers’ capacity to use assessment data for instruc-
tional decisions, many teachers feel unprepared to do so (Datnow & Hubbard, 2016). 
Attempts have been frequently unsuccessful in supporting teachers to develop high-
quality formative assessment practises to the extent that increased student achievement 
was obtained, regardless of school subject (e.g., Bell et al., 2008; Randel et al., 2016; 
Schneider & Randel, 2010).

Especially, mathematical problem solving is challenging for students (Verschaffel et al., 
2020), and supporting students’ problem solving is challenging for teachers (Liljedahl & 
Cai, 2021). Thus, teachers need tools for supporting students’ reasoning during problem 
solving. Some suggestions have emerged about how to elicit student thinking (Shaugh-
nessy et  al., 2019) and how teacher knowledge about students’ development of specific 
mathematical competencies may help them to interpret students’ thinking (Dindyal et al., 
2021). However, empirically grounded frameworks characterising students’ specific rea-
soning difficulties and connecting the elicitation and interpretation of students’ thinking to 
these difficulties are lacking. Such frameworks could be used in professional development 
initiatives to develop teachers’ ability to identify students’ reasoning difficulties and in turn 
help teachers select appropriate feedback in interaction with students.

3  Aim and research questions

We aim to develop a diagnostic framework that is functional for identifying, characterising, 
and communicating about the specific reasoning difficulties students’ encounter when they 
try to solve a problem and need help from the teacher to continue the construction of their 
own line of reasoning. In the long term, the framework is intended to “do real design 
work in generating, selecting and validating design alternatives at the level at which 
they are consequential for students’ learning” (diSessa & Cobb, 2004, p. 80), in our case 
alternative feedback that supports students’ own reasoning. Therefore, the development is 
guided by assessing functionality based on three criteria:

1. Range: To aid generation of feedback, the framework includes a set of diagnoses that 
characterises the main specific reasoning difficulties students encounter when solving 
problems.

2. Differentiation: To aid selection of feedback, the framework separates difficulties that 
are theoretically and observably different in the sense that students need help with dif-
ferent aspects of their line of reasoning—theoretically, in the sense that definitions of 
diagnoses are mutually exclusive, and observably, in the sense that the indicators of each 
diagnosis are observable in the classroom.

3. Operationalisability: To aid validation of feedback, the structure of the framework and 
the definitions of diagnoses provide substantial support for diagnosing students’ specific 
reasoning difficulties.

Our aim is therefore specified in three research questions related to the three criteria:
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1. What are the main specific reasoning difficulties students encounter when solving prob-
lems, and how can they be incorporated into the framework?

2. How can difficulties that are theoretically and observably different, in the sense that 
students need help with different aspects of their line of reasoning, be differentiated?

3. How can the structure and definitions of the framework support the diagnostic process 
by relating it to indicators of diagnoses that are observable in classroom situations?

4  Methods

The study was conducted during three semesters of a longer design-research project where 
a research group collaborated with teacher teams at seven Swedish schools, spanning 
grades 1–12. During this phase of the project, teacher–researcher meetings focussed on 
diagnosis of students’ specific reasoning difficulties. As we aimed to develop a framework 
that is functional for teachers and researchers, we devised a series of design experiments. 
A collaborative, iterative, and experimental approach was devised, as it can promote the 
grounding of the framework in real-world experiences by providing multiple exposures to 
empirical testing and theoretical refinement, and thereby develop a framework for diagnos-
ing difficulties that is robust in its application across contexts (diSessa & Cobb, 2004).

4.1  Initial framework

Design experiments typically test and develop theoretical models for how learning occurs 
and can be supported and thus start out from conjectures about how means of support 
affect learning (Cobb et  al., 2003). In this study, we use design experiments to test and 
develop a framework for students’ difficulties during problem solving, and therefore, we 
start out from conjectures about what such a framework should look like, informed by pre-
vious research and pilot studies.

The initial framework builds on earlier research on characteristics of and causes behind 
learning difficulties related to mathematical reasoning, see Lithner (2017) for an overview. 
In order to study means for remedying these difficulties, we started in smaller scale with 
design experiments testing various frameworks for supporting students’ problem solving 
(for an example, see Sidenvall et al., 2022). In the present study, we build on these experi-
ments. A starting point for the study was that the main question in characterising a stu-
dent’s reasoning difficulty is where in the problem-solving process the student’s difficulty 
emerged. The first dimension of the framework therefore concerned phases of problem 
solving (Rott et al., 2021). Various drafts for phases were considered and tested before the 
initial framework for this study was formulated, entailing four phases:

1. Interpret the information given in the problem, what is asked for and what type of answer 
is required. This does not include creating a solution, even if it is sometimes done in 
parallel with interpretation.

2. Explore the information and analyse mathematical properties of concepts and connec-
tions, construct useful representations, and try to draw conclusions that may be useful 
for solving the problem. This also includes trying to relate the problem to existing 
knowledge and previous experiences that could be useful.

3. Create a solution idea by analysing properties (perhaps found during the exploration) 
of the problem and formulating and evaluating hypotheses for a solution. The difference 
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between exploring and creating a solution idea is that the former concerns understanding 
the mathematics of the problem, whilst the latter means formulating basic ideas for the 
whole solution.

4. Utilise the solution idea. Sometimes, but not always, substantial work remains to utilise 
the solution idea and produce an answer in the expected manner, for example, complex 
calculations or interpretation of the result in a real-life context.

The second dimension concerned the strategy choices, implementations, and veri-
fications that students’ own constructions of reasoning require in each phase (Lithner, 
2008). Theoretically, each phase could constitute a task where students have to apply 
reasoning, including making a strategy choice, implementing that strategy, and, if 
needed, constructing verificative arguments for the conclusions obtained. Pilot stud-
ies also indicated that students not only have difficulties implementing each phase but 
also selecting a suitable phase and verifying their conclusions. Therefore, we introduced 
three sub-phases:

A. Initiate or select a suitable phase.
B. Implement the phase.
C. Evaluate whether the initiation and implementation of the phase is correct and useful.

Our initial framework differed from Schoenfeld’s six phases in three main ways. 
First, the planning phase (Pólya, 1945; Schoenfeld, 1985) characterises what expert 
problem solvers do when they meet a complex problem. Such planning requires active 
monitoring and control, mastering a battery of strategies and vast experiences of using 
these strategies in various problems. However desirable, this is rarely done by students 
in primary and secondary school. Instead, we proposed the phase “create solution idea,” 
inspired by Lampert’s (1990) emphasis on the importance for all students to make and 
test hypotheses in problem solving. Second, Schoenfeld’s (1985) verification phase was 
replaced by a sub-phase, as evaluation of the progress can be needed for each phase, not 
only for the whole solution. Third, it was not seen as practically possible to distinguish 
between the analysis and exploration phases, which were therefore merged. Also, as the 
purpose of the framework was to differentiate between types of difficulties, the ambi-
tion was to keep overlaps as limited as possible. This led to partially different defini-
tions compared to Schoenfeld’s (1985) phases. In sum, our initial model of students’ 
problem-solving processes consisted of 12 sequential steps: 1A–1B–1C–2A–2B–2C–3
A–3B–3C–4A–4B–4C, where some steps can be omitted depending on the problem and 
the student’s line of reasoning.

Thus, the framework included 12 hypothetical diagnoses, which all were possible 
answers to the main question: in what phase and in what sub-phase has the student’s dif-
ficulty emerged? For example, diagnosis 2A meant that the difficulty had emerged in the 
initiation of exploration, whilst diagnosis 3B meant that the difficulty had emerged in 
the implementation of creating a solution idea. As an aid for answering the main ques-
tion and making a diagnosis, three diagnostic questions (DQs) for eliciting evidence 
about students’ thinking were also included in the framework.

Besides the structural overview presented in Fig. 1, the initial framework comprised 
22 pages including descriptions of the purpose of the framework; principles of forma-
tive assessment; problem-solving phases, sub-phases, and competencies; and examples 
of diagnoses in relation to different problems with suggested feedback.
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4.2  Data collection and analysis

The study entailed five iterations of data collection, data analysis, and revisions of the 
framework. Iterations 1–2 focussed mainly on the development of the analysis method. 
Each subsequent iteration entailed six steps. Figure  2 gives an overview of how each 
step of the analysis used the result from the previous step as data, forming a recursive 
process that established a chain of inferences that stayed close to the data in each step 
(Simon, 2019). Steps 1–6 are described in Sects. 4.2.1–4.2.6.

Fig. 1  The structure of the initial framework

Fig. 2  An overview of the six steps of data collection, analysis, and revisions
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4.2.1  Collecting data on student difficulties

In Step 1, data on students’ difficulties were collected from teachers’ documentation of 
their own problem-solving lessons and consisted of the problem used and descriptions of 
1–4 student difficulties selected by the teacher, often accompanied by photos of students’ 
work (Fig.  3). Teachers were asked to select both examples of students’ difficulties that 
they found easy to diagnose and examples that they found difficult. Between iterations, 
researchers reported on the distribution of diagnoses found in the latest iteration and asked 
teachers to look for difficulties that were scarce. During teacher–researcher meetings, 
attending researchers took notes on additional information given verbally by the teacher. 
One attending researcher then assembled the teacher documentation and notes from the 
meeting. Over all iterations, 285 difficulties (Grades 1–3: 73, Grades 4–6: 98, Grades 7–9: 
64, Grades 10–12: 50) were collected from 152 lessons regarding 110 tasks.

Fig. 3  Two examples of student difficulties
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In Iterations 1–3, a lot of data lacked teachers’ arguments for diagnoses and some-
times even a diagnosis attempt, and about a fifth of the examples in Iteration 3 were 
discarded in Step 2 due to insufficient data (Table 1). Therefore, in Iterations 4–5, dif-
ficulties were only included if:

– the teacher had either diagnosed the difficulty, with one or more diagnoses, or explicitly 
stated that they could not determine the diagnosis,

– it was apparent what evidence the teacher had based their diagnosis on, and
– the teacher stated some kind of argument for their diagnosis or inability to diagnose, for 

example, “The student said … therefore I chose 2C”.

4.2.2  Coding each difficulty

In Step 2, each difficulty was coded by teachers and researchers (referred to as coders). 
The teachers coded their own students’ difficulties, using the latest version of the frame-
work to diagnose the difficulty before the meetings. Teachers’ codings were thus based 
on their documentation but may also have been informed by general knowledge about 
their students and memories of the classroom situation. Their codings included their 
suggested diagnosis, their written arguments, and researcher notes on any additional 
arguments given verbally by the teacher during meetings. The researchers used the 
teachers’ documentation as data, with teachers’ diagnoses obscured (see Fig. 3), and the 
latest version of the framework and a coding protocol asking the researchers to describe 
how they understood the situation as a whole and to answer the main question (“Where 
has the difficulty emerged?” in Iterations 1–2 and “What specific difficulty does the stu-
dent need help with?” in Iterations 3–5) with either one of the diagnoses included in the 
framework; other, if no diagnosis in the framework fitted the difficulty; no idea, if no 
substantiation was found for any diagnosis; or no difficulty, if the student did not seem 
to have any difficulty. Coders could suggest more than one diagnosis if several fitted the 
difficulty. Researchers’ codings also included whether they were sure or unsure regard-
ing their diagnoses as well as justifications of diagnosis and level of certainty using 
explicit references to data and formulations in the framework (Table 2).

The result of Step 2 was a set of coded difficulties. Over all iterations, 38 teachers 
and 8 researchers participated in this step, making 697 codings (202 by teachers and 
495 by researchers). The number of difficulties categorised as each diagnosis by at least 
one coder is displayed in Table 3.

Table 1  Number of discarded, 
typical, and borderline cases in 
Iterations 3–5

Typical and borderline cases are discussed in Sect. 4.2.3

Discarded 
step 2

Discarded 
step 3

Typical Borderline Total

Iteration 3 16 9 25 32 82
Iteration 4 0 12 47 19 78
Iteration 5 0 1 19 1 21
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Table 2  Codings of the difficulties presented in Fig. 3

Example 1
 Teacher I asked the first [diagnostic] question. I think they had understood the task from what they 

said. But then nothing more happened on the second task. They couldn’t make the effort; 
that’s why I said 2A. I think they understood what they should find out, but they didn’t 
start

 Researcher 1 The student has solved the first sub-task, but then stopped and not made any effort on the 
next sub-task. The teacher’s assessment is that the student does not even have the energy 
to try

2A (sure). Empirical basis: Mainly the teacher’s assessment that they have not done 
anything, didn’t have the energy to try, and the evidence that they did answer DQ1 good 
enough. Framework basis: “The student’s answer to DQ1 shows that they have under-
stood the explicit information in the task … and have not done anything else.”

 Researcher 2 The student has solved sub-task (a) and thus probably interpreted the task but does not get 
started with sub-task (b)

2A (sure). Empirical basis: That the teacher describes: “understands the task but does not 
make the effort to explore.” Framework basis: “The student’s answer to DQ1 shows that 
they have understood the explicit information in the task and/or the student has written 
the important information in the task and has not done anything else.”

Example 2
 Teacher These students I put in 2B since they had started exploring but got stuck when finishing the 

task
 Researcher 1 The student has, on sub-task (a), drawn the conclusion that the snail crawls 10 cm in 4 days 

but then gotten stuck. I see this as an exploration, that the student has not been able to 
utilise a solution idea, but there is no evidence about the student’s reasoning

3A (unsure). Empirical basis: See above. Framework basis: “3A: The student has imple-
mented a good exploration of the task but does not try to create a solution idea.” Empiri-
cal sources of uncertainty: Data on the student’s reasoning is missing. I do not know if 
the student tries and fails or if they do not try

 Researcher 2 The student has correctly calculated how far the snail crawls in 4 days, which can be used 
for solving sub-task a) but seems to make no progress after that

2B, 3A, 3B (unsure). Empirical basis: The student has done something that is correct and 
useful. Framework basis: 2B: “The student can also have a hard time drawing conclu-
sions that in the next phase could be useful for starting to create a solution idea.” 3A: 
“The student has implemented a good exploration but does not try to create a solution 
idea.” 3B: “It can also be the case that the student has explored but failed to draw any 
sufficiently useful conclusions in order to create a solution idea.” Empirical sources of 
uncertainty: No evidence regarding the student’s description of what they have done or 
why. Framework sources of uncertainty: Overlap between 2 and 3B

Table 3  Number of difficulties 
categorised as different diagnoses 
by at least one coder

Note. The total sum exceeds 285 since coders could give several codes 
and different coders could give different codes for the same difficulty

1 2 3 4

Iterations 1–4 A 27 68 24 5
B 77 88 51 35
C 88 69 157 159

Iteration 5 C’ 35
D  0  0 4 1

Iterations 1–5 Other 17
No idea 18
No difficulty 9
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4.2.3  Comparing and categorising coded difficulties

In Step 3, the different codings of each difficulty were compared and categorised. In 
Iterations 3–5, two researchers did this step independently and then compared and 
discussed their categorisation to reach agreement. Some coded difficulties were also 
discarded in this step (Table 1), mainly because the student did not have a difficulty, or 
because the data were insufficient to draw conclusions regarding the cause of coders’ 
disagreements. The remaining coded difficulties were summarised and categorised as 
either a typical example of a diagnosis (including the diagnosis other) if all coders with 
substantial justification agreed, or a borderline case between two or more diagnoses if 
coders with substantial justification disagreed (Tables 1 and 4). The result of this step 
was a categorisation of the diagnosed difficulties as either typical or borderline and 
summaries of the identified sources for agreement or disagreement for each diagnosed 
difficulty.

4.2.4  Thematising categorised codings

In Step 4, the categorised codings were thematised. The typical examples were thematised 
based on the observable indicators the coders referred to. The name of each theme 
consisted of the diagnosis and a description of common indicators of the difficulties 
within this theme (Table 5, Example 1). There could therefore be several themes for each 
diagnosis. The borderline cases were thematised based on the suggested diagnoses and the 
sources of disagreement, specifically whether the source was insufficient empirical data, 
formulations in the framework, or circumstances of the situation (Table 5, Example 2). The 
result of this step was a set of themes: some describing indicators for diagnoses and some 
describing obstacles to diagnosis.

Table 4  The categorisation of the coded difficulties presented in Table 2

Example 1
Researcher 1 Typical 2A: All coders agree on 2A. The researchers base their diagnosis on the evidence 

that the student could answer DQ1 but has not tried anything
Researcher 2 Typical 2A: The researchers agree on 2A. Both refer to the teacher’s description that the 

student has understood the task but has not made the effort to try anything, and to the 
formulation, “The student’s answer to DQ1 shows that they have understood the explicit 
information given in the task … and has not done anything else.” The teacher says 2A

Example 2
Researcher 1 Borderline: One researcher says 2B, 3A, or 3B, referring to overlaps between the definitions 

of these diagnoses. One researcher says 3A. Both researchers are missing info on the 
student’s reasoning (DQ2 and 3). The teacher says 2B but has given no arguments for this 
diagnosis

Researcher 2 Borderline: One researcher says 2B or 3AB based on overlaps in the diagnosis definitions. 
The other researcher says 3A. Both researchers state that there is a lack of empirical 
evidence
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4.2.5  Analysing functionality

In Step 5, the themes were analysed to identify shortfalls of functionality of the framework. 
The analysis was guided by a series of questions related to the three functionality criteria 
described in Sect. 3 (Table 6).

In Iterations 3–5, Steps 4–5 (Fig.  2) were made independently by two researchers, 
who then compared their results and solved disagreements by discussion. The result of 
Step 5 was a set of issues regarding the functionality of the framework. For example, 
in the case of the theme including Example 2 (Table 5), the issue was that the current 
definitions of diagnoses 2B, 3A, and 3B overlapped, constituting one answer to Analytic 
question 3 (Table 6).

4.2.6  Revising the framework, reflecting with teachers, and decisions 
for the next iteration

In Step 6, revisions that addressed the issues identified in Step 5 were formulated. The 
rationale for each revision was based on the identified themes. In the case of revisions 
regarding borderline issues, the potential effect of the revision was evaluated by 
describing whether and how each borderline case would be remedied by the revision. 
Revisions were also informed by teachers’ suggestions during teacher–researcher 
meetings. The revisions, their rationale, and potential effects were then critically 
assessed by another researcher, who also considered adverse side effects. Only 
revisions that were based on several difficulties and could be seen to remedy several 
borderline examples without affecting typical examples were incorporated into the 
framework.

When revisions of a particular diagnosis stopped or became marginal, theoretical satura-
tion (Eisenhardt, 1989) was considered reached, and cases of this diagnosis were no longer 
selected for analysis. Theoretical saturation for initiate and implement diagnoses (Fig.  1) 
was reached in iteration 4. Therefore, only evaluate diagnoses (Fig. 1) were included in iter-
ation 5, after which theoretical saturation was reached for them as well, and the study ended.

Table 5  The themes in which the 
difficulties presented in Fig. 3 
were included

Type of theme Example of theme

Typical example theme 2A: The student is able to answer 
DQ1 but shows that they have 
not tried anything to start solving 
the task (this theme included 
example 1, Fig. 3)

Borderline case theme 2B or 3AB (framework): The 
definitions of 2B, 3A, and 3B 
produce overlaps between these 
diagnoses, as they all currently 
include some, but not sufficient, 
exploration by the student (this 
theme included example 2, 
Fig. 3)
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5  Results

In this section, we first present the final framework that was the result of Iteration 5. The final 
framework consisted of the structural overview presented in Fig. 4 and 24 pages including 
elaborated descriptions and examples. The research questions are mainly answered by the 
structure and elements of this framework. The rationale for the revisions is then described 
in terms of how range, differentiation, and operationalisability were assessed and developed 
through the iterations, further elaborating the answer to each research question.

5.1  The final framework and summary of results

Through the iterative analyses, some of the aspects of the initial framework proved to be 
functional, whilst other aspects were developed or altered due to identified issues with 
range, differentiation, or operationalisability. The four phases were found to adequately 
capture students’ problem-solving processes, and no phases were added or removed. 
Teachers in lower grades did, however, note that their students seldom got stuck in 
phases 3 and 4, since exploration of their problems often led directly to an answer. 
The most substantial finding was the increased functionality obtained by restructuring 
the initial sub-phases A, B, and C (Fig.  1), into two main types of difficulties: stuck 
and needing evaluation (Fig.  4). This led to a reconceptualisation of the sub-phases 
as difficulty types, a revision of the main question and the introduction of three 
sub-questions with three auxiliary guidelines. These elements provided additional 
support for the diagnostic process by structuring it in two simpler steps and reflecting 
the different logics of specifying the diagnosis within each difficulty type (Fig.  4, 
Sects.  5.3.1). Within the needing-evaluation type, the need for a non-phase-specific 
diagnosis was also discovered (Sect.  5.3.2). In addition to these more substantial 
revisions, the analyses resulted in removal of one diagnosis (Sect. 5.2), clarifications of 
diagnoses including both phases and types (Sect. 5.3.1), and introduction of connections 
to diagnostic questions and observable indicators for all diagnoses (Sect.  5.4). These 
revisions and their empirical bases are further elaborated below.

5.2  Range

The analyses revealed no need to include additional phases or difficulty types but 
led to widening of diagnosis C and the removal of diagnosis 4A (Fig.  4). Seventeen 
difficulties (6%) were coded as other by one or more coders, but only three difficulties 
were categorised as typical examples of other. The first such difficulty concerned 
communication of the solution, which could be argued to not be a reasoning difficulty, 
as it is not necessary to solve a problem. However, as the two additional examples were 
collected and analysed, it became clear that these difficulties did not mainly concern 
students’ inability or unwillingness to communicate their solution, but students obtaining 
an answer without constructing a full line of reasoning to serve as a foundation for it. One 
student had obtained an answer using a method that they did not understand, and another 
had very quickly obtained an answer but could not explain how. Therefore, cases where 
the student could not explain or argue for their solution, but nonetheless asked the teacher 
to verify their answer, were included in diagnosis C (Fig. 4).
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Diagnosis 4A was removed from the framework since no typical examples of this 
diagnosis were found. The absence of such difficulties is theoretically reasonable, since it 
is unlikely that someone who has a good solution idea will not try to utilise it. Whenever a 
student had a viable solution idea but did not utilise it, the student was uncertain regarding 
the correctness of the idea, which falls under diagnosis 3D.

5.3  Differentiation

The most commonly found issues regarded differentiation between diagnoses. Solving 
these issues often required several subsequent iterations, either because initial attempts 
to revise the framework were found insufficient or caused new issues, or because the 
results of one iteration did not provide sufficient guidance for revisions to be made. 
However, the only cause for separation of diagnoses (Analytic question 2, Table 6) was 
found in Iteration 2, where the evaluated diagnoses were divided into three sub-diagnoses 
for each phase: the student has made an error or mistake that they have not identified, 
the student knows something is wrong but not what or why, and the student is unsure 
whether something is right or wrong. However, this intermediate structure for evaluation 
diagnoses caused new issues and was further revised (Sect. 5.3.2). We therefore focus on 
Analytic questions 3–5 below.

5.3.1  Framework formulations producing uncertainty or disagreement

Some of the initial definitions and the initial main question gave rise to uncertainty 
regarding how diagnoses were to be separated. For example, the diagnosis initiate 
exploration (2A, Fig. 1) was defined as students not trying to explore. Such situations often 
entailed students having jumped ahead to an unsubstantiated solution idea, which caused 
an overlap with evaluate solution idea (3D). Issues with differentiation due to unclear 
or overlapping definitions of diagnoses were mainly found and remedied in Iteration 2, 
though the definitions were further developed as additional examples gave rise to clearer 
links between diagnostic questions and diagnoses in Iterations 3–4.

The evaluate diagnoses (1–4C, Fig. 1) were initially defined as the student needing to 
evaluate a specific phase. In contrast, the initial main question (where did the student’s 
difficulty emerge?) and the term “sub-phase” indicated that the evaluate diagnoses 
concerned difficulties emerging whilst evaluating. This resulted in disagreements 
regarding the common situation where a student had neither identified an error nor 
attempted evaluation. Researchers diagnosed this as evaluate, but teachers did not. This 
issue indicated the existence of two main types of difficulties, for which the process 
of diagnosis followed two different logics: stuck and needing evaluation. When being 
stuck, everything the student has done so far is correct or already evaluated, but the 
student does not know how to proceed, and diagnosis is a question of where the student 
is stuck in the sequence 1A–1B–2A–2B–3A–3B–4B. When needing evaluation, there 
is an error or uncertainty regarding the correctness of (some part of) the solution, and 
diagnosis is a question of what the student needs to evaluate, not how far they have 
come in the solution process. These two difficulty types, as well as a new main question 
and three sub-questions (Fig. 4), were introduced and further developed in successive 
iterations.



142 A. I. Säfström et al.

1 3

5.3.2  Differences between diagnoses merely theoretical or based on irretrievable 
evidence

The intermediate restructuring of the needing-evaluation difficulties (Sect.  5.3) was 
theoretically clear but proved to require irretrievable evidence regarding the student’s 
state and thinking. First, it was not always possible to identify the need for evaluating a 
specific phase. If the student had made an undetected error, determining where that error 
had occurred was often impossible without engaging the student in evaluation of the 
whole solution, resulting in a catch-22 between eliciting evidence and providing feedback. 
For example, students often presented solution ideas that were incompatible with the 
information in the task (Fig. 5). In those cases, the error could be a misinterpretation of the 
task (Phase 1), an incorrect conclusion drawn during exploration (Phase 2), or an incorrect 
solution idea (Phase 3). Also, when the student was uncertain regarding the correctness of 
the solution, they often expressed a general uncertainty rather than uncertainty regarding a 
specific phase. These two issues were solved by introducing a general diagnosis for when 
the student needed help evaluating the whole solution or what they had done so far (C, 
Fig. 4). Second, the difference between diagnoses in the intermediate framework (Sect. 5.3) 
was not empirically valid, since students often expressed a mixture of uncertainty and 
knowing a certain phase was wrong but not why, but still had the same difficulty: needing 
evaluation of the phase. This issue was remedied by redefining the phase-specific needing-
evaluation diagnoses (1–4D, Fig.  4) to include both uncertainty regarding a phase and 
knowing a phase was wrong but not why.

One situation where coders disagreed was when the student had made an incorrect 
solution attempt that could be interpreted as haphazard and perceived themselves as 
stuck. In those cases, coders disagreed on whether the student needed help evaluating the 
incorrect solution idea or starting over with another approach. This issue was resolved by 
introducing Guideline 1: “When the student is both stuck and needing evaluation, choose 
needing evaluation” (Fig.  4). This guideline was justified by our focus on reasoning 
difficulties and the long-term aim of the framework: to help teachers generate, select, 
and validate feedback that support students in continuing their own reasoning. Helping a 
student start over without first evaluating their mistake or uncertainty would not support 
the student’s own construction of reasoning but rather make them adopt a new line of 
reasoning, often proposed by the teacher.

Fig. 5  An example of an incorrect solution idea, which could be caused by misinterpretation (e.g., not read-
ing the whole text), an incorrect conclusion drawn in exploration, or an incorrect solution idea
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In Iteration 4, after the elaborations of stuck diagnoses, the borderline cases for these 
diagnoses were few (5 of 78) and mostly concerned difficulties in separating adjacent 
diagnoses, such as 2A and 2B or 2B and 3A. Disagreements or uncertainties concerned 
whether the student had tried to initiate the phase or not, or where the line between explore and 
create a solution idea should be for a specific solution to a specific problem. As these difficulties 
were due to characteristics of specific tasks and students, we concluded that it was unlikely 
that further elaboration would solve this issue and chose instead to introduce Guideline 2a: 
“If there are several potential stuck diagnoses, choose the earliest diagnosis [in the sequence 
1A–1B–2A–2B–3A–3B–4B].” This guideline was justified by the long-term intentions of the 
framework: to help teachers support students’ own construction of mathematical reasoning. A 
too early diagnosis would, at worst, be useless and could then be followed by a later diagnosis, 
whilst a too late diagnosis could be detrimental by leading the teacher to help the student with 
too much of the solution.

Since guidelines were now in place for determining the difficulty type and amongst 
stuck diagnoses, we also introduced a guideline for needing-evaluation diagnoses in line 
with the long-term intentions of the framework. Since the phase-specific diagnoses (1–4D, 
Fig.  4) were defined as needing help evaluating a specific part of the solution, support 
designed for these diagnoses would be more specific than for the general diagnosis (C). 
Also, as described above, starting evaluation of the whole solution could result in a more 
specific diagnosis. Therefore, Guideline 2b was formulated: “If there are several potential 
needing-evaluation diagnoses, choose diagnosis C.” The last iteration tested this guideline 
and revealed no need for revisions.

5.4  Operationalisability

A potential for aiding validation by linking answers to the diagnostic questions to phases 
was identified already in Iteration 2, but the analysis did not provide sufficient basis for 
revisions, except for the link between Phase 1 and DQ1, which asks for the student’s 
interpretation of the task. This link was visualised in the overview of the framework 
(Fig.  4). In iteration 3, such links were also made explicit within the definitions of 
diagnoses, for example, by adding the formulation “The student’s answer to DQ1 shows 
that the student understood the explicit information in the task and/or the student has 
written down the important information in the task” to initiate exploration (2A).

The analysis of both typical and borderline themes revealed that evidence of what the 
student had done so far (answering DQ2) could aid in determining how far the student had 
come within phases, especially Phases 2 and 4, whilst evidence about why the student had 
done what they had done (answering DQ3) could aid in determining whether the student 
had created a solution idea or not, that is, whether they had passed 3B. These results led to 
revisions of all stuck diagnoses in Phases 2–4, for example, adding the formulation “The 
student’s answer to DQ2 shows that they have tried to explore but have not found a suitable 
strategy” to implement exploration (2B).

The typical cases were used to formulate indicators for the diagnoses. For example, for 
diagnosis 3B, the formulation that the student should have “conducted a good exploration” 
was elaborated as “The student has formulated relationships or properties, tried examples, 
and/or created representations that are sufficient to create a solution idea.” Each diagnosis 
also included examples related to four different problems. These examples were revised 
in all iterations based on the typical examples, successively making the examples more 
authentic and more in line with the definitions.
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During teacher-researcher meetings, we also noted that the sub-questions and 
guidelines increased operationalisability. The sub-questions structured the diagnostic 
process in two simpler steps: first determining whether the student is stuck or needing 
evaluation (Sub-question 1, Fig. 4) and then where the student is stuck (Sub-question 
2a, Fig.  4) or what they need to evaluate (Sub-question 2b, Fig.  4). Sub-question 1 
was usually answered quickly, whilst Sub-questions 2a and 2b could require lengthy 
discussions and thus seemed to constitute the main obstacle for using the framework 
in the classroom. Guidelines 2a and 2b provided a way of settling such discussions 
and the teachers reported that they also helped in-the-moment diagnosis in the 
classroom.

6  Discussion

In this study, we have developed a framework for characterising students’ specific reasoning 
difficulties by devising iterations of design experiments that successively increased the 
empirical grounding and theoretical refinement of the framework. We will first reflect on the 
extent to which the final framework answers our three research questions and thus fulfils the 
three functionality criteria: range, differentiation, and operationalisability, and then discuss the 
contribution and limitations of our study as well as suggestions for future research.

Regarding range, the diagnoses of the final framework capture the 285 specific reasoning 
difficulties included in our data. The revisions of the definitions and structure of the framework 
made it possible to incorporate difficulties that were not covered by the initial framework, such 
as a student not being able to explain how an answer was obtained. The framework also includes 
difficulties regarding interpretation of the problem, a phase in the problem-solving process 
previously often omitted (Rott et al., 2021). This phase was found to be non-trivial for students 
in our study, just as in studies in error analysis regarding word problems (Clements, 1980; 
Whang, 1996). This finding indicates that models developed from studies of adult students 
and professional mathematicians may not be directly generalisable to students in Grades 1–12. 
Within these grades, however, we did not find any differences that warranted a need for separate 
frameworks for different grade levels. Whilst not specifically studied, we have indications that 
the difficulties emerging depend more on the type of problem than the grade level. For example, 
some problems require little time for interpretation but extensive time for exploration, whilst 
some problems take effort to interpret but are then easily solved. The phases may thus require 
different amounts of effort for different problems, which in turn may increase or decrease the 
likelihood of certain diagnoses to occur for different problems. Surprisingly, we did not see 
large differences in types and complexity of problems teachers used for different grades, which 
may also explain the lack of large differences in students’ difficulties. Future research studying 
other types of tasks may thus reveal difficulties that are not captured by the framework. We do 
nonetheless argue that the diversity of our data—spanning 38 teachers’ classrooms, 152 lessons, 
and 110 mathematical problems—constitutes a sound empirical base for answering Research 
Question 1: “What are the main specific reasoning difficulties students encounter when solving 
problems, and how can they be incorporated in the framework?”

The framework presents one answer to Research Question 2: “How can difficulties that 
are theoretically and observably different, in the sense that students need help with different 
aspects of their line of reasoning, be differentiated?” Revisions based on assessment of the 
differentiation of the framework led to sharper definitions and borders between diagnoses, 
leading to decreasing numbers of borderline cases over iterations (Table 1). The introduction of 
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the three guidelines (Fig. 4) provided support for deciding on a diagnosis in uncertain cases. We 
do, however, believe that the information provided in Fig. 4 is not sufficient for differentiating 
between diagnoses but must be accompanied by an understanding of the underlying model for 
students’ problem-solving processes described in the full framework, comprising 25 pages. 
In particular, the character of students’ needing-evaluation difficulties implied that evaluation 
should neither be seen as a final phase, as in Schoenfeld’s (1985) model, nor as sub-phases of 
each main phase, as in our initial framework. Instead, when the need for evaluation emerges, 
it may concern the relationship of any two previous or current phases, as well as the solution 
as a whole. Evaluation may thus not be easily fitted into an otherwise sequential phase model, 
but rather be seen as a different mode in the problem-solving process. When seen in this way, 
teachers were more likely to identify needing-evaluation difficulties, even though students 
seldom engaged in evaluation spontaneously, as seen in previous studies (Koichu et al., 2021).

Research Question 3, “How can the structure and definitions of the framework support the 
diagnostic process by relating it to indicators of diagnoses that are observable in classroom 
situations?”, was answered in two key ways. First, the three sub-questions with auxiliary 
guidelines (Fig.  4) supported the diagnostic process by structuring it in two simpler steps. 
This increased operationalisability as the teachers were able to decide on a diagnosis quicker 
and with more certainty. Second, the indicators of diagnoses in the final framework were 
expressed in terms of students’ answers to the diagnostic questions. Such indicators stressed 
the importance of asking diagnostic questions and supported diagnosing based on students’ 
description of their reasoning rather than inferences from students’ written work. This may 
increase the accuracy of diagnoses, as it is long known that students’ written communication 
is often insufficient for characterising students’ difficulties (Cai et al., 1996; Clements, 1980).

6.1  Contribution

Teachers and researchers have several purposes for analysing and characterising students’ 
mathematical work and have developed different tools for supporting such analyses. Patterns 
in students’ errors were an early focus of analysis, in particular, for revealing students’ 
understandings of specific content (Radatz, 1980) and causes for incorrect solutions to arithmetic 
word problems (Clements, 1980). There are also several rubrics for assessing levels of skills and 
competences expressed in students’ work (e.g., Cai et al., 1996). Information obtained from using 
these tools can guide teachers’ didactical choices in the longer perspective—for an upcoming 
period or the next time they give a course. Our framework contributes another perspective on 
students’ difficulties by focussing what hinders students’ own construction of reasoning in-the-
moment—both in terms of errors and being stuck—regardless of mathematical content.

In doing so, the framework contributes to specifying the elicitation and interpretation 
components of formative assessment for mathematical problem-solving processes. It 
is well-known that providing opportunities for problem solving and reasoning is key for 
promoting students’ mathematics learning (Hiebert & Grouws, 2007; Lester & Cai, 2016), 
but also that maintaining such opportunities in student–teacher interaction is challenging 
for teachers (Black & Wiliam, 2009; Liljedahl & Cai, 2021; Stein et  al., 1996). The 
diagnostic questions can support teachers’ elicitation of information about students’ 
reasoning difficulties, and the diagnoses and guidelines of the framework can help teachers 
interpret this information in terms of precise needs that students have when solving 
problems. Identifying students’ precise needs is a prerequisite for generating and selecting 
feedback that supports students’ own construction of mathematical reasoning and thereby 
their learning (Lee & Cross Francis, 2018; Teuscher et al., 2016).
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This study also contributes a description of a systematic method for how design-based 
theorising can aid the generation, selection, and validation of design alternatives that are 
consequential for students’ learning (diSessa & Cobb, 2004). We have explicated how two 
key characteristics of design research (McKenney & Reeves, 2018)—multiple iterations 
and teacher–researcher collaboration—contributed to the increased functionality of the 
framework. Multiple iterations allowed us to test and revise the framework until theoretical 
saturation was reached, and collaboration with teachers granted access to classroom 
data on a wide range of student difficulties—in terms of both age of students and types 
of problems—and allowed us to assess and increase the framework’s functionality for 
diagnosing students’ specific reasoning difficulties for both teachers and researchers.

6.2  Limitations and future research

Our framework is focussed on, and thus limited to, difficulties that arise in the moment when 
students try to construct their own solutions to mathematical problem. This means that other 
important aspects of student difficulties are disregarded. For example, the framework does not 
identify more general mathematical difficulties that develop over time, that can be captured in 
competence models (Niss & Højgaard, 2019). Our study neither investigates difficulties that 
are specific for certain types of problems, such as proving tasks, word problems or modelling 
(Stylianides et al., 2017; Verschaffel et al., 2020; Whang, 1996), or certain aspects of problem 
solving, such as metacognition and heuristic strategies (Mevarech et al., 2018; Schoenfeld, 
1985). In addition, the framework focusses on difficulties with managing mathematics itself 
and ignores the many types of cognitive, linguistic, affective, and social difficulties that 
students may have. However, including such aspects would increase the complexity of the 
framework and potentially decrease its functionality.

Our framework builds on a sequential process model developed from Schoenfeld’s 
(1985) six phases and Lithner’s (2008) conceptualisation of reasoning. A different starting 
point, for example, Jeannotte and Kieran’s (2017) non-sequential characterisation of 
processes involved in reasoning, would have affected the initial framework. However, our 
analyses of empirical data on students’ difficulties and teachers’ diagnosis processes had a 
substantial impact on the final framework. It is a question for future research to determine 
whether a different initial framework would converge to a similar final framework if 
subjected to similar iterations of systematic testing and revision.

Whilst this study was based on a broad sample of student difficulties and no major differences 
over grades 1–12 were identified, our analyses do not reveal how diagnoses are distributed for 
different types of problems, different student groups, or different cultural contexts. Neither does 
the framework consider different levels of difficulties. Further analyses could reveal systematic 
differences in the relations between, for example, student age and the degree of difficulty, which 
could lead to more specific and less complex frameworks for specific contexts.

Furthermore, our study does not examine what challenges might arise for teachers when 
beginning to use this framework. As previous studies show, describing students’ problem-
solving processes require complex models with multiple phases (Clements, 1980; Rott et al., 
2021). We developed the framework over 1.5 years. Whilst we do not expect learning to use 
the framework to take as much time as developing it, it is still likely that it requires substantial 
professional development efforts. One possibility for organising such efforts is to start using 
parts of the framework and adding elements over time. A first step can be to implement the 
diagnostic questions (DQ1–3, Fig. 4). The majority of our teachers did this and found that it 
was both manageable and had positive impact in the classroom. A second step can be to focus 
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only on the two main difficulty types. We have successfully tried this in one-hour workshops 
with teachers previously unfamiliar with the framework. Future research is needed to study 
these suggestions systematically and to investigate the effects of the framework on teachers’ 
attention to and interpretation of students’ reasoning difficulties, the feedback they provide on 
the basis of such interpretations and its effect on students’ reasoning.
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