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Abstract
Open mathematical modelling problems that can be solved with multiple methods and have 
multiple possible results are an important part of school curricula in mathematics and sci-
ence. Solving open modelling problems in school should prepare students to apply their 
mathematical knowledge in their current and future lives. One characteristic of these prob-
lems is that information that is essential for solving the problems is missing. In the present 
study, we aimed to analyze students’ cognitive barriers while they solved open modelling 
problems, and we evaluated the effects of instructional prompts on their success in solving 
such problems. A quantitative experimental study (N = 263) and a qualitative study (N = 4) 
with secondary school students indicated that identifying unknown quantities and making 
numerical assumptions about these quantities are important cognitive barriers to solving 
open modelling problems. Task-specific instructional prompts helped students overcome 
these barriers and improved their solution rates. Students who were given instructional 
prompts included numerical assumptions in their solutions more often than students who 
were not given such prompts. These findings contribute to theories about solving open 
modelling problems by uncovering cognitive barriers and describing students’ cognitive 
processes as they solve these problems. In addition, the findings contribute to improving 
teaching practice by indicating the potential and limitations of task-specific instructional 
prompts that can be used to support students’ solution processes in the classroom.

Keywords  Modelling problems · Word problems · Instruction · Real-world problems · 
Open problems · Ill-structured problems

In everyday life, people face problems that do not include all the essential information, 
requiring assumptions to be made and allowing for multiple solutions. For example, if you 
must arrive at work at 8 a.m. and you know that the bus ride takes about 20 min after the 
5-min walk from your home to the bus stop, you might consider factors, such as how much 
time you need to shower and have breakfast or how much traffic you expect on the bus 
route, before setting your alarm the night before. On the basis of research on open(-ended) 
problems (Nieminen et al., 2022; Silver, 1995; Yeo, 2017) and modelling (Cevikbas et al., 
2022; Niss et al., 2007; Schukajlow et al., 2023), we refer to these types of problems as 
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open modelling problems. In the past, many researchers have underlined the importance 
of open problems in contrast to closed problems (i.e., problems where all the necessary 
information is given, and only one correct solution is possible; Becker & Shimada, 1997; 
Silver, 1995; Stacey, 1995). Dealing with openness involves making assumptions, which is 
a fundamental mathematical activity for proofs, modelling, and the acquisition of mathe-
matical knowledge (Stylianides & Stylianides, 2023). Prior research has demonstrated that 
students have trouble solving open problems (Cai, 1995) and more specifically open mod-
elling problems (Brown & Stillman, 2017; Ng, 2018). However, not much is known about 
cognitive barriers while solving open modelling problems or about how to help students 
overcome these barriers.

Our first aim was to analyze students’ cognitive barriers as they solved open modelling 
problems. To do so, we used prior research to develop instructional prompts that focused 
on the potential barriers. The effects of these prompts on students’ performances should 
indicate the significance of the potential barriers involved in solving open modelling prob-
lems. The second aim was to analyze whether these instructional prompts support students’ 
solution processes. To address these aims, we conducted a mixed-method sequential study 
that consisted of a quantitative experimental study and a qualitative study, which helped us 
describe and differentiate between the barriers, thereby providing context for interpreting 
the results of the quantitative study.

1 � Theoretical models and empirical results on instruction in solving 
open modelling problems

In this section, we present a literature review on open problems, open modelling problems, 
and instructional prompts.

1.1 � Open modelling problems

Open problems are central to the discipline of mathematics and mathematical thinking. 
According to Silver (1995), in mathematics and mathematics education, the term “open(-
ended) problem” is used for problems that do not yet have a solution (e.g., the Riemann 
hypothesis), for problems that have multiple solution methods (e.g., graphical and numeri-
cal) or multiple results (e.g., “How much toothpaste do you use in a month?”), or for prob-
lems whose solution calls for new problems to be posed or generalizations to be made (e.g., 
“Find three consecutive integers whose sum is divisible by three” generalized to “The sum 
of three consecutive integers is always divisible by three”). Researchers have characterized 
open and closed problems by referring to their structure (Jonassen, 1997; Simon, 1973). 
In closed (well-structured) problems, the initial state, goal state, and intermediate states 
are all clear. This type of problem includes all the information needed to solve the prob-
lem. Solving closed problems requires problem solvers to apply well-known procedures 
that will lead them to one correct result at the end of the solution process (e.g., 4 + x = 5). 
By contrast, open (ill-structured) problems have a vague initial state, a vague goal state, or 
vague intermediate states (i.e., ill-structured problems lack a clear definition of their solu-
tion spaces (Simon, 1973)). Open problems can be solved by applying multiple solution 
methods, and they can have multiple results (Klavir & Hershkovitz, 2008). In our study, we 
analyzed problems with a clear goal state but a vague initial state and a vague intermedi-
ate state, so that solving them required problem solvers to make assumptions, which led to 
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different correct solutions. Open problems can be used to prompt students to learn math-
ematical modelling.

Processes by which information is transferred between reality and mathematics are the 
core of mathematical modelling (Niss et al., 2007; Schukajlow et al., 2023). These trans-
fer processes are usually described by so-called modelling cycles. Many modelling cycles 
(e.g., Blum & Leiss, 2007; Galbraith & Stillman, 2006; Verschaffel et al., 2000) emphasize 
the importance of understanding the real-world situation; idealizing, structuring, and sim-
plifying it; constructing a mathematical model; applying mathematical procedures; inter-
preting the mathematical results; and validating the final result.

Openness in modelling problems can refer to the following three characteristics:

•	 Openness of the initial state of the problem: Numerical or non-numerical data that are 
essential for solving modelling problems are missing or vague (see the example in Fig. 1).

•	 Openness of the intermediate states: The models and mathematical procedures are not 
given in the problem.

•	 Openness of the goal state: The question is vague, and it must be specified by the prob-
lem solver. For example, in the Speaker problem (Fig. 1), the question can be: “Is it 
worthwhile to buy the box?” The expression “Is it worthwhile” is vague and can refer, 
for example, to the financial cost or to an unnecessarily large amount of paper needed to 
package the speaker.

One example of a modelling problem with a vague initial state and a clear goal state is 
the Speaker problem (see Fig. 1). This problem is missing information about the position 
of the speaker in the box and information about the diameter of the speaker.

Any of the activities described in modelling cycles can represent cognitive barriers 
when solving modelling problems (Blum, 2015; Galbraith & Stillman, 2006; Schuka-
jlow et al., 2023). In the case of modelling problems with an open initial state, it can be 
very demanding to structure, simplify, and idealize the given situation. As these activi-
ties occur at the beginning of the modelling process, it is crucial to overcome barriers in 
these activities in order to develop a meaningful solution. On the basis of prior research 
(Dewolf et  al., 2017; Galbraith & Stillman, 2001; Ge & Land, 2004), we distinguish 
between three barriers in dealing with the openness of a problem while solving open 
modelling problems (see Fig. 2).

From primary school to university, students have been found to overlook or ignore 
the openness of problems while solving them (Verschaffel et al., 2000). Analyses of stu-
dents’ solution processes (Chang et al., 2020; Galbraith & Stillman, 2001; Kanefke & 
Schukajlow, 2022) have indicated that students have trouble noticing that information is 

Speaker 
Maria bought the Ul�mate Ears BOOM Speaker 
for 149.95 €. It has 360° sound with deep and 
precise bass. The speaker is 18.4 cm high.  
Maria looks for a box with a cover for her 
speaker. On the web, she finds a beau�ful box. 
It is 14 cm wide, 10 cm high, and 14 cm deep.  
Will the speaker fit in the box? 

Fig. 1   Open modelling problem: Speaker
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missing when solving modelling problems. They often ignore the openness of the prob-
lem, link numerical data from the problem by using a familiar mathematical procedure, 
and thus, process open problems in a similar manner as closed problems. In the Speaker 
problem, for instance, students tend to ignore the fact that some important information 
is missing and calculate the diagonal of the cuboid with the lengths, width, and height 
of the box ( 

√

14
2
+ 14

2
+ 10

2
≈ 22.2 ), compare it with the height of the speaker (18.4), 

and conclude that the speaker fits in the box. Students’ beliefs about problems were 
found to be the primary reason for this behavior (Djepaxhija et al., 2015). One of these 
beliefs is that all numerical data must be given in the problem. Obstacles in noticing 
the openness of problems turned out to be greater for problems that included numerical 
information than for problems that did not include any numerical information for which 
the openness of the problem was obvious (Krawitz et al., 2018).

A second barrier is that it is challenging to identify the unknown quantities that are 
needed to find the solution. To solve the Speaker problem, students must identify the 
diameter of the speaker as an unknown quantity. Hankeln (2020) found that some stu-
dents encountered significant barriers when they were missing information needed to 
solve the problem and put a lot of time and effort toward finding out what information 
they needed to solve the problem. The barriers occurred not only at the beginning but 
also later in the solution process when students were setting up a mathematical model 
or while they were validating the model and results (Anhalt et  al., 2018; Czocher, 
2018). These difficulties are typical of novices, who tend to apply the mathematical 
procedures immediately. By contrast, experts usually take time at the beginning of the 
process to identify what quantities are needed and to make assumptions (Ge & Land, 
2004; Voss & Post, 1988).

A third barrier is that it is challenging to make realistic numerical assumptions. In 
the Speaker problem, after identifying the importance of the diameter, students have to 
make a realistic numerical assumption about it, for instance, that it might be about 6 cm 
(e.g., estimating that the diameter of the speaker is about one third of its height). Some 
students identify a quantity that requires them to make an assumption but do not pro-
ceed further in the solution process, or they make inappropriate assumptions (Kanefke 
& Schukajlow, 2022). For example, while solving a problem that required the growth 
of tree leaves to be modeled, preservice teachers used inadequate assumptions that led 
to unrealistic solutions by assuming that the leaves fall off a tree after exactly 87 days 
(Anhalt et  al., 2018). One important reason for inadequate numerical assumptions is 
a lack of knowledge about the real-world phenomenon described in the task (Krawitz, 
2020). Making assumptions requires students to activate their knowledge about the real-
world situation and to apply various strategies to master these requirements (Ärlebäck, 
2009; Ferrando & Albarracín, 2021).

Fig. 2   Barriers in the processing of modelling problems with an open initial state (adapted from Krawitz 
et al., 2018)
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1.2 � Instructional prompts for solving open modelling problems

Teaching mathematical modelling is demanding for both teachers and students (Niss & 
Blum, 2020, p. 2ff). Research on setting up challenging tasks indicates that maintaining 
the cognitive demands while introducing the task is very important for students’ oppor-
tunities to learn (Jackson et  al., 2013). For modelling problems, Geiger et  al. (2022) 
observed that many teachers either ask students to work without enough of an introduc-
tion or give them too many hints before or while they are solving the problems. Despite 
the importance of research on interventions in the area of modelling, there is a clear gap 
in this field (Schukajlow et  al., 2023). It is important to know what kinds of instruc-
tional prompts help students overcome cognitive barriers while solving open modelling 
problems. Instructional prompts are brief instructions that can be used to scaffold stu-
dents’ learning by including them in static scaffolds, such as solution plans (Schukajlow 
et al., 2015), or by using them dynamically in teacher interventions. Teachers can use 
instructional prompts while setting up a task, during the solution process, or while stu-
dents’ solutions are discussed in the classroom.

Two types of instructional prompts that differ in the specificity of instructions are 
general and task-specific prompts. A general instructional prompt comprises a warn-
ing to be careful while solving the problems on a test. These prompts did not affect 
students’ abilities to notice that the problems did not include all the information 
needed for their solution (Reusser & Stebler, 1997, p. 319). Effects of task-specific 
prompts that are tight to the specific task were mixed. The percentages of realistic 
solutions were higher if each task included information that warned students to be 
careful and think about the solution before answering (Reusser & Stebler, 1997). 
However, as realistic solutions in this study included students’ answers that the prob-
lem could not be solved, we do not know how students’ performances were affected 
by this instructional prompt. In studies with word problems, task-specific instructions 
that were aimed at drawing students’ attention to missing information did not affect 
the number of realistic solutions. An example of a word problem that requires assump-
tions to be made about missing information is the Rope problem: “Mr. Meier wants to 
have a rope long enough to stretch between two poles that are spaced 12 m apart, but 
the pieces of rope he has are only 2 m long. How many of these pieces would he need 
to tie together to stretch between the poles?” (Krawitz et  al., 2018). While solving 
the Rope problem, highlighting the knots in the picture showing the process of mak-
ing a larger rope from smaller pieces of rope did not increase the number of students 
who took the additional length of the rope into account (Dewolf et  al., 2017). By 
contrast, asking students to provide two solutions and practicing a similar problem 
was found to improve students’ performances on the Rope problem (Krawitz et  al., 
2018). One explanation for this finding is that requiring students to develop two solu-
tions implies that this problem can be solved in different ways. Some evidence of the 
effects of instructional prompts has also come from research on modelling problems. 
In the project on the development of a framework for fostering mathematical model-
ling, researchers discussed with teachers the possibility of making different assump-
tions while solving a problem (Geiger et al., 2022). Teachers who implemented these 
instructions in the classroom reported positive effects of these instructions on stu-
dents’ progress in modelling. Positive effects of instructions to make assumptions 
(“Look for the data you need and, if necessary, make assumptions!”) were found in 
a study that analyzed the effects of a solution plan on modelling (Schukajlow et al., 
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2015). We conclude that instructional prompts affect solution processes if the instruc-
tions are specific enough to help students overcome their inadequate beliefs about 
the problems and if students have sufficient knowledge about how to integrate the 
information that is included in the prompts into their solution process. Furthermore, 
students who receive instructional prompts might learn that some information in open 
modelling problems can be missing and may thus transfer this knowledge to open 
modelling problems that do not include task-specific instructions. However, the dif-
ferential effects of instructional prompts on the barriers in the solution process of 
open modelling problems are still unknown.

2 � Aims, research questions, and hypotheses

The present studies were conducted within the framework of the Offene Modellierungsauf-
gaben in einem selbständigkeitsorientierten Unterricht (OModA, in English: Open Model-
ling Problems in Self-Regulated Teaching) project. The OModA project is aiming at inves-
tigating cognitive, strategic, and affective conditions for the teaching and learning of open 
modelling problems. In a prior study, we analyzed students’ interest in solving open mod-
elling problems and its relationship to students’ performance (Schukajlow et  al., 2022). 
In the present study, we aimed to identify the optimal cognitive conditions for the teach-
ing and learning of open modelling problems. In the quantitative study (RQ1 and RQ2), 
we compared the performances of two groups that received different types of instructional 
prompts with the performance of a control group (CG) without prompts. One intervention 
group received instructional prompts about the openness of the problem and about what 
quantity was unknown (unknown quantity group (UQG)). The other intervention group 
received instructional prompts about what quantity was unknown and information about 
the assumptions to be made (assumption group (AG)). In the qualitative study (RQ3 and 
RQ4), we aimed to achieve in-depth insights into students’ mathematical thinking, which 
should help explain the results of the quantitative study. The studies were conducted in 
2021 and 2022.

RQ1: How do task-specific instructional prompts for solving open modelling problems 
affect students’ performances in making realistic numerical assumptions and in solving 
the modelling problems?
Hypothesis 1.1: Students in the UQG outperform students in the CG.
Hypothesis 1.2: Students in the AG outperform both students in the UQG and students 
in the CG.
RQ2: How do task-specific instructional prompts for solving open modelling problems 
affect students’ performances in making realistic numerical assumptions and in solv-
ing modelling problems on an additional problem that does not include instructional 
prompts?
Hypothesis 2.1: Students in the UQG outperform students in the CG in making realistic 
numerical assumptions and in modelling.
Hypothesis 2.2: Students in the AG outperform students in both the UQG and the CG 
in making realistic numerical assumptions and in modelling.
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RQ3: What cognitive barriers do students experience regarding the openness of model-
ling problems?
RQ4: How do task-specific instructional prompts about unknown quantities and sug-
gestions for numerical assumptions for these quantities help students overcome these 
barriers, and how do students process the subsequent problem that does not include an 
instructional prompt?

3 � Quantitative study

3.1 � Methodology

A total of 363 German ninth, 10th, and 11th graders (49% female; mean age 15 years) from 
six comprehensive schools (German Gesamtschule) and three grammar schools (German 
Gymnasium) volunteered to be in this study. Students from the current sample had not 
participated in any specific educational program and did not have any previous experience 
with open modelling problems.

Students within each class were randomly assigned to the CG, UQG, or AG. Before 
the treatment, they filled out questionnaires (10 min), and after the treatment, they took 
a test on intramathematical problems (i.e., problems without a connection to reality; 
15 min). The procedure consisted of a treatment phase and a transfer phase (55 min). 
In the treatment phase, students in the UQG and AG worked on open modelling prob-
lems with instructional prompts, and in the transfer phase, on an open problem without 
instructional prompts. Students in the CG did not receive any instructional prompts. 
All paper–pencil tests and materials were distributed by trained master students, who 
were advised to follow a detailed description of the procedure of the study from a 
manual.

3.1.1 � Material

We developed or adapted seven modelling problems to test students’ performances in 
making realistic assumptions and in solving modelling problems (see examples in Figs. 1 
and 3). The material was originally in German. All problems could be solved by using the 
Pythagorean theorem. Students were familiar with this mathematical topic. In a first pilot 
study in spring 2021 with 143 students, we tested how students solved these problems, 
and we developed a coding manual (Schukajlow et al., 2022). In a second pilot study in 
autumn 2021 with 54 students, we examined the comprehensibility of the instructional 
prompts.

The Shortcut Route problem is missing information about the speed limits in the resi-
dential area (usually up to 30 km/h in Germany) and on the federal road (usually up to 
100  km/h in Germany). For the solution to the Tree problem, an assumption must be 
made about the part of the pole that is hammered into the ground. In the TV problem, 
information about the width of the frame is missing. In the Fence problem, students need 
to make assumptions about the lengths of the ends of the crossbeam.
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3.1.2 � Instructional prompts

Students in the UQG and AG received instructional prompts for six of the problems. The 
instructional prompts in the UQG included information about what quantity was unknown 
and had to be estimated in the problem (see the examples in Table 1). In the AG, students 
received instructional prompts about the assumptions that must be made for the unknown 
quantities (see examples in Table 1).

Shortcut Route  

Mrs. Mai drives home on route B47 and is running late. Fortunately, there 
is li�le traffic on the streets at night. She will soon come to the junc�on 
where the Street named Querallee branches off to the le�. From there it 
would be another 1.5 km on B47 straight ahead, and from the roundabout, 
another 2 km a�er turning le� on B11 un�l she is home. Is the drive 
through the residen�al area worth it for Mrs. Mai so that she can get home 
earlier? 

Tree  

Freshly planted trees are not yet rooted in the earth and need help a�aching for 
the first few years. Support poles are o�en used to help. One end of the pole is 
hammered obliquely into the ground. A distance of 1.25 m from the tree is 
maintained so that the pole does not damage the roots of the fresh tree. The 
other end of the pole is �ed to the tree with a rope at a height of 1.5 m. What is 
the length of the pole?  

TV 

Maria has saved 200 € and would like to buy a 
used TV. She will place the TV on the wall 
between two closets. The distance between 
the closets is 1.10 meters.  

On ebay, Maria found a TV with a screen 
diagonal of 46’’ (117 cm). In the 
adver�sement, the salesperson wrote that the 
TV is 76.3 cm high. It costs 150 €.  

Will the TV fit between the closets? 

Fence 
The Mauer family built a fence (see the picture). This 
is a so-called “Hunter fence.” It is built by using x-
shaped wooden crossbeams that are a�ached to two 
thick horizontal beams. The distance between the 
wooden crossbeams is 15 cm. The distance between 
the horizontal beams is 110 cm. The horizontal beams 
are a�ached to the ver�cal beams that are put into 
the ground. 

How long is a one wooden crossbeam? 

117 cm

76,
3 
cm 

Fig. 3   Open modelling problems: Shortcut Route, Tree, TV, and Fence
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3.1.3 � Performance in making realistic numerical assumptions and in solving 
modelling problems

Two trained master students independently coded students’ solutions to the seven problems 
on realistic numerical assumptions and correctness. Students’ solutions were scored 1 if 
they included a realistic assumption and 0 if they did not. For example, in the Speaker 
problem (Fig.  1), an assumption would refer to the speaker’s diameter. An unrealistic 
assumption for a diameter of the speaker was, e.g., 13 cm, whereas according to the pic-
ture, the diameter is obviously less than half of its height which is 18.4  cm. Intercoder 
reliability (Cohen’s kappa) ranged from 0.74 to 1.00 for the seven problems. The internal 
consistency (Cronbach’s a) for the six problems used in the treatment phase was 0.78. Stu-
dents’ solutions to the problems were scored between 0 and 4 for correctness. Each solu-
tion could receive 1 point for each of the following: identifying a mathematical model (i.e., 
identifying the geometrical representation of the real situation), setting up a mathematical 
model (i.e., setting up a correct equation for the Pythagorean theorem), calculations, and 
interpretation. Cohen’s kappa ranged from 0.88 to 0.98 for the seven modelling problems 
used in the treatment phase and Cronbach’s a for the six problems was 0.78.

3.1.4 � Intramathematical performance

The intramathematical performance test included six Pythagorean theorem problems, all of 
which had been used in prior studies (e.g., Krawitz et al., 2022). The internal consistency 
of the test was 0.80. An ANOVA demonstrated that students in the CG, UQG, and AG did 
not differ in their intramathematical performance, F(2, 363) = 0.460, p = .632, indicating 
that random assignment went as intended.

Table 1   Examples of instructional prompts for the UQG and AG

Problem Unknown quantity group Assumption group

Treatment phase
  Speaker To solve the problem, you need to estimate 

the diameter of the speaker
To solve the problem, you need to 

know the diameter of the speaker. 
Assume that the diameter of the 
speaker is 8 cm

    Shortcut  
Route

To solve the problem, you need to estimate 
the speed of the car in the residential area 
and on the federal road

To solve the problem, you need to 
know the speed of the car in the 
residential area and on the federal 
road. Assume that Mrs. Mai drives 
30 km/h in the residential area and 
50 km/h on the federal route

  Tree To solve the problem, you need to estimate 
the length of the part of the pole that is in 
the ground

To solve the problem, you need to 
know the length of the pole in the 
ground. Assume that the part of the 
pole in the ground is 50 cm long

  TV To solve the problem, you need to estimate 
the width of the frame of the TV

To solve this problem, you need to 
know the width of the frame of the 
TV. Assume that the width of the 
frame is 12 cm

Transfer phase
  Fence No instructional prompt No instructional prompt
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3.1.5 � Statistical tests

To answer RQ1, we used a univariate ANOVA with the independent factor treatment 
condition (CG, UQG, and AG) and dependent variables performance in making realistic 
assumptions or performance in solving problems. As the assumption of homogeneity of 
variance was violated according to Levene’s test, we used Welch’s t test to calculate p- and 
t-values for post hoc tests. To answer RQ2 regarding the solution to the Fence problem, we 
used a nonparametric Chi-square test. However, the results of the Chi-square test should 
be interpreted with caution, as some of the observed numbers in each cell were less than 5.

3.2 � Results

Descriptive statistics for students’ scores on the performance test are presented in Table 2. 
The low scores in the CG show that it was challenging for students to make realistic 
assumptions and solve the problems.

RQ1 asked how instructional prompts affect students’ performances in mak-
ing assumptions and solving problems. As expected, the students in the three groups 
differed in their performance in making assumptions, F(2, 361) = 50.41, p < .001, 
η2 = 0.219. Post hoc t tests revealed that students in the UQG outperformed students in 
the CG, t(129) = 7.15, p < .001, Cohen’s d = 0.88 and students in the AG outperformed 
students in the UQG, t(226) = 3.83, p < .001, Cohen’s d = 0.51.

Similar results were also found for the comparison of students’ performances in solv-
ing problems. An ANOVA demonstrated differences between the three groups, F(2, 
361) = 46.06, p < .001, η2 = 0.204. Post hoc t tests indicated that students in the UQG 
again outperformed students in the CG, t(130) = 6.87, p < .001, Cohen’s d = 0.87 and 
students in the AG outperformed students in the UQG, t(216) = 3.873, p < .001, Cohen’s 
d = 0.50.

In line with Hypothesis 1.1, instructional prompts about the unknown quantities that 
had to be estimated in the problem had positive effects on students’ performances in 
making assumptions and in solving problems. In line with Hypothesis 1.2, in addition to 
prompts about the unknown quantities, instructional prompts that included information 
about the assumptions to be made had stronger effects on students’ performances than 
just instructional prompts about the unknown quantities, which in turn had a stronger 
positive effect when compared with the group that was not given any instructional 
prompts.

RQ2 focused on students’ performances in solving a problem that did not include 
instructional prompts. Therefore, it addressed the question of whether students are able to 

Table 2   Means and standard deviations in the CG (N = 119), UQG (N = 126), and AG (N = 118)

Performances (empirical range) CG UQG AG

M SD M SD M SD

Making realistic assumptions (0–1) 0.006 0.03 0.15 0.23 0.28 0.28
Solving problems (0–4) 0.02 0.11 0.52 0.81 1.01 1.10
Making assumptions: transfer (0–1) 0.03 0.18 0.13 0.33 0.08 0.27
Solving problems: transfer (0–4) 0.11 0.64 0.35 1.09 0.27 0.96
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transfer the effects of instructional prompts dealing with openness to other open model-
ling problems. A total of 13% of the UQG, 8% of the AG, and 3% of the CG made realistic 
assumptions while solving the  Fence problem  (see Table  3). Chi-square tests indicated 
differences between the distributions of the scores in the three groups for students’ perfor-
mances in making realistic assumptions, χ2(2) = 7.048, p = .015. Results of post hoc tests 
supported Hypothesis 2.1 and partly supported Hypothesis 2.2. Students in the UQG and 
AG made realistic assumptions more often than students in the CG, χ2(1) = 7.12, p = .004; 
χ2(1) = 2.79, p = .04, respectively. However, no differences in making realistic assumptions 
were found between the students in the UQG and AG, χ2(1) = 1.14, p = .14.

A total of 8% of the UQG, 6% of the AG, and 3% of the CG solved the problem com-
pletely correctly (see Table 3). Chi-square tests did not indicate differences between the 
distributions of the scores in the three groups for students’ performances in solving the 
problem, χ2(4) = 5.328, p = .13. However, the UQG and CG showed differences in their 
performances, χ2(2) = 5.413, p = .033, but there were no differences between the UQG 
and AG or between the AG and CG (both ps > .10).

These results supported Hypothesis 2.1 and also partly supported Hypothesis 2.2. 
Instructional prompts about unknown quantities that must be estimated in the problem had 
positive effects on students’ performances in making assumptions while solving a problem 
that did not include an instructional prompt. Furthermore, instructional prompts had small 
but significant effects on students’ performance. In addition to prompts about unknown 
quantities, instructional prompts that also included information about the assumptions to 
be made affected students’ performances in making assumptions when solving the problem 
that did not include an instructional prompt, but they did not affect students’ performances.

3.3 � Discussion of the quantitative study

Positive effects of instructional prompts indicate that difficulties in identifying unknown 
quantities and making realistic numerical assumptions are considerable barriers that 
students face when solving open modelling problems. These results explain students’ 
difficulties in making assumptions observed in prior studies, which found out that some 
students do not notice the openness, some students notice it but conclude that such 
problems cannot be solved, and other students make unrealistic assumptions (Anhalt 
et al., 2018; Chang et al., 2020; Dewolf et al., 2017; Galbraith & Stillman, 2001; Han-
keln, 2020; Reusser & Stebler, 1997). Providing students with instructional prompts 

Table 3   Solution score 
distributions (percentages and 
numbers) for the Fence problem  
(transfer phase) in the CG, UQG, 
and AG

The relevant values that are addressed in the text are highlighted in 
bold

Scores CG UQG AG

Making 
realistic 
assump-
tions

0 97% (115) 87% (110) 92% (108)
1 3% (4) 13% (16) 8% (10)

Solving the 
modelling 
problem

0 96% (115) 89% (112) 91%( 108)
1 1% (1) 3% (4) 3% (3)
2 0 0 0
3 0 0 0
4 3% (3) 8% (10) 6% (7)
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that help them identify unknown quantities and make realistic numerical assumptions 
about these quantities helped some students overcome the barriers and develop a real-
istic solution for the respective modelling problems. Therefore, these prompts can be 
used as a scaffolding method in class if the goal is to improve students’ processing of a 
specific problem.

An analysis of the transfer of the understanding that some quantities might be 
unknown and that it might be necessary to make assumptions to solve a modelling prob-
lem revealed a mixed picture. It was a promising result that a few students from the UQG 
and AG included numerical assumptions in their solutions to the problem that did not 
include an instructional prompt. One explanation for this finding might be that students’ 
belief that no assumptions are needed to solve mathematical problems had changed. 
However, the effects were small. Therefore, we conducted a qualitative analysis to shed 
light on this phenomenon and provide a context for the interpretation of the results of the 
quantitative study.

4 � Qualitative study

4.1 � Methodology

Four ninth graders (one female, all about 16 years old) from two grammar schools (Ger-
man Gymnasium) volunteered to participate in the qualitative study. As the modelling 
problems were found to be difficult for students in a pilot study (Schukajlow et al., 2022), 
we selected students with at least average mathematical grades for this study (three stu-
dents with excellent grades and one with an average grade). One of the participants (Alex; 
we gave each student a pseudonym) had previously worked on real-world problems that 
required assumptions to be made.

With each student, we conducted individual sessions that included four phases: 
instruction on the thinking-aloud method, problem solving, stimulated-recall inter-
view, and semi-structured interview. A session began with a thinking-aloud phase that 
consisted of a video on how the thinking-aloud method works, time to practice this 
method, and individual feedback (Schulze Elfringhoff & Schukajlow, 2021; Tropper 
et al., 2015). In the problem-solving phase, participants solved an open modelling prob-
lem without information about the openness of the problem (Shortcut Route problem, 
Fig. 3), a problem with information about the unknown quantity (“To solve the prob-
lem, you must estimate the width of the speaker”; Speaker problem, Fig.  1), a prob-
lem with information about the unknown quantity and the assumption that had to been 
made (“To solve this problem, you must know the width of the frame. Assume that this 
width is 12 cm”; TV problem, Fig. 3), and finally another problem without any informa-
tion about openness (Tree problem, Fig. 3). In the stimulated-recall interview, students 
watched the video of their solution processes, commented on their solution processes, 
and answered the interviewers’ questions. In the semi-structured interview, the students 
answered questions about their perceptions of the problems and prior experience with 
open problems.
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4.1.1 � Data analysis

The transcripts of the problem-solving videos were sequenced in accordance with the 
events that occurred during the interview with a focus on the process of dealing with 
open modelling problems. Sequences of the stimulated recall interviews were assigned to 
the corresponding problem-solving sequences. The problem-solving sequences were cat-
egorized by the second author who applied a qualitative content analysis (Mayring, 2015) 
and evaluated and discussed the results with the first author. Both authors have applied 
qualitative data analyses in the area of modelling in the past (e.g., Krawitz, 2020). In the 
coding process, we used a deductive-inductive approach to data analysis. Deductively, 
we used (1) noticing the openness and (2) making assumptions as the main categories 
(see Table 4 for descriptions of these categories). Initially, we began the coding process 
by identifying all sequences in which students encountered difficulties or mastered notic-
ing the openness or making assumptions. Through this process, we inductively identi-
fied two subcategories within the main category of making assumptions. These subcat-
egories were (2a) recognizing that assumptions about unknown quantities can be made 
and (2b) noticing the need to make assumptions about unknown quantities. Further, we 
inductively identified a third main category ((3) including assumptions about unknown 
quantities in the mathematical model). Sequences from this category were found to differ 
from noticing the openness and making assumptions and were revealed as important in 
the solution processes regarding the openness of the problems. The coding process was 
noted in a table with the categories in the rows and the cases in the columns. For exam-
ple, the sequence “What is the diameter of the speaker? I would say, about as large as my 
water bottle. […] Okay, it is about 7 cm” was paraphrased as “Estimated the length of 
the diameter of the speaker (7 cm),” and this was coded as a realistic numerical assump-
tion made by Alex.

Table 4   Barriers with respect to the openness of the problems

Barriers Descriptions of the barriers Example

1 Noticing the openness Students do not notice the 
openness

Including only the calculation 
of distance in the solution 
(Shortcut Route)

2a Recognizing the possibility 
that assumptions about the 
unknown quantities can be 
made

Noticing the openness but not 
recognizing that assumptions 
can be made

“The speed while turning at 
the junction can be ignored” 
(Shortcut Route)

2b Noticing the need to make 
assumptions about the 
unknown quantities

Recognizing that assumptions 
can be made but thinking that 
assumptions are not necessary

“I think it would be helpful 
if the problem included the 
information that speed limits 
were not important for the 
solution” (Shortcut Route)

3 Including assumptions about 
unknown quantities in the 
mathematical model

Inability to construct a math-
ematical model that includes 
assumptions about unknown 
quantities

Making an assumption about 
the diameter of the speaker, 
but not knowing how this 
assumption can be included 
in the solution (Speaker)
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4.2 � Findings

RQ1 addressed students’ barriers with respect to the openness of the problems. In Table 4, 
we noted the categories that we developed deductively or inductively.

4.2.1 � Shortcut Route problem

To answer RQ1, we analyzed students’ solution processes for the Shortcut Route problem. Bella 
and David did not notice the openness and calculated and compared the distances of the routes 
in their solutions. David explained in the interview that he briefly considered taking into account 
speed limits (possibility that assumptions can be made) but decided that it was not important for 
the solution of the problem. Noticing and dealing with openness was also a challenge for Chris-
topher, who had included only calculations about distances in his solution (Fig. 4). In his answer, 
he noted that his recommendation was based on distances. In the interview, he emphasized that 
he was not sure whether the driving time was important (“… time could be also important for 
the recommendation”) and explained that it would have been better if the problem had explicitly 
addressed a missing quantity (“I think it would be helpful if the problem included the information 
that speed limits were not important for the solution”). David’s and Christopher’s solution pro-
cesses demonstrated that it was not sufficient to notice that it was possible to make an assumption. 
In addition, it was important to notice that it was necessary to make assumptions in problems.

Alex directly recognized the importance of making assumptions. He made situational 
assumptions about the position of two federal roads (“… under the assumption that the 
road is perpendicular to the junction”) and about driving on the federal road (“Because 
there are houses next to the road, the driver has to look for pedestrians”). Furthermore, 
Alex pointed out situational requirements that he did not consider in his solution (“The 
speed while turning at the junction can be ignored”). Beginning with situational assump-
tions, he made realistic numerical assumptions about the speed limits (80 km/h on the fed-
eral road and 30 km/h in the residential area), calculated the distances and the time needed 
for the two routes (with some errors in his calculations), and gave a realistic answer to the 
problem (“It is not worth it because of the speed limits”). Alex’s processing of the Short-
cut Route problem demonstrated his deep mathematical thinking about the situation as he 
retrieved a speed limit (100 km/h on the residential road) from his memory, analyzed the 
situation (pedestrians near the road and changes in speed because of the turn at the junc-
tion), and took the relevant situational considerations into account while making numerical 
assumptions (adjusting 100 to 80 km/h on the federal road). Alex noticed the openness, 

Fig. 4   Christopher’s solution to the Shortcut Route problem
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recognized the need to make assumptions about unknown quantities, made realistic situ-
ational and numerical assumptions, and included the assumptions in his mathematical 
model. The analysis indicated possible barriers to noticing the openness (Bella) and recog-
nizing the need to make an assumption (Daniel, Christopher).

RQ2 was about students’ thought processes when solving modelling problems that 
included instructional prompts and about solving a subsequent task with no instructional 
prompts.

4.2.2 � Speaker problem

While solving the Speaker problem, all students considered how they could integrate 
the unknown quantity (diameter of the speaker) into their solution. Daniel and Bella 
had trouble making an assumption about the unknown quantity. Daniel decided that 
the speaker might fit in the box only if it were placed diagonally on the bottom of 
the box. However, he did not know how to integrate the information about the width 
of the speaker into his considerations (inability to construct a mathematical model 
that includes assumptions). Bella placed the speaker on the bottom of the box, cal-
culated the diagonal of the bottom of the box, and compared it with the height of the 
speaker (Fig.  5). While interpreting the result, she mentioned the unknown quantity 
(“It depends on the width of the speaker […] the maximum width would be 1.4 cm. I 
think this is too narrow.”; not recognizing that an assumption can be made). Alex and 
Christopher made a numerical assumption about the unknown quantity. Christopher 
estimated the diameter as 6 cm because the calculations were easier, rather than 7 or 
7.5 cm, which he considered more realistic assumptions. Alex assumed that the diam-
eter of the bottom of the speaker was similar to the diameter of his water bottle and 
used the diameter of his water bottle (6 cm) as a proxy for the diameter of the speaker. 
In the interview, Alex explained that the object at hand helped him make a numeri-
cal assumption (“It would be difficult [to make an assumption about diameter of the 
speaker] if I did not have a water bottle with me”). The analysis of students’ thought 
processes while solving the Speaker problem demonstrated that students had trouble 
making numerical assumptions (Daniel and Bella) and integrating an unknown quan-
tity into the mathematical model (Daniel).

Fig. 5   Bella’s solution to the Speaker problem
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4.2.3 � TV problem

Solving the TV problem required students to integrate an instructional prompt that 
included a numerical assumption about the unknown quantity (12 cm for the width of 
the frame) into the solution. All students were able to integrate this unknown quan-
tity into their solutions (see Christopher’s solution in Fig. 6). An important observation 
about numerical assumptions was observed in Alex’s thought process. Alex doubted that 
the width of the frame could be 12 cm and estimated the frame as 6 cm: “Ok, a normal 
TV does not have a frame of 12 cm… It means probably the whole frame [bottom and 
upper part of the frame]. It is a Samsung UE46. It looks like a relatively new TV. The 
frame has to be 6 cm at most.” Even though the information about the unknown quantity 
was given in the problem, Alex changed it on the basis of his real-world knowledge and 
made his own numerical assumption. All other students included the numerical assump-
tions offered in the instructional prompt in their mathematical model.

4.2.4 � Tree problem

The last problem (i.e., the Tree problem) did not include instructional prompts. None of 
the four students noticed its openness, and none considered including the part of the pole 
in the ground or at the place where the pole was bound to the tree in their solutions. All 
students applied the Pythagorean theorem and calculated the length of the pole as a hypot-
enuse in a right-angled triangle (see Fig. 7). During the solution process, Alex and Chris-
topher were not sure whether they had overlooked some information (Christopher: “I have 
a feeling that it was too simple. It could not be the final [solution]. However, I will leave 
it as it is.”). In the interview, Alex was confident that his solution to the Tree problem was 
correct (“I liked the Tree problem the most because I think this solution is really accurate. 
The other solutions included estimations.”). The analysis of solutions to the Tree problem 
indicates that students cannot easily transfer their experiences in solving problems with 
instructional prompts to a problem that does not include an instructional prompt.

Fig. 6   Christopher’s solution to the TV problem
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4.3 � Discussion of the qualitative study

Qualitative analyses of students’ processing of open modelling problems indicated stu-
dents’ difficulties in noticing the openness of the problem and making assumptions about 
unknown quantities as well as the barriers that were proposed theoretically (Krawitz et al., 
2018) and confirmed empirically in the quantitative study. Interestingly, the analysis of 
students’ solution processes indicates that making realistic assumptions about unknown 
quantities requires them to recognize both the possibility and the necessity of making 
assumptions. Including assumptions in a mathematical model was found to be a particular 
challenge for students. These results expand prior findings about barriers to solving open 
modelling problems (Anhalt et al., 2018; Chang et al., 2020; Galbraith & Stillman, 2001; 
Hankeln, 2020; Niss & Blum, 2020) by differentiating between barriers in making assump-
tions and by adding a new barrier to the model of barriers in the processing of modelling 
problems with an open initial state adapted from Krawitz (2018).

Instructional prompts helped students overcome barriers to solving open modelling 
problems. A prompt about the unknown quantity encouraged students to consider it in 
their solution. One interesting finding was how students reacted to this prompt. Some 
students did not make a numerical assumption explicitly but considered whether a calcu-
lated number would correspond to reality. This is an important result that indicates the 
persistence of students’ beliefs that only information that is given in the problem should 
be used in their calculations (Djepaxhija et al., 2015). Another implication from this find-
ing is that this prompt enhances the validation of results, which was observed to be a rare 
but important modelling activity in the past (Czocher, 2018; Schukajlow et al., 2023). A 
prompt that included an unknown quantity and a numerical assumption was revealed to 
be effective for dealing with missing information in the specific task. One interpretation 
of this finding is that this instructional prompt transforms the open problem into a closed 
problem, a type of problem students are familiar with. Unexpectedly, none of the four 
students was able to transfer their experiences from solving problems with instructional 
prompts to a new problem. One explanation might be the difficulty of noticing the open-
ness in the Tree problem. As one of the students was able to recognize the openness of 
the first problem but did not recognize it in the Tree problem, we hypothesize that notic-
ing the openness of a problem strongly depends on the problem at hand. This result is 
in line with previous research that revealed the importance of the type of problem for 
whether students could notice their openness (Krawitz et al., 2018) and emphasizes the 
challenges involved in designing modelling problems (Geiger et al., 2022).

Fig. 7   Alex’s solution to the Tree problem
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5 � Summary, overall discussion, limitations, and conclusion

In this study, we aimed to uncover cognitive barriers to solving open modelling problems 
and examining the effects of instructional prompts on students’ performances and solution 
processes. The quantitative study indicated that students’ inabilities to notice the openness 
of a problem and identify unknown quantities were important barriers to solving open 
modelling problems. The failure to make numerical assumptions is another important 
barrier that can prevent students from solving an open problem. These findings validate 
important parts of the model that we adapted from a prior study (Krawitz et al., 2018). 
Our findings add to results from quantitative studies that were conducted with word prob-
lems (Djepaxhija et al., 2015; Verschaffel et al., 2000, 2020) and findings from qualitative 
studies in the area of modelling (Anhalt et al., 2018; Galbraith & Stillman, 2001; Han-
keln, 2020; Kanefke & Schukajlow, 2022). The qualitative study helped us understand 
the results of the quantitative study by illustrating the significance of the hypothesized 
barriers, by differentiating between barriers to the possibility versus the necessity of mak-
ing assumptions, and by identifying the new barrier to integrating assumptions into the 
solution. These novel results contribute to the theory of solving open modelling problems.

Another important finding from our study is about the positive effects of task-spe-
cific instructional prompts on students’ solution processes and performances. Prior 
research demonstrated that teachers should maintain cognitive demands while intro-
ducing challenging tasks (Jackson et al., 2013) such as open modelling problems. The 
advantage of the instructional prompts is that they do not take much time, can easily be 
integrated into regular lessons, and can be handed over to students who cannot over-
come the barriers on their own. Instructional prompts about unknown quantities and 
about assumptions that had to be made supported individual solution processes. The 
effects of instructional prompts that included assumptions about the unknown quantities 
were stronger than the effects of instructional prompts that simply suggested that some 
quantities were unknown. We expect that the effects of these instructional prompts can 
be even stronger if students work on the problems in groups and can discuss how to 
use these prompts to solve the problem. However, our quantitative study indicated that 
instructional prompts do not improve the correctness of solutions for the majority of 
students. The qualitative study shed light on these results and suggested that students 
could not integrate the instructional prompts into their mathematical models. Future 
studies should analyze how students’ individual characteristics (e.g., mathematical 
knowledge or reading comprehension) affect the effects of instructional prompts. Fur-
thermore, future research should address the question of which teaching methods help 
students integrate the instructional prompts into their mathematical models.

Uncovering a transfer effect of instructional prompts to a new open problem is another 
important new result of our study. Brief instructional prompts about what quantity is 
unknown in a specific problem can evoke learning processes. However, the magnitude of 
these transfer effects was small. We expect stronger effects if students receive more compre-
hensive instructions focused on the barriers to solving open modelling problems and practice 
how to solve open modelling problems in the classroom. In the past, integrating instructional 
prompts into scaffolding instruments such as solution plans or encouraging small group dis-
cussions was found to be effective ways to improve students’ modelling competence (Ärle-
bäck, 2009; Durandt et al., 2022; Ferrando & Albarracín, 2021; Parhizgar & Liljedahl, 2019; 
Schukajlow et al., 2015). Interestingly, to solve the task in the transfer phase, instructional 
prompts that pointed out an assumption about the unknown quantity were less helpful for 
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finding a solution than prompts about identifying the unknown quantity. This unexpected 
result indicates that some instructional prompts have stronger effects on the solution pro-
cess of a particular problem, whereas other instructional prompts foster transfer processes 
instead. To help students learn to solve open modelling problems, it seems to be more prom-
ising to state which quantity is unknown and encourage students to make their own numerical 
assumptions than to give them a specific number to use as an assumption in a given problem.

Furthermore, as the transfer effects were small, the design and evaluation of teaching 
methods that can help students learn how to deal with open problems are an important 
direction for future studies. A qualitative analysis in which students did not notice the 
openness indicated that the complexity and the context of the problem might be impor-
tant for noticing the openness. If students are not familiar with the context, they could 
have problems noticing the openness and making realistic assumptions. Future studies 
should investigate how making numerical assumptions is related to task design.

The study has several limitations. In our quantitative study, we used a between-sub-
jects design by randomly assigning students in each class to one of three conditions. This 
design was used to avoid having an interaction between the instructional conditions as 
would be the case for a within-subjects design. However, our design did not guarantee 
that the three groups were equal. As we did not find differences in intramathematical per-
formance, we consider the groups to be comparable. Another limitation is that we used a 
convenience sample. Our results are not representative of Germany, and the results might 
be different for other populations (e.g., primary school students) or for other cultures 
(e.g., Eastern cultures). Furthermore, as many students could not solve the Fence prob-
lem, it would be interesting to analyze types of errors that occurred in students’ solu-
tions in future studies. In our qualitative study, we used a within-subjects design. Conse-
quently, the instructional prompt offered for the second problem could also have affected 
students’ solutions to the third problem, which included another type of instructional 
prompt. The results may have been different if each student had received only one type 
of instructional prompt. Finally, we used this mixed-method study to test two different 
effects: one involving cognitive barriers and one the effects of instructional prompts. 
A limitation of this approach is that these claims are partly dependent on each other, 
as results on cognitive barriers rely on effects of instructional prompts to some extent. 
However, the advantage of this approach is that it contributes to two different lines of 
research: one on cognitive barriers in solving problems and one on instructional prompts.

Our mix-method study concludes that solving open modelling problems is demand-
ing for students. Noticing the openness, identifying unknown quantities, making realistic 
numerical assumptions about the unknown quantities, and integrating these assumptions 
into the mathematical model are important cognitive barriers in solving open modelling 
problems. Instructional prompts about unknown quantities and needed numerical assump-
tions improve students’ solution rates and in parts also stimulate the performance in solving 
a transfer problem. Thus, our study contributes both to the theory of mathematical model-
ling by describing barriers in solving modelling problems and to the teaching practice of 
mathematical modelling by demonstrating positive effects of instructional prompts on the 
performance in solving modelling problems.
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