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Abstract
Tasks play an important role in mathematics education, as they provide opportunities for 
students to develop their competencies and to cognitively engage with the mathematical 
content. The potential for cognitive activation as a central feature of a mathematical task 
has been considered in numerous studies, mostly as a didactical analysis by means of exist-
ing classification systems. In this study, which has been carried out in the frame of the 
TEDS research program, a different approach is taken by which we aim to identify the 
cognitive demand level of tasks used in ordinary mathematics lessons. Thus, the correla-
tion between general mathematical competencies and the cognitive mathematical activities 
required to solve the task was analyzed and common properties of groupings of tasks were 
empirically extracted. In detail, 2490 tasks from mathematics lessons in Germany were 
analyzed by means of a rational task analysis with regard to their potential for fostering 
general mathematical competencies, namely modelling, problem solving, reasoning and 
argumentation, use of representations, use of symbols and operations, and communication. 
Latent class analysis revealed six classes of mathematical tasks with varying potential for 
the different competencies. In accordance with previous studies on mathematical tasks in 
Germany, the biggest class focused solely on the use of symbols and operations, while 
other classes showed different foci. Post hoc analyses revealed that the classes of tasks dif-
fer with regard to the level of cognitive activity they require. The results of the study high-
light that the potential for cognitive activation of the tasks used in the classrooms of this 
more recent study has not improved in the last decades, despite many reform activities in 
German mathematics education, and that many mathematical tasks used are still more or 
less calculation oriented.
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1 Introduction

The selection of mathematical tasks for students to work on during a lesson is a powerful 
tool for shaping mathematics education; in fact, it is “among the most important decisions 
a teacher makes” (Boston & Smith, 2011, p. 966). The planning of learning tasks integrates 
numerous didactic decisions made by the teacher, including those regarding the goals, con-
tent, and activities of the lesson (König et al., 2020). Watson and Ohtani (2015) highlight 
the importance of tasks for mathematics education:

From a cognitive perspective, the detail and content of tasks have a significant effect 
on learning; from a cultural perspective, tasks shape the learners’ experience of the 
subject and their understanding of the nature of mathematical activity; from a practi-
cal perspective, tasks are the bedrock of classroom life, the “things to do.” (p. 3)

Tasks not only determine the mathematical content and processes with which students 
interact during the lesson but also impact the situation in which content is embedded (Doyle, 
1983). In an extension of the well-known didactical triangle to a socio-didactical tetrahedron, 
Rezat and Sträßer (2012) consider lesson artifacts1 as a fourth and fundamental constituent of 
the didactical situation. In each of the new triangles (student–task–teacher, student–task–con-
tent, and teacher–task–content), tasks shape the relations between the other two corner points. 
For instance, tasks provide students with the opportunity to actively engage with mathemati-
cal content while enabling teachers to structure said content.

On an intuitive level, it seems plausible that high-quality tasks facilitate (and indicate) 
high-quality teaching (as defined by Berliner, 2005), which in turn leads to better student 
learning. Many studies have investigated the effects of high-quality mathematics instruc-
tion on cognitive or motivational student outcomes (e.g., Baumert et al., 2010; Blömeke 
et al., 2022; Hiebert & Grouws, 2007; Lynch et al., 2017; Scherer et al., 2016) and have 
mostly found small to moderate positive effects. Other studies have discussed the possi-
ble impact of high-quality tasks on students’ cognitive learning gains and achievement 
(English, 2011; Sullivan & Mornane, 2014), as well as students’ motivation (Heinle et al., 
2022), but strong empirical evidence is still missing. Still other studies, particularly those 
conducted on classroom artifacts, point to a significant correlation between task character-
istics and the quality of instruction (Hill & Charalambous, 2012; Matsumura et al., 2002, 
2006). As artifacts are relatively easy to sample and can be re-analyzed at a later stage if 
needed, the potential of tasks is often used as a direct indicator of the quality of instruc-
tion (Baumert et al., 2010; Boston, 2012; Herbert & Schweig, 2021). However, few studies 
have explored in detail the assumed relations between different facets of task potential and 
instructional quality (e.g., Herbert & Schweig, 2021; Joyce et  al., 2018). Recent studies 
have adopted interesting approaches that relate task characteristics to students’ mathemati-
cal creativity (Levensen et al., 2018; Lithner, 2017) or to global goals like the promotion of 
peace and sustainability (Yaro et al., 2020). Such work highlights the importance of con-
sidering the task perspective for various goals of mathematics education.

Despite the high relevance of mathematical tasks to both research and practice, the field 
lacks a comprehensive understanding of the kinds of tasks that are used in ordinary class-
rooms and how they impact the teaching and learning of mathematics. Therefore, the aim of 

1 In the analysis, the terms lesson artifact and classroom artifact refer not only to the tasks used throughout 
the course of a lesson but also include other objects, such as students’ notes or lesson plans.
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this paper is to empirically identify and characterize different types of tasks used in common 
classrooms based on an in-depth analysis of task features relevant for mathematical learning 
processes. This approach is in contrast to other studies, in which the distribution of the char-
acteristics of the tasks within a task sample is analyzed with an existing classification system.

2  Tasks in mathematical educational research and practice

According to the widely accepted work by Doyle (1983), academic tasks “are defined by 
the answers students are required to produce and the routes that can be used to obtain these 
answers” (p. 161). These routes are determined by the operations students are required to 
perform as well as the resources they have at their disposal. Johnson et  al. (2017) view 
the task as “a form of social practice, undertaken by teacher and students as a collective” 
(p. 814). Both perspectives on tasks can be integrated with the mathematical task frame-
work proposed by Stein et al. (1996), which illustrates three phases of task implementa-
tion. First, the mathematical task is considered as it is presented in the material. Second, 
the teachers’ goals, intentions, knowledge of the content, and knowledge of their students 
impact the way the task is set up in the lesson. Third, the classroom features and students’ 
dispositions impact the way the task is enacted.

Thus, the potential of a mathematical task for teaching can be seen as a combination 
of its inherent features and the teacher’s knowledge, beliefs, and goals, while its potential 
for individual students’ learning depends on students’ dispositions. Although many studies 
confirm this assumption of varying task potentials (Boston & Smith, 2011; Kullberg et al., 
2014; Stein et al., 1996; Sullivan et al., 2009) and produce new theoretical reflections on 
the matter (e.g., a cyclical model of task design and implementation; Thanheiser, 2017), it 
remains clear that the task as represented in the material is the foundation for further task 
implementation (Boston & Wolf, 2006). Analyzing a task’s inherent potential is therefore 
of high interest for research related to mathematical tasks.

In terms of students’ mathematical learning gains, the focus is often on the tasks’ poten-
tial for cognitive activation. This construct has been conceptualized differently in previ-
ous studies, mostly either as a stand-alone dimension of the task or as the combination of 
separate different indicators. One of the first approaches to determine a task’s potential 
for cognitive activation in a holistic way was Bloom’s taxonomy of educational objectives 
(Bloom et al., 1956). While the original taxonomy was solely focused on cognitive activi-
ties, a revised version developed by Anderson and Krathwohl (2001) identified different 
knowledge facets (factual, conceptual, procedural, and metacognitive) as a second key 
dimension in addition to cognitive activities (remember, understand, apply, analyze, evalu-
ate, and create). A similar, but mathematics-specific, approach to describing the cognitive 
demand of tasks was introduced by Stein et al. (1996). Their four levels of mathematical 
activities “range from memorization, to the use of procedures and algorithms […], to the 
employment of complex thinking and reasoning strategies that would be typical of ‘doing 
mathematics’ (e.g., conjecturing, justifying, interpreting, etc.)” (p. 461). However, analy-
ses, such as those in the context of the Instructional Quality Assessment (IQA), show that 
it is difficult for multiple raters to reliably assess tasks based on these four categories (Bos-
ton & Wolf, 2006). While this is a common challenge for high-inference ratings, it may 
also indicate that the cognitive demand of tasks is a complex, multi-dimensional construct, 
which is difficult to adequately capture using only one characteristic.
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This holistic perspective on the potential for cognitive activation of tasks is contrasted in 
other studies with atomistic approaches in which different dimensions of cognitive activa-
tion are considered. In German-speaking countries, the Cognitive Activation in the Class-
room Study (COACTIV) project has shaped discussions about the potential of mathemati-
cal tasks (Baumert et al., 2010; Neubrand et al., 2013). The classification scheme for task 
analysis (Jordan et al., 2006) originally included 18 categories and captured a wide vari-
ety of aspects. However, three dimensions—type of mathematical task (purely technical, 
computational modelling, and conceptual modelling), level of mathematical argumentation 
required, and translation processes within mathematics—were deemed most suitable to 
describe tasks’ potential for cognitive activation with regard to the quality of instruction 
(Baumert et al., 2010). However, to the best of our knowledge, there has been no in-depth 
analysis of the relations between the aforementioned dimensions and the way they deter-
mine a task’s potential for cognitive activation.

Recent analyses in the context of the Global Teaching InSights Study (TALIS-
Video, originally the Teaching and Learning International Survey Video Study) suggest 
that similar indicators for different aspects of the potential for cognitive activation can 
be integrated into a common construct, thus integrating the holistic and the atomistic 
approach. Herbert and Schweig (2021) established six categories for the analysis of 
classroom artifacts: connecting mathematical representations, real-world contexts, ask-
ing for explanations, using multiple mathematical methods, encouraging self-evaluation, 
and linguistic complexity. The results point out that the aforementioned variables repre-
sent a common construct. However, the study was limited to lessons on quadratic equa-
tions and functions.

Another approach to reach a comprehensive understanding of the task as a whole based 
on individual characteristics originates from the discussion about (cognitive) mathemati-
cal competencies. Tasks, as the main carriers of mathematical content and activities, need 
to be designed in a way that enables the development of various mathematical competen-
cies, as this is one of the central goals of mathematics education (Niss & Højgaard, 2011). 
While there is no common definition of the term (mathematical) competency (Blömeke 
et  al., 2015), competency frameworks have emerged as goals and guidelines for math-
ematics instruction (for an overview, see Pettersen & Nortvedt, 2018). One of the most 
renowned frameworks originated from the Competencies and the Learning of Mathemat-
ics Framework (KOM framework; Niss & Højgaard, 2011, 2019). In the adaptation for 
the Programme for International Student Assessment (PISA, Niss, 2015), Turner et  al. 
(2015) describe how mathematical tasks can be characterized by the extent to which they 
foster each of the following six competencies: communication; devising strategies; math-
ematization; representation; using symbols, operations, and formal language; and reason-
ing and argument (for an overview, see Turner et  al., 2023). It should be noted that the 
eight competencies in the KOM framework were explicitly designed to be generic, that 
is, “independent of specific mathematical subject matter as well as of specific educational 
levels” (Niss & Højgaard, 2019, p. 10), as well as “distinct, but not disjoint” (ibid., p. 19). 
Empirical analyses using PISA items confirm this second assumption for the six compe-
tencies included in Turner et al. (2015), revealing moderate positive correlations between 
mathematical competencies and showing that the levels of different competencies required 
to solve an item can be used to predict the difficulty of an empirical item (Pettersen & 
Braeken, 2019; Turner et al., 2013).

As outlined in this section, the potential for cognitive activation of tasks has so far 
been considered and assessed from different perspectives. A holistic approach classifies 
tasks either as challenging (cognitively activating) or as less challenging, without taking 
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a detailed look at individual characteristics. An atomistic approach often does not suffi-
ciently clarify the extent to which different facets are related and how this relation shapes 
the tasks’ potential for cognitive activation. Thus, the aim of the present work is to con-
tribute to bridging the gap between the described holistic and atomistic approaches. To 
this end, different types of tasks are identified empirically based on the extent to which 
they foster different mathematical competencies (sensu Niss, 2015). These resulting types 
of tasks are then examined with regard to the levels of cognitive mathematical activities, 
departing from Anderson and Krathwohl (2001), as well as Stein et al. (1996), thus com-
bining different approaches to determine the tasks’ potential for cognitive activation. This 
exploratory approach hereby offers an opportunity to empirically validate and illustrate dif-
ferent ways in which tasks can elicit the various cognitive mathematical activities.

In this way, the present study connects to prior work on the potential of tasks by under-
standing tasks as an integral part of teaching. As stimuli for mathematical activities, tasks 
provide opportunities for students to demonstrate and develop general mathematical com-
petencies; thus, the analysis of task features is seen as an important component for under-
standing teaching and learning processes in the classroom and their potential for fostering 
cognitive activation. For further frameworks that focus on task design as a process, incor-
porate the perspectives of other groups (e.g., students), or establish detailed theories for 
individual mathematical topics, we refer in particular to work from the International Com-
mission on Mathematical Instruction group on task design (ICMI-22; for an overview, see 
Kieran et al., 2015).

3  Conceptual framework and research questions

The present study is situated in the Teacher Education and Development Study (Learning 
to Teach Mathematics, TEDS-M) research program within the TEDS-Validate study, which 
focuses on the relations between mathematics teachers’ professional competencies and 
their students’ learning gains (Kaiser et al., 2017). The initial research interest of TEDS-M 
was the analysis and comparison of teachers’ mathematical (pedagogical) content knowl-
edge (MCK/MPCK; Shulman, 1986). However, German follow-up studies have expanded 
the research on the underlying effect chain between teachers’ competence and students’ 
achievement to include teachers’ situated skills (Blömeke et al., 2015) and the quality of 
instruction (Jentsch et al., 2021b; Schlesinger et al., 2018) as mediating variables (for an 
analysis of the full effect chain, see Blömeke et al., 2022). To validate the lesson observa-
tions and investigate instructional quality in more detail, the potential for cognitive activa-
tion of the learning tasks (PCAT) used during instruction was included in the model as part 
of instructional quality. Tasks, as learning opportunities, have a high PCAT if they lead to 
a deeper understanding of mathematical content and interconnections of concepts (Kunter 
& Voss, 2013). To this end, tasks should build on students’ ways of thinking and prior 
knowledge, and they should support metacognition and higher-level thinking (Praetorius 
et al., 2018).

In accordance with prevalent works in the didactical discourse (e.g., Bromme et  al., 
1990; Doyle, 1983; Neubrand, 2002; Stein et al., 1996), a task in the context of this study is 
seen as a prompt asking the students to formulate a product as the result of dealing with a 
specified mathematical situation. Thus, if the mathematical situation changes significantly 
or the students are required to formulate sufficiently different products, two (or more) dif-
ferent (sub-)tasks are considered in the analysis. For instance, task A (Table 1) is seen as a 
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coherent entity because, in contrast to the twelve isolated sub-tasks of the second example 
from the same lesson, the focus is on recognizing the general pattern. In addition to the 
task wording, the solution paths available to the students are understood to be inextricably 
linked to the tasks and are thus part of the unit of analysis (Doyle, 1983).

The underlying assumption of this analysis is that high and low levels of PCAT can be 
attained and different levels of mathematical competencies can be promoted regardless of 
students’ age group and the area of mathematical content addressed by the task. Depart-
ing from prior work on the analysis of mathematical tasks, particularly the COACTIV 
study (Jordan et  al., 2006; Neubrand et  al., 2013) and work connected to the Trends in 
International Mathematics and Science Study (TIMSS, originally the Third International 
Mathematics and Science Study; Neubrand, 2002), the following task characteristics are 
assumed to impact PCAT:

– Content-related characteristics (such as the curricular level or the interconnectedness of 
different content areas);

– The levels of different mathematical competencies (mathematical modelling, problem 
solving, reasoning and argumentation, the use of representations, the use of symbols 
and operations, and mathematical communication) required to solve the task (following 
Turner et al., 2015);

– The cognitive complexity of the task (departing from Anderson & Krathwohl, 2001);
– The linguistic complexity of the task formulation (using indicators for complexity that 

are specific to the German language); and
– Overarching task characteristics, such as closeness to reality and openness.

Following Niss and Højgaard (2019) in their notion of distinct, but not disjoint 
competencies, the focus is on the characteristic features of the respective competency, 
that is, on the “well-defined identity which singles it out from the other competencies” 
(p. 19). Therefore, for mathematical modelling, the active transitions between math-
ematics and the real world are examined, while devising and applying strategies for the 
solution of mathematical problems is seen as a key component of problem solving. For 
the reasoning and argumentation competency, both the comprehension and the produc-
tion of (chains of) arguments are seen as relevant. The isolated handling of symbolic 
and verbal representations is already emphasized with regard to the use of symbols and 
operations, respectively, the mathematical communication competency. Thus, in the 
use of mathematical representations, especially the iconic and enactive level as well 
as the deliberate selection of mathematical representations and the transitions between 

Table 1  Examples for the organization of tasks in units of analysis

Task A (1 unit of analysis) Task B (12 sub-tasks/units of analysis)

Calculate mentally if possible Calculate mentally if possible

3 ∙ (−5) = −15

2 ∙ (−5) = −10

1 ∙ (−5) = −5

0 ∙ (−5) = 0

(−1) ∙ (−5) = …

(−2) ∙ (−5) = …

(… ) ∙ (−5) = …

a)
(−8) ∙ 3

(−4) ∙ (−3)

9 ∙ (−14)

b)
17 ∙ (−3)

(−8) ∙ (−24)

(−72) ∙ 8

c)
9 ∙ (−41)

(−4) ∙ 63

(−5) ∙ (−36)

d)
4 ∙ (−65)

(−8) ∙ 125

4 ∙ (−250)
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different forms of representation are considered. Following the work of Turner et  al. 
(2015) in the context of the PISA tasks, both the mathematical thinking competency 
and the mathematical aids and tools competency were not included in our task analysis.

Previous analyses suggest that different mathematical competencies are not always 
addressed to the same degree (Neubrand et al., 2013; Pettersen & Braeken, 2019; Turner 
et al., 2015). We therefore assume that different types of tasks require the aforementioned 
mathematical competencies to varying degrees, and thus, cognitive activation can be pro-
moted in different ways. In a first step, we aim to investigate the relations between these 
different task characteristics and identify patterns in the interplay of the mathematical 
competencies within the tasks sampled from German classrooms. Our first research ques-
tion (RQ) is as follows:

(RQ1) What are the different types of tasks that can be identified within the sample 
of  instructional tasks from various lessons based on their potential to foster different 
mathematical competencies?

Following the previous approaches to task analysis outlined in Section 2, PCAT can-
not be fully understood by focusing only on mathematical competencies. The revised tax-
onomy developed by Anderson and Krathwohl (2001), for instance, emphasizes the need 
to consider the knowledge required to solve a task in addition to (mathematical) activities. 
Therefore, in order to gain a more detailed insight into the potential for cognitive activation 
of the different task types (RQ1), the correlation with the type of knowledge and cognitive 
mathematical activity required to solve the tasks is analyzed.

Within this frame, the second research question has been formulated as follows:

(RQ2) To what extent do the resulting types of tasks (RQ1) differ with regard to the 
type of knowledge and cognitive mathematical activity required to solve the task?

4  Methodology

4.1  Study design and sample

The data stems from lower secondary mathematics classrooms in three different German 
federal states (Hesse, Saxonia, and Thuringia).2 A total of 38 teachers volunteered to par-
ticipate in all parts of the TEDS-Validate study, including tests of teachers’ knowledge 
and situation-specific skills related to noticing, a questionnaire on their beliefs concerning 
mathematics education, and two lesson observations (Kaiser et  al., 2017). For the latter, 
two trained raters assessed different aspects of instructional quality in vivo (Jentsch et al., 
2021a; Schlesinger et al., 2018). For 31 of the aforementioned participating teachers, all 
tasks set throughout the course of the lesson were sampled by writing down oral assign-
ments (9.8%) and writings on the blackboard (12.2%), as well as gathering pictures of the 
textbooks (32.7%) and worksheets (45.2%). Both the grade level (5th to 10th grades) and 
the mathematical content of lessons varied widely between the teachers as they decided on 
their own, in whichever classes observations were possible. The study included 60 lesson 

2 Due to the federalism of education in Germany, all federal states have their own educational systems and 
state curricula.
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observations,3 mostly with a duration of 90  min each. The number of tasks per teacher 
ranged from 15 to 197, resulting in an overall sample of 2490 tasks. To ensure high lev-
els of rater agreement and accuracy in the assessment of task potential, four pre-service 
teachers drafted one or more possible solution paths for each of the tasks and marked the 
most likely path based on careful analysis of students’ expected prior knowledge and com-
petencies based on the state curricula for each grade level. These solution paths were then 
checked and, if necessary, revised by the first two authors.

4.2  Task classification in TEDS‑Validate

Regarding the scope of task analysis, Resnick (1975) distinguishes between rational and 
empirical task analyses. This distinction aligns with the different phases of task implemen-
tation proposed by Stein et al. (1996). Rational task analysis is based on the wording of the 
task itself as well as possible successful approaches to solving the task, thus focusing on 
its inherent potential. Empirical task analysis, in contrast, includes actual solution paths 
based on transcripts of students’ notes or self-reports. This type of analysis is better suited 
to assess the realized potential of the task. Since the focus of this paper is tasks and their 
PCAT, a rational task analysis was conducted.

As outlined in the previous sections, a comprehensive analysis of the  tasks’ potential 
requires consideration of various task characteristics. In the context of TEDS-Validate, 
a classification scheme for rational task analysis that includes different dimensions was 
developed based on prior work, mainly the COACTIV study (Jordan et al., 2006) and the 
PISA framework (Turner et al., 2015). The classification scheme includes high-inference 
rating scales to examine tasks with regard to surface features (e.g., the mathematical con-
tent area(s) and target grade level), underlying mathematical concepts and ideas, mathe-
matical competencies, and cognitive and linguistic complexity. While surface features do 
not necessarily allow for consistent scaling, all other characteristics were assessed using a 
4-point ordinal scale (0–3). Following the idea of generic competencies—in the sense that 
high and low levels of competency can be attained regardless of the grade level and the 
mathematical content considered—the analyses were conducted with the expected knowl-
edge levels and competencies of the students in mind. In the electronic supplementary 
material, the scale used for the modelling category is presented as an example. Similarly, 
the ratings for the other competencies are based on the characterization of complexity, 
abstractness, and independent mathematical thinking in terms of their respective well-
defined identity following Niss and Højgaard (2019; see Section 3).

The analyses presented in this paper are based on the following dimensions:

– The potential of each task with regard to modelling, problem solving, reasoning and 
argumentation, use of representations, symbols and operations, and communication, 
each assessed on an ordinal scale from 0 to 3 (no potential to high potential);

– The knowledge facet predominantly required for the solution of the task (factual, proce-
dural, conceptual, or metacognitive knowledge), assessed as a nominal variable;

– Four levels of cognitive mathematical activities (remember/reproduce—understand/
apply—analyze/evaluate—create).

3 For one of the teachers, only one lesson could be observed due to illness. In another case, not all tasks 
used in the lesson could be sampled and thus the lesson had to be excluded.
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Pre-service mathematics teachers were trained as raters until satisfactory rater agreement 
was reached. Twenty percent of the sample (n = 2490) was double coded. The two raters then 
discussed any disagreements and adjusted the final coding of each item if necessary. Overall 
agreement for the different categories was satisfactory to very good ( 0.662 ≤ � ≤ 0.974).

As shown in Table 2, the majority of tasks offer little potential for the use of the math-
ematical competencies. Very few tasks require a high level of one or more of the six com-
petencies; a need for reasoning and argumentation is apparent in less than 5% of the tasks. 
These results are consistent with previous studies on mathematical tasks in German-speaking 
countries, having shown an alarmingly low potential for the promotion of these competencies 
and an exclusive focus on calculations and the technical elements of mathematics (Brunner 
et al., 2019; Drüke-Noe, 2014; Neubrand, 2002; Neubrand et al., 2013). Despite significant 
reform movements concerning German mathematics teaching, the quality of mathematical 
tasks has apparently not been significantly improved. In order to verify that the operationali-
zations of the competencies reflect sufficiently diverse aspects of the tasks’ potential, Ken-
dall’s rank correlation coefficient suitable for ordinal variables was considered. The lack of 
moderate or high correlations between the different mathematical competencies (see Table 3) 
indicates that they can indeed be clearly distinguished.

Table 2  Levels of different 
competencies required by the 
tasks

MOD,  mathematical modelling; PROB,  problem solving; R&A,  rea-
soning and argumentation; REP, use of representations; S&O, symbols 
and operations; COM, communication

Domain Code 0 Code 1 Code 2 Code 3

MOD 2239 (89.9%) 190 (7.6%) 60 (2.4%) 1 (0%)
PROB 1957 (78.6%) 433 (17.4%) 88 (3.5%) 11 (0.4%)
R&A 2403 (96.5%) 69 (2.8%) 14 (0.6%) 4 (0.2%)
REP 1396 (56.1%) 765 (30.7%) 296 (11.9%) 33 (1.3%)
S&O 864 (34.7%) 1280 (51.4%) 304 (12.2%) 42 (1.7%)
COM 1355 (54.4%) 791 (31.8%) 277 (11.1%) 67 (2.7%)

Table 3  Correlations between 
different mathematical 
competencies

MOD,  mathematical modelling; PROB,  problem solving; R&A,  rea-
soning and argumentation; REP,  use of representations; S&O,  sym-
bols and operations; COM,  communication. The table shows val-
ues for Kendall’s tau-b, with 0.1 < τ < 0.3 considered to indicate a 
weak effect, 0.3 < τ < 0.5 considered to indicate a medium effect, and 
0.5 < τ considered to indicate a strong effect (Cohen, 1988). *p < 0.05, 
**p < 0.01, ***p < 0.001

Domain MOD PROB R&A REP S&O COM

MOD 1 .043*  − .012 .149***  − .078*** .294***
PROB 1 .144*** .077*** .101*** .254***
R&A 1  − .035  − .031 .215***
REP 1  − .288*** .226***
S&O 1  − .299***
COM 1
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4.3  Data analysis

Due to the categorical nature of the independent variables, a latent class analysis (LCA) was 
carried out using the software Mplus 7.4 (Muthén & Muthén, 1998-2015). The LCA identi-
fied types of mathematical tasks that require a similar set of competencies. The assumption 
underlying LCA is the existence of a latent categorical variable (the classes) that explains 
patterns observed in the data. Each of the objects in the analysis has a certain probability of 
belonging to each of the different classes (Vermunt & Magidson, 2002; Weller et al., 2020). 
This method was chosen over deterministic approaches to clustering because the number of 
classes in this exploratory analysis was a priori unclear4 and the description of task proto-
types was of higher interest than accurate allocation of individual tasks to a class.

Due to the small number of tasks at the upper end of the scale, codes 2 and 3 were 
aggregated following the principle of parsimony (Epstein, 1984). This resulted in 3-point 
ordinal scales for all six competencies. Reasoning and argumentation was excluded as 
an indicator variable because it occurred too seldom in the data set and thus increased 
the model’s complexity without contributing sufficient information. As the correlations 
between the remaining five indicator variables in the overall data set were low, it was pre-
sumed that the local independence assumption, a prerequisite for LCA, could be upheld.

The number of latent classes was determined based on different information criteria: Akai-
ke’s information criterion (AIC; Akaike, 1987), the Bayesian information criterion (BIC), and 
its sample-size-adjusted version (ABIC; Schwartz, 1978). However, these different criteria do 
not always point to the same model and can tend to overfit or underfit the true model (Dziak 
et al., 2020; Nylund et al., 2007). Thus, the AIC, BIC, and ABIC were only used to narrow 
down the eligible models. Then, the remaining models were evaluated based on their entropy, 
which served as a measure for uncertainty (Ramaswamy et al., 1993), the size of the smallest 
class, and, most importantly, the theoretical interpretability. This process led to the selection of 
a final model. A priori, a model of ten or more classes (double the number of indicator vari-
ables) was considered overly complex. Thus, the number of classes was limited to nine or less.

For further post hoc analyses, all tasks were assigned to the class to which they were 
most likely to belong based on the estimated probabilities. To investigate the distribu-
tion of the knowledge facets and the cognitive mathematical activities among the different 
classes, a chi-square test, a Kruskal–Wallis test (Kruskal & Wallis, 1952), and a pairwise 
group comparison performed with a Mann–Whitney U test (Mann & Whitney, 1947), 
were carried out respectively using SPSS 29. As one of the mathematical competencies, 
reasoning and argumentation, could not be included as an indicator variable in the LCA, 
it was included in the post hoc analyses.

5  Results

5.1  Number of latent classes

The analysis with regard to the first research question displayed in Table 4 points to a six-
class model.

4 This also holds true for forms of hierarchical cluster analysis, but these are less suitable for bigger sample 
sizes, such as the one in the present study (n = 2490).
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The BIC and ABIC indicate the best model fit for six and seven classes, respectively. 
The AIC did not assume a minimal value for up to nine classes and was excluded from 
consideration due to its tendency to overfit (Dziak et al., 2020). Out of the six-, seven-, and 
eight-class solutions suggested by the remaining information criteria, the six-class solution 
showed slightly better values for entropy, class probabilities, and minimum class size. Fur-
thermore, the six classes revealed interesting qualitative differences, while the addition of 
more classes—which, in some instances, only differed quantitatively—hindered the inter-
pretability of the overall model. Thus, the six-class solution was selected for this study.

5.2  Types of mathematical tasks in the sample

The resulting classes (RQ1) show varying levels of potential for fostering the five math-
ematical competencies that served as indicator variables (see Fig. 1). In order to illus-
trate the differences between the classes, sample tasks from the classroom observations, 
which are typical for each class in relation to the distribution of competencies, are shown 
in Table 5.

Table 4  Information criteria for the selection of a model in LCA

AIC,  Akaike’s information criterion; BIC,  Bayesian information criterion; ABIC,  sample-size adjusted 
Bayesian information criterion. For all three, lower values indicate better model fit. Bold values show the 
values for the six-class model, which was ultimately chosen. pmin = minimum average class probability, 
nmin = number of tasks in the smallest resulting class

#Classes AIC BIC ABIC Entropy pmin nmin

2 18,453.451 18,575.671 18,508.949 0.755 0.892 1005
3 18,235.390 18,421.632 18,319.960 0.768 0.773 266
4 18,096.266 18,346.528 18,319.960 0.823 0.861 124
5 18,013.174 18,327.456 18,155.885 0.781 0.748 82
6 17,940.382 18,318.685 18,112.164 0.841 0.772 38
7 17,901.467 18,343.790 18,102.319 0.751 0.733 33
8 17,875.568 18,381.911 18,105.490 0.813 0.729 28
9 17,865.669 18,436.033 18,124.662 0.817 0.701 33

Fig. 1  Distribution of mathematical competencies across different classes.
Note. MOD, mathematical modelling; PROB, problem solving; REP, use of representations; S&O, symbols 
and operations; COM, communication. Left axis indicates the mean values (ordinal coding, levels 0–2) for 
each class
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Table 5  Sample tasks for each of the six classes

Class I (n = 1050)

(1) 2.5 2 = ______ ²
(2) 2 + 20 + 100 = (… )²

Coding for 

grade 7 (1) 

and

grade 8 (2)

MOD 0

PROB 0

REP 0

S&O 1

COM 0

Class II (n = 719) Which of the labels of the triangles does not correspond 

to the given equation?

a)  sin = b)  
sin

=
sin

c)  2 = 2 − 2 d)  2 = 2 + 2 − 2 ∙ cos
Coding for 

grade 10

MOD 0

PROB 0

REP 1

S&O 0

COM 1

Class III (n = 328)

For which value of x is the term 
4 −3

6 +6
undefined?Coding for 

grade 10

MOD 0

PROB 1

REP 0

S&O 1

COM 1

Class IV (n = 238) Read the temperature change on the thermometer 

and give the new temperature.

Old temperature +3°C

Temperature change

New temperature

Coding for 

grade 7

MOD 1

PROB 0

REP 1

S&O 1

COM 1

Class V (n = 117)

What is the equation of the straight line to which the 

function given by = 2 − 8 + 3 is axisymmetric?
Coding for 

grade 9

MOD 0

PROB 2

REP 2

S&O 1

COM 2

Class VI (n = 38) In pairs, invent a “bathtub story.” Draw a diagram 

indicating the filling level of a bathtub (like the one 

below) and write down the corresponding story of a 

person taking a bath.

Coding for 

grade 8

MOD 2

PROB 1

REP 2

S&O 0

COM 2

-7
 d

eg
re

es

MOD, mathematical modelling; PROB, problem solving; REP, use of representations; S&O, symbols and 
operations; COM, communication. The ordinal ratings for each task can be seen as typical for tasks from 
the respective class
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The largest class, which included nearly half of the tasks, can be characterized as calcula-
tion oriented due to the exclusive focus on the use of symbols and operations. None of the 
tasks from the second-largest class shows a potential for this competency. Instead, they tend 
to require the skilled use of representations and/or the reception and production of mathemat-
ical text. Active and passive engagements with mathematical texts also play a major role in 
solving tasks from the third class (n = 328); however, the tasks also require the use of symbols 
and formalism, and low-level problem solving skills. While the fourth class shows moderate 
potential for several of the analyzed competencies, interestingly, none of the tasks require 
any problem solving. This indicates that these tasks are designed to practice and repeat well-
known mathematical procedures. Tasks from the fifth class (n = 117) require moderate to 
high levels of all competencies except mathematical modelling. The last and smallest class 
(n = 38) is the only one to show a high potential for mathematical modelling while also incor-
porating mathematical communication on a higher level than all other classes.

5.2.1  Knowledge facets and cognitive mathematical activities across the different 
classes (RQ2)

To gain a deeper understanding of the task classes presented above, the following 
section highlights the extent to which they differ with regard to the knowledge facet 
(factual, procedural, conceptual, and metacognitive) as well as the cognitive math-
ematical activity (remember/reproduce—understand/apply—analyze/evaluate—cre-
ate) predominantly required in the solution of the tasks. Analyses were performed 
post hoc on the task classes described in Section 5.2. A chi-square test shows that the 
six classes of tasks differ significantly with respect to the dominant knowledge facet, 
χ2(15,  2490) = 527.075.5 Estimates of the Kruskal–Wallis test reveal statistically sig-
nificant differences for the cognitive mathematical activities (H = 927.392, p < 0.001, 
df = 56). Figure  2 shows the descriptive results across the six classes and the results 
of pairwise comparison of the classes, which was performed with the Mann–Whit-
ney U test. The average ranks for cognitive mathematical activities resulting from the 
Kruskal–Wallis test are illustrated in Table 6.

It first becomes apparent that the tasks from the sample require predominantly pro-
cedural and conceptual knowledge on the one hand and the activities of reproducing 
and applying knowledge on the other. Tasks with a focus on the use of metacognitive 
knowledge and more complex cognitive activities like evaluating or creating are rare to 
non-existent. The results also reveal that differences in the types of knowledge primarily 
addressed tend to be gradual across classes, with classes I and IV, and class VI at both 
ends of the spectrum. However, two subgroups of classes emerge when considering the 

5 It should be noted that, due in particular to the rare occurrence of metacognitive knowledge, one-fifth of 
the cells had an expected frequency of less than 5. Due to the clear result and the large effect size (d = 1.04), 
however, it seemed justifiable to forego Fisher’s exact test, which would require a disproportionately large 
amount of computational effort, given the size of the sample.
6 For the reasoning and argumentation competency, which had to be excluded as an indicator variable 
for the LCA due to the lack of variance, the Kruskal–Wallis test reveals statistically significant differences 
(H = 221.393, p < .001, df = 5). However, an in-depth analysis of the distribution across different classes 
confirms low variance with regard to the necessity for reasoning and argumentation. With the exception of 
a few tasks in the other classes, only class III contains a notable number of tasks that encourage students to 
justify their approaches and results or develop more advanced mathematical reasoning. Mann–Whitney U 
tests show that the only significant (but small) pairwise differences with regard to reasoning and argumen-
tation can be observed between class III and tasks from other classes.



384 A.-K. Adleff et al.

1 3

Fig. 2  Distribution across and differences between different classes for knowledge facets (a) and cognitive 
mathematical activities (b).
Note. a and b The horizontal axis indicates the different classes. The vertical axis indicates the percent-
ages of each knowledge facet and cognitive mathematical activity. (c)  No significant (p ≥ 0.05) or 
no effect (d < 0.2);  small effect (0.2 < d < 0.5);  intermediate effect (0.5 < d < 0.8);  large effect 
(d ≥ 0.8) (Cohen, 1988)

Table 6  Distribution of cognitive mathematical activities across classes

The average ranks for tasks from each class are calculated compared to the entire sample (n = 2490)

n Remember/reproduce Understand/apply Analyze/evaluate Create Average rank

Class I 1050 1011 (96.3%) 33 (3.1%) 6 (0.6%) 0 (0%) 1461.54
Class II 719 598 (83.2%) 101 (14%) 20 (2.8%) 0 (0%) 1296.97
Class III 328 128 (39%) 180 (54.9%) 20 (6.1%) 0 (0%) 753.85
Class IV 238 207 (87%) 29 (12.2%) 1 (0.4%) 1 (0.4%) 1347.97
Class V 117 18 (15.4%) 83 (71%) 16 (13.7%) 0 (0%) 447.76
Class VI 38 1 (2.6%) 32 (84.2%) 5 (13.2%) 0 (0%) 294.75
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predominant cognitive mathematical activities—classes I, II, and IV, and classes III, V, 
and VI (see Fig. 2c and Table 6). While tasks from the first three classes focus mainly 
on remembering and reproducing, thus cognitive mathematical activities of a lower 
cognitive complexity, the majority of tasks from the other classes require understand-
ing and application and—in some cases—leave room for higher-order thinking. The two 
subgroups shall be described in more detail in the following sections.

5.2.2  Types of routine tasks in the sample

These first three classes contain with just over 2000 tasks about 80% of the entire data 
set. They are summarized in the following under routine tasks, as they generally focus 
on reproduction rather than on more complex cognitive activities (see Section 5.2.1) and 
require almost no problem solving comprising more than one-step solutions. However, 
the individual classes differ in terms of the mathematical competencies necessary to solve 
the respective tasks (Fig. 3). The largest class focuses exclusively on the use of symbols 
and operations while other competencies are only found in exceptional cases and at a low 
level. In contrast, none of the tasks from the second class requires (proficient) usage of 
symbols and operations. Instead, other forms of representation, i.e., graphic and/or verbal, 
seem to be of high importance in this class. Hence, these two types of routine tasks can be 
characterized as calculation-oriented and representation-oriented routine tasks. In con-
trast to the other two classes, all tasks from class IV require the use of multiple compe-
tencies and, possibly, their integration in the solution process. Interestingly, among these 
composite routine tasks (class IV), as many entail purely intra-mathematical engagement 
as they do active engagement with an extra-mathematical context.

Fig. 3  Distribution of competencies among routine tasks. a Class I (n = 1050), b class II (n = 719), c class 
IV (n = 238).
Note. MOD, mathematical modelling; PROB, problem solving; REP, use of representations; S&O, symbols 
and operations; COM, communication. Vertical axis indicates the percentage of tasks at each level for the 
different competencies
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5.2.3  Application tasks

The majority of tasks from the classes presented in this section show a focus on the appli-
cation of mathematical concepts and methods in new (mostly mathematical) contexts 
rather than the mere reproduction of knowledge (see Section 5.2.1). This tendency is also 
reflected in the need for varying levels of problem-solving skills as well as—in the case 
of classes V and VI—an overall higher potential for fostering several of the competencies 
considered in this analysis. The nature and complexity of these more or less unfamiliar 
contexts, however, seem to vary between the three types of application tasks (Fig. 4). The 
challenge in solving tasks from class III appears to lie mainly in understanding and pro-
ducing mathematical texts and choosing an appropriate solution method based on famil-
iar symbols and operations, both on a lower level of complexity. Thus, these tasks can 
be characterized as simple word problems. In contrast, tasks from class V typically foster 
higher levels of different competencies, with a specific focus on problem solving. Most of 
the tasks do not require consideration of a real-world context; rather, they focus on inner-
mathematical contexts. Therefore, the tasks in this class, which account for approximately 
5% of the sample, can be described as (simple) inner-mathematical problems. The smallest 
class of tasks (n = 38) can be characterized by a focus on mathematization and interpre-
tation activities, while also requiring many other competencies—albeit to a lower extent. 
As can be expected for tasks with rich real-world contexts, the challenge of understanding 
potentially difficult contextual descriptions and recognizing relations within and beyond 
the task formulation is reflected in the high ratings for the mathematical communication 
competency. However, these real-world problems represent only 1.5% of the total sample.

Fig. 4  Distribution of competencies among application tasks. a Class III (n = 328), b class V (n = 117), c 
class VI (n = 38).
Note. MOD, mathematical modelling; PROB, problem solving; REP, use of representations; S&O, symbols 
and operations; COM, communication. Vertical axis indicates the percentage of tasks at each level for the 
different competencies
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6  Summary and discussion

In the context of this study, tasks are seen as stimuli for mathematical (learning) activities with 
varying potential for cognitive activation. Following prior work in the field, aspects such as 
the interplay of knowledge facets and cognitive (mathematical) activities (Anderson & Krath-
wohl, 2001; Stein et al., 1996) as well as the need for mathematical competencies (Niss & Høj-
gaard, 2019) are assumed to influence and indicate different levels of PCAT. The purpose of the 
present study was to identify different types of tasks based on the mathematical competencies 
required for their solution. To this end, a rational task analysis was performed on 2490 math-
ematical tasks taken from 60 lesson observations in Germany. LCA was carried out to iden-
tify six distinct classes of tasks within the sample, which show different levels of potential for 
developing the mathematical competencies (modelling, problem solving, use of representations, 
symbols and operations, and communication—reasoning and argumentation was excluded as 
an indicator due to its low empirical occurrence). Further analyses revealed that the six classes 
vary with regard to the knowledge facets and cognitive mathematical activities required.

The overall PCAT for fostering competencies is very low, with only few tasks facilitat-
ing mathematization (10%) or reasoning activities (4%). Instead, most tasks have a technical 
focus on the execution of calculations and mathematical procedures. The results of the study 
are in line with previous studies on mathematics education in Germany, which reported simi-
lar findings (Herbert & Schweig, 2021; Neubrand, 2002; Neubrand et al., 2013), suggesting 
that these observations seem to be stable concerning the quality of tasks in mathematics edu-
cation in the last decades. Thus, although a clear focus on developing different mathematical 
competencies was established in German national curricula (Prenzel et al., 2015), this ideal 
has not significantly changed the quality of tasks in German classrooms.

An in-depth analysis of the resulting task classes in relation to the predominant cog-
nitive mathematical activities revealed three types of routine tasks requiring mainly the 
reproduction of knowledge, and three types of tasks with a focus on different kinds of 
application of mathematical knowledge. A common characteristic within the routine tasks, 
which account for about 80% of the total sample, was the lack of potential for problem 
solving and devising (own) strategies. While the two largest classes showed an isolated 
focus on either symbolic (n = 1050) or graphical and/or verbal representations (n = 719), 
composite routine tasks (n = 238) combine these different competencies on a low level. 
The three classes focusing mainly on application and—in some cases—higher-order cogni-
tive activities all require problem solving skills to some extent in combination with other 
mathematical competencies. The resulting classes of tasks can be characterized as simple 
word problems (n = 328), inner-mathematical problems (n = 117), and real-world problems 
(n = 38). Within the given sample, no types of tasks with a focus on more complex cogni-
tive activities such as analysis and creation could be identified. With regard to the knowl-
edge facets, a similar trend is visible—albeit with more gradual differences between the 
identified types of tasks—with the vast majority of tasks requiring predominantly proce-
dural or conceptual as opposed to purely factual or metacognitive knowledge.

The possibilities that arise from a more in-depth perspective on tasks for research and prac-
tice are manifold. Considering different types of tasks based on the levels of mathematical com-
petencies they require can lead to a deeper understanding of item demand in the context of 
student assessments. In the case of large-scale assessments, joint consideration of task features 
may lead to better prediction of item difficulty than individual characteristics. Analysis of the 
ratio of different task types can also be used to examine the comparability of final examinations 
in different districts, states, or countries. Additionally, analysis of the distribution of task types 
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as outlined in this paper can help paint a clearer picture of mathematics instruction throughout 
the course of a lesson than could analysis of isolated task features. This opportunity is par-
ticularly important when no further data on the quality of teaching can be collected. To fully 
realize these opportunities in research, further work is needed to shed light on the relationships 
between the tasks used and the quality of instruction.

Finally, the classification of tasks presented in this paper can be used for teachers’ pro-
fessional development as a means of bringing curricular reforms into classroom practice, 
since it can help to illustrate the more abstract concept of cognitive (mathematical) activi-
ties by means of the well-known mathematical competencies. In addition, the process of 
classification enables reflection on the interaction of individual competency demands 
required to solve tasks, thus developing teachers’ mathematical task knowledge for teach-
ing (for a first step, see Ross & Adleff, 2022).

Especially with regard to the opportunities highlighted above, the limitations of the study 
need to be carefully considered. All teachers participating in the TEDS-Validate study vol-
unteered to take part in the time-consuming data collection. This resulted in a convenience 
sample of teachers with above-average commitment. It is therefore likely that the sample has 
positive bias. This is why the observed low PCAT seems even more significant.

Since the teachers were neither given any specifications about the subject area to be cov-
ered and the tasks to be used nor about the focus of the lesson (e.g., introduction of new con-
tent or practice and consolidation), the sub-samples from the lessons differed greatly in some 
cases. While the analysis instrument was specifically designed to be applicable across subject 
areas and grade levels, the strict definition of individual tasks as units of analysis led to vary-
ing numbers of tasks per lesson and teacher. Students typically worked on either a few com-
plex tasks or many smaller, less time-consuming tasks in the same amount of time. Thus, the 
latter type of task is overrepresented in the sample. Use of weights in the LCA, which take 
into account the number of tasks in every lesson segment, did not yield significantly different 
results. Thus, to ensure the simplicity of the model, no weighting was applied. However, it is 
possible that the imbalance in favor of smaller, less time-consuming tasks may have impacted 
the resulting classes. Furthermore, while the assumption of distinctive features for each of the 
mathematical competencies (Niss & Højgaard, 2019) is endorsed by the lack of high correla-
tions in-between, an influence on the composition of the classes cannot be entirely dismissed.

When drawing further conclusions about the quality of instruction in lessons, one must 
also consider that rational task analysis as well as the sole focus on PCAT and the indica-
tors chosen for this study provide a limited perspective on what is happening in the class-
room. To fully comprehend the complex reality of mathematics teaching and learning, 
additional information about the use of the tasks by both the teacher and individual stu-
dents needs to be collected and linked to inherent task features.

Finally, it is important to emphasize that the analyses conducted in this study are partly 
exploratory in nature such as the use of LCA. Other contexts may lead to different classes 
of tasks, especially as the developed and used frameworks and instruments for task analysis 
may not be applicable in the same way to different cultural or educational settings. At the 
same time, considering different theoretical and empirical perspectives on tasks in math-
ematics education as well as cultural influences makes it necessary to contextualize the 
findings from this study and provide guidance for their use in practice.
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