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Abstract
In mathematics classrooms, it is common practice to work through a series of comparable 
tasks provided in a textbook. A central question in mathematics education is if tasks should 
be accompanied with solution methods, or if students should construct the solutions them-
selves. To explore the impact of these two task designs on student behavior during repeti-
tive practice, an eye-tracking study was conducted with 50 upper secondary and university 
students. Their eye movements were analyzed to study how the two groups shifted their 
gaze both within and across 10 task sets. The results show that when a solution method was 
present, the students reread this every time they solved the task, while only giving minute 
attention to the illustration that carried information supporting mathematical understand-
ing. Students who practiced with tasks without a solution method seemed to construct a 
solution method by observing the illustration, which later could be retrieved from memory, 
making this method more efficient in the long run. We discuss the implications for teaching 
and how tasks without solution methods can increase student focus on important math-
ematical properties.

Keywords Mathematical reasoning · Eye tracking · Solution strategies · Consecutive tasks

1 Introduction

As eye-tracking equipment has become more accessible for researchers in mathematics edu-
cation during the last decades, more and more studies that utilize this technique are being 
published (Strohmaier et al., 2020). By using eye tracking, the present study aims at getting 
a deeper understanding of how students’ mathematical reasoning is affected over a series of 
similar tasks. Previous studies have shown that constructing solution methods during the 
learning phase can be more efficient at later testing than utilizing provided solution meth-
ods (e.g., Jonsson et  al., 2014; Karlsson Wirebring et  al., 2015; Norqvist et  al., 2019b). 
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However, these studies have not considered how students’ attention shifts over consecutive 
practice tasks, which can provide indications as to why constructing solutions seems to be 
superior for later test scores compared to using predefined solutions. The intervention in the 
present study is based on a research framework on imitative and creative reasoning (Lithner, 
2008) and uses eye tracking methodology to compare how repeated practice, over a series of 
similar consecutive mathematics tasks, by constructing solutions or utilizing provided solu-
tions may affect students’ solution strategies.

2  Background

Often much of the classroom time in mathematics, especially in the higher grades, is spent 
solving tasks provided by a textbook or by the teacher (Mullis et  al., 2012). To a large 
extent, these tasks can be solved by applying an already known solution method or by apply-
ing or adjusting a given solution template (Boesen et al., 2014; Newton & Newton, 2007; 
Shield & Dole, 2013; Thompson et  al., 2012; Van Zanten & van den Heuvel-Panhuizen, 
2018; Stacey & Vincent, 2009). For example, in a study of common secondary textbooks 
from Australia, Canada, Finland, India, Ireland, Nepal, Scotland, Singapore, South Africa, 
Sweden, Tanzania, and the USA, Jäder et al. (2020) found that 79% of the tasks could be 
solved by imitating procedures provided in the book, 13% could be completed by mainly 
applying given procedures but making some minor modifications, and only 9% of the tasks 
required the construction of solution methods. The focus on given solution templates (rou-
tine task solving) can give students the impression that the core of mathematics is to solve 
the task by using a predefined formula or by selecting the appropriate (and only) solution 
from a plethora of formulas that they have tried to memorize (Hiebert & Grouws, 2007). 
Using predefined learning templates can fast-track the solving process of specific tasks 
through “a fixed set of step-by-step procedures for solving a (mathematics) problem” (Fan & 
Bokhove, 2014, p. 486) without (almost) any understanding of the underlying mathematical 
properties. For example, it is possible to teach 9-year-old children to find the derivative for 
simple polynomial functions, even though they do not grasp what a function or derivative 
is. Although the use of routinized templates, commonly denoted as algorithms, is associated 
with high reliability, speed, and a reduction in working memory load, it is critical that math-
ematics in school also provides tools for non-routine problem solving and thus for students 
to become proficient problem solvers (e.g., NCTM, 2011; Niss & Højgaard, 2019; Niss & 
Jensen, 2002; Skolverket, 2011). In this regard, mathematics contains competencies related 
to mastering general problem-solving strategies, self regulation, and constructive beliefs, in 
addition to resources such as routine procedures (Schoenfeld, 1985). Challenging the stu-
dents to reason and argue mathematically could be one way to emphasize mathematical 
skills that could be beneficial for problem solving and mathematical understanding (Schoe-
nfeld, 1985; Sidenvall, 2019). Brousseau (1997) argued that the ideal mathematical learning 
environment involves students taking responsibility for the solution process. However, this 
a-didactical approach requires tasks or activities where the students initially lack methods 
to solve the task, tasks that, by extension, give rise to a productive struggle where students 
have to explore and reason (Hiebert & Grouws, 2007). The beneficial effects of productive 
struggle have also been confirmed in memory research, where the struggle that takes place 
during encoding, and subsequently facilitates memory retention, is denoted as desirable dif-
ficulty (e.g., Bjork & Bjork, 2011).
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2.1  Eye tracking in mathematics education

Studies in mathematics education utilizing eye tracking have been increasing rapidly 
over the last decade (Strohmaier et  al., 2020). Eye tracking has been used to study a 
multitude of topics, such as arithmetic, geometry, reading and word problems, reason-
ing, and representations (for an overview, see Strohmaier et al. (2020)), and is a quite 
objective measure compared to interviews, in the sense that it is hard to control eye 
movements to comply with what a subject thinks that a researcher wants (e.g., Susac 
et  al., 2014). In a study on how students read different mathematical representations, 
Andrá et al. (2015) have argued that eye tracking can be a useful tool to characterize dif-
ferences in how students navigate through different mathematical stimuli. Eye tracking 
has also provided evidence that individual students read, and reread, tasks differently, 
depending on achievement. For example, De Corte et al. (1990) showed that, independ-
ent of ability, students generally read through a complex task just as quickly the first 
time, while rereading (parts of the task) takes more time for low achievers than for the 
high achievers. Some eye-tracking studies have also focused on reasoning and strategy 
choice when solving mathematical tasks. Crisp et al. (2012) used eye tracking to inves-
tigate students’ strategy choice when deriving a function from a table of values and con-
cluded that neither the choice of solution strategy nor the success rate depended on the 
student’s mathematical background. Obersteiner and Tumpek (2016) and Obersteiner 
and Staudinger (2018) both investigated strategy choices among university students 
when comparing or adding fractions and concluded that their participants adapted their 
solution strategy depending on the given task. In the present study, we investigate if 
students adapt their strategies when meeting consecutive imitative or creative tasks with 
the same solution method (i.e., if we can see changes in foci as they become familiar 
with the solution method), as well as if this adaption will impact which information they 
utilize in similar tasks with other solution methods.

2.2  Framework of mathematical reasoning

Mathematical reasoning is one of the competencies that is regarded as important if one 
is to develop proficiency in mathematics and thereby be able to justify and make well-
founded mathematical decisions (e.g., Kilpatrick et  al., 2001). However, many decisions 
are not mathematically justified and well founded. These poor decisions are most likely 
influenced by the many tasks, with predefined solution methods, that students encoun-
ter and work with during their schooling (Hiebert, 2003). Although those tasks, to some 
extent, require reasoning, they lack the requirement of decisions or justifications for which 
method to use to solve the tasks (Jäder et al., 2020; Stacey & Vincent, 2009).

As presented above, many authors have characterized differences between non-rou-
tine problem solving and routine task solving, where the latter is likely to lead to rote 
learning. A framework by Lithner (2008, 2017) emphasizes the distinction between, on 
one hand, reasoning in constructing, and on the other hand, imitating, solutions. This 
framework has, for example, been used in research to (a) analyze student reasoning (e.g., 
Aaten et al., 2017; Mumu & Tanujaya, 2019; Rofiki et al., 2017; Sukirwan et al., 2018), 
(b) analyze effects of student reasoning (e.g., Jonsson et al., 2014; Norqvist, 2018), or (c) 
characterize textbook tasks or teaching (e.g., Bergqvist & Lithner, 2012; Brehmer et al., 
2016; Mac an Bhaird et al., 2017).
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Within the framework, imitative reasoning occurs when a person uses a known or 
given solution method to (try to) solve a task. Lithner (2008) identifies two sub-types of 
imitative reasoning, memorized and algorithmic. Memorized reasoning concerns recalling 
a memorized fact (e.g., recalling the answer to 4 × 8 or the number of sides in polygons). 
Three versions of algorithmic reasoning are identified: familiar (recalling a memorized 
procedure), delimiting (searching for procedures by superficial clues), and guided (using 
a procedure provided by another person or a text). The latter version is focused on in the 
present study, in the form of written tasks accompanied with solution methods. This type 
of algorithmic information (e.g., an algorithm for long division, the formula for calculat-
ing the volume of a cylinder or worked examples providing templates for solving linear 
equations) seems to be common in mathematics textbooks (e.g., Jäder et al., 2020; New-
ton & Newton, 2007; Shield & Dole, 2013). Tasks that are possible to solve by guided 
algorithmic reasoning will be denoted AR tasks (see Fig. 1).

The second type of reasoning that Lithner (2008) describes is creative mathemati-
cal reasoning (CMR). This reasoning includes the (re)construction of a new or forgot-
ten solution method that is mathematically founded and justified. CMR does not require 
extraordinary creativity or genius. Instead, it can be part of an ordinary mathematical 
solution process as long as the reasoner constructs a, for her or him, new reasoning 
sequence. Constructing (parts of) a new solution method also provides opportunities for 
a productive struggle that can be necessary for deeper processing of the mathematics 
(e.g., Hiebert & Grouws, 2007; Jonsson et al., 2016). A task without included informa-
tion on how to solve it is by definition not an AR task. If, in addition, the task is not of a 
common type where a specific solution algorithm is likely to have been memorized ear-
lier by the student solving it, then it is likely to require CMR (Boesen et al., 2010). In this 
study, a task that does not include a solution method and is not likely (by the researchers’ 
experiences and earlier analyses of Swedish teaching) to be of a common type where 
a complete solution usually is memorized by students will be denoted CMR task (see 
Fig. 1). We could not determine what reasoning they actually use without disturbing the 
data collection of this study, but earlier studies using similar tasks have shown that stu-
dents are more inclined to use CMR in similar tasks than in AR tasks.

2.2.1  Past results utilizing the framework

Previous studies using Lithner’s (2008) framework have shown that students who have 
to construct their own reasoning sequences and solution methods perform better during 

Fig. 1  Example of AR task (left) and CMR task (right)
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follow-up tests when compared to students who follow given solution methods (Jonsson 
et al., 2014, 2020; Norqvist, 2018; Norqvist et al., 2019b). There are also indications that 
brain activity differs between those who engage in CMR compared to AR (Karlsson Wire-
bring et al., 2015; Wirebring et al., 2021). Results from Hershkowitz et al. (2017) also indi-
cate that students who engage in CMR become knowledge agents in the classroom, and as 
such, gather followers in the mathematical learning situation.

To solve a CMR task, it is necessary to consider the relevant mathematical proper-
ties represented by for example an illustration, which in turn enhances understanding 
of the task. In contrast, to solve an AR version of the same task, it is not necessary to 
consider the illustration, since sufficient information for solving the task can be found 
in a provided formula and/or example. Hence, a formula/example in an AR task can 
be applied in a mechanical way, potentially leading to rote learning, although it is also 
possible to consider an illustration to obtain an enhanced understanding of the solution 
method. However, Norqvist et  al. (2019b) showed that students practicing with AR 
tasks disregarded illustrations and focused mainly on the provided formula/example. In 
contrast, participants practicing with CMR tasks focused, to a relatively large extent, 
on the illustrations (Norqvist et al., 2019b).

The purpose of Norqvist et al. (2019b) was to identify main similarities and differences in 
task solving reasoning. The assumption was that AR and CMR tasks (i.e., that tasks with or 
without solution templates) will invite different types of reasoning, as indicated by the time 
spent gazing in areas of different task information (e.g., an illustration will be important for 
constructing a solution when no template is given). The eye fixations of the three first similar 
tasks from each of the ten presented task sets (comprised of ten subtasks each) were analyzed 
using a cluster analysis method where the participants were automatically grouped into sub-
groups depending on the dwell time in each of the areas of information. The Norqvist et al. 
(2019b) study extracted eye fixation of a few similar tasks and thus identified group-specific 
(AR/CMR) sub-clusters. However, this approach was purely data-driven and reduced the origi-
nal (n) observation into (g) groups, respectively, and thus provided a time-independent average 
snapshot of how students’ eye fixations were clustered. This focus on momentary snapshots of 
student eye movements in Norqvist et  al. (2019b) raises the question of short-term dynamic 
changes in eye fixations over consecutive tasks, which Norqvist et al. (2019b) did not address. 
The present study will therefore investigate the eventual changes in eye fixations that could 
occur when meeting consecutive tasks, similar to what can happen when working with a math-
ematics textbook.

3  Aim and hypotheses

The purpose of the study is to analyze short-term dynamic changes, i.e., how eye fix-
ations change over time, as the students (perhaps) adopt their reasoning and learning 
strategies to the specific format of CMR and AR tasks. Firstly, it is of interest in itself 
to understand more about students’ learning processes. Secondly, understanding these 
processes may shed further light on why and under what conditions learning by CMR 
may be more effective than learning by AR. Thirdly, we know that over long periods (in 
the magnitude of months and years), a main focus on practicing by non-routine prob-
lem solving relative to rote learning affects students’ strategies positively (e.g., Boaler, 
2002; Hiebert, 2003; Schoenfeld, 1985), but it is not known if there are dynamic effects 
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over short periods of time. The setting of the study can be seen as a controlled micro 
version of an ordinary classroom, providing specific information about effects on learn-
ing strategies from repeatedly solving similar tasks.

This is studied by observing students’ gaze both over consecutive mathematics 
tasks where only the numerical value differs (within task  sets), and between different 
mathematics tasks where the solution method differs (across task  sets). Based on the 
previous studies and the above reasoning, sets of hypotheses for short-term dynamic 
changes concerning similar tasks (within task sets) and different tasks (across task sets) 
are posed in conjunction with “time on task” hypotheses. With support from Norqvist 
et  al. (2019b), we focused the hypotheses on four areas of interest, formula, example, 
illustration, and question (see Fig. 2), in the present study denoted with subscripts, such 
as  formulaAR and  formulaCMR, to differentiate between the two conditions. For within 
task sets (same subtasks, different numerical values), it is hypothesized that:

1. Within AR task sets, students will gradually focus less on the illustration,  formulaAR, 
and  exampleAR.

• Argument: Students will focus on the parts that are most useful for solving the task 
(i.e., the solution method given by  formulaAR and  exampleAR) and, through the 
repeated exposure, they will learn the method and subsequently retrieve the method 
from memory rather than reread it. The gradual decline in the focus of the illustra-
tion is caused by the discovery that since an algorithmic solution method is pro-
vided, it is not necessary to consider properties of the illustration.

2. Within CMR task sets, students will gradually focus less on the illustration,  formulaCMR, 
and  exampleCMR.

• Argument: Students will learn that the illustration is most useful; however, across 
subtasks, they will be able to retrieve it from memory without attending to the 
image. The gradual decline in the focus of the  formulaCMR and  exampleCMR is 
caused by the discovery that they do not carry any essential information.

For across-tasks sets (different tasks), it is hypothesized that:

Fig. 2  Example of areas of interest for an AR-task (left) and a CMR-task (right) where the numbers indicate 
the different areas of interest; illustration (1), description (2), formula (3), example (4), and question (5). 
Dashed lines and numbers (1–5) were not visible to the participants. Reprinted from “Investigating algorith-
mic and creative reasoning strategies by eye tracking,” by M. Norqvist, B. Jonsson, J. Lithner, T. Qwillbard 
and L. Holm, 2019, Journal of Mathematical Behavior, 55, 100,701, p. 5.  Copyright 2019 by Elsevier
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3. Across AR task sets, students will gradually focus less on the illustration but have a 
continued focus on the formula, example, and question.

• Argument: Since all AR-tasks have similar format, the students will learn which 
information will be most useful to solve the task type (even though the new task set 
includes new information and illustrations), and for each new task set, they will use 
the corresponding new solution method in  formulaAR and  exampleAR.

4. Across CMR task sets, students will gradually focus less on the  formulaCMR and 
 exampleCMR but have a continued focus on the illustration and question.

• Argument: Since all CMR tasks have similar format, the students will learn that the 
 formulaCMR and  exampleCMR contain less useful information in this task type. They 
will, however, need to consider mathematical properties of the illustration to con-
struct a new solution method for each new task set.

For the time-on-task analyses, it is hypothesized that:

5. Although students in both groups will consider all information in the first tasks of the 
first task sets, CMR tasks will take a longer time than AR tasks at the beginning of each 
task set.

• Argument: The task format is new to the students, and they need to start by identi-
fying which parts to use and how. It is generally quicker to use a provided method 
than to construct one.

6. Students who practice with CMR tasks decrease their time on task within a task- set, 
while students who practice with AR tasks do not display the same decrease.

• Argument: Although the AR solution method may be learnt through repeated expo-
sure, the solutions constructed by the struggle associated with CMR task solving 
will be more effectively consolidated in memory and, after a few subtasks within a 
task set, quickly recalled instead of constructed again.

4  Method

To study the hypotheses, an experiment was designed in which students practiced with 
either AR or CMR tasks. Students’ focus on different types of task information, related to 
their task-solving strategies, were recorded using eye tracking.

4.1  Participants

Fifty participants, comprising students from an upper secondary school and university 
students from a clinical psychology program in Sweden, with a mean age of 23.0 years 
(SD = 3.2), were recruited to participate in the study. The participants can be considered to 
be mid to high achievers. The study was approved by the Regional Ethical Review Board 
and written informed consent was obtained from all participants in accordance with the 
Declaration of Helsinki. Students who did not participate in all sessions were removed 
from the data, which left 48 participants (23 AR and 25 CMR) for the analysis.
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4.2  Experimental design

In a between-group design, the students participated in three sessions: (1) background 
information gathering and cognitive testing, (2) mathematical practice, and (3) mathemati-
cal test. Eye-tracking equipment was used during session 2.

4.2.1  First session

During the first session, the students provided some background information (e.g., gen-
der and age) and completed two cognitive tests: working memory and fluid intelligence. 
Cognitive ability and its relation to learning mathematics is well established. In a large 
prospective study of 70,000 students, it was found that general intelligence could explain 
up to 58.6% of the variation in performance on national tests at the age of 16 years (Deary 
et al., 2007). Fluid intelligence is part of general intelligence and is recognized as a causal 
factor when experiencing non-familiar situations in general (Valentin Kvist & Gustafsson, 
2008; Watkins et al., 2007) and solving mathematical tasks in particular (Floyd et al., 2003; 
Taub et al., 2008). Ravens Advanced Progressive Matrices (APM) (Raven & Raven, 1991), 
which is the most common test for fluid intelligence, consists of 48 regular test items and 
12 practice items. That task was self-paced but with a maximum of 25 min available (see 
Norqvist et al. (2019b) for more information).

Moreover, it is well known that working memory influences math performance (De Smedt 
et al., 2009; Passolunghi et al., 2008; Raghubar et al., 2010). For the measure of complex 
working memory, the operation span task was used (Unsworth et al., 2005). In the operation 
span task, the students performed mathematical operations; after each operation, a letter was 
displayed, and they were instructed to remember each presented letter. After a sequence, 
which varied between 2 and 7 operations and letters, they were asked to recall the letters 
in the order they were presented. Measures of internal consistency (Cronbach’s alpha) were 
extracted from a larger pool of data and found to be 0.84 for Ravens APM and 0.83 for 
operation span. Table 1 displays the mean values and standard deviation for the CMR and AR 
groups respectively.

Although the AR group was numerically stronger regarding both measures, an independent 
t-test revealed no significant differences between groups for the operation span tasks and Ravens 
matrices, t(48) = 1.34, p = 0.18 and t(48) = 1.07, p = 0.29, respectively. Note that the high standard 
deviation for operation span task in the CMR group is mainly driven by the low score for one 
participant in the CMR group. The correlation between operation span and Ravens matrices 
was found to be 0.42, p = 0.003, and was therefore collapsed into one measure of cognitive 
proficiency index (CPI). In order to control for individual differences in task-specific abilities and 
general cognitive abilities as well as gender, the participants were matched according to their CPI 
index and gender and assigned to two independent groups, AR and CMR.

Table 1  Mean values and 
standard deviations of cognitive 
test scores for the two conditions

AR algorithmic reasoning, CMR creative mathematical reasoning

Ravens matrices Operation span

AR CMR AR CMR

Mean 11.88 11.00 58.68 54,92
Standard deviation 2.90 2.90 6.53 12.33
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4.2.2  Second session

In the second session, 1  week later, the two groups practiced, using either tasks with 
solution templates (AR tasks) or tasks without solution templates (CMR tasks) (see 
Fig. 2).1 All tasks were presented on a computer screen and students answered by typing in 
their answer via a keyboard. The tasks were divided into areas of interest (see Fig. 2). The 
illustration, description, and question were identical in the AR and CMR tasks. However, 
the formula and example differed between the two conditions, containing solution methods 
for AR but only non-essential information for CMR. The reason for including the latter 
was to make the two tasks similar in layout, and to provide comparable areas of interest 
for eye-tracking analyses. The participants were provided with 11 different task sets. Each 
task set comprised 10 subtasks that were identical, apart from different numerical values 
in the question, and the allotted time for each set was 5 min. For example, the subtasks 
with matchstick squares (Fig. 2) asked for 6 squares, 100 squares, 40, 9, 12, 8, 30, 13, 20, 
and 11 squares. If a student solved all 10 subtasks within the allotted time, more subtasks 
were resampled from the previous subtasks to ensure a practice time of 5 min per task set 
for both conditions. Task set 11 proved to be too difficult in both practice conditions and 
was therefore removed from the analysis, which left the first 10 task  sets available for 
analysis.

During the practice session, participants’ eye movements were recorded by a desk-mounted 
Eyelink 1000, sampling at 500 Hz. To impose constant viewing distance, a chinrest was used and 
placed about 75 cm from the screen. Eye movements were recorded monocularly, typically using 
the right eye, and in-plane gaze spatial resolution of about one degree, which is sufficient as the 
areas of interest were separated by three to four degrees. Before each session the equipment was 
calibrated to ensure correct measurements. Fixations were defined as non-blink inter-saccadic 
intervals based on the manufacturers default settings. The saccade definitions consisted of 
an amplitude change of 0.15°, velocity > 30°/ms and an acceleration threshold of 8000°/ms2. 
Only fixations with durations longer than 50 ms were considered for further analysis (for more 
details, see Norqvist et al., 2019b). Fixations in the five separate areas of interest (i.e., illustration, 
description, formula, example, and question) were separated. Time spent gazing in the specified 
areas of interest (dwell time) and time spent trying to solve a task (time on task) were calculated 
automatically by the eye-tracking software.

4.2.3  Third session

In the third session, 1 week after the practice session, the students solved tasks that could be 
solved with the same solution methods as during practice. The performance differences following 
the learning session showed that practice scores were in favor of the AR-group, t(32) = 5.56, 
p < 0.001, d = 1.58, (86% vs. 57% correct answers), while test scores were in favor of the CMR-
group, t(46) =  − 2.44, p = 0.019, d = 0.71, (28% vs. 45% correct answers) as previously reported 
in Norqvist et al. (2019b). However, in this study, the test scores were not analyzed and will 
therefore not be discussed further. For more information on test scores and their implications, see 
Norqvist et al. (2019b).

1 All task sets can be found in Norqvist et al. (2019a).
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4.3  Analyses

Since the CMR participants, on average, solved fewer tasks due to differences in solution 
speed and time restraints, we initially investigated whether the group equivalence in cog-
nitive ability was maintained across subtasks. Non-parametric Mann–Whitney U tests of 
those participants who completed subtask 10 for each of the 10 task sets revealed no sig-
nificant effects (U = 65.0–197.0; p = 0.887–0.978). Hence, the two groups still were com-
parable at the end of each task set with respect to cognitive ability. The results of hypoth-
eses 1–4 are presented as the average proportional time spent gazing at a specific area of 
interest with a 95% confidence interval. The advantage of using confidence intervals is 
that the displayed effects are likely to exist in the population (Ranstam, 2012), and are to 
be interpreted as covering the true value in 95 out of 100 studies. In the present context, 
the confidence intervals provide a conservative estimate of group differences and reduce 
the risk for a type I error, hence deciding that there is a difference between AR and CMR 
groups when it is not (du Prel et al., 2009). To address hypotheses 5–6, the mean differ-
ence in time on task between the two conditions was calculated and presented for all 100 
subtasks. The calculated time differences for each task set are based on the participants 
who solved all subtasks in the specific task set. The results are presented as descriptive 
graphs (hypotheses 1–4) and a table (hypotheses 5–6) and reflect the underlying distribu-
tions regarding eye fixations within and across task sets and group differences in speed of 
task solving.

5  Results

The results from the present study focusing on the learning conditions will be presented 
with three different foci connected to the six hypotheses. The first set of analyses for the 
two learning conditions encompass hypotheses 1 and 2 and include students’ eye-tracking 
behavior within task sets with subtasks that only differ numerically. The second set of anal-
yses for the two learning conditions encompass hypotheses 3 and 4 and include students’ 
eye-tracking behavior across task sets with main focus on the first subtask in each task set. 
The third set of analyses encompass hypotheses 5 and 6 and include how the two learning 
conditions differ in time on task within and across each task set.

5.1  Behavior within task sets (same subtasks, different numerical values)

5.1.1  The AR group

The dwell-time pattern is similar for all task  sets: a proportionately short time on the 
illustration during the first subtask, which in the latter subtasks decreased to almost zero 
(Fig.  3a). Dwell time on the  formulaAR and  exampleAR was comparatively high (about 
30–40%) and fairly constant throughout the subtasks (Fig. 3 b and c), while dwell time on 
the question rose slightly throughout the task set (Fig. 3d). The gradual decline regarding 
the illustration confirms the first part of hypothesis 1, but there was no apparent decrease 
in focus on the formula and example within the sets, which disconfirms the second part of 
hypothesis 1.
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5.1.2  The CMR group

The CMR group spent proportionally more dwell time on the illustration in the first four 
subtasks within each task  set (Fig.  3a). Simultaneously, dwell time on the  formulaCMR 
decreased from subtask 1 and was consistently below the 10% level (Fig. 3b). The dwell 
time on the  exampleCMR gradually decreased (Fig. 3c). Hypothesis 2 is confirmed.

Both groups showed an increase in proportional dwell time on the question, as the dwell 
time in other areas decreased, but this increase was more pronounced in the CMR group 
(Fig. 3d), especially from subtask 1 to subtask 2.

5.2  Behavior across task sets (different tasks)

5.2.1  The AR group

The analysis did not reveal decreased dwell time on the illustration, but rather a consist-
ently low level, disconfirming the first part of hypothesis 3. This lack of change across task 
might be due to floor effects. Hence, the proportion of dwell time focusing on the illustra-
tion was low already at task set 1. In fact, the AR group devoted less than 10% of the dwell 
time across all task sets to the illustration (Fig. 4a). While the AR group spent a low pro-
portion of their time on the illustration, they spent a comparably high proportion of their 
solution time on the  formulasAR and  examplesAR in all task sets (Fig. 4 b and c), confirming 
the second part of hypothesis 3.

a b

c d

Fig. 3  a–d Mean proportional dwell time within task sets 1–10, on illustration, formula, example, and ques-
tion. Solid line — AR; dashed line — CMR
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5.2.2  The CMR group

The participants maintained a fairly low but consistent focus on the  formulasCMR and 
 examplesCMR. Hence, regarding change across task sets, the first part of hypothesis 4 was 
disconfirmed. A consistently high proportion of dwell time on the illustration and (on a 
lower level) on the question across all task sets (Fig. 4 a and d) confirms the second part 
of hypothesis 4. Notably, there was a large variation in dwell time on the illustration in the 
CMR group, depending on task set, probably due to the varying task difficulty and com-
plexity of the illustrations.

5.3  Speed of task solving

An analysis of time on task within each task set indicates that practicing by CMR can be 
more efficient in the long run, not only with respect to post-test performance, as found 
earlier (Jonsson et  al., 2014), but also concerning practice time. Since practicing by AR 
includes using a given solution method, it is as expected initially faster than practicing by 
CMR where solutions need to be constructed (see Table 2, subtasks T1–T3), confirming 
hypothesis 5. Although solving CMR tasks on average was slower at the beginning of each 
task set (except task set 6), CMR was slightly faster than AR at the end of the task sets 
(Table 2, subtasks T5–T10), which confirms hypothesis 6.

a b

c d

Fig. 4  a–d Proportional dwell time across subtask 1 of all task sets on illustration, formula, example, and 
question. Solid line — AR, dashed line — CMR
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Task set 6 appears as an outlier in that the CMR-group is faster from the start of the 
task set. This is potentially a contextual effect since there were similarities in the illustra-
tions in task sets 5 and 6.

In summary, for all six hypotheses:

1. Within AR task sets, students gradually focused less on the illustration but maintained 
a high focus on  formulaAR and  exampleAR.

2. Within CMR task sets, students gradually focused less on the illustration,  formulaCMR, 
and  exampleCMR.

3. Across AR task sets, students maintained a low focus on the illustration and a high focus 
on  formulaAR and  exampleAR.

4. Across CMR task  sets, students maintained a low focus on the  formulaCMR and 
 exampleCMR and a high focus on the illustration and question.

5. Practicing by AR was initially faster than practicing by CMR.
6. CMR was slightly faster than AR at the end of the task sets.

6  Discussion

During the years in school, in mathematics classes and as homework, students solve a 
lot of tasks, many of which are designed to practice a given solution method or algo-
rithm. In a sense, this study can be considered a micro version of ordinary classroom 
teaching, with a focus on how students use available information in consecutive math-
ematics tasks. The present study indicates that students who solve tasks with given 
solution methods do not, at least not to a high degree, internalize useful information. 
Moreover, the experimental setting in the present study provides a link between edu-
cational design and learning processes (i.e., the relation between task design and how 
students’ focus is affected by repeated practice) that mathematics education largely 
lacks (Niss, 2007).

Table 2  Mean absolute time difference in ms (CMR–AR) includes only participants who solved subtask 10 
(hence, there are different individuals in each set)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Set 1 4116 16010 2611 2702 2574 2513 2378 1874 1169 504
Set 2 15609 11092 614 512 3217 842 1362 494 1270 70
Set 3 13230 2131 2552 142 1604 1588 684 150 439 634
Set 4 25054 5279 544 774 1389 996 523 499 3351 2674
Set 5 8985 5084 2616 732 99 2435 2111 955 1603 3428
Set 6 6244 1328 3700 4204 4513 5559 2865 5164 4275 3867
Set 7 21898 1642 1008 1485 1309 45 1842 7012 1792 146
Set 8 27889 1188 1854 264 486 2861 536 580 373 195
Set 9 14166 7006 1570 1293 1087 2929 2137 76 782 388

Set 10 25199 3850 6988 3123 2915 744 2884 1288 916 2997

Blue/white text — AR faster than CMR; red/black text — CMR faster than AR
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6.1  Within task sets

In contrast to the second part of the first hypothesis, the AR group maintained a high focus 
on the  formulaAR throughout each task set, which would indicate that the given solution 
method was not internalized and subsequently not recalled from memory, even though the 
 formulaAR was the same as in the previous subtask. If textbooks mainly provide tasks that 
promote AR (Jäder et al., 2020; Shield & Dole, 2013), this could be unproductive for stu-
dents who use textbooks as the main source of practice tasks.

At the same time, it is evident from our results that, as hypothesized, students who prac-
tice with CMR tasks will shift focus from the illustration to the updated information (i.e., 
the question) after a solution method has been constructed. That the problem-solving pro-
cess transforms to a more routinized solution method is perhaps exactly what we would 
hope for as learning occurs (Hiebert, 2003). Additionally, Brousseau (1997) predicted 
that activities that involve struggling with the mathematical ideas should lead to a deeper 
knowledge than just learning by rote, something that other researchers also claim (Bjork 
& Bjork, 2011; Hiebert & Grouws, 2007; Kapur, 2010). The fact that the CMR students 
also outperform the AR students in post-tests (e.g., Jonsson et  al., 2014; Norqvist et  al., 
2019b) supports Brousseau’s theory. The CMR group also decreased their attention to the 
 formulaCMR and  exampleCMR, as hypothesized, as they realized that these areas contain no 
essential information.

6.2  Across task sets

Our results also provide indications that students who are given solution methods disregard 
other meaning-building information even though the tasks change, partly confirming the third 
hypothesis. Looking at the first subtask across all task  sets, we can see that the AR group 
(i) maintained a comparably high proportion of their dwell time focused on the  formulaAR 
and  exampleAR and (ii) consistently allocated only a small proportion of their dwell time to 
the illustration. The finding that students disregarded the illustration almost instantly was not 
expected, especially since no information about the first tasks was known in advance. Hence, 
with no initial focus on the illustration, no gradual shift in attention from the illustration could 
occur, partly disconfirming hypothesis 3. As a teacher, one would probably hope for the stu-
dents to reflect upon how given solution methods work, but the lack of focus on the illustration 
is an indication that spontaneous reflection is unlikely. Rather, students who meet AR tasks 
seem to fall into a habit of utilizing given solution methods without asking themselves why 
they work. This could be one explanation for why working with procedural tasks solely is not 
beneficial for conceptual understanding (Brousseau, 1997).

When students worked with CMR tasks, they initially displayed a diverse gaze pattern 
when new task types were presented, partially confirming the fourth hypothesis. However, 
every time they encountered a new task set, they continued to focus on the areas of interest 
containing non-essential information. Hence, when engaging in CMR practice, they ini-
tially in every task set, seemed to evaluate where the important information was located. 
Brousseau (1997) argued that one important aspect of learning from solving tasks is that 
the student takes full responsibility for the solution process and having to analyze the task 
is part of this responsibility. Since an analysis of the task, which takes the mathemati-
cal properties into consideration, is not necessary for a correct solution when a solution 
method is given, students who practice by AR can disregard this analytical process.
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6.3  Time on task

Although the AR group who are presented with solution methods solve tasks faster ini-
tially compared to the CMR group, our results indicate that the initial struggle for students 
without given solution methods has a later payoff as shown by faster task solving for par-
ticipants in the CMR group, confirming hypotheses 5 and 6. It seems that the mathemati-
cal struggle associated with CMR tasks (Jonsson et al, 2016) leads to short-term dynamic 
changes as reflected by more effective problem solving within and across task sets and as 
shown in Norqvist et al. (2019b), better performance 1 week later. These findings are in 
line with both the retrieval effort hypothesis showing that more effortful encoding leading 
to more effective retrieval (Bjork & Bjork, 2011; Pyc & Rawson, 2009) and Brousseau’s 
(1997) theory, and Hiebert and Grouws’s (2007) notion of productive struggle. There are, 
of course, ways of designing AR tasks that would make them initially slower than the cor-
responding CMR task (for example, by making the solution method more complex than 
needed), but this is not usually the way solution methods are presented in school.

6.4  Method discussion

Although fewer participants in the CMR group solved all 10 subtasks in each task set in 
the allotted time, these students did not differ with respect to cognitive ability. However, 
we are aware that the reduced number of participants could potentially affect the external 
validity if only high achieving students in the CMR group solved all tasks. However, the 
CMR students remaining at the end of each task set were not the same for each task set 
and cognitive abilities in this reduced group did not differ from the large CMR group. 
With that said, the sample is most likely relatively strong in mathematics. Unfortunately, 
it was not possible in the present study to extract school marks, but in a previous study, the 
correlation between upper secondary students’ cognitive ability and overall school marks 
was 0.49, p < 0.001 (Jonsson et  al., 2021). In another study using AR and CMR tasks, 
we included participants from both basic and advanced math tracks at upper-secondary 
school in a series of three separate experiments (altogether 273 participants) covering 
both within-subject and between-subject designs. However, when assessing performance 
one week later, no main effects of math tracks were obtained in neither of the experiments 
(Jonsson et al., 2020).

Moreover, solving tasks with the head placed in a chinrest can, of course, be discussed in 
terms of ecological validity, since a restrained head could potentially impact the ability to con-
centrate. On the other hand, the strict experimental design provides a high degree of internal 
validity, hence establishing causality between task type (AR, CMR) and eye-tracking behavior.

It should be noted that eye-tracking studies often are based on the eye–mind hypothesis 
(i.e., what the eye has in focus is also what is being processed by the mind; see Just & Car-
penter, 1980). This hypothesis might not, however, be completely true in mathematics edu-
cation. The eye-tracking equipment measures foveal visual tracking, while it cannot capture 
participants’ ability to detect and process information in the periphery. For example, Schin-
dler and Lilienthal (2019) complemented eye tracking with a stimulated recall interview 
and showed that the observed student did refresh their memory of geometric information 
while just glancing in the correct direction of the given illustration. It seems plausible that 
a similar phenomenon could be present here. For instance, glancing and maintaining the 
image “in mind” simultaneously as they process information in other areas of interest by 
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using the peripheral vision seems likely to achieve. Arguably, tasks containing no formula 
and example (CMR tasks) would benefit more from glancing at the illustration, potentially 
underestimating the obtained difference between AR and CMR participants regarding the 
illustration (see Figs. 3a and 4a).

Although there are some limitations to the eye-tracking technique, it can provide insight 
into student behavior and mathematical reasoning, difficult to obtain by other methods. The 
present study provides detailed information on what students focused on, regarding AR and 
CMR tasks, which in turn gives insights into students’ reasoning and how it develops.

6.5  Implications and conclusions

Applying the results from this study to classroom teaching is, of course, not straightforward. In 
a classroom situation, there are indefinitely more variables to consider, but there is one thing 
that probably is true for both our microversion of teaching, and the macroversion that takes 
place in the classroom. When students solve tasks with given solution methods, many of them 
may make a habit of using the formulas without consideration to why they work, while stu-
dents who are not given solution methods must regard all given information from the start 
of a new task. The results indicate that students who have solution methods available tend to 
read these methods repeatedly instead of recalling them from memory, something that students 
practicing with CMR tasks seem to do. Repeated retrieval from memory is in itself a powerful 
tool to use when learning (e.g., Karpicke & Roediger, 2007; Wiklund-Hornqvist et al., 2014), 
while reading available algorithms seems to elicit no such retrieval. Norqvist (2018) showed 
that provided explanations together with given solution methods do not yield better test scores 
than the types of AR tasks in this experiment, and the habit of quickly finding and applying 
solution methods, indicated by the AR group’s eye movements in this study, might be why. 
If students do not reflect on why formulas, solved examples, or algorithms work, it is harder 
to remember and transfer them when needed in a new situation or task, as shown by Jonsson 
et al. (2020). The short-term effects for AR in this study may have a long-term influence if 
students’ start thinking that doing mathematics only involves imitating a predefined formula 
without having to know why it works.

Practice tasks without complete solution methods, which encourage a suitable struggle 
with mathematical properties during task solving, could be just what is needed for students 
to not fall into the habit of un-reflected use of solution methods. Since, for many students, 
the aim of mathematics seems to be to get correct answers to tasks rather than understand-
ing the solution idea, the reflection does not come naturally. Thus, as seen by the analysis 
of eye movements in this study, tasks that promote creative reasoning could help direct 
attention to the important mathematical properties and structure of the task that we want 
students to learn and remember. The objective measure of students’ attention that eye 
tracking can provide has shown to be valuable in this study. Without eye tracking we would 
not have gotten this detailed view of which information students utilize or insight into the 
lack of internalization for the AR condition. Useful data on students’ task solving strategies 
and how they change over time can be obtained by other methods, for example written tests 
or think-aloud interviews. However, without eye tracking, it would hardly have been pos-
sible to quantify students’ reasoning foci and carry out the statistical analyses above to test 
this study’s hypotheses. More generally, one of the many strengths of eye tracking is the 
possibility to quantify human attention. Hence, eye tracking, can play an important part in 
future studies, by complementing more traditional research methods with additional insight 
into students’ attention and thinking processes.
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