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Abstract
Representations are key to mathematical activities and meaning-making processes as they 
are part of modeling, connecting, communicating, and understanding mathematical ideas 
and concepts. The current study sought to examine a group of novice algebra learners’ 
interactions with different representations from an onto-semiotic approach. A case study 
method was employed to understand how different algebraic practices (abstracting, gen-
eralizing, justifying, and operating on symbols) and functional thinking types (recursive, 
covariational, and correspondence) were facilitated through working with multiple repre-
sentations. Three 6th graders participated in the study by completing 12 algebra tasks and 
taking part in two interviews. The onto-semiotic approach guided the data analysis process 
that involved the identification of mathematical objects that emerged in the participating 
students’ mathematical practices. Then, the configuration of objects and semiotic functions 
established by the students in the functional situations was examined to understand the role 
of representations in the students’ development of algebraic thinking and practices. Find-
ings showed that abstraction is an essential process for generalization. Thinking about far 
figures facilitated abstraction and generalization through helping students construct non-
ostensive concrete/pictorial representations. Verbal representations interacted with all rep-
resentations and preceded symbolic representations. Working with near figures promoted 
recursive and covariational thinking while examining the far figures usually resulted in cor-
respondence thinking. Implications for the school curriculum are discussed in the paper.
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1 Introduction

Students’ interactions with multiple representations give us important clues regarding 
what and how mathematical meanings are constructed in a particular mathematical activity 
(Font et al., 2007). Using representations is related to modeling, understanding, connect-
ing, and meaning-making processes (Radford, 2014a). A relatively recent framework that 
can be used to examine students’ meaning-making processes with different representations 
is the onto-semiotic approach to mathematical cognition (Font et al., 2007; Godino et al., 
2007). Algebra, a domain of mathematics viewed as a gatekeeper to higher levels of math-
ematics learning (Kaput, 2008; Wu, 2001), offers students opportunities to work with dif-
ferent representations. In this study, using the onto-semiotic approach as the theoretical 
framework, we examined how a group of first-time formal algebra learners interacted with 
multiple representations.

2  Theoretical background

2.1  Algebraic thinking and content strands

According to Kaput (2008), algebraic thinking involves two core aspects: (A) generalizing 
regularities and constraints and representing these generalizations; (B) reasoning with and 
acting on generalizations expressed in a conventional system. Related to core aspect A, 
Wu (2001) discussed abstraction in addition to generalization, noting that they are closely 
linked processes. Abstraction reifies similarities underlying mathematical structures as it 
is the process of conceptualizing the essence of particulars/examples by focusing on their 
similarities rather than differences, while generalization involves building properties or 
relationships that work for all cases under investigation (Mitchelmore, 2002; White & 
Mitchelmore, 2010). Radford (2003) examined students’ work with figural patterns and 
found that they abstracted features of ostensive figural patterns and the actions performed 
on them to reach a generalization. Radford (2014b), however, cautions that not all acts of 
generalizing involve algebraic thinking (e.g., finding a formula by using the trial and guess 
strategy). Core aspect B involves applying rule-based actions on symbols and knowing 
how different forms of symbols relate to each other. Radford’s (2014b) definition of analy-
ticity is closely linked to core aspect B. Analyticity refers to treating unknown quantities as 
if they were known and starting with the unknown quantity when performing four opera-
tions on algebraic equations. Justifying is a common skill for both core aspects A and B, 
as students need to explain the reasons behind their mathematical actions when engaged 
in algebraic thinking (Blanton et al., 2018). The current study derived four mathematical 
practices from the related literature on algebraic thinking (Blanton et  al., 2018; Kaput, 
2008; Mitchelmore, 2002; Radford, 2014b; Wu, 2001): abstracting, generalizing, justify-
ing, and operating on symbols.

Kaput (2008) defined three content strands of algebra: (1) study of structures and sys-
tems; (2) study of functional relationships; and (3) application of modeling. The first strand 
is based on generating expressions, equalities, and inequalities; working flexibly with the 
equal sign; and generalizing arithmetic relationships (Blanton et  al., 2018; Eriksson & 
Sumpter, 2021). The second strand refers to generalizing functional relations between co-
varying quantities. The third strand includes modeling a given situation with equality or 
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inequality; generalizing regularities that arise within or outside mathematics; and compar-
ing different models to each other.

The current study included teaching tasks/situations based on the three strands defined 
by Kaput (2008) with a focus on the second strand, the study of functional relationships. 
The reason for this choice was the flexibility of the functional relationships to offer oppor-
tunities to study the other strands as well. Pattern tasks/situations were used to introduce a 
formal study of algebra to the students. Studying patterns offers students opportunities to 
make abstractions and generalizations (English & Warren, 1998; Radford, 2003; Rivera, 
2010). In a typical pattern situation, students analyze special cases, compare how they are 
similar or different, organize data collected from the cases, generate a rule that could be 
applied to all cases (relates to the third strand), and then use the rule to solve the initial 
and/or further questions (Stacey, 1989). In working with patterns, students also practice 
using symbols in meaningful ways such as examining the equality of different expressions 
derived from the same pattern, thus engaging in the first strand as well.

A functional relation expresses the dependent variable in terms of the independent vari-
able using a representational tool (Pittalis & Zacharias, 2019). Prior research studies have 
shown that students demonstrate three types of thinking when working with functional 
relations: (1) recursive thinking; (2) covariational thinking; and (3) correspondence think-
ing (Blanton & Kaput, 2011; Stephens et al., 2017). Recursive thinking focuses on change 
in one variable (dependent or independent) without relating the two variables to each other 
(e.g., y values increase by 1). Covariational thinking involves examining how the two vari-
ables vary simultaneously (e.g., as y increases by 1, x increases by 4). Correspondence 
thinking refers to generating a closed-form rule that directly relates one variable to the 
other variable (e.g., y is 2 times x plus 1). In the study of functional relationships, typically, 
students use a variable as a varying quantity (Blanton et al., 2011; Usiskin, 1988).

Students might use a variety of representations to explore functional relations (Iori, 
2017; Schwartz & Yerushalmy, 1992; Wilkie, 2016). Palatnik and Koichu (2017) exam-
ined ninth-grade students’ sense making while working with a numerical sequence. The 
students first related pictorial and numerical representations to each other and then con-
structed algebraic representations. Using a survey method, Wilkie (2016) examined 102 
upper primary students’ functional thinking across different representations and found 
that students were able to generalize linear relationships using symbolic representations 
when the question was based on a figural growing pattern (23%), a pictorial and a tabular 
representation (25%), and a real-life related verbal representation (46%). The prior studies 
reported students’ successes and difficulties in using different representations. To promote 
conceptual learning of algebra at all grade levels, further investigation of how students 
learn initial formal algebra concepts using multiple representations is warranted (Wilkie, 
2016, 2021). In particular, there is a need to clarify the types of functional thinking that 
different representations can support and how these relate to algebraic practices.

The current study aims to contribute to the existing knowledge on multiple represen-
tations by conducting an in-depth analysis of a group of novice formal algebra learners’ 
experiences in functional relation situations using figural patterns and their engagement 
in algebraic practices of abstracting, generalizing, justifying, and operating on sym-
bols. The onto-semiotic approach (OSA) provides rich analytic tools to examine these 
processes, as will be explained in the next section. Research in line with the theory of 
objectification revealed how students engage in these algebraic practices, in particular in 
abstracting and generalizing (Radford, 2003). In research studies that examined algebraic 
thinking from an onto-semiotic perspective, generalization has been at the center of the 
analysis (e.g., Aké et al., 2013; Godino et al., 2015). The OSA lacks explicit theorization 
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of abstraction. However, it provides tools (e.g., ostensive/non-ostensive and extensive/
intensive dualities) that can be used to make elements of the abstraction process visible 
(Font et al., 2013). Thus, the current study uses the OSA to understand the role of alge-
braic practices as students’ individual and group knowledge emerge in social practice. 
We hope that this new application of the OSA will allow a wider application for this 
theory in mathematics education and thus a deeper understanding of students’ algebraic 
practices for educators.

2.2  The onto‑semiotic approach (OSA)

The OSA draws on sociocultural theories and views mathematics as a logically organized 
system that has its own symbolic language and is based on collaborative problem solving 
(Font et  al., 2013; Godino et  al., 2007). Mathematical practice is defined as any type of 
action or representation used by someone in the process of solving mathematical problems, 
communicating the solution to others, justifying the answer, and generalizing it to other 
situations or problems. The OSA broadly defines mathematical objects as any entity that 
emerges from mathematical practice and introduces the following primary objects (Font 
et al., 2013; Godino et al., 2007; Montiel et al., 2009):

– Linguistic elements: words, expressions, notations, or graphs expressed through speak-
ing, writing, or gestures. In this study, material elements (e.g., algebra tiles) are also 
included in this category (Godino et al., 2011).

– Situations: problems, exercises, tasks, or applications.
– Concepts: mathematical notions (e.g., slope) given with a definition or description.
– Propositions: statements about the properties of concepts.
– Procedures: algorithms, calculations, or techniques used to solve the problem.
– Arguments: statements used to justify or refute propositions or procedures.

These primary objects are related to each other and may come together to form configu-
rations. A configuration is a network of mathematical objects that connect to each other 
through relationships formed among them. For example, a student can justify (argument) a 
formula (proposition) of a functional relation (concept) using geometric figures and words 
(linguistic element), forming a configuration about the functional relation.

To better understand how mathematical objects exist, the OSA examines these objects 
from five dual facets (Font et al., 2013; Godino et al., 2005; Vergel et al., 2021). Below, we 
explain each facet and make connections to the current study where appropriate:

– Personal/institutional: Personal objects are the results of individuals’ mathe-
matical practices while institutional objects emerge from a practice community 
(institution) that involves dialogue, argumentation, and agreements. The algebra 
content that the teacher in the current study aimed to teach constituted the insti-
tutional objects while the students’ individual conceptions of this content gener-
ated personal objects.

– Ostensive/non-ostensive: Ostensive objects are shown with material representations 
(e.g., a table showing a linear relationship), while non-ostensive objects are mental pro-
cesses or rules employed in institutional objects (e.g., non-existence of the multiplica-
tion sign in 2y).
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– Extensive/intensive: An extensive object is a specific case (example) of a more general 
form which is an intensive (type) object. The algebraic practices of abstracting and gen-
eralizing are closely related to this dual facet. Generalization is the process of generat-
ing an intensive object (Montiel et al., 2009). In figural patterns, the process of abstract-
ing might support generalization by identifying similarities and features in the given 
extensive objects.

– Unitary/systemic: Unitary objects are treated as a whole system that was learned previ-
ously while systemic objects can be decomposed into parts to be studied.

– Expression/content: Mathematical objects form semiotic functions in which one object 
(expression) represents another object (content). This dual facet has particular impor-
tance for the current study as the study focuses on representations. The OSA disagrees 
with the opinion that mathematical objects exist apart from their different representa-
tions (Font et al., 2013). Rather, the argument is that mathematical objects are related to 
each other through semiotic functions (Font et al., 2007). A semiotic function is a cor-
respondence between a signifier (expression) and a signified (meaning, content). Each 
object/representation pair allows people to use different systems of practices, leading to 
a new meaning of the object. The richness of semiotic functions established between 
mathematical objects indicates the richness of meanings created by the subjects (Font 
et al., 2007; Radford, 2014a).

Learning to think algebraically requires students’ appropriation of institutional alge-
braic objects. The mathematical objects and dual facets that OSA proposes are useful to 
understand and analyze students’ algebraic practices. Based on these theoretical tools, 
Aké et  al. (2013) defined the algebraization levels given in Table  1 for mathematical 
practices in primary education. This categorization of algebraic thinking is used in the 
current study to understand the algebraic thinking levels of the participants.

The current study embraces the OSA to examine the mathematical practices of nov-
ice algebra learners as the OSA perspective brings together the individual and social 
aspects of mathematical activity and provides rich theoretical tools such as mathemati-
cal objects and dual facets to examine students’ algebraic thinking (Aké et  al., 2013; 
Godino et  al., 2015) and meaning-making processes when using representations. The 
research question that guided this study is as follows:

How are algebraic practices and functional thinking facilitated through working with 
different representations in functional relation situations for a group of novice formal 
algebra learners from an onto-semiotic approach?

Table 1  Algebraization levels

Level Description

0 A mathematical activity at this level does not include algebraic features. No intensive object is 
involved

1 This level includes intensive objects (e.g., Fig. 100 includes 1 + 2 + 3 + … + 100 beads); however, 
the generalization is based on the objects at the concrete level. It resembles factual generaliza-
tion defined by Radford (2003)

2 This level involves intensive objects expressed in algebraic symbols; however, operations with 
variables are not carried out

3 This level is considered properly algebraic. It involves intensive objects expressed in algebraic 
symbols, and operations with variables are carried out. This level requires analyticity defined by 
Radford (2014b)
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3  Methodology

This study employed a case study approach using qualitative data. The case study 
approach is suitable when researchers are interested in understanding and interpreting the 
processes involved in a bounded system/case (Merriam, 1998). In the current research, 
we aimed to understand how a group of first-time formal algebra learners used different 
representations as they engaged in algebra tasks/situations. This group was the case of 
the study. With “formal algebra,” we mean a systematic study of symbolic expressions 
and equations that typically take place in secondary schools in many countries (Stephens 
et al., 2017; Wilkie, 2016).

3.1  Participants and context

Three sixth graders voluntarily participated in the study after obtaining child assent and 
parental consent forms. The study took place during the students’ winter break. The stu-
dents (three boys) were in the same class and were attending a public middle school in 
southwestern Turkiye. Participants’ pseudonym names used throughout this paper are 
Arda, Baha, and Emir. Arda’s average mathematics test score in the first term of the sixth 
grade was 88 out of 100. This average was 94 for Baha and 85 for Emir. These scores were 
based on their school report cards managed by their mathematics teacher.

As part of this study, the participants attended five algebra lessons in 2 weeks. Each 
lesson was video tape-recorded and lasted between 1 and 1.5 hr. They engaged in 12 
algebra situations in these five lessons. None of the participants had learned formal 
algebra prior to these lessons. Figure 1 presents situation 3 as an example of the func-
tional relation tasks used in the study, and Table 2 shows brief information about the 
situations used. Based on the related literature (Blanton & Kaput, 2011; English & 
Warren, 1998; Radford, 2014b; Stacey, 1989), the instructional sequence started with 
figural patterns and introduced variables as varying quantities. The worksheet ques-
tions were staged to go from simpler to more difficult similar to algebraization levels 
(Aké et al., 2013). In lessons 3 and 4, the students worked with situations that involved 

Examine the growing letter X built by your teacher.

Construct the fourth and fifth figures using the color chips. 
How many chips will there be in the 10th figure?
How many chips will there be in the 100th figure?Compare your 
answer to those of your friends. 
Explain how you would find the number of chips in any step to 
another friend. The answer to this question will be written 
collaboratively.
Write a mathematical sentence that shows how to calculate the 
number of chips in any figure.

Fig. 1  Situation 3: The Growing Letter X
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variables as fixed unknowns. At this phase of the instruction, the students were asked 
to perform addition and subtraction operations on algebraic expressions expressed in 
symbols. The last lesson engaged the students in functional relations tasks.

The first author taught the lessons. Her role in this study was a researcher-teacher 
(Tabach, 2011). On the one hand, she was the teacher of the research lessons; she tried 
to build a learning environment where the students shared ideas with each other and chal-
lenged and contributed to each other’s thinking. She facilitated the emergence of personal 
and group knowledge and introduced institutional knowledge. On the other hand, she 
observed the participants’ learning process closely and collected data during the lessons 
from a researcher’s point of view.

3.2  Data sources

The data sources included videotapes of the five lessons, the students’ worksheets 
completed during the lessons, a mid-interview with each participant after the second 
lesson, and a final interview with each participant after all the lessons were completed. 
Each interview lasted between 10 and 20  min. In these interviews, our goal was to 
understand the students’ emerging personal knowledge about functional relation situ-
ations and how they used different representations during this process. Accordingly, 
we posed questions that would reveal students’ functional thinking when using differ-
ent representations. The mid-interview included two questions and the final interview 
included four questions. Table 3 shows sample questions from each interview.

Table 3  Sample questions from the mid- and final interviews

Mid-interview question 1 A frog jumps 30 centimeters in each step. How many centimeters will it jump 

in n steps?

Mid-interview question 2 Use an applet to analyze a pattern (Chairs around a Table, created by the 

National Council of Teachers of Mathematics).

Final interview question 3 How do the following expressions relate to each other?
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3.3  Data analysis

The onto-semiotic approach (Font et al., 2007; Godino et al., 2007) guided the data analysis 
process. Firstly, all lesson videos were watched, and the mathematical objects included in each 
situation were determined. For each situation, a detailed report was created based on the first 
view of the videos, making 12 reports in total. The worksheets that the students completed 
were used to confirm the identification of the mathematical objects in the teaching episodes. 
Like the lesson videos, the videos of the student interviews were analyzed by identifying the 
mathematical objects generated by each student. The general format of the reports and sample 
entries for each section is given in Table 4 for The Growing Letter X situation shared in Fig. 1.

Secondly, all lesson videos were watched again. In this second round of analysis, the focus 
was on understanding the configuration of objects and semiotic functions established by the 
students in functional relation situations. Particular attention was paid to instances where four 
algebraic practices (generalizing, abstracting, justifying, and operating on symbols) and three 
thinking types involved in functional relationships (recursive thinking, covariational thinking, 
correspondence thinking) took place. Additionally, the levels of algebraization of the mathe-
matical activity carried out by each student were identified using the framework proposed by 
Aké et al. (2013). The role of representations in algebraic thinking was shown in diagrams. 
This process involved the situation reports created in the first step. The diagram of the Grow-
ing Rectangles situation is given in Fig. 2 as an example.

Finally, all the diagrams were compared to each other to identify commonalities across 
the situations used. Common themes about how the representations were used by the stu-
dents in the meaning-making process of algebraic situations were identified. Data from the 
individual interviews and students’ worksheets were used to triangulate the conclusions.

Table 4  Part of a sample situation report

Report section Sample entries

Situation Growing Letter: The linear growth of the letter X is presented with one chip in step 1, 
5 chips in step 2, 9 chips in step 3, and so on

Linguistic elements Color chips, gestures, spoken language, written language, symbols (letters, equal 
sign), numbers

Concepts Pattern-linear growth, near figure, far figure, variable as varying quantity, equality, 
functional relationship

Procedures Procedure A: Constructed the fourth figure by placing 1 chip at the center and 3 chips 
to each of the four parts of X (Baha)

Procedure B: Constructed the fourth figure by placing 1 chip at the center and then 1 
chip to every four parts of X. Placed 3 groups of 4 chips (Emir)

Propositions Proposition A: The number of chips in the 10th figure is 37 (all students)
Arguments Argument A1: Proposition A is correct because of commonalities in figures 2 and 

3. Figure 2 has 1 × 4 + 1 chips, figure 3. has 2 × 4 + 1 chips so figure 10 will have 
9 × 4 + 1 chips. (Arda)

Argument A2: Proposition A is correct because of rhythmic counting up to the 10th 
figure (1, 5, 9, …, 37). (Emir)
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4  Findings

In this section, we first present the findings related to what role each representation played 
in the emergence of algebraic practices: abstracting, generalizing, justifying, and operating 
on symbols. Then, we share the findings on how each representation supported students’ 
functional thinking. Figure 3 shows the overall interaction among the different forms of 
representations and algebraic practices as well as the functional thinking observed.

Correspondence Thinking

Abstracting & Justifying Generalizing & Justifying

Ostensive Figural 
Drawings (near 

particular figures)

Non-ostensive 
Figural Drawings

(far particular 

Ostensive Verbal 
Representation (all 

figures)

Ostensive Symbolic 
Representation (all 

figures)

Fig. 2  A sample diagram for students’ use of representations in functional relation situations

Abstracting & Justifying Generalizing & Justifying

Ostensive Concrete 
Representation (near 

particular figures)

Non-ostensive
Concrete

Representation (far
particular figures)

Ostensive Spoken 
and Written Verbal 
Representation (all 

figures)

Ostensive Symbolic  
Representation (all 

figures)

Recursive and Covariational Thinking 

Ostensive or Non-
Ostensive Tabular 

Representation 
(particular figures)

Correspondence Thinking

Operating on Symbols

Fig. 3  The role of representations in algebraic practices and functional thinking
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4.1  Representations and algebraic practices

In this study, functional relationship situations were presented to students in the form of 
figural patterns using pictorial, digital pictorial, or concrete representations. They were 
given the first three figures and were asked to create the fourth and fifth figures. These near 
figures helped students to notice the structure of the pattern. For example, for situation 3 
shown in Fig. 1, Arda explained the geometric configuration of the pattern by saying “The 
fifth figure has 4 chips in each corner [arm/part of the letter X]. In each step, we add one 
chip to each corner.” Here, Arda formed a semiotic function between the geometric forma-
tion of the pattern and the verbal expression he used. He signified the geometric structure 
of the fifth figure with “…has 4 chips in each corner” and then referred to his physical 
action with chips (a procedure), “In each step, we add one chip to each corner,” noticing a 
regularity in the growth of the pattern.

The students started noticing similarities and differences in the near figures such as how 
the figure grows from one step to another as Emir said, “It goes by 3.” for situation 6—
Toothpick Squares. In situation 2—Growing Rectangles (Fig. 4), while drawing the fourth 
and fifth figures, the students discussed that in each figure, the height is 2 more than the 
base of the rectangle. Emir said, “The fourth figure is 4 by 6, it [pointing to height] is 
2 more.” In all situations, the ostensive concrete, pictorial, and digital pictorial represen-
tations initiated the abstraction process for the students. This initial abstracting included 
noticing the geometric configuration of the figural patterns (features of the extensive 
objects expressed in linguistic terms) and the regularity in the growth of the pattern (proce-
dures performed on the extensive objects).

After creating and examining the near figures, the students answered questions about 
far figures. For instance, in situation 1, the students examined the pattern of The Growing 
Letter T. Figure 5 shows the first three steps of the pattern. Here is the conversation from 

Fig. 4  Near extensive objects drawn by Emir for situation 2

Fig. 5  Situation 1: The Growing 
Letter T

Step 1      Step 2      Step 3
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the teaching episode in which the students shared their strategies for finding the number of 
tiles in figure 10:

Teacher: How did you guys find the number of tiles in the 10th figure? Who wants to 
share?
Baha: I did like this, the bottom [tail of the letter T] is always whatever the step num-
ber is. The top part is one more.
Teacher: How did you find 21?
Baha: [pointing to the fourth figure] there are 10 at the bottom, 11 at the top, 21. 

By abstracting the structure of the letter T from the near figures and connecting this 
structure to the step number, Baha was able to find a general rule. He used a near particu-
lar figure, the fourth figure, as a mediating tool to justify his general rule. In other words, 
the fourth figure signified the 10th figure. As Fig. 3 indicates, the students referred to the 
ostensive or non-ostensive concrete representations when they expressed their justifications 
using verbal representations.

The teacher invited other students to share their reasoning:

Teacher: What was your reasoning, Emir?
Emir: I got 27. (He constructed an ostensive table up to the 10th figure on his work-
sheet.)
Teacher: How did you find 27?
Emir: I increased by 2 but I think I got wrong. 

Arda interfered and counted to the 10th figure by constructing a non-ostensive table 
(he counted like “6–13; 7–15; 8–17; 9–19; 10–21). The group agreed that there are 21 
tiles in the 10th figure. Emir claimed that there should be 210 tiles in the 100th figure 
as 21 × 10 = 210, demonstrating incorrect proportional reasoning. The lesson continued as 
follows:

Teacher: Let’s examine the second and fourth figures. How many tiles are there in the 
second figure?
Baha: 5
Teacher: How many are there in the fourth figure?
Emir: 9
Teacher: According to your reasoning of multiplying by 2, it should be 10. Are there 
10 tiles in the fourth figure?
Baha: So, the rule is 2 times minus 1.
Teacher: We cannot generalize based on one example (explained that a rule should 
work for all steps) … I want each of you to think about the shape of the 10th figure. 
Can you imagine it? What will it look like?
Emir: It will be a large T (they laughed).
Teacher: Yes, but how many tiles will there be on each part (tail and top)?
Arda: Oh, I see, the top is one more than the bottom, so this will be 100 and this will 
be 101 (drew the figure in the air), 201. 

Imagining the 10th figure helped Arda notice the geometric configuration of the pattern. 
The figure he drew in the air signified a generic element of the pattern (intensive object) by 
indicating a semiotic function between his gesture and the rule “the top is one more than 
the bottom.” Moreover, Arda and Baha noticed that the number of tiles in the tail of the 
letter T was the same as the step number. This is a new phase of the abstracting process 
as it not only focuses on similarities and regularities among the extensive objects but also 
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involves relating each extensive object to its order in the sequence. This kind of abstract-
ing helped Arda and Baha to construct the general rule. The teacher asked about the 500th 
figure to reinforce generalization as it requires using their intensive object in a new case. 
Arda and Baha were able to find the answer using the intensive object that they generated. 
As this intensive object is bound to the concrete level, we can claim that at this point of the 
instructional sequence, both students’ mathematical practice is at level 1 of algebraization 
(Aké et al., 2013). On the other hand, Emir did not abstract the features of the extensive 
objects yet, so he was not able to generalize. At this point of the instruction, his mathemati-
cal practice seemed to be at level 0 of algebraization.

The teacher worked one-on-one with Emir starting with re-constructing the third step 
using two colors, blue tiles for the tail, and red tiles for the top:

Teacher: Let’s try to imagine the shape.
Emir: It will be a T.
Teacher: Try to guess the number of tiles at each part. [Silence] …
Teacher: Let’s examine (the figures) in their order. The first figure has 1 tile at the tail 
and 2 tiles at the top (pointing to the figure). The second figure has…How many tiles 
are there at the tail of the fourth figure?
Emir: 4
Teacher: What about the top?
Emir: 5
Teacher: The fifth figure?
Emir: 5 at the tail, 6 at the top.
Teacher: 10th?
Emir: 10 and 11.

Next, Emir was able to calculate the number of tiles for figures 100 and 500, noting that 
the top is one more than the bottom. In the next question, when the group was asked to 
explain how to find the number of tiles in any step to another friend, Arda and Baha sug-
gested telling the other student the rule and using the 500th figure as an example. Emir sug-
gested, “First, we should show him the first five figures.” It seems like examining the near 
figures in detail using different colors and relating the figure’s parts to each other and to 
the step number helped Emir abstract the features of the extensive objects and procedures 
performed on them, an essential process for generalization as indicated in Fig. 3. Once the 
students observed the structure of the pattern and discerned the similarities in each figure, 
they discussed the structure of far figures more flexibly using the near figures as a signifier. 
This is evident in Baha’s reasoning above for the 10th figure and Arda’s reasoning regard-
ing the 100th figure. Similar reasoning was observed in other patterning situations as well.

In the first situation, Emir and Arda created a table even though the worksheet did not 
ask for it (some other situations required completing a table). In situation 2, all students 
were able to demonstrate abstract thinking based on the pictorial representation of the pat-
tern and generalize a rule. None of the students created a table. In other situations, when-
ever the students were able to abstract the structure of the pattern, they did not need a table. 
However, if they failed to abstract the features of the extensive objects, they made an osten-
sive or non-ostensive table. For example, in situation 3 (see Fig. 1), Arda and Baha were 
able to engage in the abstraction process and generalize a rule:

Arda: Ok, the 10th figure, let me give an example first. In the second step, for exam-
ple, on all corners [arms of the letter X], there is one chip. And there is one chip in 
the middle. In other words, each corner has one, the number of chips on each corner 
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is one less than the step number. Therefore, in the 10th step, there will be 9 chips on 
each corner. Since there are four corners, we multiply 9 by 4, 36, and since there is 
one chip in the middle we add one more chip, 37. 

Emir, on the other hand, created a non-ostensive table and found the number of tiles 
in the 10th figure by counting on 9. During the group discussion, the students drew a 
draft picture for the 100th figure (ostensive pictorial representation). They collaboratively 
described the pattern in writing to a friend who was not there (Fig. 6). This description 
shows that the group justified their intensive object (signified by the 99th term) by referring 
to the features noticed in the extensive objects of situation 3 such as each figure has one 
chip in the middle. Discussions on far figures and features of extensive objects helped Emir 
notice the general rule of the pattern, transferring personal knowledge to group knowledge. 
As illustrated in Fig.  3, the progression from the ostensive and non-ostensive concrete/
pictorial representation to verbal representation and from there to symbolic representation 
aligned with students’ abstracting and generalizing thinking processes. A draft ostensive 
pictorial representation of a far figure and verbal representations seemed to facilitate writ-
ing symbolic representations. Every time the students found a pattern, they first said it in 
words and then showed it with symbols.

Students’ justifications depended on the type of representation that they used and progressed 
from being personal to institutional as the teacher scaffolded their algebraic progression. With 
the pictorial and concrete representations, the students defended their arguments using the near 
figures as the excerpts above illustrated. At times, they used gestures and mimics to explain 
their ideas such as drawing a figure in the air by hand to explain its parts and the number of 
items (e.g., chips) in each part. When working with tables, students initially suggested rules that 
work for only one pair but in time they defended their rules based on more instances of the pat-
tern such as “I checked it, it works for all pairs [on the table].” (Baha, situation 7).

4) Explain how you would find the number of chips in any step to 
another friend. The answer to this question will be written 
collaboratively.

Students’ answer: In each step, each arm of the figure will have 
chips one less than the step number. Since there is one chip in the 
middle, we add 1 to the total number of chips at the corners. 

For example, 99th Step Each corner will have 98 chips. Therefore 
we multiply 98 by 4 and then add 1. 

Fig. 6  Group’s written explanation of the pattern in situation 3
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The students’ work with symbols in pattern situations showed variety. They were intro-
duced to using letters to write a general formula (institutional knowledge) in situation 1 by 
the teacher. In the latter situations, they were asked to write a rule using letters after they 
examined the near and far figures. Baha and Arda tended to convert the verbal representa-
tion to the symbolic representation directly in the same order focusing on the verbal and 
contextual meaning (Godino et al., 2015; Radford & Puig, 2007). For example, in situa-
tion 3, they spoke about the rule as “one less than the step number is multiplied by four 
and then add the one chip in the middle.” Both students wrote the rule as (x-1).4 + 1 = y (in 
Turkiye, a dot is used to denote multiplication). This type of generalization in functional 
situations would fall under level 2 of algebraization (Aké et al., 2013). Starting with situ-
ation 5, the teacher facilitated operations with symbols. In situation 5, the rule was found 
to be x + 1 + x + 2 = y. When the teacher asked if the rule could be written differently, Arda 
suggested adding similar terms to obtain 2x + 3 = y. Working with algebra tiles in lesson 3 
supported students’ addition and subtraction operations with symbols. Later, in some situ-
ations, Arda and Baha wrote more institutional known forms of formulas such as 2x + 1 = y 
instead of x.2 + 1 = y. They were able to operate on symbols independent of their contex-
tual meanings. The two students’ practice seemed to progress toward level 3 of algebraiza-
tion in the context of linear functional relationships. Emir demonstrated a different devel-
opmental path. Table 4 compares Emir’s work with symbols to those of Baha and Arda. 
Emir tended to use a different letter for different parts of the figural patterns, failing to 
abstract similarities and essential features of extensive objects and to relate the step number 
to the number of tiles/chips in the pattern. For example, in situation 3, he wrote x.4 + 1 = y. 
This rule related the number of chips in one arm of the letter X to the total number of chips 
in the letter X and does not involve the step number. As Table 5 shows, his work involved 
an incorrect use of the equal sign. This seemed to arise from his work in arithmetic as he 
thought that writing 5 + 3 = 8 + 1 = 9 was mathematically correct. As the lessons continued, 
at times, Emir correctly used the symbols to represent the formulas of the patterns. For 
example, in the mid-interview, he correctly wrote x.2 + 2 = y for the chairs around a table 
question. In question 3 of the final interview, he noticed that all boxes were different rep-
resentations of the same situation. He showed gradual development throughout the lessons 
and showed numerical focus in some tasks (level 1 of algebraization) while representing 
the intensive object with symbols in some other tasks (level 2 of algebraization).

4.2  Representations and functional thinking

As Fig. 3 shows, concrete, pictorial, digital pictorial, and tabular representations typically 
initiated recursive and covariational thinking. Once students worked with far figures either 
using non-ostensive pictorial/concrete representations or tables and they expressed their 
opinions in words (verbal representations), they demonstrated correspondence thinking. 
An example will be shared from situation 6—Toothpick Squares. In this situation, the stu-
dents were given the first three steps of the pattern created by toothpicks (Fig. 7) and were 

Table 5  Examples of students’ 
work with symbols

Student Situation 3 Situation 5

Arda and Baha (x-1).4 + 1 = y x + 1 + x + 2 = y
2x + 3 = y

Emir x.4 + 1 = y x + 1 = y + 1 = z
y + z = e
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asked to create the fourth and fifth figures using toothpicks. Then, they were asked to find 
the number of toothpicks in the 10th and 100th figures. The situation also required them to 
complete a table as they worked with the near and far figures.

As the students were working on the near figures, they quickly noticed that the total 
number of toothpicks increased by 3, showing recursive thinking. Once the students indi-
vidually completed the questions for the far figures, the teacher started a group discussion.

Teacher: Let’s share our answers. How did you find the answer for the 10th figure, 
Emir?
Arda: I could not find an answer for 100.
Emir: In each step, the number of toothpicks is 3 times the step number plus 1. 
Therefore, I multiplied 10 by 3, 30, and added 1, 31.
Baha: I did like that as well.
Teacher: How did you find this 3 times plus 1 rule?
Emir: It works for all of them [pointing to his table].
Teacher: Did you try it on the table?
Emir: Yes.
Teacher: Hmm, I see, you found it by trial and error. What about you, Baha?
Baha: I did the same. I looked at the table to see if it works for all of them and 
thought it would. 

Emir and Baha were able to find a rule that works for all the pairs on the table. The 
semiotic function they formed was between the verbal rule “the number of toothpicks is 3 
times the step number plus 1” and the number pairs of the table. The structure of the figure 
was not part of the configuration of objects at this point. After the group discussion, Arda 
used this rule to find the number of toothpicks for the 100th figure. The students’ work with 
the rule shows evidence of the emergence of correspondence thinking in the whole group 
as they were relating the step number directly to the number of toothpicks in the figure. 
Nevertheless, they were not able to justify their formula other than using the trial-and-error 
strategy. The teacher asked for a justification based on the structure of the figural pattern:

Teacher: Can you guys think of a reason to justify the 3 times plus 1 rule by exam-
ining the shape of the figures as we did in previous tasks?
Arda: It increases by 3 in each figure.
Teacher: The number of toothpicks increases by 3 as the step number increases by 
1, correct. How can we relate the step number to the number of toothpicks?
Baha: For example, in the fourth step, there are 13 toothpicks.
Teacher: Why is that so?
Emir: There are 3 squares.
Arda: Oh, the toothpicks go like Cs, in threes. There are [groups of] 3 toothpicks 
as many times as the step number. [pointing to the fourth figure] Here, there are 4 
Cs plus one more [See Fig. 8 for this idea]. 

Fig. 7  Situation 6: Toothpick 
Squares

Step 1    Step 2             Step 3
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Emir re-explained Arda’s reasoning using the third step as an example. With this 
elaboration, the students were able to defend the rule using the structure of the figural 
pattern, extending the configuration of objects they formed for this pattern.

The above episode was a typical illustration of the students’ work with patterning situ-
ations. The near figures allowed them to experience and manifest recursive and covaria-
tional thinking. Thinking about far figures promoted correspondence thinking in two ways. 
In some situations, they were able to comprehend the structure of the pattern and created 
a rule of the pattern, showing evidence of abstracting, generalizing, and correspondence 
thinking. This comprehension seemed to result from non-ostensive concrete/pictorial rep-
resentations formed by the students. In some other situations, they created a table and 
derived a rule based on the table using the trial-and-error approach. This latter approach 
misses the abstracting process and may not be considered algebraic thinking (Radford, 
2014b). In the current study, the teacher always asked students to examine the structure of 
the pattern to promote students’ algebraic thinking. In each of these two ways, the verbal 
representations helped students organize their thinking and translate their ideas into sym-
bolic representations as Fig. 3 presents.

5  Discussion

In this study, we used the lens of the OSA to examine how a group of first-time formal 
algebra learners used different representations as they engaged in algebraic practices and 
functional thinking. One primary finding is the link between children’s abstraction of the 
concepts studied as an essential process for generalization. The participating students’ 
abstracting processes included identifying two main features of the extensive objects:

1. Noticing the geometric configuration of the figural pattern and the regularity in the 
growth of the pattern.

2. Noticing a relationship between the extensive objects and their order in the sequence.

Generalizing a rule for the pattern was supported by abstracting these features, in line 
with the findings of Radford (2003).

The progression from ostensive concrete, non-ostensive concrete, verbal to sym-
bolic aligned students’ abstracting and generalizing practices. Imagining the far figures, 
sketching a draft of a far figure, and reasoning about the structure of the figural pattern 
facilitated both abstraction and generalization through helping students construct non-
ostensive concrete/pictorial representations (schematic representation). When the stu-
dents described the structure of these non-ostensive representations and signified them 
with a draft sketch, they were able to write their symbolic representations. Verbal rep-
resentations interacted with all representations and preceded symbolic representations. 

Fig. 8  Arda’s reasoning on 
Toothpick Squares pattern

Step 4
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We postulate that the students formed semiotic functions among ostensive, non-osten-
sive, verbal, tabular, and symbolic representations of the figural patterns that they 
worked with, forming a configuration of objects. Aligned with previous research (Font 
et al., 2007; Montiel et al., 2009; Radford, 2014a, b), we found that the more semiotic 
functions formed by the students, the deeper understanding and algebraic thinking they 
developed about the patterns that they examined. The current research highlights the 
significance of verbal representations from a new perspective as we found that they are 
central to the semiotic functions formed by the students. As the students worked with 
different representations and engaged in abstraction and generalization processes, they 
continuously used verbal representations to make sense of the concepts they were learn-
ing. This finding might explain students’ success with verbal representations in previous 
studies (Panasuk, 2010; Wilkie, 2016).

The second finding is that the symbolic representations used by the students showed 
variety. Two students’ practices progressed from level 1 of algebraization to level 3 of 
algebraization (Aké et al., 2013). Operating on symbols using algebraic thinking requires 
students to work with unknown quantities analytically and act on variables represented 
by symbols as mathematical objects (Aké et al., 2013; Radford, 2014b). While two of the 
participants successfully used the symbols, the third student, Emir, had some challenges 
in using the symbolic representations flexibly. Part of his struggle seemed to stem from 
earlier work in arithmetic such as the incorrect use of the equal sign. Students’ miscon-
ceptions in arithmetic influence their performance in algebra (Stacey & MacGregor, 1997; 
Warren, 2003). Emir also failed to show correspondence thinking in his use of symbols in 
earlier situations. He needed more opportunities to form richer semiotic functions among 
different representations in order to develop an institutional form of using symbols. It took 
more time for Emir to abstract and generalize the functional relations but got better as the 
research progressed, showing level 2 of algebraization in some of the situations.

The third main finding is that working with near figures promoted recursive and 
covariational thinking while examining the far figures usually resulted in correspond-
ence thinking. Tables promoted trial-and-error thinking, while thinking about the struc-
ture of the figural patterns promoted analytical thinking. While we think that trial and 
error is an important problem-solving strategy in teaching and learning mathematics 
(Butts, 1985), we propose that teachers scaffold this approach by requiring their students 
to explain the reasons behind the formulas in completing algebraic tasks to promote 
analyticity (Radford, 2014b). In the current study, the participating students examined 
the structure of figural patterns and defended their formulas. It could be interesting to 
study whether examining the structure of numerical growth as given in Fig. 9 promotes 
correspondence thinking as well as abstracting and generalizing.

Fig. 9  A table highlighting the structure of 
the numerical pattern

Step Number Number of Tiles

1 1=1

2 5=1+4

3 9=1+4+4

4 13=1+4+4+4
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6  Implications for the school curriculum and suggestion for future 
research

Drawing on the OSA, this study explored the role of different representations on a group 
of students’ algebraic practices and functional thinking processes as they engaged in 
algebraic situations. The implications of this study for teaching and learning mathemat-
ics are multiple:

– First, teachers should encourage students to connect different representations to each 
other as the more semiotic functions established by the learners, the richer under-
standing they tend to build.

– Second, the abstraction process helped students reach a generalization. Accordingly, 
teachers may ask probing questions such as how near figures are similar to or different 
from each other to help students abstract the features of these terms. Then, visualizing 
the far figures (e.g., imagining and describing the 100th figure, making a sketch of the 
100th figure) may trigger the generalization phase. As most of the figural pattern tasks 
in the current literature miss these scaffolding questions (e.g., Mielicki et  al., 2021; 
El Mouhayar, 2018; Wilkie, 2020), we suggest that teachers include such questions in 
their instruction.

– Third, verbal representations were at the center of interactions among different rep-
resentations. Teachers may use this finding and scaffold students’ use of various 
representations by asking them to explain their thinking in written and spoken lan-
guage. Particularly, verbalizing the features of the extensive objects (their geometric 
configuration and procedures to obtain the next figure) and relating them to their 
order in the sequence were found to be helpful.

– Finally, different representations promoted different types of functional thinking. 
Non-ostensive pictorial representations and ostensive tables seemed to promote cor-
respondence thinking, while ostensive pictorial representations and ostensive/non-
ostensive tables seemed to promote recursive and covariational thinking. To promote 
analyticity, teachers should help students explore the structural relationships in the 
patterns and help them build correspondence thinking in relation to algebraic think-
ing. Students should be encouraged to justify any correspondence relationships that 
they deduce based on different strategies including trial and error.

One of the contributions of this study to mathematics education research is interpreting 
students’ abstracting and generalizing processes using the OSA framework. As the cur-
rent study included introductory lessons to the concepts of growing patterns and variables, 
future research examining students’ abstracting and generalizing processes over a longer 
period may further illuminate the interaction between these key algebraic practices.
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