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Abstract
We use Action-Process-Object-Schema (APOS) theory to study students’ geometric 
understanding of partial derivatives of functions of two variables. This study contrib-
utes to research on the teaching and learning of differential multivariable calculus and its 
didactics. This is an important area due to its multiple applications in science, mathemat-
ics, engineering, and technology (STEM). The study tests a previously proposed model 
of mental constructions students may use to understand partial derivatives through a set 
of activities designed to help students make the conjectured constructions. The model 
is based on the local linearity of differentiable two-variable functions, and the model-
based activities explore the relationship between partial derivatives and tangent plane in 
different representations. We used semi-structured interviews with eleven students whose 
teacher used the three-part cycle—Activities designed with the genetic decomposition; 
collaborative work in small groups and Class discussion; and Exercises for home (ACE)—
as pedagogical strategy. The model-based activity set based on local linearity and the 
ACE strategy helped students construct a geometric understanding of partial derivatives. 
Results led to reconsider and further refine the model. This study also resulted in improv-
ing activity sets and obtaining information on students’ construction of second-order and 
mixed partial derivatives.

Keywords Calculus · Partial derivative · Function of two variables · APOS theory

The notion of change is at the core of understanding what calculus is and its multiple appli-
cations to a wide variety of phenomena in science, engineering, and other fields. Most of 
those phenomena involve multivariable functions, and the study of two-variable functions 
opens the door to the understanding of multivariable functions. Partial derivatives are used 
to measure change and commonly appear in multivariate calculus and differential equa-
tions instruction. Indeed, partial derivatives measure instantaneous rate of change of a 
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two-variable function in the x and y directions and the rate of change in any direction can 
be expressed in terms of them. Further, the best linear approximation to local change in a 
two-variable function is also expressed in terms of partial derivatives. They show up in 
calculus-based optimization problems with more than one variable. They also have promi-
nent applications in economics, as most functions describing economic behavior depend on 
more than one variable. Partial derivatives appear in thermodynamics, in quantum mechan-
ics, as well as in equations from mathematical physics that express certain physical laws 
such as Laplace’s equation ( �
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The concept of partial derivatives is a prerequisite for many later concepts in multivariable 
calculus such as tangent planes and linear approximations, directional derivatives and the 
gradient vector, local and absolute extrema, and Lagrange multipliers (Stewart, 2012). 
Research is needed to help students understand this basic idea in mathematics, modeling, 
and applications.

Our study contributes to the study of change in the calculus of two-variable functions, 
by proposing a model of mental constructions based on the idea of local linearity. This 
facilitates the connection of partial derivatives to other important concepts of two-variable 
functions. Our study shows that the model succeeds in helping students understand the dif-
ferent facets of change in these functions.

1  Literature review

Even though the teaching and learning of one-variable functions and their change have 
been extensively studied (Asiala et  al., 1997; Bingolbali et  al., 2007; Borji & Martínez-
Planell, 2020; Zandieh, 2000), the study of partial derivatives and change in multivariable 
functions has received scant attention (Martínez-Planell & Trigueros, 2021). Change in 
multivariate functions falls under the umbrella of covariational and multivariational rea-
soning (Jones, 2022) where more than two variables relate to each other. In this section, 
we first consider studies related to one-variable functions. Then, we review the literature 
regarding covariational and multivariational reasoning. We end by considering research 
about partial derivatives and the differential multivariable calculus.

1.1  One‑variable functions

One-variable function derivatives are the basis for the study of the differential calculus 
of two-variable functions. It is important to consider these derivatives in the study of 
change in multivariable calculus because partial derivatives are constructed from one-
variable function derivatives and the latter are often at the root of student difficulties 
(Martínez-Planell et al., 2015; Wangberg et al., 2022; Weber, 2012, 2015). Asiala et al. 
(1997) proposed that a one-variable function derivative can be constructed by coordi-
nating an analytical interpretation of derivative as the limit of difference quotients with 
a geometric interpretation as the slope of the tangent line which is the limit of secant 
lines. These authors also mention coordinating contextual interpretations of derivative 
but do not provide any detail. Zandieh (2000) proposed a similar framework but con-
sidered contextual situations in more detail. The framework consisted of a matrix with 
process-object layers of ratio, limit, and function as rows, and the contexts of graphi-
cal (slope), symbolic (difference quotient), verbal (rate), paradigmatic physical (veloc-
ity), and other (contexts) as columns. Regarding the “other contexts” column, Kertil 
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and Gülbagci Dede (2022) reported that prospective secondary school teachers have dif-
ficulties interpreting derivatives as a rate of change in real-life contexts. On the other 
hand, Bingolbali et  al. (2007) found that mechanical engineering students prefer see-
ing derivative as rate of change while mathematics students prefer derivative in its geo-
metric interpretation. Nagle et al. (2013) used a model of 11 conceptualizations of slope 
to compare students’ and instructors’ preferences. They found that instructors tended to 
use geometric (graphical), functional (rate of change), real-world (contextual), and cal-
culus conceptualizations while students referred to procedurally-oriented conceptualiza-
tions like behavior indicators (to determine if increasing or decreasing) and parametric 
coefficients (the m in y = mx + b ). Weber et al. (2012) proposed thinking about a one-
variable function as being made up of “small” line segments (the hypotenuse of right 
triangles moving along a curve) to underscore the interpretation of the derivative func-
tion as the rate of change function. All of this research highlights the importance of the 
graphical and analytic paths of Asiala et al. (1997) while also attending to context, as 
underscored by Zandieh (2000), in studying students’ understanding of the one-variable 
function derivative and in bridging different interpretations.

1.2  Covariational and multivariational reasoning

From a mathematical point of view, covariation refers to a phenomenon in which two 
quantities change simultaneously in a system, and it can be considered in two different 
ways: (1) the coordination of two quantities is such that they are changing indepen-
dently of each other (Confrey & Smith, 1994, 1995; Johnson, 2015) and (2) the reason-
ing about how a quantity changes in response to changes in the other quantity (Carlson 
et al., 2002; Johnson, 2012). Although there are several definitions of covariational rea-
soning in the research literature (Carlson et al., 2002; Jones, 2022), the general feature 
in these definitions is that covariational reasoning requires coordinating the changes 
in two quantities. Different studies have explored how covariational reasoning is man-
ifested in students’ understanding of various topics such as functions (Blanton et  al., 
2015; Carlson et al., 2002; Confrey & Smith, 1994, 1995; Ferrari-Escolá, et al., 2016; 
Stalvey & Vidakovic, 2015), rate of change (Thompson, 1994), and coordinate systems 
(Moore et al., 2013; Paoletti & Moore, 2017).

Research on covariational reasoning has often been restricted to examining two varia-
bles changing in tandem (Jones, 2022) but scientific and mathematical contexts often 
include more than two variables that are related. Jones (2022) built on the construct of 
covariation by considering cases where more than two explicit variables relate to and 
change with one another, in what he termed “multivariation.” Jones (2022) described three 
major types of multivariation: independent multivariation (multiple independent input vari-
ables individually covary with an output variable, but do not necessarily covary with each 
other), dependent multivariation (a change in any one variable produces simultaneous 
changes in all other variables), and nested multivariation (the relationships between varia-
bles as having a function composition structure, such as z(y(x)) . Unlike covariation, 
research on multivariation is relatively new and is not yet theoretically organized. Func-
tions of two variables (e.g., z = f (x, y) ) and its partial derivatives (i.e., �f

�x
 and �f

�y
 ) are exam-

ples of independent multivariation. By examining students’ understanding of partial deriv-
atives of two-variable functions and how they are used to model change in two-variable 
functions, our study contributes to this part of the literature.
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1.3  Partial derivatives and the differential multivariable calculus

The following studies aim to give a comprehensive panorama of the complexities involved in 
learning the differential multivariable calculus. Harel (2021) observed that several multivari-
able calculus textbooks de-emphasize the total differential and treat linearization and approxi-
mation superficially. In the case of functions from Rn to Rm , he argues about the importance of 
linearization to think of the total differential as an approximating linear transformation and uses 
this idea to treat topics like the general chain rule and implicit differentiation. Martínez-Planell 
et al. (2015) used local linearity as a unifying idea to develop and interrelate various differen-
tial calculus concepts of two-variable functions: plane, partial derivative, tangent plane, direc-
tional derivative, and total differential. Their study produced a model of mental constructions 
(genetic decomposition, GD) that needed to be tested. Like Wangberg and Johnson (2013) and 
Wangberg et al. (2022), it also emphasized a geometrical approach to partial derivatives where 
students can imagine the intersection of fundamental planes ( x = c , y = c ) and the surface and 
use their knowledge of the derivative of one-variable functions to examine the resulting curve.

In a different approach, Weber (2012, 2015) used covariational and quantitative thinking 
to discuss the rate of change in space in different directions. His results showed that students 
expected a single rate of change for two-variable functions, further stressing the challenge that 
directional derivatives pose for students. His results also showed students’ tendency for an 
algebraic approach to make sense of rate of change in two-variable functions. Regarding lin-
earization and analogous to the idea of Weber et al. (2012), Tall (1992) explored the local line-
arity of two-variable functions to propose a geometric interpretation of the total differential of 
a function at a point. Our proposal in this study builds upon Tall’s idea to help students think 
of two-variable functions in terms of local linearity, that is, as made up of “small” patches of 
tangent planes that depend on two rates of change (in the x and y directions).

Martínez-Planell et  al. (2017) found that students who used the tangent plane to learn 
directional derivatives could better interpret them graphically and in terms of tangent plane 
information. McGee and Moore-Russo (2015) discussed how students who explicitly consid-
ered the notion of the slope of a line in 3D space evidenced a better understanding of multi-
variable differential calculus than other students. This result was supported by a study using 
the locally linear approach for two-variable functions (Martínez-Planell et al., 2022). Other 
authors (e.g., Thompson et al., 2006, 2012) have reported student difficulty relating physical 
contexts to mathematics, particularly interpreting mixed partial derivatives in physics. Activi-
ties have been designed (Bajracharya et  al., 2019; Thompson et  al., 2012) to help students 
understand the physical meaning of keeping variables fixed, partial derivatives, and graphi-
cally interpreting mixed partial derivatives, mainly in a thermodynamics context. Moreno-
Arotzena et  al. (2020) discussed the importance of the use of different representations and 
conversions between them for gradients of two-variable functions, and Mkhatshwa (2021) 
studied how covariational reasoning can help students interpret quantities representing partial 
derivatives in real-world contexts.

2  Theoretical framework

We use APOS theory (Arnon et  al., 2014) as our framework. In APOS, an Action is a 
transformation of a mathematical object that the individual perceives as external. In par-
ticular, individuals are not able to justify an Action. A collection of Actions may consist of 
the rigid application of an explicitly available or memorized procedure. When an Action 
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is repeated and the individual reflects on its meaning, it might be perceived as internal. In 
this case, we say that the Action has been interiorized into a Process. The internal percep-
tion allows the individual to imagine the transformation, omit steps, and anticipate results 
without explicitly performing the Process. In particular, this allows the individual to gener-
ate dynamical imagery of the Process and to coordinate the Process with other Processes to 
create new ones. Further, as a result of these coordinations, and as discussed in Martínez-
Planell and Trigueros (2019), thinking of a mathematical notion as independent of rep-
resentation is consistent with a Process conception. In relation to covariation, a Process 
conception of function makes the foundation for covariational reasoning (Carlson et  al., 
2002). As an individual’s Process conception becomes more vigorous, he/she can imagine 
quantities of the independent and dependent variables as changing continuously. When the 
individual can perceive the Process as a whole entity and is able to perform Actions on 
this entity, we say that the Process has been encapsulated into an Object. It also may be de-
encapsulated to the Process it came from, as needed in a problem situation. We will not be 
making explicit use of Schemas in this article since it will suffice to use Actions, Processes, 
and Objects to propose a model (genetic decomposition) of how students may construct 
partial derivatives.

The progression from Action to Process and then to Object may appear to an observer 
as a non-linear progression (Arnon et  al., 2014, p. 176). This is because a student may 
work differently when facing different problem situations involving a specific mathematical 
notion. Hence, to determine students’ understanding of partial derivative as Action, Pro-
cess, or Object, one needs to consider their overall tendency in different problem situations 
related to this notion.

3  Genetic decomposition

A genetic decomposition (GD) is a model of how a student may construct a specific math-
ematical notion. It is expressed in terms of APOS structures and mechanisms. A GD need 
not be unique. What is important is that it be supported by data obtained from students. A 
GD serves as a preliminary hypothesis that can be successively refined following experi-
mentation. The GD of the differential multivariable calculus in Martínez-Planell et  al. 
(2017) addressed the topics of plane, partial derivative, tangent plane, total differential, and 
directional derivative. For convenience, we only describe in what follows the portion of 
this GD dealing with partial derivatives.

Given a base point in the graph of a two-variable function and a direction (either x or 
y ), Processes of fundamental plane and function of two variables are coordinated by encap-
sulation of fundamental plane into an Object resulting in a new Process (see Arnon et al., 
2014, p. 24). This Process allows to imagine the intersection of the fundamental plane that 
passes through the given base point and is in the given direction with the graph of the 
function.

The resulting Process is coordinated with a Process of derivative of function of one 
variable to envision the base point and intersection curve in the given fundamental plane 
and the partial derivative of the function at the given point and direction as the limit of 
slopes of secant lines that approach the tangent line to the intersection curve at the point as 
the horizontal change gets smaller. The above mental constructions and coordinations are 
to be made in both analytical and graphical representations with the resulting analytical 
and graphical Processes being coordinated into a Process of partial derivative at a point.
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The need to take a limit permits the encapsulation of the Process of partial derivative at 
a point into the Object partial derivative at a point.

The coordination of a (pre-requisite) two-variable function Process with the Process 
resulting from the de-encapsulation of the partial derivative at a point results in a partial 
derivative as a function Process that allows thinking of the evaluation of a partial derivative 
at different points as taking points (a, b) as input and producing numbers fx(a, b) or fy(a, b) 
as outputs.

The partial derivative as a function Process is encapsulated into an Object when Actions 
can be applied to it, for example, to consider higher-order partial derivatives and their 
graphical representation.

4  First research cycle

Cycles of research and refinement are central in APOS theory research methodology and 
can be adopted as a method to steadily improve student understanding and create didactical 
materials to foment conceptual understanding. Each research cycle in APOS, basically com-
prises conjecturing a genetic decomposition, producing and implementing didactic material 
to help students do the conjectured constructions, performing semi-structured interviews, 
and using the results of the interviews to refine the GD and didactical materials. The refined 
GD can then be the start of an ensuing research cycle. Iterations of the research cycle con-
tinue until a genetic decomposition is obtained that reflects very closely the cognition of the 
particular mathematical concept for students and also serves as a guide for the instruction 
of the concept. This emphasizes the applicability and practicality of APOS theory in the 
evolution of didactic materials through the repeated utilization of research cycles and class 
application of the didactical materials (see also, Martínez-Planell & Trigueros, 2019).

Most research on student understanding of different mathematical notions that uti-
lizes APOS theory as a framework has been limited to doing single research cycles. The 
current study shows how a second APOS research cycle may be used to successively 
improve students’ understanding of partial derivatives. The present study builds upon a 
first research cycle on students’ understanding of the differential calculus of two-variable 
functions reported by Martínez-Planell et al. (2015, 2017) and Trigueros et al. (2018). The 
first research cycle proposed a preliminary-genetic decomposition (GD) for the differential 
calculus. Using the preliminary-GD as a guide, they (Martínez-Planell et al., 2015, 2017; 
Trigueros et al., 2018) developed activities to help students reflect and perform the con-
jectured constructions. In the first research cycle, instruction used the ACE pedagogical 
strategy, consisting of students’ collaborative work in small groups on the activities with 
the teacher as a guide (A), whole-class discussion with the teacher (C), and homework 
exercises with new opportunities for reflection on the concepts involved in the lesson (E). 
ACE is commonly used in APOS theory to foment the reflection needed for the construc-
tions proposed in a GD (for further details on ACE see Arnon et al., 2014). At the end of 
the course, in the first research cycle, semi-structured interviews were performed to test the 
preliminary-GD. It was found that students needed help to generalize the notion of slope to 
3D space; some students, for example, still considered that “vertical” is represented by y 
and the slope as Δy

Δx
 . Also, the preliminary-GD had posited that a partial derivative Process 

was constructed through the coordination of a fundamental plane (planes of the form x = c , 
y = c ) Process and a derivative of one-variable function Process. However, it was observed 
that some students needed help to construct fundamental plane as a Process (to relate 
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graphical and algebraic representations and place the plane in its corresponding place in 
space). Others had yet to construct a Process of derivative of one-variable function. Thus, 
students showed difficulties understanding partial derivatives and their graphical interpre-
tation (Martínez-Planell et  al., 2015, 2017; Trigueros et  al., 2018). These results led to 
changes in both the preliminary-GD and the activities. In this article, we test the revised 
GD (shown above) and corresponding activity sets (described further ahead) in a second 
research cycle and posed the following research questions: What constructions related to 
partial derivatives described in the GD are evidenced by students after going through a 
second research cycle of this notion? Based on this evidence, what further refinement does 
the GD need?

5  Methodology

This is an intervention study. While the term intervention is used with various meanings, 
our definition of it in this article is like its standard use in medicine where an interven-
tion refers to “action taken to improve a situation” (Stevenson & Lindberg, 2012). Hence, 
action is the implementation of student activities with ACE in our second research cycle 
and situation is students’ understanding of partial derivatives. To study students’ construc-
tion of partial derivative after they finished a multivariable course, a sample of 11 students 
(out of nineteen students) enrolled in an electrical engineering program of a university in 
Iran was selected from a multivariable calculus course. The course emphasized the con-
struction of two-variable functions according to the GD described previously. The teacher 
was the first author of this article. He used the ACE cycle in each of the two 2-h online 
sessions per week to introduce the course topics. Students worked collaboratively online 
in groups of three or four on activities (see Table 1) designed with the revised-GD result-
ing from the first research cycle of Martínez-Planell et  al. (2017). Students could com-
municate with their group members during class using the online platform. Each group 
had to turn in their collective work to be graded. Afterward, the teacher conducted a whole 
group discussion. To open a discussion, the instructor asked one member of each group to 
share the final answer of their group and explain it to the entire class. This gave students 
more opportunities to reflect on their work and allowed the teacher to underline important 
aspects of the topic. Homework consisted of work on the remaining activities from the set 
and exercises selected from the textbook (Stewart, 2012).

Classes were organized in online software, which allows instructors and students to 
share images, voice, photos, and files. The instructor shared his laptop screen, face, and 
whiteboard. Students’ faces or voices were opened to talk and participate in class and 
online activities whenever needed. Students could take photos of their work and share them 
with the instructor and other students.

The teacher selected eleven students (out of nineteen students in the course) to be inter-
viewed at the end of the course. The sample consisted of three above-average, five average, 
and three below-average students, according to their performance in the course, in order to 
obtain a balanced distribution and to enable researchers to observe a wide range of student 
responses. These students participated in two 1-h semi-structured interviews, conducted in 
person, shortly after the semester’s end.

As mentioned earlier, the GD resulting from the first research cycle was used to design 
activities in the ACE cycle and interview instruments. Questions for the first interview 
were the same as those of the first research cycle (Martínez-Planell et  al., 2015). The 
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second interview dealt with topics not covered in the first cycle interview such as higher-
order and mixed partials, and gradient vector. Questions from both interviews directly deal-
ing with partial derivatives are included in Table 2. The interview instruments addressed 
other topics of the differential calculus, but we will restrict attention to those concerning 
the construction of partial derivative.

Questions I-3a, I-4, and II-7a intend to find out if students can think of partial deriva-
tive independently of representation, which would be consistent with a Process concep-
tion (Martínez-Planell & Trigueros, 2019): in question I-3a, the information is given by a 
graphical representation; in I-4 by a tabular representation; and in II-7a by a contour dia-
gram representation of a tangent plane. Also, the GD proposes the construction of a partial 
derivative Process as coordination of Processes constructed using graphical and analytical 

Table 1  Brief description of  activitiesa

Activityb Brief description

1

Three-dimensional cartesian space, fundamental planes, and sections. This activity 

aimed to help students construct fundamental planes (of the form x c , y c ) as 

Objects that could be acted upon when constructing partial derivatives. 

6

Slope in a plane. Because the genetic decomposition is based on the idea of local 

linearity, the initial activities dealing with the differential calculus strive to help 

students construct the notion of slopes in the and directions in a plane. The 

activity starts by having students review the geometric interpretation of slopes in two 

dimensions. Then the activity considers slopes on a plane, in different 

representations (graphical, tabular, contour diagram, symbolic).

7

Vertical change and the equation of a plane. The locally linear approach to the 

differential calculus is based on the notion of “vertical change on a plane” (below 

figure), which in turn depends on slopes in the and directions. This activity helps 

construct the notion in different representations.

Vertical change on a plane

8

Partial derivatives and tangent planes. Given a function algebraically and 

graphically, students are asked for slope of the tangent line at a point, slope of secant 

lines, to draw them, and comment on the relation. Students relate partial derivatives 

with tangent planes given in different representations.
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representation. Question I-3a can provide information on the graphical construction and 
question I-4 can give information on students’ thinking of a partial derivative at a point as a 
limit of difference quotients. Questions II-1, II-2, and II-3 deal with higher-order and mixed 
partial derivatives, which were not included in the activity sets used by students; they were 
included to obtain information about the construction of an Object of partial derivative at a 
point and a Process of partial derivative as a function. They may allow determining if stu-
dents can generate dynamical imagery of partial derivative as a function (consistent with 
a Process conception) and do Actions on an encapsulated Process of partial derivative at a 
point (consistent with an Object conception).

Interviews were audio-recorded in Farsi, transcribed, translated into English, and the 
written work of each of the eleven students in each of the six questions was analyzed 

Table 1  (continued)

9

The total differential and the tangent plane. Makes use of partial derivatives, always 

relating back to vertical change on a plane and the tangent plane (figure).

Vertical change on the tangent plane and the total differential

10

Directional derivative and tangent plane. Makes use of partial derivatives, always 

relating back to vertical change on a plane and the tangent plane (figure).

a For the full access to the activities, see https:// drive. google. com/ file/d/ 1THNw 5JNI8 QoJwS EAQUh YtB0u 
KYzvt GAF/ view? usp= shari ng
b Activities 2–5 are not included because they do not deal directly with partial derivatives

https://drive.google.com/file/d/1THNw5JNI8QoJwSEAQUhYtB0uKYzvtGAF/view?usp=sharing
https://drive.google.com/file/d/1THNw5JNI8QoJwSEAQUhYtB0uKYzvtGAF/view?usp=sharing
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Table 2  Interview questions directly dealing with partial derivatives
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independently by each of the three researchers using APOS-based codes. The codes, their 
definition, examples, and patterns are included as supplementary material. After finishing 
the individual analysis of all students, we considered the type of mental construction pri-
marily evidenced by each student when solving the different problems dealing with partial 
derivatives. Students’ conceptions were classified as Action, Process, or Object. Then, the 
coded data were examined for patterns. Finally, the results of the entire analysis were dis-
cussed, reanalyzed, and negotiated by the researchers until a consensus (including codes, 
classification, and patterns) was reached.

6  Results

After completing the data analysis, we found that three students showed evidence of con-
structing an Object conception of partial derivatives, one student showed the construc-
tion of a Process conception, and the other seven students exhibited an Action conception. 
We will exemplify differences in students’ partial derivative constructions by considering 
the cases of two students (pseudonyms: Sepehr and Mahsa) that clarify what we mean by 
an Object, Process, or Action conception of partial derivative. These examples illustrate 
responses from other students who showed evidence that could be considered as having the 
same type of constructions.

6.1  Object conception

Sepehr was the fourth best in the class in terms of his grades; the instructor considered him 
an above-average student. Questions I-3a, I-4, and II-7a asked about partial derivatives in 
graphical, tabular, and contour diagram representations. In question I-3a, Sepehr was given 
a graph and was asked about the sign of the partial derivatives at a point:

Sepehr: The slope of the tangent line to the graph f  at the point (3.5, 0) in the y direction 
is like this line (Fig. 1) and has a positive slope so the sign of fy(3.5, 0) is positive. The 
tangent line at this point in the x direction is a decreasing line, and its slope is negative 
therefore the sign of fx(3.5, 0) is negative.

Question I-4 asked for a partial derivative, fy(1, 2) , of a function given by a table.

Sepehr: I need to find the changes in f  over the changes in y near to y = 2 when x is 
fixed at x = 1 . We have 10−6

2−1
 and also 10.06−10

2.01−2
 … the second one is a better approximation 

because the changes in y from 2 to 2.01 is so small.

Sepehr’s responses suggest that he could think of partial derivative as independent of 
representation; this is consistent with a Process conception. By choosing to use y value of 
2.01 rather than 1 (“the changes in y from 2 to 2.01 is so small”), Sepehr shows awareness 
of a partial derivative being the result of a limiting process. It also suggests the possibility 
that Sepehr can generate the needed dynamical imagery of partial derivative at a point to 
think of partial derivative as a limit. So, Sepehr might have constructed an analytical Pro-
cess, as conjectured in the GD. Next, question II-7a asked to compute fx(0, 3) , given a con-
tour diagram of the tangent plane to the function at (0, 3) (Fig. 2). Answering this question 
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requires considering that the tangent line in the x direction at (0, 3) is part of the tangent 
plane and extracting the needed information from the contour diagram representation.

Sepehr: x is 0 and y is 3 and we are on the contour diagram. We can see the changes of 
the z in the figure. fx(0, 3) is the changes in the value of z when x changes and y umm 
does not change.
Interviewer: Okay, find the value of the partial derivative with respect to x at the point 
(0, 3).
Sepehr: If I move from the point (0, 3) to the right side parallel to the x axis and reach 
the line with z = 8 we see z increases 2 units but it’s unknown how much value x 
increases (Fig. 2).
Interviewer: Do you have a solution for it?
Sepehr: This contour diagram is a graph of a plane, and we know on a plane all lines in 
the x direction have the same slope. So, I can move on the x axis and find the slope in 
the x direction. When x changes from 0 to 4, I can see the value of z changes from 4 to 
8 so the slope is Δz

Δx
 and this is equal to 8−4

4−0
 so it’s 2 [Sepehr mistakenly found 8−4

4−0
 equal 

to 2].

So, in questions I-3a, I-4, and II-7a, Sepehr showed to have constructed conversion rela-
tions between different representations, graphical, tabular, and contour diagrams; this is 
consistent with the construction of partial derivatives as a Process. Also consistent with a 
Process conception is Sepehr’s dynamic description of the transformations involved in a 
mathematical notion, as shown in questions II-1, II-2, and II-3. Here, the student demon-
strated the possibility of omitting steps and anticipating results without needing to perform 
the Process explicitly. The internal perception of partial derivative as a Process allows this 

Fig. 1  Sepehr’s work in question 
I-3a

Fig. 2  Sepehr’s work in question 
II-7a
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(Arnon et  al., 2014). These questions also allow finding evidence of Sepehr performing 
Actions on an encapsulated partial derivative at a point Process.

Question II-1 required graphing H(t) =
�f

�x
(t, 0) , on the interval, 2 ≤ t ≤ 4 , for a graphi-

cally given function (Fig. 3).

Sepehr: H(t) is a function of t that represents the slope of the tangent lines at the point 
(t, 0) in the x direction… I draw tangent lines in the x direction on the figure. From (2, 0) 
to (3, 0) their slopes are positive but going to 0 umm because at the point (3, 0) the tan-
gent line in the x direction has a slope of 0 so the curve H(t) is like a decreasing curve 
in the interval 2 ≤ t ≤ 3 and umm H(3, 0) is 0. From (3, 0) to (4, 0) we can see umm the 
tangent lines are decreasing and their slopes go to negative and umm steepest so the 
curve H(t) will be again a decreasing curve from t = 3 to t = 4.

In describing his answer to this question, Sepehr used language that denotes movement, 
as in “their slopes are positive but going to 0.” This evidenced a Process construction; he 
talked about change in a dynamic fashion, and he showed to be able to coordinate mutually 
changing quantities, the changing inclination of tangent lines with the decreasing values of 
slope in the graph of H(t) (“H(t) is like a decreasing curve… the tangent lines are decreas-
ing and their slopes go to negative and umm steepest”). Question II-2 asked to state the 
sign of fxx(3, 0):

Sepehr: I think fxx shows changes in fx in the x direction. Since fx is the slope of the 
tangent line in the x direction so umm fxx is like how slopes change at a small neighbor-
hood of the point (3, 0) … I draw some tangent lines before the point (3, 0) and umm 
some tangent lines after this point in the x direction umm like these (Fig. 4). I can see 
the value of the slope of these lines will be smaller at each step, so fxx at the point (3, 0) 
is negative.

To do this, he examined how fx changes as x increases. Sepehr again showed the con-
struction of a second derivative Process. In his response, Sepehr’s argument justified that 
the second derivative should be negative at a concave down curve. Also, he again gave 
evidence of using dynamical imagery (“the value of the slope of these lines will be smaller 
at each step”) which demonstrates the construction of a Process conception. Further, in this 
problem, he performed Actions on the encapsulated partial derivative Process to discuss 
the derivative of the derivative, which gives evidence of the construction of an Object.

Question II-3 asks for the sign of fyx(3, 0) . Here, Sepehr confused fyx with (fx)y , an 
important distinction in mathematical terms. However, despite this, it is possible to analyze 
his constructions in terms of the GD. In particular, we can determine if Sepehr is able to do 

Fig. 3  Sepehr’s work in question 
II-1
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the Action of deciding the sign of the partial derivative with respect to y , on a previously 
constructed Object of partial derivative with respect to x.

Sepehr: I think fyx is like we first find fx and then compute (fx)y . So, I should compare 
the tangent lines in the x direction when they move in the y direction very close to the 
point (3, 0) (Fig. 5). The tangent line at the point (3, 0) in the x direction is this hori-
zontal line whose slope is 0. If I move a little bit to the positive direction of the y axis 
but I’m still at the plane x = 3 , then the tangent line in the x direction is a line like this 
which is increasing, and its slope is bigger than the slope of the previous tangent line. 
So, the change is positive it means fyx at the point (3, 0) is positive.

When Sepehr said, “I should compare the tangent lines in the x direction when they 
move in the y direction,” he demonstrated to be de-encapsulating an Object of partial deriv-
ative ( fx ) into the Process it came from (computing slopes of tangent lines), in preparation 

Fig. 4  Sepehr’s work in question 
II-2

Fig. 5  Sepehr’s work in question 
II-3
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of letting these tangent lines “move in the y direction” and doing the Action of examining 
the resulting slopes.

Overall, Sepehr was able to justify his solutions, generate dynamical imagery, and inter-
relate different representations of partial derivative. He did this consistently throughout the 
interviews giving evidence that allowed us to conclude that he had constructed at least 
a Process conception of partial derivative. Further, he showed to be able to do Actions 
on constructed Objects to deal with higher-order and mixed partial derivatives. Hence, we 
concluded that Sepehr demonstrated to have constructed an Object conception of partial 
derivative of a two-variable function. The only student with a Process (and not Object) 
conception of partial derivative gave responses similar to those of Sepehr, except on ques-
tions II-2 and II-3, where he did not show evidence of doing Actions on an encapsulated 
Process of partial derivative.

6.2  Action conception

Mahsa was considered an average student by her teacher. She was selected because her 
responses exemplified the constructions showed by students who evidenced an Action con-
ception of partial derivative. In question I.3a, when asked for the signs of some partial 
derivatives given a graph, Mahsa responded:

Mahsa: The point (3.5, 0) is here on the surface [Fig. 6]. In the y direction the surface 
from the point (3.5, 0) is initially going up in the y direction so fy(3.5, 0) is positive. The 
curve at the point (3.5, 0) and in the x direction is going down, it means the slope of the 
curve or the slope of the tangent line is negative, so the sign of fx(3.5, 0) is negative.

Mahsa did Actions to identify the point on the surface and draw the directions of 
change, thus demonstrating she had constructed graphical meaning for partial derivatives. 
When dealing with question I-4:

Mahsa: It’s like the slope in the y direction. We know the slope for all lines of a plane 
in the y direction is the same. So, I can use each of these rows. I fix on x = 0 . When y 

Fig. 6  Mahsa’s work in question 
I-3a
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changes from 1 to 2 then z changes from 5 to 7 [Fig. 7]. So, the slope in the y direction 
is 7−5

2−1
 and we can consider it as an approximation for fy(1, 2).

Interviewer: This table contains the values of a function f  and not a plane.
Mahsa: It doesn’t matter. I remember that I could find the slope in the y direction from 
each row of a table by holding x fixed and umm check the change in z.

Mahsa’s response showed the construction of facts about planes she can remember and 
referred to the slope of the plane in a particular direction as representing the approximation 
for the partial derivative in that direction. Mahsa performed Actions to compute the slope 
in the y direction choosing data from the table. When the interviewer called her attention to 
the difference between the plane and the function, she maintained her response, disregard-
ing that her computation did not involve the base point and the possibility of obtaining a 
better approximation for the partial derivative. In question II-7a, examining student’s pos-
sibilities to interpret partial derivatives when given a contour diagram, Mahsa responded:

Mahsa: It’s the slope in the x direction. So, I need to move from any starting point how-
ever parallel to the x axis. I prefer to start from the point (2, 0) and go in the x direction. 
When x changes from 2 to 4 [Fig. 8] umm then z changes from 6 to 8. So fx is 8−6

4−2
 which 

is 1.

She did the Actions of choosing a point and reading the change from the contour map 
to find values to calculate the partial derivatives using the slope of lines. Mahsa gives evi-
dence of constructing an analytical path to a partial derivative through Actions.

Mahsa’s responses show the construction of partial derivatives on each representation 
in terms of Actions to describe and compute the slope of the tangent plane in the given 
direction. But she did not always take the base point into account when equating the slopes 
of the plane to the partial derivative at the point. Although mentioning their approximation 
role, in practice, Mahsa showed she needed to construct partial derivative at a point as the 
best possible approximation to the computation of the limit involved in the definition of 
one-variable function derivative. Question II-1 asked to graph H(t) =

�f

�x
(t, 0) , given the 

graph of f :

Mahsa: I need to draw H respect to t . H is derivative in the x direction from the point 
(2, 0) to (4, 0) . From t = 2 to t = 3 this curve is increasing.
Interviewer: What do you mean by this curve?
Mahsa: I mean the curve which is the intersection of the plane y = 0 with the surface f .
Interviewer: Okay. Draw H.

Fig. 7  Mahsa’s work in question I-4   
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Mahsa: So, from t = 2 to t = 3 the graph of H is positive umm it’s like this [Fig. 9]. In 
the interval t = 3 to t = 4 the intersection curve is decreasing so slopes are negative and 
it means the values of H are negative so H is below the horizontal axis t umm it’s like 
this.

Mahsa gives evidence of recognizing the intersection curve of the fundamental plane 
and the surface. She identifies, with ease, where the curve is increasing or decreasing. She 
also assigns a sign to the derivative and draws a graph for the behavior of the derivative as 
two independent segments. Mahsa focused just on the sign of the derivative, so she did the 
Action of drawing segments corresponding to those signs showing she had not constructed 
the Process of “following” or “imagining” the variation of a continuous curve.

Regarding question II-2, Mahsa only commented about the sign of the second deriva-
tive being negative, “Because the concavity is negative, I mean it’s downward.” Her 

Fig. 8  Mahsa’s work in question II-7a

Fig. 9  Mahsa’s work in question II-1
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response does not give enough information to confirm the use of dynamical imagery in 
contrast to just considering the overall form of the curve and perhaps applying a memo-
rized fact. In question II-3:

Mahsa: The derivative respect to y is umm for example tangent lines parallel with the y 
axis like these lines I mean in the y direction. This one L1 is decreasing if I consider its 
slope −2 umm the next line which is L2 is increasing in the y direction and its slope is 
for example, 3 [Fig. 10].
Interviewer: How did you find −2 or 3?
Mahsa: They are not exact values I only approximate to compare the changes of slopes 
when I move from left to right in the x axis. From −2 to 3 the change is 5 and is positive 
so the sign of fyx(3, 0) is positive.

Mahsa was able to consider the change in the y direction by approximating the slopes 
of two lines. She drew them in a neighborhood of the point (3, 0) . As there is no clear 
way to calculate the slope, Mahsa focused on the sign of the lines and assigned a num-
ber to the slope. As in previous questions she showed being able to work in a graphi-
cal context by doing Actions congruent with her definition of derivative as a slope. By 
doing an Action on the numbers representing the slope, Mahsa found the sign of the 
change in the x direction to be positive.

Overall, Mahsa’s responses gave evidence of an Action conception of partial deriva-
tives. She used the notion of partial derivatives as the slope of the tangent plane in 
a given direction to perform Actions on different representation of the function, by 
sketching lines and “calculating” their slopes. Mahsa also mentioned approximations, 
but the evidence showed she did not use them when needed. Her reliance on using par-
ticular computations of slope and possibly memorized procedures rather than general 
arguments suggests that Mahsa constructed an Action conception of partial derivative. 
Seven students constructed an Action conception of partial derivative.

Fig. 10  Mahsa’s work in question II-3
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6.3  Refined GD

The results of the analysis of all the data from all students led to further refinement of the 
GD. We observed that students’ main difficulty was related to the construction of an Action 
conception of one-variable function derivative. A Process conception is needed to coordi-
nate with a fundamental plane Process in the construction of partial derivative. To address 
this situation, the following paragraph was added to the GD:

Actions of graphically representing secant lines to the intersection curve at the given 
base point and direction, calculating and symbolizing their slopes, while convert-
ing between different representations of secant line and slope, are interiorized into a 
slope Process where students recognize the slopes in the x and y directions as rates of 
change of the function in the given point and direction.

Also, in keeping with the work of Zandieh (2000), Kertil and Gülbagci Dede (2022), 
and Mkhatshwa (2021), on one-variable function derivative, and the lack of consideration 
of contextual situations in the previous GD, the first paragraph now explicitly refers to rep-
resentations other than the graphical. The refined GD now starts with:

Given a base point (a, b) in a two-variable function in a numerical, graphical, verbal 
or analytical representation and a direction (either x or y ), Processes of fundamental 
plane and function of two variables are coordinated into an intersection curve Pro-
cess where it is possible to imagine the curve resulting from the intersection of the 
fundamental plane that passes through the given base point on the function and that 
is in the given direction in each of the considered representations.

7  Discussion

One important result of this study is that the intervention helped three of the interviewed 
students to construct an Object conception of partial derivatives in this course. Other stud-
ies using APOS theory have reported that this construction is difficult to achieve in a one-
semester course (Arnon et  al., 2014). The designed activities paired with the collabora-
tive work in the classroom made this important achievement possible, suggesting that the 
activities fostered students’ reflection. However, most interviewed students evidenced an 
Action conception of partial derivatives indicating that there are either constructions that 
need to be considered in the refinement of the GD or that there is a need for more activities 
to foster reflection on the necessary constructions.

Our GD of partial derivative does not explicitly address the construction of a slope in 
3D Process, although this can be challenging for students (Moore-Russo et al., 2011). Nev-
ertheless, our results show that using the tangent plane to start the construction of change 
of two-variable functions, as Tall (1992) suggested, helps students construct the 3D notion 
of slope (Martínez-Planell et al., 2022). The explicit consideration of slopes in 3D has been 
argued to improve students’ understanding of derivative in multivariable calculus (McGee 
& Moore-Russo, 2015). Results show that it is possible for students to interiorize the notion 
of slope from Actions of computing slopes of tangent planes and secant lines in given base 
points and x and y directions. In this study, evidence showed that students recognized par-
tial derivatives as slopes of tangent planes and the possibility to approximate them using 
slopes of secant lines, with some students also recognizing the slope of a tangent line as 
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a limit of slopes of secant lines. This also underlines the importance of understanding the 
role of one-variable function derivative in the definition of partial derivatives, as suggested 
by the GD and as reported in other studies (Wangberg et al., 2022; Weber, 2012). Moreo-
ver, all interviewed students demonstrated the construction of the curve resulting from the 
intersection of fundamental plane and two-variable function, as also suggested by the GD.

Another important result of this study is that students showed they could interpret partial 
derivatives in different representations, as suggested by Moreno-Arotzena et al. (2020) and 
Wangberg et al. (2022). We consider that activities used throughout the course contributed 
to this construction and students’ understanding of partial derivatives. In particular, ten of 
the eleven interviewed students demonstrated that they could interpret partial derivatives in 
different representations when addressing the graphical representation in question I-3a and 
the tangent plane contour diagram representation in question II-7a, and seven demonstrated 
that interpretation by using the tabular representation in question I-4. Moreover, students’ 
responses to questions II-1, II-2, and II-3, dealing with higher-order and mixed partial 
derivatives, show how students who evidenced an Action conception of partial derivatives 
were constrained in their geometric interpretation (Thompson et al., 2006, 2012), and the 
rich dynamical imagery and understanding shown by students who demonstrated a Process 
or an Object conception of partial derivative.

In terms of the GD, all students in this cycle showed the coordination of fundamental 
plane and two-variable function Processes and were able to imagine the curve resulting 
from the intersection of the fundamental plane that passes through the given base point on 
the function and that is in the given direction in different representations. Most encapsu-
lated this Process into an Object. Also, students demonstrated the construction of the slope 
in 3D Process and the construction of at least an Action of partial derivative at a point. 
Students who showed the construction of a Process or Object conception of partial deriva-
tives showed all the constructions in the GD. We consider that work with the activities and 
the teaching strategy promoted students’ reflection on the role of variables and slope in 3D 
space and the construction of a graphical understanding of partial derivative. The improved 
understanding of slope and its use in the differential calculus of two-variable functions is 
further supported by Martínez-Planell et al. (2022).

Students need to make sense of the “two-change problem” (Weber, 2015) and 
understand the total differential as a linear approximation to a function in a way that 
can be generalized to a notion of derivative of functions from Rn to Rm (Harel, 2021; 
Weber, 2015). The “locally linear” approach used in this experience, as reflected in the 
GD of Martínez-Planell et al. (2017) and the activity sets tested in the present study, 
contributes to such an understanding.

While analyzing the interviews of students showing an Action conception of partial 
derivatives, we found that most of them did not evidence the coordination of the Pro-
cess related to the intersection curve and the derivative of one-variable function. This is 
related with the possibility of envisioning partial derivatives as the limit of secant lines 
that approach the tangent line to the curve at the given point. This may be due to their dif-
ficulties with the construction of the derivative of a one-variable function described in the 
literature (e.g., Asiala et al., 1997; Zandieh, 2000). So, we decided to include more detail 
about the constructions needed in this respect in the refined GD of partial derivative.

The activity set must be revised according to the refined GD to help more students under-
stand partial derivatives as Processes or Objects. In particular, although our study did not 
include anything dealing with the contextual interpretation of partial derivative, other studies 
(Bingolbali et al., 2007; Kertil & Gülbagci Dede, 2022; Mkhatshwa, 2021) suggest the value 
of explicitly considering those situations in helping students make sense of this concept. We 
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coincide and consider the need to include this type of problem in the revised activity sets to 
diversify the opportunities to reflect on partial derivatives.

8  Conclusion

This study contributes to a better understanding of how students construct the notion of 
partial derivative and underscores the usefulness of the “locally linear” approach to the 
differential calculus of two-variable functions. It shows how research-based activity sets, 
constructed according to a GD together with the pedagogical strategy (ACE cycle), can 
help students construct an understanding of partial derivative as a Process or Object. It 
thus stresses the potential of a GD to inform the design of teaching materials and to guide 
instruction. The refined GD is an important result of the study. Another contribution of this 
study is showing how a succession of research cycles can be used to progressively help stu-
dents enrich their understanding, in this case, of partial derivative.

The study has some limitations. Teaching the course online can be considered as a limi-
tation because the role of the teacher when guiding students’ work through the ACE cycle 
(Trigueros & Oktaç, 2019) was a new experience for all involved. However, this is not 
a problem for this study because one can only expect the ACE pedagogical intervention 
to improve with face-to-face students’ group discussions and whole-course teacher-guided 
interventions. The lack of problem situations investigating students’ understanding of par-
tial derivatives in contextual situations was another limitation. In this regard, the GD was 
refined to consider several representations other than the graphical and the activity set must 
be revised accordingly. Finally, other limitations are the small sample size of the study 
(11 out of 19 students were interviewed) and that all students were enrolled in electrical 
engineering thus results may differ when a richer and larger sample is used. However, the 
purpose of the study is not to generalize but to illustrate how a research-based GD and 
activities can promote students’ understanding of partial derivatives. The other issues can 
be examined in future research.
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