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Abstract
Learning to interpret data in context is an important educational outcome. To assess stu-
dents’ attainment of this outcome, it is necessary to examine the interplay between their 
contextual and statistical reasoning. We describe a research method designed to do so. The 
method draws upon Toulmin’s (1958, 2003) model of argumentation for the first stage of 
qualitative data analysis and the Structure of the Observed Learning Outcome (SOLO) 
(Biggs & Collis, 1991) model for the second stage. Toulmin analyses help identify the jus-
tifications and expressions of uncertainty students provide in their interpretive arguments. 
Subsequent analyses based on the multi-modal conceptualization of SOLO help charac-
terize the quality of student arguments relative to one another. Existing literature and an 
empirical example are drawn upon to explain how the Toulmin and SOLO models can be 
used in tandem to analyze students’ interpretations of contextualized data. We also explain 
how pairing Toulmin and SOLO can address theoretical and practical limitations that arise 
when using just one of the two models on its own.

Keywords  Qualitative research · SOLO taxonomy · Toulmin model · Statistics · 
Argumentation · Context knowledge

In applied statistics, data and context are inextricably linked, as reflected in Cobb and 
Moore’s (1997) maxim that “data are not just numbers, they are numbers with a context” 
(p. 801). Wild and Pfannkuch (1999) noted that during statistical investigations, there 
needs to be “continual shuttling backwards and forwards between thinking in the context 
sphere and the statistical sphere” (p. 228). Knowledge of the contexts in which data were 
generated and statistical knowledge are both needed to construct interpretations. Plausi-
ble interpretations of statistics often rely upon knowledge of the context in which the data 
were generated, just as knowledge of a given context can be gained by examining statistics 
derived from it. Konold and Higgins (2003) characterized this complementary knowledge 
generation process as a “give-and-take conversation” in which context knowledge enhances 
statistical data analysis and data analysis enhances knowledge of context.
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Given the importance of coordinating statistical and contextual knowledge, teaching 
students to do so has become an increasingly prominent instructional goal. Ben-Zvi and 
Aridor-Berger (2016) noted the need for teachers to help students traverse between the data 
and context worlds and understand how to integrate the two. Similarly, Bargagliotti et al. 
(2020) called for students’ interpretations of statistical investigations to “integrate the con-
text and objectives of the investigation to draw conclusions from data and to support these 
conclusions using statistical evidence” (p. 103). A growing number of teaching strategies 
with the potential to help students coordinate statistical and contextual knowledge have 
been developed, implemented, and analyzed (Makar & Ben-Zvi, 2011; Pfannkuch et  al., 
2018). As such teaching strategies emerge, it is useful to have methods that assess the 
extent to which they attain their goals for student learning. Such methods provide informa-
tion that can be used to continuously improve teaching strategies and to compare student 
learning outcomes associated with different curricula.

1 � Purpose and structure of the article

The purpose of this article is to present a method that can be used to assess students’ inter-
pretations of contextualized data. To introduce the method, we begin by describing salient 
cognitive dynamics of interpreting contextualized data. We explain how Toulmin’s (1958, 
2003) argumentation model can be used during the first stage of analysis of students’ inter-
pretations. We then explain how the Structure of the Observed Learning Outcome (SOLO) 
model (Biggs & Collis, 1991) can provide the basis for a second stage of analysis in which 
students’ statistical interpretations are compared against one another. To conclude, limita-
tions and delimitations of our proposed two-stage method are discussed.

2 � Cognitive dynamics of interpreting contextualized data

Students’ interpretations of data provide windows into their reasoning about integrating 
statistical and contextual knowledge. Interpretations are essential components of statistical 
investigations; they present claims about questions related to groups or populations from 
which data are drawn (Bargagliotti et al., 2020). Because interpretations are responses to 
statistical questions, they must be stochastic rather than deterministic in nature; limita-
tions to generalizability and degrees of uncertainty due to sample-to-sample variability, 
missing data, bias, and other statistical and contextual factors need to be acknowledged 
(Bargagliotti et  al., 2020). Providing justifications while acknowledging limitations is a 
complex cognitive task. As Ben-Zvi et al. (2012) put it, doing so requires students to navi-
gate a “middle ground between knowing everything and knowing nothing” (p. 923); pro-
viding justifications without limitations may render an interpretation that is deterministic 
and overly certain in nature, and focusing solely on limitations and uncertainty can lead 
to a relativistic conclusion that no firm knowledge can be derived from a contextualized 
data set. Hence, methods for assessing students’ statistical interpretations need to consider 
students’ abilities to balance justifications of their claims about data against appropriate 
expressions of uncertainty and qualifications. In this section, we consider research on stu-
dents’ justifications as well as ways in which they can acknowledge limitations in qualify-
ing their interpretations.
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2.1 � Students’ justifications of statistical interpretations: evidential and abductive 
reasoning

Evidential reasoning and abductive reasoning (Gil & Ben-Zvi, 2011) are both needed to 
interpret contextualized data. They can be described in the following manner:

Evidential reasoning is the process of arriving at the inference that justifies why 
the data should be regarded as appropriate evidence in support of the inference and 
weighing the strength of the evidence. Abductive reasoning is the process of provid-
ing a contextual or theoretical support for the data being as they are (Gil & Ben-Zvi, 
2011, p. 92).

Evidential and abductive reasoning both contribute to plausible interpretations of con-
textualized data when deployed effectively in conjunction with one another. For example, 
Gil and Ben-Zvi described the case of two students who produced graphs which appeared 
to indicate that sixth-graders had greater long-jump distances than seventh-graders. This 
surprised the two students and contradicted their context-related expectation that the older 
children would be able to jump further. Subsequently, they re-analyzed the original data, and 
they found that there were far fewer girls than boys in the sixth-grade group, which helped 
explain the counter-intuitive statistical result. In this situation, evidential reasoning (using 
data, graphs, and statistics) and abductive reasoning (using context knowledge related to the 
long-jump) were both needed to help students create a plausible interpretation of the data.

Instances of students’ evidential and abductive reasoning complementing one another can 
be found in other studies as well. Langrall et al. (2011) found that students tended to use con-
text-related reasoning to explain patterns they observed in data. For example, some students in 
their research provided the story behind a set of World Cup data by using contextual knowledge 
of penalties that were assessed during games and players whose performances contributed 
heavily to the observed team data. Similarly, Shaughnessy and Pfannkuch (2002) described 
how students’ background knowledge of the Old Faithful geyser helped them explain patterns 
in eruption data and choose optimal representations to justify predictions about when erup-
tions would occur. Makar and Rubin (2009) found that contextual and statistical knowledge 
students gained by gathering and analyzing handspan data from their classmates helped them 
make plausible predictions about handspan data that might be gathered from similar classes. 
In such cases, evidential and abductive reasoning work in tandem to produce richer interpreta-
tions than would be formed by using just one of the two types of reasoning alone.

Although abductive reasoning can help students form and justify interpretations of con-
textualized data, research has also shown that using context knowledge productively can be 
challenging. Students’ context knowledge can, at times, introduce considerations that are 
irrelevant to the statistical question at hand. For example, Langrall et al. (2011) found that 
students’ context knowledge about the World Cup sometimes led to extended discussions 
that did not move the investigation of a group’s statistical question forward. Contextual 
considerations can also divert learners’ attention from statistical concepts a teacher may 
wish to develop. Pfannkuch (2011) described a case in which students’ inventive stories 
about the origins of unusual heights in a data set made it difficult for the teacher to refocus a 
lesson on the statistical ideas of sample, population, sample size, and sampling variability. 
Additionally, students’ inaccurate beliefs about context can sometimes prevent them from 
forming viable interpretations of data. Masnick et al. (2007), for example, found that some 
children’s initial incorrect beliefs about factors influencing pendulum motion remained in 
place even after they had gathered and analyzed data contradictory to the initial beliefs. 
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Collectively, such studies indicate that helping students coordinate evidential and abductive 
reasoning to form plausible statistical interpretations is a non-trivial, yet vital, task.

2.2 � Students’ acknowledgment of limitations of statistical interpretations: 
expressing uncertainty

Plausible interpretations of contextualized data generally cannot be stated in absolute 
terms. Uncertainty due to statistical and contextual factors makes it necessary to qualify 
most claims. As students begin to learn to interpret contextualized data, they can use 
qualitative language to express uncertainty about the claims they make during statistical 
investigations, though doing so can be complicated. Ben-Zvi et  al. (2012) illustrated the 
complexity of helping students find a middle ground between deterministic and relativistic 
statistical claims. Initially, students in their research tended to make absolute statements 
about data they were asked to explore. For example, when asked to compare data on com-
munication preferences of boys and girls, students made claims such as “only the girls like 
to talk by cell phone” and “boys don’t like cell phones at all” (p. 918). Later, when given 
a small set of data, students went to the opposite extreme of believing that nothing could 
be claimed from the data. Eventually, students did start to use the language of uncertainty 
more effectively, as when they proposed investigating the question, “What do girls usually 
like?” (p. 918; introducing “usually” as an appropriate qualifier). However, deterministic 
and relativistic interpretations still emerged at times. Similarly, Henriques and Oliveira 
(2016) noticed that some students expressed too much confidence in how characteristics 
of a sample would generalize to a larger population, while others used appropriate quali-
tative language, such as “probably,” “maybe,” or “tend to be,” to qualify their statistical 
interpretations.

The process of learning to qualify statistical interpretations appropriately has both qual-
itative and quantitative elements. As students use qualitative language to qualify claims, 
it is important for them to recognize that qualitative words can be arranged along a con-
tinuum according to the levels of certainty they convey (Groth et  al., 2020). For exam-
ple, “probably” expresses a greater degree of certainty than “unlikely” and “never.” After 
learning to select words that correspond to levels of certainty appropriate for a given situ-
ation, students can eventually learn to quantify the degree of certainty as well (Bargagli-
otti et al., 2020). As with selecting appropriate qualitative words to qualify interpretations, 
using quantitative qualifiers can also be challenging. Even professionals who use statistics 
in their field at times have trouble doing so. For example, LeMire (2010) argued that much 
of the controversy surrounding null hypothesis statistical testing (NHST) is due to lack of 
acknowledgement of its limitations rather than because of NHST itself. Type I and type 
II errors are among the concepts that can and should be used to qualify formal inferential 
claims produced through NHST, but they are often not deployed effectively. School cur-
ricula must be purposeful in how they develop students’ abilities to qualify statistical inter-
pretations both qualitatively and quantitatively.

3 � Toulmin’s model and students’ interpretations of statistical data

Given the statistics education research we have discussed to this point, theoretical frame-
works that undergird analyses of students’ interpretations of data need to account for 
the justifications students offer and the ways they express limitations and uncertainties. 
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Toulmin’s (1958, 2003) model of argumentation includes these elements, so we draw upon 
it as a theoretical basis for the first stage of the data analysis method presented in this arti-
cle. Using Toulmin’s model to assess students’ statistical reasoning is not unique to our 
work. The model has previously been used to analyze arguments related to both formal 
inference (e.g., LeMire, 2010) and informal inference (e.g., Gil & Ben-Zvi, 2011). We do, 
however, propose a new direction by showing how Toulmin analyses of students’ statistical 
arguments are compatible with the Structure of the Observed Learning Outcome (SOLO) 
model, which is frequently used in statistics education research. Next, we explain the com-
ponents of the Toulmin model and provide an empirical example of its application before 
showing how the analysis can be extended and enhanced with SOLO.

Toulmin’s (1958, 2003) model contains six primary components: data, warrant, claim, 
backing, qualifiers, and rebuttals. Data are facts or evidence that provide the foundation for 
a claim. Data alone, however, provide just one component of a convincing argument. One 
also needs a warrant which links the data and claim. Additionally, strong arguments tend to 
have backing to support the warrant. In mathematics education research, warrant and back-
ing are often referred to collectively as justification (e.g., Chazan et  al., 2012; González 
& Eli, 2017). We adopt this convention for pragmatic reasons, as it eliminates the need to 
parse warrant from backing, which is a well-documented difficulty in applying the Toul-
min model (Warren, 2010). Toulmin’s model, which is not limited to using formal logic 
to map argument structures, is flexible enough to allow for justifications to be evidential 
or abductive in nature. Toulmin’s model is silent, however, about evaluating the quality of 
the justifications offered, leaving that task to domain-specific standards capable of doing so 
(Nussbaum, 2011).

Toulmin’s (1958, 2003) model also includes qualifiers and rebuttals as components of 
arguments. An argument/statistical interpretation becomes more plausible and trustworthy 
as one acknowledges its potential limitations. Qualifiers such as “possibly,” “probably,” 
and “usually” help specify the extent of an interpretive claim’s applicability. Past research 
on students’ use of the language of uncertainty during statistical investigations provides 
several examples of qualifiers, such as “probably,” “maybe,” “tend to be,” “usually,” and 
“majority” (Ben-Zvi et al., 2012; Henriques & Oliviera, 2016). Langrall et al. (2011) found 
that students with context expertise for a given task were more likely to qualify statistical 
claims than those who did not have such expertise. Using qualifiers in everyday arguments 
helps one avoid over-stating a claim; in statistics, qualifiers help express degrees of uncer-
tainty when one communicates an interpretation to others. Rebuttals are counter-arguments 
that acknowledge exceptions to claims. An example of a rebuttal in a statistics classroom 
can be seen in the dialogue that Ben-Zvi et al. (2012) described as students discussed the 
extent to which findings from classroom data about students’ free-time activities might 
apply to larger populations. Some of the students acknowledged that other classrooms 
might yield substantially different results and hence limit the strength of claims that could 
be made. From a Toulmin perspective, such acknowledgements are resonant with rebuttals, 
which identify situations for which one’s overarching interpretive claim about data may not 
hold.

To further illustrate the application of Toulmin’s model to the analysis of students’ sta-
tistical interpretations, we use responses gathered to the task shown in Fig.  1, which is 
from a text on using statistical reasoning in sports contexts (Tabor & Franklin, 2019). We 
asked 11 physical education majors to write responses to it as part of a pilot study for a 
larger project. They ranged from 19 to 22 years of age, and according to university records, 
10 were male and 1 was female. We use this task as an example because it allowed the 
respondents to bring context expertise (Langrall et al., 2011; Mooney, 2002) related to their 
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academic major to bear both to justify and to qualify their interpretations. We had them 
complete the task in one of their physical education classes rather than in a mathematics or 
statistics class, conjecturing that this would further encourage the use of context expertise. 
Respondents had not formally studied argumentation structures. Although the task incor-
porates boxplots, which are among the most difficult representations to interpret (Bakker 
et al., 2004; Edwards et al., 2017), boxplots were included in the respondents’ pre-univer-
sity curricula (Common Core State Standards Initiative, 2010), and four of them encoun-
tered boxplots again during an introductory university-level statistics course. The partici-
pants’ backgrounds and the structure of the Fig. 1 task allowed us to observe the expression 
of both evidentiary and abductive justifications as well as limitations to arguments.

Next, we discuss one of the more complex responses we received to the Fig. 1 task to 
illustrate how multiple Toulmin components can be contained in a given student interpreta-
tion. Participant S7’s response, with our Toulmin-based annotations included, was:

Point guards average the least rebounds but have a bigger range than shooting guards. 
{Some point guards have more rebounds than power and small forwards}. Centers 
average the most [because that is usually what they’re there for]. Small forwards 
average less than power forwards but have a bigger range.

In the above excerpt, we considered the main overarching claim to be about how 
positions ranked in relation to one another in terms of number of rebounds (the phrase 
“centers average the most” is rendered in bold print above to summarize this claim). 
Evidential (single underline above) and abductive justifications (text enclosed in square 
brackets) were both included. In the evidential realm, averages were mentioned in sup-
port of the ranking given, though S7 was not specific about the type of average (it is not 
clear if S7 considered the median to be a type of average, as in some statistics texts, or 
misinterpreted the vertical lines in the boxes to indicate means rather than medians). S7 
used abductive reasoning to explain patterns in the data, as reflected in the observation 

Fig. 1   Basketball task (Tabor & Franklin, 2019, p. 255). From Statistical Reasoning in Sports 2e by Josh 
Tabor and Christine Franklin. Copyright W.H. Freeman 2019. All rights reserved. Used by permission of 
the publisher Macmillan Learning
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that it is usually the center’s responsibility to rebound (text enclosed in square brackets 
above). S7 cited some unusual data points in order to acknowledge exceptions to the over-
arching claim, observing that some point guards have more rebounds than power and small 
forwards. Acknowledging exceptions to a claim is indicative of a rebuttal (text enclosed in 
curly brackets above). S7 introduced the qualifier “usually” (italic print above) to acknowl-
edge that rebounding may, at some times, not be the center’s responsibility. S7 also offered 
another claim about variation in referring to ranges; however, here, we focus on the larger 
overarching claim about how positions tend to rank regarding rebounds. Toulmin analyses 
of arguments are often summarized by using diagrams like the one shown in Fig. 2, which 
summarizes our analysis of S7’s response. The data and overarching claim appear in the 
first row of the diagram, and justifications, rebuttals, and qualifiers appear beneath it.

Diagramming one of the most complex responses first provides a useful baseline for 
analysis of other responses. Each subsequent response can be concisely summarized 
by editing the initial diagram (in this case, Fig.  2), removing and adding elements as 
needed. Examples of responses we received that yielded different diagram configura-
tions are shown in Table  1. In our small data set, only one other response (from S8) 
contained a claim, evidential justification, abductive justification, qualifiers, and rebut-
tals, and hence had a very similar Toulmin diagram. S8’s abductive justification differed 
from S7’s in that S8 cited the heights of centers, rather than their positional responsi-
bilities, to explain their greater numbers of rebounds. One response (from S9) offered 
a claim with evidential and abductive justification but no qualifiers or rebuttals. Three 
responses (S1, S3, and S6) consisted of a claim, abductive justification, and qualifiers. 
Another response (S4) had a claim, evidential justification, and qualifiers. S5 responded 
with contextual considerations and a qualifier, but no clear comparative claim. Some 
responses (S2, S10, S11) were simply claims without explicit justification or qualifica-
tion. Each response can be represented by adding elements to Fig. 2, removing them, or 
editing them. Collaboratively editing a relatively complex diagram to represent other 
such responses from a small initial data set provides an opportunity to build a shared 
understanding of how Toulmin elements should be operationalized for a given task. 
Research teams with large sets of responses to analyze can then use their shared under-
standing to inform independent analyses and then compare their resultant Toulmin dia-
grams afterward.

Fig. 2   Toulmin diagram summary of S7’s response
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4 � SOLO analyses of statistical interpretation argument structures

Although Toulmin analyses provide starting points for characterizing the complexity of 
arguments, they do not provide the final word on the quality of responses in relation to 
one another. The Toulmin model was designed to apply to multiple fields of endeavor, so 
domain-specific standards must also be brought to bear when assessing the relative qual-
ity of arguments (Nussbaum, 2011). In the domain of statistics education, the Structure of 
the Observed Learning Outcome (SOLO) model (Biggs & Collis, 1991) is frequently used 
to assess students’ responses to tasks (Langrall et al., 2017). SOLO has helped research-
ers assess individuals’ responses to tasks involving distributions (Reading & Reid, 2006), 
measures of center (Groth & Bergner, 2006), variation (Watson et al., 2022b), statistical 
investigations (Pfannkuch, 2005), and many other statistical ideas (Jones et  al., 2004). 
SOLO-based studies help teachers and researchers anticipate the levels of response they 
may encounter as students complete academic tasks (Watson, 2006). Having a common 
structure such as SOLO across studies also facilitates the process of synthesizing research 
to produce increasingly comprehensive frameworks to describe statistical thinking (Jones 
et al., 2000; Mooney, 2002). Next, we discuss how Toulmin and SOLO analyses can com-
plement one another in assessing students’ interpretations of contextualized data.

SOLO is a Neo-Piagetian model that consists of five modes of development that are 
similar (but not precisely equivalent) to Piaget’s (1983) stages. The modes Biggs and Col-
lis (1991) posited in describing SOLO were: sensorimotor, ikonic, concrete symbolic, for-
mal, and post-formal. Statistics education researchers using the SOLO model have pre-
dominantly encountered student responses indicative of the ikonic and concrete symbolic 
modes (Groth et al., 2021; Jones et al., 2004). The former mode is characterized primarily 
by intuitive knowledge and mental imagery and the latter by the use of written language 
and symbols (Biggs & Collis, 1991; Pegg, 2014). Watson et al. (2022b) described charac-
teristics of the ikonic and concrete symbolic modes in the context of investigating students’ 
understanding of variation. In one task, students were asked to interpret data they collected 
and plotted about plant growth. Concrete symbolic interpretations drew upon data and sta-
tistics from one or more specific variables that were studied, such as height of the plant, 
treatment, or number of days elapsed. This sort of support for claims is resonant with evi-
dential reasoning. Ikonic mode responses tended to pertain to details about the context of 
the activity, such as recollections and imagery of the actions they had to take in measuring 
and collecting plant growth data. Using such contextual details to explain patterns in data 
is resonant with abductive reasoning.

Pairing abductive ikonic mode reasoning with concrete-symbolic evidential reasoning 
can result in exceptionally rich responses to tasks. The SOLO model emphasizes the poten-
tial value of such multi-modal reasoning. Biggs and Collis (1991) postulated that early 
modes of development are not necessarily replaced by later ones; rather, ideas character-
istic of earlier modes sometimes play supportive roles in solving problems related to later 
modes of development. Biggs and Collis gave an example of how a scientist’s work mod-
eling the structure of organic ring compounds was supported by a personal ikonic mental 
image of six snakes chasing each other. Similarly, Groth et al. (2021) explained how ikonic 
mode thinking tendencies pertaining to problem context, such as visualizing the positions 
of objects in a container, forming images of random generators, and thinking about past 
experiences playing games of chance, can support students’ learning. Although ikonic 
mode thinking and contextual knowledge can at times be distracting and lead students 
astray when interpreting data (Jones et al., 2000; Langrall et al., 2011; Pfannkuch, 2011), it 
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is important to help students learn to coordinate the two effectively. Multi-modal reasoning 
that effectively coordinates evidential and abductive reasoning is necessary in order to do 
the shuttling back and forth between data and context (Wild & Pfannkuch, 1999) required 
of statisticians.

In the small set of responses we gathered for the Fig.  1 task, S7 and S8 coordinated 
evidential and abductive reasoning in productive ways, even though their responses did 
not rise to the level one would expect from professional statisticians. Abductive reason-
ing about contextual aspects such as players’ heights and position responsibilities helped 
explain the data and statistics represented in the boxplots. In these cases, contextual expe-
riences playing and watching the game (accessible through the ikonic mode) supported 
deeper analysis of the data and accompanying representations and statistics (accessible 
through the concrete-symbolic mode). Essentially, knowledge gained from basketball expe-
riences supported the process of “reading behind the data” (Shaughnessy, 2007) to identify 
patterns in data and judge whether they were typical of what one would expect to see in 
larger data sets and those from similar contexts (e.g., claims about centers generally hav-
ing the most rebounds, point guards the least). In Fig. 3, we depict this sort of multi-modal 
functioning as a goal for students’ learning to interpret statistical data. Not all responses 
in our small data set coordinated abductive and evidential reasoning in these ways. Some 
focused solely on contextual factors to justify their responses (e.g., player height, posi-
tion responsibilities), and others relied solely on statistical information (e.g., position of 

Fig. 3   Hypothetical progression toward using multi-modal reasoning to construct interpretations of contex-
tualized data. Descriptions of potential unistructural, multistructural, and relational levels are adapted from 
the Watson et al. (2022a) investigation of multi-modal functioning in statistics and the Pezaro et al. (2014) 
synthesis of the Toulmin and SOLO models. The sample responses that are referenced in connection with 
different levels are shown in Table 1 and Fig. 2
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boxplots relative to one another, averages). Some offered claims without any type of justi-
fication. Figure 3 depicts responses that reflect just one mode of reasoning as being earlier 
steps on a progression toward richer, multi-modal reasoning. The categories in Fig. 3 pro-
vide an initial frame of reference for comparing the types of arguments students produce 
when interpreting statistical data in response to a contextualized task, while emphasizing 
that developing students’ ability to employ multi-modal reasoning when interpreting data 
is an important instructional goal.

The SOLO model also suggests the possibility of organizing responses into finer-
grained levels of sophistication within each of the categories depicted as rectangles in 
Fig. 3. In the SOLO model, modes contain cycles consisting of three levels: unistructural, 
multistructural, and relational (Biggs & Collis, 1991). Many SOLO-based statistics educa-
tion research studies use unistructural-multistructural-relational (UMR) cycles to qualita-
tively analyze students’ responses to statistical tasks and further compare the responses 
to one another in terms of levels of sophistication (Langrall et al., 2017). At the unistruc-
tural level, responses attend to a single aspect of relevance for a given task. Multistructural 
responses contain multiple aspects of relevance, but the aspects are not tied together with a 
unifying coherent explanation. A unifying explanation is apparent in relational responses. 
Watson et al. (2022a) detected UMR cycles in student responses that reflected the ikonic 
mode, the concrete-symbolic mode, and a combination of the two. Such potential to have 
UMR cycles within each mode of reasoning, as well as having UMR cycles in multi-modal 
reasoning, is acknowledged in the rectangles in Fig. 3. Although not explicitly depicted in 
Fig. 3, it should also be noted that there can be multiple UMR cycles within a given mode 
(Pegg, 2014; Watson et al., 1995).

Having students’ interpretations of data represented as Toulmin diagrams is a useful 
way to begin to discern UMR cycles within a set of qualitative student responses. Pezaro 
et al. (2014) demonstrated how the SOLO and Toulmin models could be used in tandem 
for this purpose. Their work was done in the context of studying prospective teachers’ sci-
entific arguments. The Toulmin model was used to map argument structures, and SOLO 
was used to characterize the sophistication of the structures relative to one another. The 
number of Toulmin model elements present in each argument and their degrees of inter-
connectedness were used in order to place responses at appropriate SOLO levels. So, for 
example, unistructural responses might contain just one Toulmin model element, leading to 
claims that were not well-supported. Multistructural and relational responses might contain 
multiple Toulmin elements, but they would be adequately interconnected to form a coher-
ent argument only at the relational level. In sum, Pezaro et al. (2014) assigned SOLO levels 
according to the quantity of relevant Toulmin elements present in an argument and the 
quality of element integration. Integrating Toulmin elements such as qualifiers, rebuttals, 
and justifications can contribute to the coherence of an argument.

Doing a detailed, fine-grained UMR cycle analysis is most plausible when working with 
a large set of student response data (e.g., Watson & Moritz, 1998). In smaller sets of data, 
responses representative of some important UMR levels may not be present. Given the 
small preliminary data set of responses we gathered for the Fig. 1 task, we did not conduct 
a detailed UMR level analysis of the responses we received. However, some of the stu-
dent interpretations for the task did bear resemblance to unistructural, multistructural, and 
relational responses, as noted in Fig. 3. Some responses contained just one element of the 
Toulmin model: a claim about how the distributions compared to one another, and no addi-
tional details to justify or qualify the claim were offered. S11, for example, wrote, “The 
point guard and shooting guard have a lot less rebounds than the other positions.” Such 
responses resemble the unistructural level of SOLO, in which just one element of relevance 
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to the given task is offered (in S11’s case, a claim). S5’s response offered a relevant abduc-
tive consideration and qualifier, but it did not include a clear claim. S5 wrote, “My guess is 
that because of positioning on the court that players have better opportunities at those spots 
at times.” The presence of multiple Toulmin elements, but absence of a plausible unify-
ing link between data and claim, is resonant with multistructural reasoning in SOLO. In 
contrast, S7 and S8 (see Table 1) offered claims that were accompanied by relevant justifi-
cations and qualifiers. The justifications and qualifiers enhanced the coherence of the argu-
ments and helped tie their elements together. The presence of multiple relevant elements 
that are woven together to produce a coherent narrative is akin to the relational level in the 
SOLO model. The extent to which these sample responses match UMR levels in SOLO 
could come into sharper relief as researchers compare them against additional responses 
from large qualitative student response data sets. As this is done, researchers might also 
find multiple UMR cycles in multi-modal reasoning. In more advanced UMR cycles, per-
haps respondents would be more precise than S7 and S8 in specifying the statistics and 
contextual details that support their interpretations.

5 � Delimitations and limitations related to pairing Toulmin and SOLO 
to analyze students’ interpretations of statistical data

As researchers consider pairing the Toulmin and SOLO models to analyze students’ inter-
pretations of data in the ways we have described, it is important to consider delimitations 
and limitations of doing so. There are delimitations pertaining to the scope and focus of 
studies that could potentially be carried out with the method, and there are limitations per-
taining to potential weaknesses of studies carried out with this method. Regarding delimi-
tations, we discuss the scope of student tasks to which the method applies, its emphasis 
on learning outcomes, and its cognitive focus. Regarding limitations, we discuss scholarly 
critiques of the SOLO and Toulmin models that pertain to their falsifiability, emphasis on 
abstract knowledge, and ambiguities they introduce during qualitative data analysis.

5.1 � Delimitations: student tasks, learning outcomes, and cognitive focus

Pairing the Toulmin and SOLO models narrows the scope of research that can be done 
in comparison to using just one of the two on its own. SOLO is most suitable for ana-
lyzing students’ responses to open-ended tasks that allow for multiple approaches reflec-
tive of a wide range of reasoning. The Toulmin model is designed specifically to analyze 
argument structures. Hence, the qualitative data analysis strategy we have described has 
somewhat narrow applicability to open-ended tasks that call for arguments. Nonetheless, 
understanding students’ thinking in relation to these types of tasks is a high priority for 
statistics education researchers. There have been consistent calls for statistics instruction to 
include opportunities for data-informed decision-making rather than just mere computation 
of statistics and production of graphs (Bargagliotti et al., 2020; Shaughnessy, 2007). The 
need for intelligent data-informed decision-making was brought into sharp relief by the 
COVID-19 pandemic, as statistical arguments became a common part of public discourse 
(da Silva et al., 2021; Kollosche & Meyerhöfer, 2021; Rubel et al., 2021). By carefully ana-
lyzing the arguments individuals make to themselves and others about the implications of 
data and statistics, we can more clearly define priorities for statistics curricula. Our pairing 
of Toulmin and SOLO is well-suited to this specific type of analysis.
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Another delimitation is that the Toulmin and SOLO pairing is mainly applicable to assess-
ing learning outcomes rather than processes. As the final letter in the SOLO acronym suggests, 
the model assesses outcomes of learning, and the Toulmin model is often used to analyze 
complete structures of arguments offered. In using SOLO, Chick (1998) observed, “the com-
plexity exhibited in the observed outcome can differ from that of the cognitive processes used 
to achieve that outcome” (p. 20). Chick suggested that it is useful to examine the intermediate 
steps students take to produce a response, rather than just the finished response itself, to under-
stand more fully their cognitive processes. In our empirical illustration, for instance, it would 
have been interesting to know how respondents developed certain elements of their contextual 
knowledge of basketball. For example, there are at least two ways to conclude that centers tend 
to have the most rebounds. One might develop an intuition about centers and rebounding after 
playing or watching games; alternatively, one might make conclusions about centers’ rebound-
ing by examining data. The former is more indicative of ikonic mode functioning, and the lat-
ter of concrete symbolic. Given the possibility of multi-modal functioning, a combination of 
the two modes of thinking might also be used. We obtained some information to indicate how 
respondents justified their arguments, but supplementary methods that incorporate observa-
tions, interviews, and other ways to monitor student learning as it develops would be needed to 
help investigate the development of cognitive processes and argument structures.

Our empirical example is like many other studies that use SOLO or Toulmin to focus on 
the outcomes of individuals’ cognitive processes, so the method we propose is not highly 
compatible with studies based on theoretical frameworks that de-emphasize or reject the 
notion of individual cognition. However, it should also be noted that using SOLO and Toul-
min together does not completely prohibit the analysis of arguments that individuals collabo-
ratively construct in a social context. Although our empirical example did not illustrate the 
analysis and comparison of collaboratively constructed arguments, others have used Toulmin 
or SOLO for these purposes. For example, Watson et al. (1995) assessed the SOLO levels of 
statistical analyses conducted by small groups of students. Group-constructed responses were 
assigned SOLO levels, and learning outcomes attained by different groups were compared to 
one another. Similarly, mathematics education researchers have used and adapted the Toulmin 
model to evaluate group-constructed arguments in several instructional contexts (e.g., Chazan 
et al., 2012; González & Eli, 2017). Knipping and Reid (2015) used Toulmin’s model to con-
struct global portraits of argumentation that permitted comparisons between classrooms. In 
statistics education research, it would be useful to compare statistical interpretations con-
structed in classrooms that incorporate various developing pedagogies such as growing sam-
ples (Ben-Zvi et al., 2012), provocative tasks (Madden, 2011), extended contextualized inves-
tigations (Watson et al., 2022b), and different modeling approaches (Pfannkuch et al., 2018). 
Although most studies using SOLO and Toulmin focus on individuals’ responses (as exempli-
fied by our empirical illustration), it is nonetheless plausible to seek ways to combine the two 
models to study group-constructed interpretive arguments as well. Doing so may be of interest 
to researchers investigating the contributions that students with statistical expertise and those 
with context expertise make to collaborative interpretations of statistical data (e.g., Langrall 
et al., 2011).

5.2 � Limitations: falsifiability, analytic ambiguities, and abstract knowledge 
emphasis

Some limitations of the qualitative data analysis method we propose can be traced to 
its theoretical underpinnings. Shaughnessy (2007) summarized some of the scholarly 
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critiques of SOLO, stating, “One of the criticisms leveled against the SOLO model is 
that it is not falsifiable, so the validity of any conclusions reached via a SOLO approach 
cannot be easily challenged” (p. 1001). Shaughnessy also claimed that “the SOLO 
model is based on the assumption that development can be represented in hierarchi-
cal structures” and questioned the warrant for such an assumption. This line of critique 
implies that statistics education researchers have not put sufficient effort into scruti-
nizing the validity of the SOLO model, or that the model itself does not lend itself to 
the possibility of change based on empirical observation. Pairing Toulmin and SOLO 
helps address such concerns by allowing researchers to engage in theory triangulation 
(Denzin, 2009; Schoenfeld, 2008). Conducting Toulmin analyses before SOLO analy-
ses allows for the possibility of finding interpretive arguments that do not fit well into 
modes or levels suggested by SOLO. This, in turn, puts researchers in position to sug-
gest changes to the SOLO model, or, in more extreme cases, reject SOLO altogether in 
favor of a more adequate model to assess the relative quality of responses. Of course, 
theoretical blind spots shared by both theories will remain, but the number of blind 
spots can be reduced by this sort of theoretical cross-validation.

Another limitation of the method we propose relates to the scholarly critique that ana-
lyzing qualitative data with SOLO can be ambiguous and lead to coding disagreements 
among researchers. Chan et al. (2002) provided examples to illustrate this concern. In some 
cases, Chan et al. found that raters categorized a given response at the highest level in a 
SOLO-based rubric, and others categorized it at the lowest level. During UMR analyses, 
raters at times disagreed about what constituted a listing of ideas (i.e., multistructural) as 
opposed to a generalization or integration of ideas (i.e., relational). To resolve such ambi-
guities, researchers need mechanisms for identifying the number of relevant elements in 
a response and assessing the coherence with which the elements are woven together. The 
Toulmin model provides a means for researchers to work toward a common understand-
ing of these aspects of SOLO (Pezaro et al., 2014). Relevant elements can be defined as 
the Toulmin components built into the response (claims, justifications, qualifiers, etc.). A 
response might be considered unistructural if it contains just one of these elements, and 
possibly multistructural if it contains more than one. Relational responses might be con-
ceived of as those in which a claim is both offered and supported with relevant justifica-
tion and qualification. Teams of researchers conducting SOLO analyses can work toward 
common understanding of how to characterize student responses by initially analyzing 
responses collaboratively, as we did for the responses we received to the Fig. 1 task. Initial 
collaborative work can provide a basis for later independent coding, if desired. Of course, 
ambiguities will still arise under such a scenario, but they can be reduced by using Toul-
min model components as a common vocabulary to construct clearer shared definitions of 
essential SOLO aspects.

SOLO has also received scholarly critique for valuing abstract knowledge to such an 
extent that concrete knowledge gained from experiences in everyday contexts is inordinately 
de-emphasized (Kahn, 2015). The use of the phrase “extended abstract” to describe higher-
level student responses in foundational SOLO work (Biggs & Collis, 1982) would seem to 
fuel this critique. Attending to this critique is particularly important in statistics education, 
as both context and mathematical abstractions are needed for coherent interpretations of data 
(Wild & Pfannkuch, 1999). As Cobb and Moore (1997) noted, “In data analysis, context pro-
vides meaning” (p. 803); this contrasts with purely deductive mathematical thinking, where 
“the context is part of the irrelevant detail that must be boiled off over the flame of abstrac-
tion to reveal the previously hidden crystal of pure structure” (p. 803). Efforts to understand 
students’ statistical thinking in context (e.g., Langrall et al., 2011; Pfannkuch, 2011) require 
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frameworks that account for the roles played by both context knowledge and abstract math-
ematical knowledge.

The multi-modal conceptualization of SOLO (e.g., Biggs & Collis, 1991; Watson et al., 
1995; Watson et al., 2022a), developed after initial foundational SOLO work (Biggs & Collis, 
1982), helps address critiques related to over-emphasis of abstract knowledge. According to 
the multi-modal conceptualization, the ikonic mode is not replaced by the concrete-symbolic 
mode; rather, both are acquired by learners so that ikonic mode thinking remains available 
after the concrete-symbolic mode is acquired. So, abductive reasoning developed in the ikonic 
mode (e.g., from playing or watching a sport) can be used in tandem with evidential reasoning 
characteristic of the concrete-symbolic mode. Interpretations of contextualized data are usu-
ally enhanced by drawing upon both types of reasoning. It is necessary, however, to carefully 
assess the quality of reasoning brought to bear by each mode. Abductive reasoning can at 
times lead students astray by introducing elements such as myths, superstitions, and imagina-
tive stories to interpretations of data (Groth et  al., 2021). Evidential reasoning can include 
misconceptions about statistical concepts, or, as in our empirical example, vague statements 
about the specific statistics used to arrive at an interpretation. Although the Toulmin/SOLO 
combination we described is compatible with examining how evidential and abductive rea-
soning work in tandem, it cannot, on its own, detect weaknesses in arguments that stem from 
statistical or contextual considerations. Hence, when using the method we propose, it is nec-
essary for researchers also to draw upon statistical and contextual knowledge related to stu-
dent tasks when analyzing responses to them. Sometimes this will require having those with 
context expertise on research teams work alongside those with statistical expertise, as in our 
case, where one author was from the field of statistics education and the other from physical 
education.

6 � Conclusion

Theory-based methods are essential to the infrastructure for doing research. We have 
described how the methodological infrastructure for statistics education research can be 
enhanced by using the Toulmin model in conjunction with the multi-modal conceptual-
ization of SOLO. This two-stage qualitative data analysis method provides research infra-
structure for addressing the high-priority task of understanding students’ reasoning when 
merging knowledge of statistics and context to interpret contextualized data. The two-
stage method also helps address theoretical and practical limitations that emerge when 
using either the Toulmin or SOLO model on its own. We hope the qualitative data analy-
sis method we have described continues to evolve and develop as researchers examine its 
applicability to assessing students’ interpretations of data from various contexts.
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