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Abstract
A concept map is a visualisation of a group of related concepts with their relationships 
identified by directed arrows, which can be viewed as an externalisation of a schema 
encoded in a learner’s long-term memory. Concept maps have become popular learning 
tools in various educational settings. However, the existing research has not fully explored 
the effectiveness of concept mapping as a learning tool nor analysed its utility as an assess-
ment tool in mathematics. This study reports on the implementation and evaluation of a 
novel assessment, concept mapping, in a university mathematics course (N = 219). We 
investigated relationships between concept mapping performance and two major outcome 
variables: academic achievement and assessment self-efficacy (a two-factor measure com-
prising Comprehension and Execution and Emotional Regulation). Hierarchical multiple 
regression showed that concept mapping performance explains a statistically significant 
amount of variance in both the final exam scores and the Emotional Regulation factor of 
assessment self-efficacy after accounting for other conventional coursework assessments. 
The explained variance in the final exam suggests that concept mapping used as an assess-
ment tool can detect and evaluate learners’ distinct capabilities that are not discerned by 
conventional assessments. Hence, concept mapping’s potential to assess conceptual under-
standing warrants further investigations. Moreover, the association with the emotional 
regulation efficacy measure suggests that concept mapping as a learning activity involves 
more positivity about the ability to succeed in facing challenges than a typical assignment. 
This potentially indicates more perseverance and effortful learning while actively engaged 
in meaning-making and the type of relational reasoning elicited by concept mapping.
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1 Introduction

Concept maps are becoming a popular educational tool used by teachers and learners 
across many disciplinary areas. A concept map can be broadly defined as a node-link dia-
gram in which each node represents a concept, and each link represents the relationship 
between the two concepts it connects, with labels on the lines to specify the relationships 
(Gurlitt & Renkl, 2010; Schroeder et al., 2018). Diagrams resembling concept maps have 
been used by philosophers and logicians for many centuries (Nesbit & Adesope, 2013), but 
the term “concept map” and the idea to use it as an educational tool originated with Joseph 
Novak and his colleagues in the 1970s (Novak, 1990). The main assumption made by the 
advocates was that constructing concept maps is an effective way to promote meaningful 
learning. The key feature of a high-quality concept map is a clear hierarchical representa-
tion of concepts arranged with more general concepts placed higher on the map and linked 
to more specific concepts placed lower on the map (Novak & Cañas, 2008). Novak and col-
leagues have further recommended that effective concept maps should include horizontal 
cross-links to elaborate on the relationships other than generality/specificity. Figure 1 illus-
trates three different categories of concept maps for “Flowers”, according to the classifica-
tion of structural quality formulated by Kinchin et al. (2000). The first type is “spoke” (A 
in Fig. 1), where the main concept is placed at the centre, and the only connections found 
in the map are between each derived concept and the central concept, resembling the shape 
of a spoke. The second type is “chain” (B in Fig. 1), which has a linear structure, develop-
ing only a single strand of a specific aspect of the main concept. Both “spoke” and “chain” 
are not considered good examples of effective concept mapping. The third type, “net” (C 
in Fig. 1), is regarded as the best of the three because, in addition to a hierarchy depicting 
more specific concepts of each strand from the central concept downwards, it also reveals 
cross-link connections between the concepts developed in different strands.

Fig. 1  Structural types of concept maps, adapted from Kinchin et al. (2000)
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Educators can use concept mapping in two major ways. First, an expert can devise 
a concept map as a learning tool to be provided as a guide for learners to study. Alter-
natively, students can be tasked to create a map by themselves. Supporting the original 
premise of early proponents, the extant research shows that concept mapping activity 
has a much greater impact in the latter setting, particularly at a postsecondary level 
(Schroeder et al., 2018). This is likely to be due to the meaningful engagement required 
from the mapper when creating their concept map. This action involves the so-called 
higher-order learning activities such as organising and synthesising. As a result of 
engaging in such activities, the concept mapping process is believed to enable high-
quality learning (Nesbit & Adesope, 2006; O’Day & Karpicke, 2020; Schroeder et al., 
2018). However, no integrative cognitive theory has yet been employed to explain the 
processes by which students learn with concept maps (Gurlitt & Renkl, 2010; Nesbit & 
Adesope, 2006, 2013).

Despite the lack of theory, many studies have been published demonstrating promis-
ing results about the concept mapping utility in educational settings. A recent meta-
analytic study showed that learning with concept maps produced a moderate, statis-
tically significant effect (g = 0.58, p < .001) compared to other conventional forms 
of studying in a synthesis of 142 studies (Schroeder et al., 2018). Of the 142 studies 
included in the meta-analysis (Schroeder et  al., 2018), 118 were classified as STEM. 
Most investigated the use of concept mapping in learning natural sciences: biology, 
physics, and chemistry. At the tertiary level, three studies investigated concept map-
ping as a learning tool in statistics courses (Chiou, 2009; Lambiotte et al., 1993; Sas, 
2008). However, none of the studies included in the meta-analysis considered concept 
mapping in the tertiary mathematics context.

A small corpus of qualitative case studies exists in the mathematics education lit-
erature, which illustrates various implementations and suggests the potential viabil-
ity of concept mapping in mathematics classrooms (Afamasaga-Fuata, 2009; Baroody 
& Bartels, 2000; Gallenstein, 2011; Ryve, 2004; Wilcox & Sahloff, 1998; Williams, 
1998). There is evidence that examples of concept mapping are used in teacher train-
ing in the UK, USA and Australia (Afamasaga-Fuata, 2009; Ollerton & Watson, 2001; 
Prestage & Perks, 2013; Schmittau, 2004), although such use may not be fully reported 
in research journals. Some work has been done to describe the training needed to 
enable students to construct concept maps in a Grade-8 Chinese classroom (Jin & 
Wong, 2010) and unpack the nature of the conceptual understanding held by this group 
through the use of concept maps (Jin & Wong, 2015, 2023).

In summary, it appears that, specifically for mathematics, the existing research has 
not fully explored the effectiveness of concept mapping as a learning tool nor ana-
lysed its utility as an assessment tool. The present study attempts to make progress 
by reporting on incorporating concept mapping into a university mathematics course 
as a weekly task. We employ an exploratory study methodology with two aims: (1) 
to analyse the relationship between student concept mapping performance and student 
performance on the final exam and (2) to investigate the relationship between concept 
mapping performance and a fundamental psychometric construct linking cognitive and 
affective domains — learner self-efficacy. Before introducing the study, we first outline 
theoretical justifications in support of concept mapping as a learning and assessment 
tool based on the educational psychology and mathematics education perspectives and 
briefly overview the existing literature on concept maps and self-efficacy.
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1.1  Theoretical and empirical foundations

1.1.1  Concept mapping as an effective learning strategy

Our understanding of the mechanisms involved in learning from a cognitive perspective 
has advanced substantially over the last five decades by employing mathematical model-
ling and experiential testing of those models (Atkinson & Shiffrin, 1968). Simplistically, 
a modal model of Human Cognitive Architecture could be used to illustrate the current 
research state relevant to our context (Sweller, 2008; Sweller et al., 2019). Figure 2, modi-
fied from Inglis and Mejía-Ramos (2021), illustrates the three main components of human 
cognitive architecture and their interactions (Atkinson & Shiffrin, 1968; Clark & Paivio, 
1991; Fiorella & Mayer, 2015; Mayer & Moreno, 2003). The first component, sensory 
memory, allows for the incoming sensory information (such as what we see, hear, touch, 
smell, etc.) to be stored long enough for the selected information to be transferred to work-
ing memory (second component). Even after the stimuli have ceased, impressions of sen-
sory information could be retained in sensory memory for short periods of time, provided 
they are selected for further processing in the working memory by the mechanism of atten-
tion (Dehaene, 2020).

Working memory represents the domain where all conscious thinking happens — it rep-
resents a state of awareness while processing information. Crucially, working memory has 
two limitations: first, the duration for which the information can be stored there is very 

Fig. 2   A modal model of human cognitive architecture (modified from Inglis and Mejía-Ramos (2021))
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short; almost all of the information is lost after 20 s without rehearsal (Peterson & Peter-
son, 1959; Sweller, 2021). Second, working memory is extremely limited in capacity. It has 
been known since the mid-1950s that working memory can only hold about seven items of 
information (plus or minus two) (Miller, 1956). However, only about three to four items 
of information can be processed simultaneously while mentally combining, comparing, 
or manipulating the items somehow (Cowan, 2001). As an example, on average, we can 
remember about seven random digits, but if asked to reorder them from, say, highest to 
lowest, the successful completion of the task would be challenging unless the number of 
digits is reduced.

The process of learning happens through working memory. There are two ways infor-
mation can enter working memory. By focusing attention on certain incoming sensory 
information, one might consciously process a stimulus from sensory memory. The infor-
mation can also come from the third memory system, long-term memory. Long-term mem-
ory is a central component in human cognitive architecture; it represents a repository of 
an enormous network of complex units of closely linked snippets of information, called 
schemas. We now know that our sense of self comes from that vast amount of informa-
tion stored in long-term memory (Sweller, 2021). It is well-evidenced that the main reason 
experts outperform novices is because of the superior quality of their schemas that organise 
a sizable body of knowledge and index it by a large number of patterns that, on recogni-
tion, guide the expert in a fraction of a second to the relevant parts (Chi et al., 1981; Erics-
son & Lehmann, 1996; Larkin et al., 1980; Sweller et al., 1998). These schemas constitute 
long-term memory and, when required, are retrieved and integrated into working memory 
(Chase & Simon, 1973). Long-term memory appears to have no practical capacity limits 
and, thus, could be used to overcome the temporal limitations of working memory. If you 
have stored a schema in long-term memory, you can repeatedly reintegrate it into working 
memory, transcending the 20-second limit. Furthermore, long-term memory also functions 
as a bypass for dealing with the capacity limits of working memory. Suppose snippets of 
information are organised into a coherent schema and stored in long-term memory. In that 
case, the whole schema can be brought into working memory as one item of information to 
be manipulated and integrated with other information units.

Since establishing the central role of long-term memory, educational psychologists and 
neuroscientists have devoted a great deal of attention to understanding how we learn most 
effectively. It is well understood that in educational contexts, learning is not just an addi-
tive process of storing new snippets of information in memory, as in a computer (Fiorella 
& Mayer, 2015). Rather, learning depends on two major factors: (1) what is presented and 
how and (2) the cognitive processing that the learner is actively engaged in during learn-
ing. Thus, learning is viewed as a generative activity. This conception of learning is a natu-
ral theoretical advance built on the coalescence of the cognitive revolution and construc-
tivist ideas about the importance of meaning-making while learning. This well-evidenced 
theory envisions effective learning to comprise three stages: (1) learners actively select 
the relevant aspects of incoming information by paying attention, (2) which is followed 
by organising this information into a coherent cognitive structure in working memory, and 
(3) integrating cognitive structures with relevant prior knowledge activated from long-term 
memory (Fiorella & Mayer, 2015).

Mathematics education research further developed these conceptions to distinguish 
between different types of mathematical understanding and knowledge. These ideas can 
be traced back to Skemp’s (1976) distinction between “relational understanding” and 
“instrumental understanding” of mathematics. The latter describes a limiting yet com-
monly occurring understanding based on knowing a set of rules without understanding 
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the reasons, whereas “learning relational mathematics consists of building up a conceptual 
structure (schema)” (Skemp, 1976, p. 14). Later research on mathematical thinking divided 
mathematics knowledge into two types: procedural knowledge and conceptual knowledge 
(Hiebert & Lefevre, 1986), with the latter defined as “knowledge that is rich in relation-
ships. It can be thought of as a connected web of knowledge, a network in which the link-
ing relationships are as prominent as the discrete pieces of information” (pp. 3–4). This 
dichotomy was subsequently questioned and reconceptualised by Star (2005) to include the 
depth dimension (accounting for quality).

The latest mathematics cognition perspective assumes that conceptual understand-
ing is developed when a sufficiently well-organised schema has been encoded into long-
term memory (Inglis & Mejía-Ramos, 2021). From this perspective, concept mapping is 
assumed to make learning efficient because it promotes meaningful learning and requires 
learners to engage deeply with the material by focusing on the organisational structure of 
a set of related concepts and producing elaborative connections among them (Gurlitt & 
Renkl, 2010; Nesbit & Adesope, 2006). The term “knowledge elaboration” is often used 
in reference to meaningful learning, emphasising the importance of using prior knowl-
edge to expand and refine new insights utilising processes such as organising, restructur-
ing, interconnecting, integrating new elements of information, and identifying relations 
between them (Kalyuga, 2009). Research has shown that knowledge elaboration is the key 
mechanism behind the success of well-known learning strategies such as self-explanations 
(Chi et al., 1994) and elaborative interrogation (Dunlosky et al., 2013). Viewed from this 
perspective, the similarities between knowledge elaboration strategies and the processes 
involved in high-quality concept mapping are recognisable. According to Karpicke and 
Blunt (2011, p. 772), “concept mapping bears the defining characteristics of an elabora-
tive study method: It requires students to enrich the material they are studying and encode 
meaningful relationships among concepts within an organized knowledge structure.” In 
other words, the construction of a high-quality concept map involves high-order thinking 
necessary to explicate not only generality/specificity relations (e.g., concept maps A and B 
in Fig. 1) but also cross-links — the connections between concepts derived from different 
strands developed from the main concept (e.g., C in Fig. 1). Such constructivist activity 
is likely to foster meaningful mathematics learning and promote “relational understand-
ing” in the sense of Skemp (1976) by activating efficient processes in working memory in 
selecting relevant information (from learning resources), integrating it with the existing 
schemas in long-term memory, and reorganising this knowledge into a new, bigger and 
better-organised schema, which could subsequently be encoded into long-term memory.

1.1.2  Concept mapping as an assessment tool

Research on assessment distinguishes between summative assessments, designed to deter-
mine academic progress after a set unit of material (i.e., assessment of learning) and form-
ative assessments, designed to monitor student progress during the learning process and 
provide feedback (i.e., assessment for learning) (Chappuis & Stiggins, 2002). However, this 
distinction has not been a primary focus of recent tertiary mathematics studies. Contrary to 
the assumption that formative and summative assessment approaches are incompatible, a 
recent article demonstrated how these assessment forms could be combined in university 
mathematics teacher education (Buchholtz et al., 2018). Thus, the central consideration in 
mathematics education at a tertiary level is about what type of reasoning is elicited and 
assessed by various tasks. Specifically, in line with the distinction between procedural and 
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conceptual knowledge, an important question is how to design valid and reliable meth-
ods to assess different types of understanding (e.g., instrumental vs. relational in the sense 
of Skemp (1976)). Research is conclusive that the way in which procedural knowledge is 
assessed has become relatively standardised. In contrast, the supposedly designed tasks to 
assess conceptual knowledge do not always align with theoretical claims about mathemati-
cal understanding (Crooks & Alibali, 2014). Moreover, an extensive overview of under-
graduate mathematics assessment revealed that most questions on exams and coursework 
could be categorised as “imitative” — questions that can be solved by performing pre-
scribed algorithms and recalling analogous (if not identical) solutions (Bergqvist, 2007; 
Iannone et al., 2020; Iannone & Simpson, 2011). Researchers pointed out that this issue is 
amplified in service mathematics courses designed for non-mathematics majors (Mac an 
Bhaird et al., 2017). A comparable service course serves as a setting for the present study, 
in which we investigate the feasibility of concept mapping as an assessment tool to diver-
sify measuring capacity and as a learning strategy to foster relational reasoning.

1.2  Self‑efficacy

Self-efficacy is a commonly used psychometric construct introduced by Bandura (1977) 
as part of his social cognitive theory. Self-efficacy is defined as a set of one’s beliefs about 
their capability to perform and complete a particular task (Bandura, 1997). The construct 
has long been considered to play an essential role in achievement motivation, and much 
past research has shown that self-efficacy is a significant predictor of academic perfor-
mance (Pajares & Graham, 1999; Zimmerman, 2000). Since the 1970s, a large body of 
research based on Bandura’s conception of self-efficacy has been developed, making this 
construct one of the most studied and utilised in educational psychology research.

Mathematics-specific self-efficacy has been given special consideration in mathemat-
ics education research and is generally viewed as a belief about one’s capacity for doing 
mathematics (Pajares & Miller, 1995). Methods for measuring it have been developed and 
used to demonstrate that students with higher self-efficacy tend to show greater interest, 
effort, persistence, help-seeking behaviour, and, ultimately, greater mathematics achieve-
ment than those who feel less efficacious (Pajares & Graham, 1999; Pajares & Kranzler, 
1995; Pajares & Miller, 1995; Schukajlow et al., 2019; Skaalvik et al., 2015; Williiams & 
Williams, 2010).

1.2.1  Types of self‑efficacy

Some researchers make a distinction between academic self-efficacy, which is defined as 
“general perceptions of academic capability” (Richardson et al., 2012, p. 356), and perfor-
mance self-efficacy, which is defined as “perceptions of academic performance capability” 
(Richardson et al., 2012, p. 356). When students face a situation, the type of self-efficacy 
which influences the student depends on whether the situation is familiar. If the situation 
is familiar, the student will use previous experience to predict their performance based on 
their performance self-efficacy. However, if the situation is unfamiliar, students tend to 
rely on the more generalised competency beliefs to predict their performance, which is 
known as academic self-efficacy (Zimmerman et  al., 1992). Specifically for mathemati-
cal problem-solving in a high school classroom, Pajares and Kranzler (1995) demonstrated 
that performance self-efficacy has a strong direct effect on mathematics anxiety and perfor-
mance even when controlling for the general mental ability.
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More recent research sought to develop our understanding of assessment-related self-
efficacy with a focus on both students’ beliefs about content-specific tasks and their beliefs 
around assessment-taking, such as their beliefs about whether or not they are good at tak-
ing tests. For example, it is not uncommon to hear people lament that they are “not good 
at taking a test” or “I know I can do it, just not on an exam”. To incorporate this more 
nuanced perspective into the construct of self-efficacy, researchers developed a new instru-
ment, the Measure of Assessment Self-Efficacy (MASE), designed to assess beliefs related 
to assessment preparation and performance, which is most relevant to research undertaken 
in a natural educational setting such as a university course (Riegel et al., 2022).

1.2.2  Sources of self‑efficacy

There are ways to improve one’s self-efficacy. Bandura (1997) suggested four sources of 
self-efficacy: (1) mastery experience, (2) vicarious experience, (3) social persuasion, and 
(4) emotional and psychological states. Mastery experience, which can be thought of as 
former attainment, was reported to have the most substantial influence (Usher & Pajares, 
2008). This source is especially powerful when the experience involves overcoming a 
challenge.

1.2.3  Self‑efficacy and concept mapping

Only a few studies have investigated the effect of concept mapping on self-efficacy. For 
example, a study by Chularut and Debacker (2004) used a randomised pretest-posttest 
control group design to examine the impact of concept mapping on students learning 
English as a second language in the USA. The researchers found that the students in the 
concept mapping group showed a slightly greater self-efficacy increase than those in 
the alternative learning strategy group. Similar results were reported by Khajavi (2012), 
who undertook a study involving students enrolled in an English reading comprehension 
course in Iran, demonstrating a substantial effect size of the concept mapping interven-
tion. Analysing the effect on self-efficacy from a different angle, Gurlitt and Renkl (2010) 
showed that different concept mapping activities (label-provided-lines vs. create-and-
label-lines) resulted in significantly different self-efficacy measures in a study of German 
psychology students.

In summary, although it is naturally anticipated that concept mapping could positively 
impact self-efficacy, this topic has rarely been studied, and no such studies were undertaken 
in mathematics education contexts. From the perspective of mathematics learning theories, 
the type of reasoning elicited by concept mapping is conducive to forming a relational/
conceptual understanding of mathematics, which could enhance self-efficacy as a mastery 
experience source. Furthermore, self-efficacy could be impacted through the mechanism 
of metacognition: regular concept mapping tasks prompt students to be critically aware of 
their thinking and learning and reflect on the depth of their understanding. This is likely 
to impact their perceptions of themselves as mathematics thinkers and learners, thereby 
affecting their self-efficacy (Coutinho, 2008).

1.3  Research questions

The present study had two broad goals. The first is to report on the design, development, 
and deployment of a new type of assessment in a large mathematics course at the university 
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level. Students were tasked to construct a concept map weekly either as part of a problem-
set during their tutorials (practical problem-solving sessions) or as a marked assignment. 
The second goal was to evaluate this initiative using student coursework data and their 
responses to a questionnaire (administered at the end of the semester) by conducting statis-
tical analyses to determine and compare the effects of various assessment forms on student 
performance and self-efficacy. Specifically, we sought to answer the following research 
questions:

RQ1.  Does student concept mapping performance explain a statistically significant 
amount of variance in the final exam scores after accounting for other coursework 
assessments?
RQ2.  Does student concept mapping performance explain a statistically significant 
amount of variance in their self-efficacy (assessment-related) after accounting for other 
coursework assessments?

2  Methods

2.1  Research site

The research site of this study was a large research-intensive university (University of 
Auckland, New Zealand). The study was implemented in a stage-II undergraduate math-
ematics course that serves the needs of students majoring in various disciplines such as 
finance, economics, chemistry, physics, computer science, statistics, etc. The contents cov-
ered in this course are Calculus II, Linear Algebra II, and Introduction to Ordinary Dif-
ferential Equations. As for most courses in this university, this course is delivered over 12 
teaching weeks with the repeated structure of three 1-hour lectures and one 1-hour tutorial 
(25 to 30 students per room working on problems) each week. The lectures include active 
learning activities such as interactive whole-class questioning/discussions and think-pair-
share tasks.

2.2  Participants and study description

In the trial semester, out of the 355 students enrolled in the course, 35 students studied 
overseas, completing the course online; the remaining 320 studied locally. Tutorials are an 
essential component of this course and have been implemented in an active learning format 
for over a decade. During tutorials, students are encouraged to interact and solve various 
problems in small groups. All students are expected to attend a tutorial each week, start-
ing from the 2nd week of the semester. In addition to this work, students must submit their 
solutions to a weekly “marked problem”, which are traditional written assignments except 
for the two that were concept mapping tasks. Hence, study participants were expected to 
construct a concept map weekly, either as part of the tutorial question set or when assigned 
as a marked problem.

Specifically, two marked problems were assigned, asking students to construct concept 
maps on the following topics: in Week 3 on Series and Week 7 on Vector Spaces. A tem-
plate, called a Knowledge Organiser, was provided to the students as a guide. Prior to cre-
ating a concept map, students were prompted to state the definition of a given concept and 
provide at least two examples and at least one non-example. Students were allowed a week 



484 T. Evans, I. Jeong 

1 3

to complete the task. Out of ten concept maps that students completed during the course, 
only the two assigned as “marked problems” were collected for marking.

In the first lecture of the course, the two authors of this study provided a short intro-
ductory session on concept mapping. In addition, an example of a concept map on Linear 
Systems (a prerequisite topic for the course) was shared with the students online so that 
students could refer to it anytime. However, after collecting student submissions for mark-
ing in Week 3, the quality of the concept maps indicated that some students did not fully 
understand the instructions for this task or found it very difficult to construct a concept 
map. Hence, the first author, who is a lecturer of the course, gave another explanation dur-
ing a lecture to demonstrate how to construct a high-quality concept map.

A model solution was provided to the students, noting that there can be many variations 
of a high-quality concept map (Fig. 3). In order to assess students’ work on concept maps, 
a rubric was developed and validated by the researchers, which was reported in a sepa-
rate study (Jeong & Evans, 2021). The validation methodology was based on comparing 
four rubrics, developed according to previous research, by examining their reliability and 
validity. Rubric 1 was based on a qualitative assessment of intrinsic qualities of a concept 
map (such as the type of concept map: spoke, chain, net (Kinchin et al., 2000)), combined 
with perceived effort on a discrete 4-point scale. The other three rubrics were analytical, 
counting the number of concepts (Rubric 2), relationships (Rubric 3) and the (inverse) ratio 
between them (Rubric 4). Regression modelling was used to compare the extent to which 
the four rubrics explained the variance in the scores on a concept map question on the 
final exam. (The final exam included a question on concept mapping — see Figs. 4 and 5). 
Two rubrics were identified as most valid: Rubrics 1 and 4. However, taking into account 
reliability considerations, Rubric 4 was selected as the most suitable, ensuring objectivity 
in assigning scores: The ratio method outputs a numerical value equal to the inverse ratio 
of the number of concepts used in the concept map to the number of relationships identi-
fied. For example, the score for the concept map in Fig. 3 is obtained by calculating the 
inverse ratio of the number of concepts (= 25) and the number of relationships between 

Fig. 3  Concept map on Series 
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them (= 30). Hence the score is 30/25 = 1.2. According to this method, for a fixed number 
of concepts, the higher scores indicate high-level elaboration, with more related concepts 
connected vertically and horizontally in a net-type formation. On the other hand, fewer 

Fig. 4  Concept map question in the final exam

Fig. 5  In-line choice options for A, B, and C for identifying missing elements of the concept map in Fig. 4
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concepts used limit the upper bound of the inverse ratio since the maximum number of 
connections for a graph with n nodes is n(n−1)

2
 (in the case of a complete graph). Hence, the 

maximum inverse ratio for a graph with n nodes is n−1
2

 . An extreme example is a concept 
map with only two concepts connected by one relation with a score of ½ = 0.5. (More 
information can be found in Jeong & Evans, 2021).

2.3  Exam question on concept mapping

The final exam comprised 30 multi-choice questions, with one question on concept map-
ping organised as three in-line choice options worth three marks (10% of the final exam). 
The overarching idea of this question was to assess students’ consolidated macro view of 
the concept of Vector Space as a mathematical structure used to generalise physical spaces 
such as ℝ , ℝ2 , ℝ3 , and then ℝn ; to define fundamental subspaces related to matrices (such 
as Nullspace, Column space, Eigenspace) and to be utilised in solving differential equa-
tions. The concept map question was presented as a completed concept map with a few 
missing concepts and relationships for students to identify (Fig. 4).

Students were presented with three in-line choice questions with multi-choice options 
to replace objects A, B, and C in the concept map. The multi-choice options given for each 
of A, B, and C are shown in Fig. 5, with the correct answers at the bottom of the lists. In 
addition, considering that it may be the first time students would have encountered such a 
question in an examination, a mock exam containing a similar question was provided at the 
end of the semester.

3  Data collection and availability statement

The data was collected from the Learning Management System (Canvas) and a question-
naire administered at the end of the semester through Qualtrics. All students (N = 355) 
were invited to participate in the study but not all consented. The final dataset contained 
219 participants. The raw dataset is available at https:// doi. org/ 10. 17608/ k6. auckl and. 
19618 014.

3.1  Coursework marks

Coursework marks considered for this study included the following:

• 1 final exam (50%).
• 1 mid-semester test (20%).
• 30 quizzes (15%).
• 10 marked problems (10%).
• 10 tutorial participation marks (5%).

The 30 quizzes were short multi-choice assessments conducted online, assessing basic 
comprehension of material introduced in a previous lecture, starting from Week 2 (Evans 
et  al., 2021). The lowest four marks were disregarded, with the sum of the top 26 quiz 
marks counted towards the final course mark.

The ten marked problems were short written assignments due at the end of each week, 
submitted for marking and feedback. As explained above, two of the marked problems 

https://doi.org/10.17608/k6.auckland.19618014
https://doi.org/10.17608/k6.auckland.19618014
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were on concept maps, one on Series and the other on Vector Spaces. The ratio method 
(described above) was used to assign scores to students’ concept maps.

The exam comprised 30 multi-choice questions, with more than a third (12 points out of 
30) attempting to assess conceptual understanding (including the question on filling in the 
blanks in a concept map described in 2.3). Exam questions are available at https:// doi. org/ 
10. 17608/ k6. auckl and. 19618 014.

3.2  Self‑efficacy measures

In order to measure students’ self-efficacy in this study, a tailor-made instrument meas-
uring tutorial-related self-efficacy was used: the Measure of Assessment Self-Efficacy for 
Mathematics Tutorials (MASE-T), which was based on the general assessment self-effi-
cacy instrument, MASE (Riegel et al., 2022). The instrument explicitly measures assess-
ment-related self-efficacy and comprises two factors: (1) Comprehension and Execution 
and (2) Emotional Regulation. The MASE items assess participants’ beliefs in their ability 
to understand, perform, and emotionally regulate while studying for and during various 
types of course assessment. Instruments to measure exam-related self-efficacy (MASE-E) 
and quiz-related self-efficacy (MASE-Q) were developed and validated (Riegel et al., 2021, 
2022), providing general guidelines for adapting the instrument to any other type of assess-
ment. In this study, the guidelines were used for tutorials since they involved mathematical 
problem-solving without the stress associated with high-stakes assessments such as tests 
and exams. Students were prompted with the following tutorial scenario:

Please envision yourself in the scenario: you are enrolled in a mathematics course 
that has a weekly tutorial worth 0.5% of your final grade. The tutorial contains four 
questions on a topic you studied in your course. In considering taking part in this 
tutorial, please rate the extent to which you agree or disagree with the following 
statements. (The items comprising the scales are listed in Table 1).

Responses to statements were measured using a slider scale from 1 to 100 (where 
1 = Cannot do at all, 50 = Moderately sure can do, and 100 = Highly certain can do). 
Based on confirmatory factor analysis of students’ responses collected in week twelve 

Table 1  Tutorial-related self-efficacy measure (MASE-T)

Factor/Item

Comprehension and Execution
 1. I can understand the content and skills needed for the assessment.
 2. When preparing for the assessment, I can organize my time well.
 3. I can understand the questions in the assessment.
 4. I can correctly answer the questions on the assessment.
 5. During the assessment, I can answer the questions within the time constraints.
  (Scale α = 0.917)

Emotional Regulation
 6. During my preparation, I am able to cope with my negative emotions toward the assessment.
 7. Even when I struggle while studying, I am able to stay positive about my ability to succeed.
 8. During the assessment, I am able to cope with my negative emotions toward the assessment.
  (Scale α = 0.910)

https://doi.org/10.17608/k6.auckland.19618014
https://doi.org/10.17608/k6.auckland.19618014
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of the semester, a two-factor model was confirmed, which was consistent with the gen-
eral structure of MASE; the model offered an acceptable fit (χ2/df = 2.203, CFI = 0.986, 
SRMR = 0.0238). The internal consistency of the scales was confirmed using Cronbach’s 
alphas: α = 0.917 for the Comprehension and Execution factor and α = 0.910 for the Emo-
tional Regulation factor, with values higher than 0.7 reflecting the reliability of the scales.

4  Results

In addressing the study’s research questions, hierarchical multiple regression analyses were 
undertaken. Table 2 summarises the descriptive statistics and correlations of the variables 
included in the analyses.

4.1  Concept map score as a predictor of the final exam score (RQ1)

A hierarchical multiple regression analysis was undertaken to investigate the ability of con-
cept map scores to explain the variance in the final exam scores after controlling for other 
more traditional assessment components. Preliminary analyses were conducted to ensure 
no violation of the assumptions of normality, linearity, and homoscedasticity. Addition-
ally, the correlations among the predictor variables included in the study were examined, 
presented in Table 2. Quiz scores were not included in the analysis due to high correlations 
with both tutorial marks and marked problems. Most correlations were weak to moder-
ate, ranging between r = .17, p < .01 and r = .43, p < .001 with one exception: borderline 
high correlation between tutorial scores and marked problems (r = .70, p < .001). Moreo-
ver, the addition of the tutorial scores was found to reduce the adjusted R2, thus justifying 
its removal as a predictor in the final model (see Table 3).

In the first step of hierarchical multiple regression, the test score was entered as the 
most likely predictor of the exam score. This model was statistically significant F(1, 
217) = 37.49; p < .001 and explained 14.7% of the variance in the final exam scores 
(adjusted R2 = 0.143). The addition of marked problem scores in Step 2 resulted in a sta-
tistically significant increase in adjusted R2 of 0.050, F(1, 216) = 14.43, p < .001. In the 
final model (Step 3), after controlling for the test and marked problem scores, the addi-
tion of the concept map scores resulted in a statistically significant increase in adjusted R2 
of 0.025, F(1, 215) = 4.89, p = .028. All three assessment types made a significant unique 

Table 2  Descriptive statistics and correlations of factors in the hierarchical multiple regressions

Note. N = 219. *p < 0.05, **p < 0.01, ***p < 0.001. CE Comprehension and Execution, ER Emotional 
Regulation, MP score marked problem score

M SD 1 2 3 4 5 6 7

1. Final exam 60.27 17.19
2. CE factor of MASE-T 64.54 18.39
3. ER factor of MASE-T 65.59 19.51
4. Total MASE-T 64.93 18.24
5. Test 66.80 19.31 0.38*** 0.40*** 0.38*** 0.41***
6. MP 55.80 19.94 0.38*** 0.34*** 0.24*** 0.31*** 0.43***
7. Tutorial 87.14 22.89 0.22** 0.25*** 0.18** 0.23*** 0.30*** 0.70***
8. Concept map 0.66 0.52 0.26*** 0.17** 0.22** 0.19** 0.19** 0.31*** 0.31***
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contribution to the final model (Table 3), with the concept map score recording a standard-
ised Beta value of 0.14, p < .05, indicating that after accounting for the effects of all other 
variables, with every increase by one standard deviation in the concept mapping score, the 
final exam score increases by 0.14 standard deviation. In summary, the concept map scores 
significantly increased the proportion of explained variance in the final exam score above 
and beyond what was accounted for by the test and marked problem scores alone.

4.2  Concept map score as a predictor of the tutorial‑related self‑efficacy (RQ2)

Hierarchical multiple regression analyses (Model 2a and Model 2b) were conducted 
to ascertain whether or not concept mapping tasks make an independent contribution to 
explaining the variance in the Tutorial-Related Self-Efficacy construct, which comprises 
two factors: Comprehension and Execution (CE) and Emotional Regulation (ER). Initially, 
we used all coursework assessment components as predictors, but these initial models were 
not feasible due to a multicollinearity problem between quizzes and marked problems, and 
also between quizzes and tutorial marks, indicated by high correlations (which were greater 
than 0.7). Therefore, a decision was made to remove the quiz scores from the model. After 
removing quizzes, none of the predictors had pairwise correlations higher than 0.7, and all 
other model assumptions were satisfied.

4.2.1  Model 2a (comprehension and execution factor of MASE‑T)

The summary of Model 2a is presented in Table 4, in which the full model (Step 4) with 
the test, marked problem, tutorial and concept map scores predicting the Comprehension 
and Execution factor of tutorial self-efficacy (CE of MASE-T) was statistically significant, 
R2 = 0.198, F(4, 214) = 13.21, p < .001; adjusted R2 = 0.183. The first model (Step 1), where 
only the test score predicts CE of MASE-T, was statistically significant with adjusted 
R2 = 0.158, F(1, 217) = 41.98, p < .001. The addition of marked problem scores resulted in 
a significant increase of adjusted R2 of 0.030, F(1, 216) = 9.04, p < .01. However, the addi-
tion of tutorial marks and concept maps scores resulted in a reduction of adjusted R2. The 
only significant predictor in the final model was the test score.

Table 3  Summary of Model 1

Note. N = 219. *p < 0.05, **p < 0.01, ***p < 0.001. MP score marked problem score

Variable Final exam score

Step 1 Step 2 Step 3

B β B β B β

Constant 37.45*** 31.73*** 31.10***
Test score 0.34*** 0.38 0.24*** 0.27 0.23*** 0.26
MP score 0.22*** 0.26 0.19** 0.22
Concept map score 4.70* 0.14
R2

adj 0.143*** 0.193*** 0.208***
∆R2

adj 0.143*** 0.050*** 0.025*
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4.2.2  Model 2b (emotional regulation factor of MASE‑T)

The summary of Model 2b, explaining the variance in the Emotional Regulation factor of 
tutorial self-efficacy (ER of MASE-T), is given in Table 5. The full model (Step 4) with the 
test, marked problem, tutorial and concept map scores predicting ER of MASE-T was sta-
tistically significant, R2 = 0.169, F(4, 214) = 10.89, p < .001; adjusted R2 = 0.154. The first 
model (Step 1), where the only predictor is the test score, is statistically significant with 
adjusted R2 = 0.141, F(1, 217) = 36.69, p < .001. In Step 2, the addition of marked prob-
lem scores resulted in a non-significant increase of adjusted R2 of 0.003, F(1, 216) = 1.76, 
p = .19. The addition of tutorial participation marks in Step 3 resulted in a small reduction 
in the adjusted R2. However, the addition of concept map scores in the final Step 4 resulted 
in a statistically significant increase in adjusted R2 of 0.014, F(1, 214) = 4.40, p = .037. This 
indicates that the concept map score explains a statistically significant amount of variance 
in ER of MASE-T over and above what was explained by all other assessment compo-
nents. Importantly, only the test and concept map scores have a significant effect on ER 
of MASE-T in the final model, with the standardised Beta values of β = 0.33, p < .001 and 

Table 4  Summary of Model 2a

Note. N = 219. *p < 0.05, **p < 0.01, ***p < 0.001. MP score marked problem score

Variable Comprehension and Execution in tutorial self-efficacy

Step 1 Step 2 Step 3 Step 4

B β B β B β B β

Constant 38.94*** 34.08*** 33.24*** 33.30***
Test score 0.38*** 0.40 0.30*** 0.31 0.30*** 0.31 0.30*** 0.31
MP score 0.19** 0.20 0.17* 0.19 0.17 0.18
Tutorial mark 0.02 0.02 0.01 0.02
Concept map score 1.66 0.05
R2

adj 0.158*** 0.188*** 0.185*** 0.183***
∆R2

adj 0.158*** 0.030** -0.003 -0.002

Table 5  Summary of Model 2b

Note. N = 219. *p < 0.05, **p < 0.01, ***p < 0.001. MP score marked problem score

Variable Emotional Regulation in Tutorial Self-Efficacy

Step 1 Step 2 Step 3 Step 4

B β B β B β B β

Constant 39.93*** 37.59*** 36.44*** 36.65***
Test score 0.38*** 0.38 0.34*** 0.34 0.34*** 0.34 0.33*** 0.33
MP score 0.09 0.09 0.07 0.07 0.05 0.05
Tutorial mark 0.03 0.03 0.01 0.01
Concept map score 5.26* 0.14
R2

adj 0.141*** 0.144*** 0.140*** 0.154***
∆R2

adj 0.141*** 0.003 -0.004 0.014*
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β = 0.14, p = .037, respectively. This means that, out of all low-stakes assessments, only the 
concept mapping regression coefficient is statistically significantly different to 0, inferring 
that there is a positive linear relationship with the ER of MASE-T after accounting for the 
effect of all other variables.

In summary, student concept mapping performance explains a statistically significant 
amount of variance in the Emotional Regulation factor of self-efficacy after accounting for 
other coursework assessments, which is an unexpected and somewhat surprising result.

5  Discussion

One of the major aims of this study was to test whether student concept mapping perfor-
mance explains a statistically significant amount of variance in the final exam scores after 
accounting for other coursework assessments (RQ1). Hierarchical multiple regression was 
used to ascertain this, which is nested modelling with a way to control for an individual 
contribution of a variable to explain variance in the dependent variable above and beyond 
what was accounted for by other variables and to test the significance of the improvement. 
First, all three assessment types considered (Test (β = 0.26), Marked problems (β = 0.22), 
and Concept maps (β = 0.14)) made significant unique contributions to the final model 
(Table 3). Second, the addition of concept map scores in the final step of the nested mod-
elling has significantly improved the model’s ability to explain variance in the final exam 
scores above and beyond what was accounted for by the test and marked problem scores 
alone. This finding supports the hypothesis that concept mapping is a principally different 
type of assessment, detecting learners’ capabilities that are not discerned by regular assess-
ments. Taken together with the latest mathematics cognition perspective, which assumes 
that conceptual understanding is developed when a sufficiently well-organised schema has 
been encoded into long-term memory, it is plausible to suggest that concept mapping (as 
an externalisation of a schema) may have the potential to assess conceptual understanding. 
This would be useful since the limitations of conventional assessments in evaluating con-
ceptual understanding are widely accepted. Many attempts to design special instruments to 
assess conceptual understanding have been made. For example, a Calculus Concept Inven-
tory (CCI) was developed by Epstein (2007), which has been widely used in research and 
practice for over a decade (Epstein, 2013). However, serious criticism has recently been 
levelled at the validity of the CCI measure (Gleason et  al., 2019). Moreover, in a study 
involving foundation mathematics students in the UK, the low internal consistency for both 
the subset and full set of CCI items suggested that the instrument does not measure a single 
construct (Bisson et al., 2016), thus demonstrating that accurate evaluation of conceptual 
understanding via an instrument remains a largely elusive goal.

From the theoretical perspective, this is also a plausible hypothesis. The construction 
of a high-quality concept map involves explicating not only generality/specificity relations 
but also cross-links — the connections between concepts derived from different strands 
developed from the central concept (Fig. 1 C). An ability to construct such a map is likely 
to correspond to a “relational understanding” in the sense of Skemp (1976), reflecting a 
superior conceptual understanding.

However, a major limitation of this study is the lack of robust evidence to make gener-
alisable claims about the utility of concept mapping as an assessment tool for conceptual 
understanding. Future research could focus on a detailed analysis of qualitative features of 
concept mapping that differentiate it from conventional assessments and by comparing it 
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with the existing valid methods for assessing conceptual understanding, such as a compara-
tive judgement (CJ) approach, which was successfully used for assessing conceptual under-
standing of some mathematical topics: derivatives, p-values and use of letters in algebra 
(Bisson et al., 2016, 2020; Jones et al., 2019).

The other aim of this study was to investigate whether student concept mapping per-
formance explains a statistically significant amount of variance in their self-efficacy after 
accounting for other coursework assessments (RQ2). Hierarchical multiple regression was 
used to compare two models: Model 2a (predicting the Comprehension and Execution fac-
tor of tutorial self-efficacy) and Model 2b (predicting the Emotional Regulation factor of 
tutorial self-efficacy). Both models were significant, albeit with only a small percentage of 
self-efficacy variance explained as indicated by the values of R2

adj in the range of 0.154-
0.183. However, one noteworthy difference between the models is that the change in R2

adj 
in the final step (adding concept mapping) is only significant in Model 2b. This indicates 
that concept mapping performance explains a statistically significant amount of variance 
in the Emotional Regulation factor of self-efficacy after accounting for other coursework 
assessments. This finding was somewhat unexpected. It is known that the main source 
of self-efficacy is mastery experience, which is especially powerful when the experience 
involves succeeding on challenging tasks (Bandura, 1997; Usher & Pajares, 2008). To that 
end, it was reasonable to expect that concept mapping performance would contribute to 
explaining the Comprehension and Execution factor of self-efficacy because of the nature 
of the concept mapping activity. The type of reasoning elicited by concept mapping is con-
ducive to forming a relational/conceptual understanding of mathematics, which could lead 
to enhanced appraisals of comprehension. Moreover, the comprehension marker of self-
efficacy could have been impacted through metacognition, as explained in Section 1.2.3: 
concept mapping tasks prompt students to be critically aware of their thinking and learning 
and to reflect on the depth of their comprehension. However, our result did not confirm this 
hypothesis. Instead, the regression modelling pointed to the importance of investigating 
emotional regulation as part of the cognitive processes involved in learning with concept 
mapping.

The role of emotions and beliefs in task completion has been recently identified as an 
important area of research on mathematics-related affect (Hannula, 2002; Hannula et al., 
2016; Schindler & Bakker, 2020; Zan et al., 2006). From a broader perspective, an exten-
sive body of research has demonstrated that students’ emotions profoundly affect their 
academic engagement and performance, identifying a particular impact of positive and 
negative moods on task completion (Pekrun & Linnenbrink-Garcia, 2012). Given these 
considerations and our findings, we can hypothesise that successful concept mapping activ-
ity could enhance learners’ emotional regulation appraisals due to the distinct character-
istics  of the activity. It could be that concept mapping is superior to other conventional 
types of assessment through its influence on the manifestation of positive emotions experi-
enced by a learner when a comprehensive concept map is completed. The self-reflection on 
learning that happens at that moment could be more profound than, say, after completing 
a multi-choice test or submitting an assignment with problems mimicking worked exam-
ples provided. Through the repeated experience of regularly constructing high-quality con-
cept maps during the course of the semester, the positive emotions induced by the learning 
activity could accumulate to substantial improvement in the learner’s affect.

However, our results are limited in that they do not provide any evidence about the cau-
sality of the relationship. It could be that the direction of the relationship is the other way 
around. Learners with better emotional regulation produce higher quality concept maps. 
Given our results, we can only conclude that there is a positive linear relationship between 
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the Emotional Regulation factor of self-efficacy and concept mapping performance after 
accounting for the effect of other assessments. Still, we can not ascertain that the learn-
ing activity has caused an improvement in the Emotional Regulation factor measure. The 
measure consists of items pertaining to the suppression of negative emotions and recording 
the extent to which students agree with: “Even when I struggle while studying, I am able to 
stay positive about my ability to succeed”. A likely explanation is that learners who believe 
that when they struggle during a learning activity and can remain positive and succeed are 
more likely to persevere in the face of a challenge and not give up.

An important finding from our analysis is that among the low-stakes course assess-
ments, only concept maps are positively associated with the Emotional Regulation fac-
tor of self-efficacy, controlling for other variables. In other words, no linear relationship 
with the conventional coursework assignments (weekly marked problems) was identified. 
There is no difference in the Emotional Regulation measure between those students who do 
well and those who do not on a typical homework assignment, controlling for other assess-
ments. This contrasts with the concept mapping indicators, which, perhaps, points from yet 
another perspective that concept mapping is a principally different learning activity com-
pared to a typical mathematics task. The theoretical perspective, outlined in Section 1.1.1, 
offers justification for this conclusion because success in a concept mapping task requires 
perseverance and sustained effort in deliberate meaning-making through deep engagement 
with the material by focusing on the organisational structure of a set of related concepts 
to produce elaborative connections among them as part of externalisation and reformation 
of a schema. Such effortful meaning-making could be a missing facet of many traditional 
mathematical tasks often assigned to learners.

6  Final remarks

Much has been said about the need to seek research-grounded solutions to improve prac-
tice. A particular focus has been placed on classroom-based interventions1, which are 
rarely undertaken and evaluated in mathematics education (Stylianides & Stylianides, 
2013). To that end, one of the goals of our study was to report on the design, development, 
implementation, and evaluation of a novel type of assessment in a university mathematics 
course. The design principle of our intervention is generalisable and transferable to other 
educational domains as a blueprint for an assessment structure and related instruction that 
could be utilised in mathematics education broadly. Stylianides and Stylianides (2013) pro-
pose three dimensions of evaluation of classroom interventions: (1) how amenable it is 
for scaling up, (2) how practicable it is for curricular integration, and (3) how capable it 
is of producing long-lasting effects. Evaluated this way, our intervention can arguably be 
deemed effective for the first two criteria: the number of students utilising concept map-
ping is unlimited; concept maps can be easily integrated into the existing curricula struc-
tures in a practicable way. Determining long-lasting effects is a more complex challenge, 
and ongoing research is needed. Future research could build on evidence presented in this 
study to investigate effectiveness of concept mapping as an assessment and a learning tool 
in different and/or properly controlled settings.

1  The term “intervention” is used similarly to its standard use in medicine where an intervention denotes 
action taken to improve a situation (Stylianides & Stylianides, 2013) and does not necessitate an experimen-
tal design.



494 T. Evans, I. Jeong 

1 3

Acknowledgements We thank Kaitlin Riegel (University of Auckland) for expert advice on MASE-T 
validation.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. This work 
was supported by the Faculty of Science Research and Development Grant (FRDF grant number: 3720159).

Data availability The raw dataset analysed during the study and exam questions are available at https:// doi. 
org/ 10. 17608/ k6. auckl and. 19618 014.

Declarations 

Ethics approval Ethics approval was granted by the University ofAuckland Human Participants Ethics Com-
mittee on 25/02/2021 for 3 years (reference Number UAHPEC21976).

Informed consent Data used in the study was obtained through informed consent. Assurance was provided 
that participation in the project was completely voluntary and confidential.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Afamasaga-Fuata, K. (2009). Concept mapping in mathematics. Springer. https:// doi. org/ 10. 1007/ 
978-0- 387- 89194-1

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control pro-
cesses. In Psychology of learning and motivation (Vol. 2, pp. 89–195). Elsevier. https:// doi. org/ 10. 
1016/ S0079- 7421(08) 60422-3

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 
84(2), 191. https:// doi. org/ 10. 1037/ 0033- 295X. 84.2. 191

Bandura, A. (1997). Self-efficacy: the exercise of control. W H Freeman/Times Books/ Henry Holt & Co.
Baroody, A. J., & Bartels, B. H. (2000). Using concept maps to link mathematical ideas. Mathematics 

Teaching in the Middle School, 5(9), 604–609. https:// doi. org/ 10. 5951/ mtms.5. 9. 0604
Bergqvist, E. (2007). Types of reasoning required in university exams in mathematics. The Journal of 

Mathematical Behavior, 26(4), 348–370. https:// doi. org/ 10. 1016/j. jmathb. 2007. 11. 001
Bisson, M. J., Gilmore, C., Inglis, M., & Jones, I. (2016). Measuring conceptual understanding using 

comparative judgement. International Journal of Research in Undergraduate Mathematics Educa-
tion, 2(2), 141–164. https:// doi. org/ 10. 1007/ s40753- 016- 0024-3

Bisson, M. J., Gilmore, C., Inglis, M., & Jones, I. (2020). Teaching using contextualised and decontextu-
alised representations: examining the case of differential calculus through a comparative judgement 
technique. Research in Mathematics Education, 22(3), 284–303. https:// doi. org/ 10. 1080/ 14794 802. 
2019. 16920 60

Buchholtz, N. F., Krosanke, N., Orschulik, A. B., & Vorhölter, K. (2018). Combining and integrating 
formative and summative assessment in mathematics teacher education. ZDM Mathematics Educa-
tion, 50(4), 715–728. https:// doi. org/ 10. 1007/ s11858- 018- 0948-y

Chappuis, S., & Stiggins, R. J. (2002). Classroom assessment for learning. Educational leadership, 
60(1), 40–44.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive psychology, 4(1), 55–81. https:// 
doi. org/ 10. 1016/ 0010- 0285(73) 90004-2

https://doi.org/10.17608/k6.auckland.19618014
https://doi.org/10.17608/k6.auckland.19618014
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-0-387-89194-1
https://doi.org/10.1007/978-0-387-89194-1
https://doi.org/10.1016/S0079-7421(08)60422-3
https://doi.org/10.1016/S0079-7421(08)60422-3
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.5951/mtms.5.9.0604
https://doi.org/10.1016/j.jmathb.2007.11.001
https://doi.org/10.1007/s40753-016-0024-3
https://doi.org/10.1080/14794802.2019.1692060
https://doi.org/10.1080/14794802.2019.1692060
https://doi.org/10.1007/s11858-018-0948-y
https://doi.org/10.1016/0010-0285(73)90004-2
https://doi.org/10.1016/0010-0285(73)90004-2


495Concept maps as assessment for learning in university…

1 3

Chi, M. T., Glaser, R., & Rees, E. (1981). Expertise in problem solving. In: Pittsburgh Univ PA Learning 
Research and Development Center.

Chi, M. T. H., De Leeuw, N., Chiu, M. H., & Lavancher, C. (1994). Eliciting self-explanations improves 
understanding. Cognitive Science, 18(3), 439–477. https:// doi. org/ 10. 1016/ 0364- 0213(94) 90016-7

Chiou, C. C. (2009). Effects of concept mapping strategy on learning performance in business and eco-
nomics statistics. Teaching in Higher Education, 14(1), 55–69. https:// doi. org/ 10. 1080/ 13562 51080 
26025 82

Chularut, P., & Debacker, T. K. (2004). The influence of concept mapping on achievement, self-regu-
lation, and self-efficacy in students of English as a second language. Contemporary Educational 
Psychology, 29(3), 248–263. https:// doi. org/ 10. 1016/j. cedps ych. 2003. 09. 001

Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 
3(3), 149–210. https:// doi. org/ 10. 1007/ BF013 20076

Coutinho, S. (2008). Self-efficacy, metacognition, and performance. North American Journal of Psy-
chology, 10(1), 165–172.

Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage 
capacity. Behavioral and Brain Sciences, 24(1), 87–114.

Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in mathematics. 
Developmental Review, 34(4), 344–377. https:// doi. org/ 10. 1016/j. dr. 2014. 10. 001

Dehaene, S. (2020). How we learn: the new science of education and the brain. Penguin Books Limited. 
https:// books. google. co. nz/ books? id= R9C2D wAAQB AJ

Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving stu-
dents’ learning with effective learning techniques. Psychological Science in the Public Interest, 
14(1), 4–58. https:// doi. org/ 10. 1177/ 15291 00612 453266

Epstein, J. (2007). Development and validation of the calculus concept inventory. In Proceedings of the 
Ninth International Conference on Mathematics Education in a Global Community (pp. 165–170).

Epstein, J. (2013). The Calculus Concept Inventory - measurement of the effect of teaching methodology 
inmathematics. Notices of the American Mathematical Society, 60, 1018–1027. https:// doi. org/ 10. 
1090/ noti1 033

Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: evidence of maximal 
adaptation to task constraints. Annual Review of Psychology, 47(1), 273–305.

Evans, T., Kensington-Miller, B., & Novak, J. (2021). Effectiveness, efficiency, engagement: Mapping 
the impact of pre-lecture quizzes on educational exchange. Australasian Journal of Educational 
Technology, 37(1), 163–177. https:// doi. org/ 10. 14742/ ajet. 6258

Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity. Cambridge University Press. 
https:// doi. org/ 10. 1017/ CBO97 81107 707085

Gallenstein, N. L. (2011). Mathematics concept maps: assessing connections. Teaching Children Math-
ematics, 17(7), 436–440. https:// doi. org/ 10. 5951/ teacc hilma th. 17.7. 0436

Gleason, J., Bagley, S., Thomas, M., Rice, L., & White, D. (2019). The calculus concept inventory: a 
psychometric analysis and implications for use. International Journal of Mathematical Education 
in Science and Technology, 50(6), 825–838. https:// doi. org/ 10. 1080/ 00207 39x. 2018. 15384 66

Gurlitt, J., & Renkl, A. (2010). Prior knowledge activation: how different concept mapping tasks lead 
to substantial differences in cognitive processes, learning outcomes, and perceived self-efficacy. 
Instructional Science, 38(4), 417–433.

Hannula, M. S. (2002). Attitude towards mathematics: emotions, expectations and values. Educational 
Studies in Mathematics, 49(1), 25–46. https:// doi. org/ 10. 1023/A: 10160 48823 497

Hannula, M. S., Di Martino, P., Pantziara, M., Zhang, Q., Morselli, F., Heyd-Metzuyanim, E., Lutovac, 
S., Kaasila, R., Middleton, J. A., & Jansen, A. (2016). Attitudes, beliefs, motivation and identity in 
mathematics education: an overview of the field and future directions. Springer Nature. https:// doi. 
org/ 10. 1007/ 978-3- 319- 32811-9

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introduc-
tory analysis. Conceptual and procedural knowledge: The Case of Mathematics, 2, 1–27.

Iannone, P., & Simpson, A. (2011). The summative assessment diet: how we assess in mathematics 
degrees. Teaching Mathematics and its Applications: An International Journal of the IMA, 30(4), 
186–196. https:// doi. org/ 10. 1093/ teamat/ hrr017

Iannone, P., Czichowsky, C., & Ruf, J. (2020). The impact of high stakes oral performance assessment 
on students’ approaches to learning: a case study. Educational Studies in Mathematics, 103(3), 
313–337. https:// doi. org/ 10. 1007/ s10649- 020- 09937-4

Inglis, M., & Mejía-Ramos, J. P. (2021). Functional explanation in mathematics. Synthese, 198(S26), 
6369–6392. https:// doi. org/ 10. 1007/ s11229- 019- 02234-5

https://doi.org/10.1016/0364-0213(94)90016-7
https://doi.org/10.1080/13562510802602582
https://doi.org/10.1080/13562510802602582
https://doi.org/10.1016/j.cedpsych.2003.09.001
https://doi.org/10.1007/BF01320076
https://doi.org/10.1016/j.dr.2014.10.001
https://books.google.co.nz/books?id=R9C2DwAAQBAJ
https://doi.org/10.1177/1529100612453266
https://doi.org/10.1090/noti1033
https://doi.org/10.1090/noti1033
https://doi.org/10.14742/ajet.6258
https://doi.org/10.1017/CBO9781107707085
https://doi.org/10.5951/teacchilmath.17.7.0436
https://doi.org/10.1080/0020739x.2018.1538466
https://doi.org/10.1023/A:1016048823497
https://doi.org/10.1007/978-3-319-32811-9
https://doi.org/10.1007/978-3-319-32811-9
https://doi.org/10.1093/teamat/hrr017
https://doi.org/10.1007/s10649-020-09937-4
https://doi.org/10.1007/s11229-019-02234-5


496 T. Evans, I. Jeong 

1 3

Jeong, I., & Evans, T. (2021). Embedding concept mapping into university mathematics: comparison 
and validation of marking rubrics. In Proceedings of the 13th Southern Hemisphere Conference on 
the Teaching and Learning of Undergraduate Mathematics and Statistics (pp.  2–16). https:// doi. 
org/ 10. 17608/ k6. auckl and. 20330 460. v1

Jin, H., & Wong, K. (2010). Training on concept mapping skills in geometry. Journal of Mathematics 
Education, 3(1), 104–119.

Jin, H., & Wong, K. Y. (2015). Mapping conceptual understanding of algebraic concepts: an exploratory 
investigation involving grade 8 chinese students. International Journal of Science and Mathematics 
Education, 13(3), 683–703. https:// doi. org/ 10. 1007/ s10763- 013- 9500-2

Jin, H., & Wong, K. Y. (2023). Complementary measures of conceptual understanding: a case about tri-
angle concepts. Mathematics Education Research Journal, 35(1), 153–174. https:// doi. org/ 10. 1007/ 
s13394- 021- 00381-y

Jones, I., Bisson, M., Gilmore, C., & Inglis, M. (2019). Measuring conceptual understanding in ran-
domised controlled trials: can comparative judgement help? British Educational Research Journal, 
45(3), 662–680. https:// doi. org/ 10. 1002/ berj. 3519

Kalyuga, S. (2009). Knowledge elaboration: a cognitive load perspective. Learning and Instruction, 
19(5), 402–410. https:// doi. org/ 10. 1016/j. learn instr uc. 2009. 02. 003

Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative study-
ing with concept mapping. Science, 331(6018), 772–775. https:// doi. org/ 10. 1126/ scien ce. 11993 27

Khajavi, Y. (2012). Influencing EFL learners’ reading comprehension and self-efficacy beliefs: the effect 
of concept mapping strategy. Porta Linguarum Revista Interuniversitaria de Didáctica de las Len-
guas Extranjeras. https:// doi. org/ 10. 30827/ digib ug. 31953

Kinchin, I. M., Hay, D. B., & Adams, A. (2000). How a qualitative approach to concept map analysis can 
be used to aid learning by illustrating patterns of conceptual development. Educational Research, 
42(1), 43–57. https:// doi. org/ 10. 1080/ 00131 88003 63908

Lambiotte, J. G., Skaggs, L. P., & Dansereau, D. F. (1993). Learning from lectures: Effects of knowledge 
maps and cooperative review strategies. Applied Cognitive Psychology, 7(6), 483–497. https:// doi. org/ 
10. 1002/ acp. 23500 70604

Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solv-
ing physics problems. Science, 208(4450), 1335–1342. https:// doi. org/ 10. 1126/ scien ce. 208. 4450. 
1335

Mac an Bhaird, C., Nolan, B. C., O’Shea, A., & Pfeiffer, K. (2017). A study of creative reasoning opportu-
nities in assessments in undergraduate calculus courses. Research in Mathematics Education, 19(2), 
147–162. https:// doi. org/ 10. 1080/ 14794 802. 2017. 13180 84

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational 
Psychologist, 38(1), 43–52. https:// doi. org/ 10. 1207/ S1532 6985E P3801_6

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for pro-
cessing information. Psychological review, 63(2), 81. https:// doi. org/ 10. 1037/ h0043 158

Nesbit, J. C., & Adesope, O. O. (2006). Learning with concept and knowledge maps: a meta-analysis. 
Review of Educational Research, 76(3), 413–448.

Nesbit, J. C., & Adesope, O. O. (2013). Learning through visual displays. In G. Schraw, M. T. McCrudden, 
& D. Robinson (Eds.), Concept maps for learning: theory, research, and design (pp. 303–328). IAP 
Information Age Publishing.

Novak, J. D. (1990). Concept mapping: a useful tool for science education. Journal of Research in Science 
Teaching, 27(10), 937–949. https:// doi. org/ 10. 1002/ tea. 36602 71003

Novak, J. D., & Cañas, A. J. (2008). The theory underlying concept maps and how to construct them. In 
Florida Institute for Human and Machine Cognition.

O’Day, G. M., & Karpicke, J. D. (2021). Comparing and combining retrieval practice and concept mapping. 
Journal of Educational Psychology, 113(5), 986–997. https:// doi. org/ 10. 1037/ edu00 00486

Ollerton, M., & Watson, A. (2001). Inclusive mathematics 11–18. Continuum.
Pajares, F., & Graham, L. (1999). Self-efficacy, motivation constructs, and mathematics performance of 

entering middle school students. Contemporary Educational Psychology, 24(2), 124–139. https:// doi. 
org/ 10. 1006/ ceps. 1998. 0991

Pajares, F., & Kranzler, J. (1995). Self-efficacy beliefs and general mental ability in mathematical problem-
solving. Contemporary Educational Psychology, 20(4), 426–443. https:// doi. org/ 10. 1006/ ceps. 1995. 
1029

Pajares, F., & Miller, M. D. (1995). Mathematics self-efficacy and mathematics performances: the need for 
specificity of Assessment. Journal of Counseling Psychology, 42(2), 190–198. https:// doi. org/ 10. 1037/ 
0022- 0167. 42.2. 190

https://doi.org/10.17608/k6.auckland.20330460.v1
https://doi.org/10.17608/k6.auckland.20330460.v1
https://doi.org/10.1007/s10763-013-9500-2
https://doi.org/10.1007/s13394-021-00381-y
https://doi.org/10.1007/s13394-021-00381-y
https://doi.org/10.1002/berj.3519
https://doi.org/10.1016/j.learninstruc.2009.02.003
https://doi.org/10.1126/science.1199327
https://doi.org/10.30827/digibug.31953
https://doi.org/10.1080/001318800363908
https://doi.org/10.1002/acp.2350070604
https://doi.org/10.1002/acp.2350070604
https://doi.org/10.1126/science.208.4450.1335
https://doi.org/10.1126/science.208.4450.1335
https://doi.org/10.1080/14794802.2017.1318084
https://doi.org/10.1207/S15326985EP3801_6
https://doi.org/10.1037/h0043158
https://doi.org/10.1002/tea.3660271003
https://doi.org/10.1037/edu0000486
https://doi.org/10.1006/ceps.1998.0991
https://doi.org/10.1006/ceps.1998.0991
https://doi.org/10.1006/ceps.1995.1029
https://doi.org/10.1006/ceps.1995.1029
https://doi.org/10.1037/0022-0167.42.2.190
https://doi.org/10.1037/0022-0167.42.2.190


497Concept maps as assessment for learning in university…

1 3

Pekrun, R., & Linnenbrink-Garcia, L. (2012). Academic emotions and student engagement. In Handbook of 
research on student engagement (pp. 259–282). Springer. https:// doi. org/ 10. 1007/ 978-1- 4614- 2018-7_ 
12

Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experi-
mental Psychology, 58(3), 193. https:// doi. org/ 10. 1037/ h0049 234

Prestage, S., & Perks, P. (2013). Adapting and extending secondary mathematics activities. https:// doi. org/ 
10. 4324/ 97802 03462 386

Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students’ academic 
performance: a systematic review and meta-analysis. Psychological Bulletin, 138(2), 353.

Riegel, K., Evans, T., & Stephens, J. (2021). Predicting mathematics exam-related self-efficacy as a func-
tion of prior achievement, gender, stress mindset, and achievement emotions. In S. S. Karunakaran & 
A. Higgins (Eds.), 2021 Research in Undergraduate Mathematics Education Reports (pp. 255–263). 
http:// sigmaa. maa. org/ rume/ Site/ Proce edings. html

Riegel, K., Evans, T., & Stephens, J. M. (2022). Development of the measure of assessment self-efficacy 
(MASE) for quizzes and exams. Assessment in Education: Principles Policy & Practice, 29(6), 729–
745. https:// doi. org/ 10. 1080/ 09695 94X. 2022. 21624 81

Ryve, A. (2004). Can collaborative concept mapping create mathematically productive discourses? Educa-
tional Studies in Mathematics, 56(3), 157–177. https:// doi. org/ 10. 1023/b: educ. 00000 40395. 17555. c2

Sas, M. (2008). The effects of students’ asynchronous online discussions of conceptual errors on intention-
ally flawed teacher-constructed concept maps. UNLV Retrospective Theses & Dissertations. 2800. 
https:// doi. org/ 10. 25669/ ewio- y7l1

Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solv-
ing: a case study. Educational Studies in Mathematics, 105(3), 303–324. https:// doi. org/ 10. 1007/ 
s10649- 020- 09973-0

Schmittau, J. (2004). Uses of concept mapping in teacher education in mathematics. AJ Canãs, JD Novak & 
Gonázales (Eds), Concept Maps: Theory, Methodology, Technology. Proceedings of the First Interna-
tional Conference on Concept Mapping.

Schroeder, N. L., Nesbit, J. C., Anguiano, C. J., & Adesope, O. O. (2018). Studying and constructing Con-
cept Maps: a Meta-analysis. Educational Psychology Review, 30(2), 431–455. https:// doi. org/ 10. 1007/ 
s10648- 017- 9403-9

Schukajlow, S., Achmetli, K., & Rakoczy, K. (2019). Does constructing multiple solutions for real-world 
problems affect self-efficacy? Educational Studies in Mathematics, 100(1), 43–60. https:// doi. org/ 10. 
1007/ s10649- 018- 9847-y

Skaalvik, E. M., Federici, R. A., & Klassen, R. M. (2015). Mathematics achievement and self-efficacy: rela-
tions with motivation for mathematics. International Journal of Educational Research, 72, 129–136. 
https:// doi. org/ 10. 1016/j. ijer. 2015. 06. 008

Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 
77(1), 20–26.

Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Educa-
tion, 36(5), 404–411.

Stylianides, A. J., & Stylianides, G. J. (2013). Seeking research-grounded solutions to problems of prac-
tice: classroom-based interventions in mathematics education. ZDM Mathematics Education, 45(3), 
333–341. https:// doi. org/ 10. 1007/ s11858- 013- 0501-y

Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. 
Educational Psychology Review, 10(3), 251–296.

Sweller, J. (2008). Human cognitive architecture. Handbook of Research on Educational Communications 
and Technology, 35, 369–381.

Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 
20 years later. Educational Psychology Review, 31(2), 261–292. https:// doi. org/ 10. 1007/ 
s10648- 019- 09465-5

Sweller, J. (2021). Why inquiry-based approaches harm students’ learning. The Centre for Independent 
Studies.

Usher, E. L., & Pajares, F. (2008). Sources of self-efficacy in School: critical review of the literature and 
future directions. Review of Educational Research, 78(4), 751–796. https:// doi. org/ 10. 3102/ 00346 
54308 321456

Wilcox, S. K., & Sahloff, M. (1998). Assessment: another perspective on concept maps: empowering stu-
dents. Mathematics Teaching in the Middle School, 3(7), 464–469. https:// doi. org/ 10. 5951/ mtms.3. 7. 
0464

https://doi.org/10.1007/978-1-4614-2018-7_12
https://doi.org/10.1007/978-1-4614-2018-7_12
https://doi.org/10.1037/h0049234
https://doi.org/10.4324/9780203462386
https://doi.org/10.4324/9780203462386
http://sigmaa.maa.org/rume/Site/Proceedings.html
https://doi.org/10.1080/0969594X.2022.2162481
https://doi.org/10.1023/b:educ.0000040395.17555.c2
https://doi.org/10.25669/ewio-y7l1
https://doi.org/10.1007/s10649-020-09973-0
https://doi.org/10.1007/s10649-020-09973-0
https://doi.org/10.1007/s10648-017-9403-9
https://doi.org/10.1007/s10648-017-9403-9
https://doi.org/10.1007/s10649-018-9847-y
https://doi.org/10.1007/s10649-018-9847-y
https://doi.org/10.1016/j.ijer.2015.06.008
https://doi.org/10.1007/s11858-013-0501-y
https://doi.org/10.1007/s10648-019-09465-5
https://doi.org/10.1007/s10648-019-09465-5
https://doi.org/10.3102/0034654308321456
https://doi.org/10.3102/0034654308321456
https://doi.org/10.5951/mtms.3.7.0464
https://doi.org/10.5951/mtms.3.7.0464


498 T. Evans, I. Jeong 

1 3

Williams, C. G. (1998). Using concept maps to assess conceptual knowledge of function. Journal for 
Research in Mathematics Education JRME, 29(4), 414–421. https:// doi. org/ 10. 5951/ jrese mathe duc. 
29.4. 0414

Williiams, T., & Williams, K. (2010). Self-efficacy and performance in mathematics: reciprocal determin-
ism in 33 nations. Journal of Educational Psychology, 102(2), 453–466. https:// doi. org/ 10. 1037/ a0017 
271

Zan, R., Brown, L., Evans, J., & Hannula, M. S. (2006). Affect in mathematics education: an introduction. 
Educational Studies in Mathematics, 113–121. https:// doi. org/ 10. 1007/ s10649- 006- 9028-2

Zimmerman, B. J., Bandura, A., & Martinez-Pons, M. (1992). Self-motivation for academic attainment: the 
role of self-efficacy beliefs and personal goal setting. American Educational Research Journal, 29(3), 
663–676. https:// doi. org/ 10. 3102/ 00028 31202 90036 63

Zimmerman, B. J. (2000). Self-efficacy: an essential motive to learn. Contemporary Educational Psychol-
ogy, 25(1), 82–91. https:// doi. org/ 10. 1006/ ceps. 1999. 1016

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.5951/jresematheduc.29.4.0414
https://doi.org/10.5951/jresematheduc.29.4.0414
https://doi.org/10.1037/a0017271
https://doi.org/10.1037/a0017271
https://doi.org/10.1007/s10649-006-9028-2
https://doi.org/10.3102/00028312029003663
https://doi.org/10.1006/ceps.1999.1016

	Concept maps as assessment for learning in university mathematics
	Abstract
	1 Introduction
	1.1 Theoretical and empirical foundations
	1.1.1 Concept mapping as an effective learning strategy
	1.1.2 Concept mapping as an assessment tool

	1.2 Self-efficacy
	1.2.1 Types of self-efficacy
	1.2.2 Sources of self-efficacy
	1.2.3 Self-efficacy and concept mapping

	1.3 Research questions

	2 Methods
	2.1 Research site
	2.2 Participants and study description
	2.3 Exam question on concept mapping

	3 Data collection and availability statement
	3.1 Coursework marks
	3.2 Self-efficacy measures

	4 Results
	4.1 Concept map score as a predictor of the final exam score (RQ1)
	4.2 Concept map score as a predictor of the tutorial-related self-efficacy (RQ2)
	4.2.1 Model 2a (comprehension and execution factor of MASE-T)
	4.2.2 Model 2b (emotional regulation factor of MASE-T)


	5 Discussion
	6 Final remarks
	Acknowledgements 
	References


