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Abstract
Offering explanations is a central part of teaching mathematics, and understanding those 
explanations is a vital activity for learners. Given this, it is natural to ask what makes a 
good mathematical explanation. This question has received surprisingly little attention in 
the mathematics education literature, perhaps because the field has no agreed method by 
which explanation quality can be reliably assessed. In this paper, we explore this issue by 
asking whether mathematicians and undergraduates agree with each other about explana‑
tion quality. A corpus of 10 explanations produced by 10 mathematicians was used. Using 
a comparative judgement method, we analysed 320 paired comparisons from 16 mathema‑
ticians and 320 from 32 undergraduate students. We found that both mathematicians and 
undergraduates were able to reliably assess the quality of a set of mathematical explana‑
tions. Furthermore, the assessments were largely consistent across the two groups. Implica‑
tions for theories of mathematical explanation are discussed. We conclude by arguing that 
comparative judgement is a promising technique for exploring explanation quality.
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1  Introduction

Explanations are central to both teaching and learning. Teachers and lecturers routinely 
offer instructional explanations as part of classroom practice, either during instructor-
led exposition or in response to students’ questions (e.g., Lew et  al.,  2016; Treagust & 
Harrison,  1999). However, explanations vary in quality, to the point where instructional 
explanations may sometimes have negative effects. Specifically, instructional explanations 
do not always lead to successful learning (Chi et  al.,  2001; Lew et  al.,  2016; VanLehn 
et al., 2003; Wittwer & Renkl, 2008), and generating low-quality explanations can in some 
circumstances limit understanding. For example, Lachner and Nückles (2016) conducted a 
classroom experiment to compare the effects of different explanations of an optimisation 
problem (involving finding extremum of a function) on senior high school students. Two 
types of explanations were compared: one produced by research mathematicians (empha‑
sising principles and conceptual rationale), and the other by mathematics teachers (empha‑
sing procedural steps of how to solve a problem). The students were randomly assigned to 
three groups, with two groups receiving explanations prepared by either mathematicians or 
teachers, and the third (control) group receiving no explanation. The researchers found that 
the students who received the explanations elucidating principles and conceptual rationale 
behind the steps (offered by mathematicians) outperformed the other students on a subse‑
quent application test (Lachner & Nückles, 2016).

These findings emphasise the importance of taking into consideration explanation qual‑
ity: in order to maximise student learning, instruction needs to be based on high-quality 
explanations and omit low-quality explanations. But, despite the importance of explana‑
tion quality, Wittwer and Renkl (2008) noted that the issue of what constitutes an effective 
explanation has been widely neglected by education researchers. Thus, when teachers and 
learners generate instructional explanations, they must typically rely upon experience and 
intuition rather than research-based advice.

Our goal in this paper is to consider the quality of instructional explanations from 
the perspectives of undergraduate mathematics lecturers and students. There are two 
broad approaches to analysing explanation quality that can be adopted. The first, which 
we describe as the top-down approach, is to evaluate the quality of instructional explana‑
tions using pre-existing general frameworks that attempt to describe the features that high-
quality instructional explanations may have (e.g., Wittwer & Renkl, 2008). An alternative, 
which we describe as the bottom-up approach, would be to collect a corpus of instruc‑
tional explanations, develop an empirical method by which mathematicians and students 
can assess their quality, and then study the features that high- and low-quality explana‑
tions have. In light of the lack of frameworks for instructional explanation quality rooted 
in the mathematics classroom, and in light of the strong possibility (discussed below) that 
mathematical explanations may be disanalogous to non-mathematical explanations (such 
as those in science), we adopted the bottom-up approach. That is, instead of attempting to 
characterise the quality of instructional explanations in mathematics in a top-down fashion, 
using principles of general frameworks, we aim to empirically explore this notion of expla‑
nation quality as it exists among mathematics lecturers and students. Our hope is that such 
bottom-up exploration can contribute to the more general characterisation of the quality of 
instructional explanations in mathematics.

More specifically, we address two main questions. First, can mathematicians reliably 
judge the quality of explanations? In other words, when asked to assess the quality of dif‑
ferent mathematical explanations, do mathematics lecturers tend to agree with each other? 
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Second, do the judgements about explanation quality made by lecturers coincide with those 
of their intended audience, undergraduate students? Before introducing the study we con‑
ducted to address these issues, we first briefly review the existing literature on explanations 
in mathematics.

2 � Philosophical and educational perspectives on mathematical 
explanations

At least in the area of proof-based mathematics, mathematics education researchers have 
traditionally turned to the philosophy of mathematics for insights into a notion of explana‑
tion in mathematical practice that could be useful to determine what makes a proof explan‑
atory in the mathematics classroom (Hanna, 1990; Hersh,  1993; Weber,  2010). Philoso‑
phers have devoted a great deal of attention to understanding what it means to say that A 
explains B. For instance, some accounts in the general philosophy of science literature rely 
on either statistical associations or causal mechanisms. For instance, Salmon (1971, 1984) 
suggested that A explains B if B is consistently correlated with A, or if there is a causal 
history that connects B and A (cf. Hempel & Oppenheim, 1948). So, we can say that wear‑
ing shoes in the wrong size explains why our feet are hurting because there is a causal con‑
nection between the two events. But, while causal and statistical accounts may work well in 
scientific contexts, they seem to fail in mathematics. Mathematical concepts are not related 
causally, as there is no temporal order in the universe of mathematical definitions, theo‑
rems, and proofs. The fact that the square root of 2 is irrational is not located at a particular 
point in time. Neither are mathematical facts related statistically, as they take no probabili‑
ties other than 0 or 1 (i.e., a mathematical statement is either true or false). Consequently, 
many scientific accounts of explanation do not seem to easily apply in mathematical con‑
texts (Colyvan, 2012; Mancosu, 2001).

If mathematical explanations are not scientific explanations, what are they? This ques‑
tion has generated significant interest. Some regard the lack of causal and correlational 
relations as a reason to deny that mathematical explanations exist, at least in a manner 
analogous to scientific explanation (Resnik & Kushner, 1987; Zelcer, 2013). This approach 
seems at odds with practice. Studies of mathematical language show that research mathe‑
maticians do use explanatory words when communicating with one another (Mejía-Ramos 
et al., 2019). And it is certainly at odds with educational practice. As noted above, expla‑
nations are central to mathematical teaching and learning, and many mathematics educa‑
tion researchers have emphasised the importance of engaging students with mathematical 
proofs that explain theorems, rather than those which merely demonstrate that theorems 
are true (e.g., Bell, 1979; Hanna, 2000). The desire to distinguish explanatory from non-
explanatory proofs also rules out the proposal that A explains B if B can be logically 
deduced from A. Under such an account, all valid deductive arguments would be equally 
explanatory. The apparent ubiquity of explanations in mathematical discourse leads most 
philosophers to reject the suggestion that mathematical explanations do not exist (Weber & 
Frans, 2017) or that they are simply logical deductions (Colyvan, 2012). Instead, they offer 
two broad categories of account, which Delarivière et al. (2017) described as the ontic and 
epistemic approaches to mathematical explanation.1

1  A similar distinction exists in the philosophy of science literature on scientific explanation.
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Ontic accounts focus on the objective properties of purported explanations. For 
instance, Steiner (1978) suggested that mathematical explanations are arguments that 
refer to characterising properties of relevant concepts. Ontic accounts also include 
Kitcher’s (1984) proposal that mathematical explanations are characterised by the way 
in which they unify a range of different mathematical concepts, and Lange’s (2014) sug‑
gestion that mathematical explanations are characterised by their use of certain types of 
salient features (e.g., symmetries) of the explained result. What all ontic accounts share 
is the belief that the (non-)explanatoriness of a mathematical proof—and it is typically 
proofs that these accounts focus on, a fact that was critiqued as ‘proof chauvinism’ by 
D’Alessandro (2020)—can be assessed without considering its actual or potential audi‑
ence. Despite the fact that ontic accounts are audience independent, mathematics edu‑
cation researchers have attempted to use them to address the question of what makes a 
proof explanatory in the mathematics classroom (Hanna, 1990; Reid, 1995).

In contrast, epistemic and, similarly, functional accounts start with the assumption 
that explanations are communicative acts that aim to cause understanding (Delarivière 
et  al., 2017; Inglis & Mejía-Ramos, 2021). For example, Wilkenfeld (2014) defined 
explanations to be those things that generate understanding “under the right circum‑
stances and in the right sort of way” (p. 3367). In order to unpack exactly what the right 
circumstances and sorts of ways are, Wilkenfeld drew heavily on the epistemology lit‑
erature (e.g., Grimm et al., 2016).

Although the ontic and epistemic approaches differ in emphasis, they are not neces‑
sarily contradictory. Inglis and Mejía-Ramos (2021) offered a functional account which 
they suggested could encompass the ontic accounts of Steiner (1978), Kitcher (1984), 
and Lange (2014). Specifically, they argued that modern theories of human cognitive 
architecture imply that mathematical arguments, which make use of characterising prop‑
erties, which unify concepts, or which involve Lange-style saliency, will typically help a 
reader to increase their level of understanding of the domain(s) in which the explanation 
is situated. In other words, the ontic properties identified by Steiner, Kitcher, and Lange 
are all likely to contribute to an argument’s epistemic explanatoriness.

The fact that philosophers disagree about whether ontic or epistemic approaches to 
mathematical explanation are more promising raises the possibility that mathematicians 
too may adopt differing perspectives on explanatoriness. If this were correct, then we 
might expect there to be between-mathematician variation in the types of explanations 
that they deem most explanatory. Assessing the extent to which this is the case is one 
goal of the study reported in this paper. Adopting an epistemic approach to mathemati‑
cal explanation requires specifying what type(s) of understanding it is that explanations 
try to foster. Inglis and Mejía-Ramos (2021) emphasised that, for them, explanations 
aim to increase objectual understanding, not merely propositional understanding. This 
distinction can be illustrated by comparing the statements “Tessa understands that there 
are five continents” (propositional understanding) and “Honali understands topology” 
(objectual understanding). Whereas objectual understanding admits degrees, propo‑
sitional understanding does not. It would be straightforward to find someone whose 
understanding of topology was either higher or lower than Honali’s, but it does not 
seem possible to understand that there are five continents more or less than anyone else. 
Although there are various different accounts of precisely how objectual understanding 
should be characterised (e.g., Grimm,  2006; Kelp,  2016; Kvanvig,  2003), a common 
theme is that the relationship between previously disconnected information is crucial. 
For instance, Kvanvig (2003) wrote that “the grasping of relations between items of 
information is central to the nature of understanding” (p. 197).
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Given the importance of explanations for educational practice, and given the unre‑
solved philosophical debates about what exactly mathematical explanations are (and 
even whether or not they exist), it is perhaps surprising that more attention has not been 
devoted to understanding explanation quality in educational settings. One exception to 
this rule is Wittwer and Renkl’s (2008) general framework for exploring the effective‑
ness of (not necessarily mathematical) instructional explanations. They defined instruc‑
tional explanations as being explanations given in educational contexts designed for 
the purpose of teaching, and gave four normative criteria by which their quality can be 
interrogated. 

1.	 Explanations should take account of learners’ existing knowledge. If the goal of an 
explanation is to increase objectual understanding, and if increasing objectual under‑
standing involves developing relationships between previously disconnected knowledge 
schemas, then it seems self-evident that instructional explanations should be designed 
with reference to the learner’s existing knowledge (e.g., Leinhardt & Steele, 2005). This 
assumption has been studied empirically. For example, Duffy et al. (1986) compared the 
verbal explanations given by more and less effective fifth-grade teachers. They found 
that the more effective teachers would spontaneously adapt their explanations in light 
of interactions with students, in order to respond to student misunderstandings. The 
association between an instructor’s knowledge of their students’ knowledge levels and 
the quality of explanations they produce is causal. Wittwer et al. (2008) experimentally 
manipulated instructors’ beliefs about their students’ knowledge levels in an online tutor‑
ing environment. They found that those instructors given inaccurate information about 
their students’ existing knowledge produced less appropriate explanations, as assessed 
by the extent to which students increased their knowledge.

2.	 Explanations should focus on concepts and principles. Because increasing objectual 
understanding involves constructing new relationships between knowledge, explana‑
tions which focus on generalisable concepts or principles are likely to help learners 
integrate more of their existing knowledge. Research has shown that principle-oriented 
explanations promote learners’ mathematical understanding since they integrate con‑
ceptual and procedural information, thus making them particularly tangible for novice 
students (Lachner et al., 2019). It is well documented, however, that teachers often omit 
conceptual explanations when explaining procedures, which is detrimental to learning 
(Lachner & Nückles, 2016; Lachner et al., 2019). There are large between-instructor 
differences in the extent to which explanations focus on generalisable principles. For 
example, Perry (2000) compared the explanations offered by teachers in first- and fifth-
grade classrooms in Japan, Taiwan, and the USA. She found that teachers in the Asian 
classrooms offered more explanations, but also that their explanations were much more 
likely to generalise beyond the specific problem being discussed. Perry (2000) sug‑
gested that this difference in explanation quality might partly account for differences in 
performance on international comparisons found between the USA and Asian countries.

3.	 Explanations should be integrated into the learner’s ongoing cognitive activities. In line 
with the emphasis that constructivist accounts of learning place on active processing 
(e.g., Fiorella & Mayer, 2015), if learners actively engage with the information in an 
explanation—rather than just listen or read it—a higher level of objectual understand‑
ing is likely to be reached. For instance, Webb et al. (1995) investigated seventh-grade 
students’ activity after receiving instructional explanations from their teachers. The 
extent to which students continued to work on problems after receiving an explanation, 
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by either solving the problem or explaining how to solve the problem, was strongly 
predictive of scores on a subsequent assessment of their learning.

4.	 Explanations should not replace learners’ knowledge-construction activities. The last of 
Wittwer and Renkl’s (2008) criteria for effective explanations concerned when explana‑
tions should not be provided. If the provision of an explanation leads to lower levels 
of engagement with the to-be-learned material, then there is likely to be less learning, 
regardless of the quality of the provided explanation. For instance, Roy et al. (2017) 
found that providing undergraduates with verbal explanations of steps in a proof led 
to lower comprehension retention than if no such explanations were provided. They 
hypothesised that the extra support the explanations provided disrupted the students’ 
engagement with the proof, reducing the extent to which they were able to integrate 
their learning with existing knowledge (Alcock et al., 2015).

It is worth noting two aspects about Wittwer and Renkl’s (2008) framework. First, their 
four criteria are audience dependent (even the second criterion is ultimately related to 
learners’ understanding in terms of, and knowledge construction around, these con‑
cepts and principles). In this sense, this framework is more closely related to epistemic 
approaches of mathematical explanation in the philosophy of mathematics (albeit, spe‑
cific epistemic approaches could operationalise “understanding” differently, e.g., purely 
in terms of abilities as opposed to cognitive structures and activities). In contrast, from 
an ontic perspective, these criteria (particularly the first, third, and fourth) are simply 
irrelevant in the characterisation of mathematical explanation (i.e., from an ontic per‑
spective, there would be nothing wrong if a given mathematical explanation meets those 
criteria, but those criteria would certainly not be part of the defining features of math‑
ematical explanation). Second, it is important to note that while Wittwer and Renkl’s 
(2008) framework provides us with general “evidence-based conjectures about how 
to use instructional explanations to effectively support understanding and learning” 
(p. 51), it would be difficult to use this framework to compare the quality of specific 
instructional explanations in a given mathematics classroom (e.g., the individual criteria 
are somewhat general, and the framework does not assign differential weights to each of 
them).

The current study employs a novel approach to the investigation of explanation qual‑
ity in mathematics. In an attempt to complement the top-down application of general 
characterisations of explanation quality from the philosophy of mathematics and edu‑
cational psychology literature, we investigated the viability of a bottom-up investiga‑
tion into the notion of explanation quality as it exists among mathematics lecturers 
and students. A natural first question in this bottom-up approach concerns the level of 
agreement in mathematics lecturers’ and students’ assessments of explanation quality in 
mathematics. The goal of the study reported in this paper is to tackle this question. Spe‑
cifically, we asked whether university mathematics lecturers and undergraduate students 
are able to reliably judge explanation quality. In turn, we argue that this empirical inves‑
tigation has implications for both the philosophy of mathematics and mathematics edu‑
cation. If philosophical accounts of mathematical explanation wish to reflect mathemat‑
ical practice (Hamami & Morris, 2020; Van Bendegem, 2014), then it is important for 
philosophers to understand what mathematicians themselves consider to be explanatory. 
Studies seeking to assess the reliability of mathematicians’ judgements in this domain 
therefore have the potential to constrain existing and future philosophical accounts 
of mathematical explanation (we return to this point in the discussion). In the case of 
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mathematics education, and indeed educational psychology more generally, results from 
the current study may help rule out one possible reason why instructors often produce 
explanations that do not effectively support learning (Chi et al., 2001; Lachner & Nück‑
les, 2016; Lachner et  al., 2019; VanLehn et  al., 2003; Wittwer et  al., 2008), namely 
that no one in the classroom (neither instructors nor students) can reliably distinguish 
high-quality explanations from low-quality ones (i.e., that assessing explanation qual‑
ity generates large between-instructor, between-student, and between-instructor-student 
disagreements).

3 � Creating a corpus of explanations

To achieve our goal of investigating the reliability of mathematicians’ and undergraduates’ 
judgements of explanation quality, we first created a corpus of mathematical explanations. 
Specifically, we aimed to collect mathematicians’ responses to a prompt for an explanation 
of a mathematical concept. To this end, we designed a short online survey.

Participants in the survey, who received invitations to participate from a member of the 
research team by email, were all research-active mathematicians working at universities in 
New Zealand, the USA, Canada, Australia, Singapore, Belgium, and Finland. After giving 
consent to participate, participants provided us with some demographic information about 
their research area, and then clicked through to a page with the following prompt:

Imagine that a math major on your linear algebra course comes to your office hours 
and says that they are confused. They explain that although they have seen the defini‑
tion, they do not understand what an abstract vector space is, or what it is for. What 
explanation would you give the student in response? (Feel free to use tex or pidgin 
tex in your response.)

They were able to respond using a free-text box. This prompt, which referenced the stu‑
dent’s lack of objectual understanding of vector spaces, was designed to describe a realistic 
scenario in which a university lecturer might be asked for an explanation by a student. We 
were careful to set the context for the required explanation: a mathematics major taking a 
linear algebra course, who had seen the definition of a vector space, but who did not under‑
stand it and therefore had come to the lecturer’s office hours session.

A convenience sample of twenty mathematicians participated. A variety of differ‑
ent explanations were offered. One participant offered a diagram as part of their expla‑
nation (which was sent directly to the researchers outside of the Web form). From the 
twenty explanations offered, we selected a corpus of ten. These ten were chosen to reflect 
the full variety of the explanations offered. In other words, we removed extremely similar 
explanations.

The ten selected explanations, which we edited lightly for clarity, are given in the 
Appendix. The original versions of all twenty explanations are available in the online data‑
set which accompanies this article.2 The ten explanations varied considerably in content 
and other elements. For instance, some involved procedural aspects (e.g., Explanations 1, 
7, and 8), whereas others were entirely conceptual (e.g., Explanation 2). Some explanations 
were primarily geometric (e.g., Explanations 9 and 10), whereas others were focused on 

2  https://​doi.​org/​10.​17028/​rd.​lboro.​14213​831.​v1
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building on numerical intuitions (e.g., Explanation 8). The main feature of many explana‑
tions was highlighting similarities between examples (Explanations 3, 4, 5, 6, and 9) and 
one used a non-example (of a set that is not a vector space) to illustrate the concept bound‑
ary (Explanation 1). Utility considerations were present in many explanations, accentuat‑
ing the purpose of the definition and exemplifying its possible uses (e.g., Explanations 1, 
4, 5, 6, and 9). Moreover, some explanations explicitly involved learner-instructor interac‑
tions such as posing questions and providing further information depending on the answers 
received.

It is unsurprising that some of the content-related aspects of the ten explanations 
obtained have been widely discussed in the mathematics education literature. Numerous 
studies have emphasised the importance of the use of examples in mathematical learning 
in order to develop conceptual understanding (e.g., Bills & Watson, 2008; Fukawa-Con‑
nelly & Newton, 2014; Tall & Vinner, 1981), with the role of non-examples deemed nec‑
essary to gain a coherent concept image (Fukawa-Connelly & Newton, 2014; Goldenberg 
& Mason, 2008; Tall & Vinner, 1981). The importance of geometrical interpretations to 
suplement explanations and the use of diagrams and graphs has also been identified and 
discussed widely, emphasising their functional role in promoting learning (e.g., Mejía-
Ramos & Weber, 2019; Samkoff et al., 2012; Soto-Johnson & Troup, 2014).

4 � Comparative judgement

To assess the extent to which mathematicians and undergraduates can reliably assess the 
quality of explanations, we adopted a comparative judgement approach (Bisson et al., 2016; 
Jones et al., 2019, 2015). Comparative judgement approaches to assessment rely upon the 
finding that people are more accurate when comparing items than they are when asked to 
evaluate an item in isolation (Thurstone, 1927a). For example, it is easier to decide which 
of two weights is the heavier than it is to estimate the weight of one in isolation. Thurstone 
(1927b) referred to this observation as the ‘law of comparative judgement’ and used it to 
assign values to a variety of stimuli. For instance, in one study, Thurstone (1927b) was able 
to measure the perceived seriousness of different criminal offences (libel, perjury, smug‑
gling, etc.) by asking college students to engage in a series of paired comparisons and fit‑
ting the resulting data to his psychophysical model.

Modern uses of comparative judgement in assessment rely upon the Bradley-Terry 
model (Bradley & Terry, 1952). This assumes that each item i (indexed by a positive inte‑
ger) has a numerical parameter �i which captures its quality on some dimension of interest. 
In our case, this is ‘explanatoriness’; in Thurstone’s (1927b), the dimension was ‘serious‑
ness of offence’. Given two items i and j, then the probability that a judge regards i as being 
rated higher on the given dimension is given by

By presenting judges with repeated pairs of stimuli and asking them to assess which they 
would rate higher on the given dimension, empirical estimates of the �i can be obtained. 
Jones et al. (2019) suggested that an average of 10 judgements per item usually suffices to 
produce an accurate estimate of each �i.

Comparative judgement techniques are becoming common in educational assess‑
ment contexts. They have been used to assess the quality of student essays (Heldsinger & 

ℙ(i > j) =
e𝛽i

e𝛽i + e𝛽j
.
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Humphry, 2013) and laboratory reports (McMahon & Jones, 2015), as well as more nebu‑
lous constructs such as students’ conceptual understanding (Bisson et al., 2016), students’ 
problem solving skills (Jones & Inglis, 2015), and mathematicians’ conceptions of math‑
ematical proof (Davies et al., 2021). The method is particularly helpful when one wishes to 
assess constructs about which people are expected to have an intuitive understanding, but 
which they may not be able to fully articulate or use to make reliable absolute judgements 
(Pollitt, 2012).

Critically, comparative judgement can also be used to produce estimates of the reli‑
ability of judges’ judgements. A variety of reliability coefficients can be produced from 
comparative judgement data, but here we focus our attention on intuitively straightforward 
split-half inter-rater reliability coefficients (Bisson et al., 2016). To calculate such a coef‑
ficient, one randomly selects two groups of judges from the total set (typically half in each 
group) and fits the Bradley-Terry model separately for each group. This produces two �i 
estimates for each of the judged items, one derived from each group of judges. The cor‑
relation between these two sets of �i produces an estimate of the extent to which the two 
groups of judges agree with each other about the construct being assessed. Repeating this 
procedure 1000 times—with a new random split each time—and taking the average of the 
correlations yields an overall estimate of the reliability of the judges. A coefficient close to 
1 indicates that the judges tend to agree with each other about the construct being assessed, 
whereas a coefficient close to 0 indicates little or no between-judge agreement. This is the 
method we used in our study.

5 � Method

Two groups of participants took part in the judging session, where they were asked to 
judge which of two explanations was the better. Eighteen research mathematicians from 
the University of Auckland participated, following an email to relevant colleagues in the 
department. None had participated in the earlier Web survey that generated the corpus of 
explanations. Each participant was asked to complete 20 judgements, but one did not and 
was removed from the analysis. One further participant responded extremely quickly to 
each comparison (a mean of 8.1 s per judgement, compared to the average of 31.9 s) and 
was also removed from the analysis. Therefore a total of 320 judgements from 16 math‑
ematicians were included in the final analysis, with a mean of 33.3 s per judgement.

We also recruited undergraduates who had recently taken a linear algebra course of the 
type mentioned in the explanation prompt discussed in Section 3. These participants were 
studying mathematics at either the University of Auckland or Rutgers University. We aimed 
to collect the same number of judgements as we had collected from the mathematicians 
(320), but following feedback from several mathematician participants about the length 
of the study, we asked each undergraduate participant to make only ten comparisons. Of 
the 34 participants we recruited, two failed to complete their set of judgements and were 
removed from the analysis. The mean duration per judgement for the undergraduates was 
49.7 s, and no undergraduate was excluded due to a very low mean judgement duration 
(the lowest was 17.3 s). Therefore, a total of 320 judgements from 32 undergraduates were 
included in the final analysis. Of the 48 participants, 12 identified themselves as female (1 
mathematician, 11 undergraduates), and  36 as male. A majority of mathematicians, 12, 
described their research area as falling primarily within the domain of pure mathematics.
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Participants were invited to take part via an email from a member of the research team, 
which stated the following:

We are interested in understanding how people assess the quality of mathematical 
explanations. We asked 10 mathematicians this question:

Imagine that a math major on your linear algebra course comes to your office hours 
and says that they are confused. They explain that although they have seen the defini‑
tion, they do not understand what an abstract vector space is, or what it is for. What 
explanation would you give the student in response?

We are going to ask you to evaluate their responses so that we can understand what 
you value in an explanation.

If recipients of the email wished to participate, they clicked through to a website which 
explained the purpose of the study, took some demographic information (research area for 
the mathematicians, gender for all participants), and then asked participants to start judg‑
ing. To record participants’ judgements, we used the No More Marking comparative judge‑
ment platform (https://​www.​nomor​emark​ing.​com/). Participants were presented with two 
randomly chosen explanations side by side, and simply asked “which is the better explana‑
tion of what a vector space is?”. They responded by selecting either the explanation on the 
left or the explanation on the right. Participants were instructed that, if they were unsure, 
they should go with their “gut instinct”. When participants had completed their allotted 
judgements (20 for mathematicians, 10 for undergraduates), they exited the judging plat‑
form. (Raw data, materials, and analysis scripts are available online.3)

The data analysis method involved comparative judgement approach, which was based 
on the Bradley-Terry model, described in Section 4. The method produced � estimates for 
each judged item, capturing the perceived explanatoriness of each explanation, separately 
for each group. These � s are unitless, so can only be interpreted in relation to other � s on 
the same scale. The Bradley-Terry model also produces a standard error associated with 
each � , which captures the precision with which the � has been estimated.

6 � Results

Each group produced highly reliable � estimates. The split-half inter-rater reliability coef‑
ficient was r = .781 for the mathematicians and r = .796 for the undergraduates, indicating 
that the within-group agreement about the quality of the various explanations was high.

The � s for each explanation produced by each group are shown in Fig. 1. Overall, the 
correlation between the two groups was high, at r = .85 , indicating that the two groups 
largely agreed with each other about which explanations were better and which were worse.

Inspecting Fig. 1 indicates that both groups agreed that Explanation 2—which attempted 
to explain vector spaces in terms of enriched Abelian groups—was the least explanatory. 
The two groups also both disliked Explanation 10, which attempted to use the geometry of 
the academic’s office to introduce the notion of linearly independent vectors, and then gen‑
eralised to abstract vector spaces.

3  https://​doi.​org/​10.​17028/​rd.​lboro.​14213​831.​v1
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We operationalised disagreement between the two groups as being where an explana‑
tion’s � estimate was over two standard errors away from the regression line shown in 
Fig. 1. There were only two examples of disagreement. The mathematicians perceived 
Explanation 9 to be more explanatory than the undergraduates. This focused on using 
geometric analogies and then pointed out that vector spaces are useful to understand the 
properties of solutions to partial differential equations (PDEs) using geometric ideas, 
images, and pictures. While this utility consideration would make sense to a mathemati‑
cian, most students taking a linear algebra course would not be familiar with the theory 
of PDEs. Finally, towards the top end of the scale, the undergraduates rated Explana‑
tion 6 as being the most explanatory, whereas this was only the fourth most explana‑
tory for the mathematicians. Explanation 6 focused on connecting the notion of a vector 
space to the properties of mathematical objects that undergraduates could be reasonably 
expected to be very familiar with (addition and multiplication of numbers, combining 
functions, adding matrices, etc.). It went on to explain that the purpose of the notion of 
a vector space is to extract the commonality between these various concepts. Notably, it 
was the only explanation to start with an informal hand-wavy definition: “a vector space 
is just a collection of objects, together with a way to combine those objects, and a list of 
rules that govern how we combine them”, thereby, perhaps, earning appreciation from 
undergraduates.

Despite these two disagreements, the overall message of our study was one of strong 
agreement. Using a comparative judgement technique, both the mathematicians and under‑
graduates were able to reliably assess the quality of these mathematical explanations, in 
the sense that the members of each group tended to agree with other members of the same 
group about the explanatoriness of each explanation. Furthermore, the two groups agreed 
with each other. The mathematicians were largely able to predict how the undergraduates 
would assess explanation quality, and vice versa.

Fig. 1   The perceived qual‑
ity of each explanation (the 
� estimates) produced by the 
mathematicians and undergradu‑
ates. Note. Error bars show ±1 
standard error. The numbers next 
to each point indicate the expla‑
nation represented by that point 
(see the Appendix for the full list 
of explanations). Note that the 
units on the x and y scales are 
not comparable
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7 � Discussion

7.1 � Summary of main findings

Our goal in this paper was to conduct a bottom-up investigation of the quality of mathemat‑
ical explanations. To this end, we created a small corpus of mathematical explanations, and 
examined whether mathematicians and undergraduates were able to reliably assess their 
quality using a comparative judgement approach. We found that both groups showed rea‑
sonably high levels of reliability, in the sense that the split-half inter-rater reliability coef‑
ficients were well above 0.7 in both cases.

Given this, we asked whether the two groups agreed with each other: in other words, do 
mathematicians tend to assess explanatoriness in a similar fashion to undergraduates? We 
found that the two groups’ assessments of the explanations in our corpus were strongly cor‑
related, suggesting that—notwithstanding some differences—the two groups have a shared 
understanding of what makes a high- and a low-quality mathematical explanation.

7.2 � Study limitations

Several limitations of our study may have influenced our results. The first concerns the 
methodological decisions made in the design of the explanations by the participating math‑
ematicians. Some of the shorter explanations produced by the participating mathematicians 
(such as Explanations 5, 8, 9, and 10) present as outlines (plans) of an explanation, stating 
the intentions but omitting details. For example, Explanation 9 starts with “I would give 
geometric explanations and analogies; and show with pictures how the geometric explana‑
tions works for all vectors.” This leaves room for various interpretations around the imple‑
mentation of such an intent, thus translating into more subjective judgements. Given this, 
it is perhaps surprising that we found such high levels of between-participant agreement.

Second, no information was available about the domain-specific knowledge of the par‑
ticipating undergraduates, other than that they were mathematics majors who recently 
completed a linear algebra course. Potentially large differences in participants’ levels of 
domain knowledge or mathematical experience could perhaps have influenced their judge‑
ments, which we might expect to suppress observed agreement levels. Future studies could 
productively investigate whether individual differences influence the type and nature of 
students’ (and mathematicians’) judgements of explanatoriness.

Moreover, Explanations 1–10 might not have been sensitive enough to capture differ‑
ences in participants’ perceptions as they were not systematically designed to test vari‑
ations. Systematically varying aspects of explanations might be worthwhile in future 
investigations in order to test factors that characterise explanation quality in mathematics. 
Furthermore, future studies could benefit from increasing the relatively small sample size 
used in our investigation.

7.3 � Validity

Although we found strong evidence of the reliability of mathematicians’ and undergradu‑
ates’ judgements about explanation quality, a question remains about whether those expla‑
nations which our participants perceived to be the most explanatory are actually the most 
explanatory. Answering this question requires us to—in a top-down fashion—indepen‑
dently specify what explanatoriness consists in.
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As noted in Section 2, philosophers typically adopt either ontic or epistemic accounts 
of mathematical explanation. What would theorists from each of these camps think about 
the explanations in our corpus? For ontic theorists, this seems a difficult question. As 
D’Alessandro (2020) noted, ontic theorists have typically assumed that explanations in 
mathematics must involve proofs, that the only things which can be explanatory in math‑
ematics are explanatory proofs. D’Alessandro (2020) critiqued this view, which he labelled 
‘proof chauvinism’. Clearly, the explanations in our corpus are not proofs, so it is diffi‑
cult to know what Steiner (1978) or Kitcher (1984) would make of them.4 One approach 
would be for ontic theorists to deny that our explanations are in fact explanations, and per‑
haps instead to consider them to be mere motivations of the vector space definition. While 
this approach would have the advantage of being consistent with their conceptualisation 
of explanation, it has the significant disadvantage of being inconsistent with mathematical 
practice. The mathematicians who generated the explanations in our corpus were asked 
“what explanation would you give the student?” They were not asked how they would 
“motivate the definition.” If we wish our conceptions of mathematical explanation to be 
consistent with mathematical practice, they ought to be applicable to the kinds of things 
mathematicians produce when asked to explain.

Epistemic theorists have an easier time when considering the validity of our partici‑
pants’ explanatory judgements. If explanations are defined to be those things which gen‑
erate understanding, then better explanations are going to be those explanations which 
generate more understanding. Wittwer and Renkl’s (2008) framework provides a top-down 
method for us to consider the extent to which each of the explanations in our corpus is 
likely to generate understanding for a typical undergraduate, and therefore allows us to 
interrogate the validity of our participants’ judgements.

We consider each of Wittwer and Renkl’s (2008) criteria in turn. Recall that each expla‑
nation is given in the Appendix. 

1.	 Explanations should take account of learners’ existing knowledge. It seems clear that 
the lowest scoring explanation, Explanation 2, falls foul of this criterion. Explanation 2 
references Abelian groups, fields, enrichments, rings, and algebras over a ring. Given the 
context specified in the prompt—an undergraduate taking an introductory linear algebra 
course—it seems very unlikely that the explanation’s recipient would be familiar with 
many of these more advanced mathematical concepts. In a similar vein, Explanation 9, 
referring to the theory of PDEs, does not score highly in the ranking.

2.	 Explanations should focus on concepts and principles. A vector space is an abstract 
notion that captures a range of mathematical objects that all behave in the same way, in 
the sense that if a property follows from the vector space axioms, then all vector spaces 
will have that property. This extraction of common mathematical structure seems a cen‑
tral concept/principle which accounts for why mathematicians are interested in vector 
spaces. Notably, this idea is entirely absent from Explanation 2, is not clearly included 
in Explanation 10, and is not clearly expressed in Explanations 8 and 9. These four 
explanations were rated particularly poorly by our participants. In contrast, all the other 
explanations reference this key concept/principle in one form or another. Explanations 
1, 4, 5, and 6—all high scoring for both groups—are extremely explicit about this. For 

4  As D’Alessandro (2020) noted, Lange’s (2014) view acknowledged that theorems as well as proofs could 
be explanatory. Nevertheless, D’Alessandro (2020) still considered Lange (2014) to be a proof chauvinist, 
on account of his view that theorems are explanatory by virtue of them having a certain kind of proof.
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example, Explanation 5 included the line “by proving (or knowing) something about a 
vector space we know it about all of those examples [discussed earlier in the explana‑
tion].”

3.	 Explanations should be integrated into the learner’s ongoing cognitive activities. Good 
explanations encourage active engagement with the recipient. Interestingly, Explanations 
1, 4, and 5—three of the high-scoring explanations for both groups—all included some 
kind of interactive element. For example, Explanation 4 involved rhetorical questions 
(“Now you might ask in what ways are [real polynomials and ℝn ] similar?”), and Expla‑
nation 1 involved multiple possibilities for the student receiving the explanation to con‑
tribute (“Is W a vector space? Let’s check: closed under addition—yes.”). Explanation 
5 emphasised how the explanation would be contingent on how the student responded 
(“I would [ … ] point out the common properties. Once the student is happy with those, 
we would say that “something” with all of those properties is called a vector space.”). In 
contrast, the lowest scoring explanations did not seem to require the student to interact 
with the explanation or the explainer at all.

4.	 Explanations should not replace learners’ knowledge-construction activities. The final 
criterion proposed by Wittwer and Renkl (2008) concerned when it would be preferable 
for instructors to withhold explanations from students, and so does not directly apply to 
the context specified in our vignette.

In sum, these considerations suggest that the judgements made by the mathematicians and 
undergraduates in our study were not inconsistent with Wittwer and Renkl’s (2008) frame‑
work. Indeed, in some important ways, the higher-scoring explanations seemed to meet 
the criteria, and the lower-scoring explanations seemed not to. However, these discussions 
represent, at best, highly indirect evidence of validity. Future studies which directly com‑
pare explanatory judgements of different explanations with the extent to which those expla‑
nations generate student understanding would be extremely worthwhile. If comparative 
judgement could be established as both a valid and reliable way of assessing the quality of 
instructional explanations in mathematics, the method could be harnessed to help improve 
both classroom instruction and instructional materials such as textbooks and lecture notes.

7.4 � Developing explanatory skills

Supposing that mathematicians are able to reliably and validly judge the quality of math‑
ematical explanations, this raises a puzzling question. Why do some mathematicians pro‑
duce low-quality explanations when prompted? Consider Explanation 2, the lowest-ranked 
explanation. Of the 62 comparisons made by mathematicians involving Explanation 2, it 
‘lost’ 92% (in the sense that the explanation it was paired with was deemed the better in 
92% of pairings). Given this level of consensus about its low quality, why did the math‑
ematician who wrote it consider it to be appropriate?

One answer might be to suggest that producing high-quality explanations may be con‑
siderably harder than assessing the quality of explanations. Analogously, it is possible for 
critics to assess the quality of novels, even though they may not be able to produce a novel 
themselves. If this is right, then it raises the question of how teachers and lecturers can be 
helped to produce better explanations.

We believe that the type of comparative judgement session that we used here for research 
purposes could serve as a starting point for productive form of professional development for 
teachers and lecturers. Comparison has been shown to be an effective pedagogical strategy in 
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other contexts. Rittle-Johnson et  al. (2020) recently reviewed the evidence concerning how 
comparing different problem-solving strategies for the same mathematical problem can sup‑
port students’ learning (see also Alfieri et al.’s (2013) meta-analysis). It is typically suggested 
that promotion of analogical reasoning is the mechanism behind this effect: by comparing two 
examples, students are able to create an analogy between them, which helps them to attend to 
structural similarities and differences. This, in turn, may facilitate transfer to new situations 
(Gentner et al., 2003; Gick & Holyoak, 1983). If this is correct, then this mechanism would 
seem to be as applicable in the context of teachers and lecturers comparing different instruc‑
tional explanations (along with explicating and reflecting on their differences) as it is in the 
context of students comparing different problem-solving strategies.

If comparative judgement were to be harnessed to develop professional development mate‑
rials for teachers and lecturers who want to develop their ability to produce instructional expla‑
nations, then there is a large literature on which to draw. For instance, Rittle-Johnson et al. 
(2020) pointed out that including various instructional supports, such as presenting examples 
side by side (as in our study), including cues to guide attention to important similarities and 
differences, and including self-explanation prompts at relevant points, all facilitate learning 
from comparison.

7.5 � Implications for the philosophical accounts of mathematical explanation

Finally, we briefly comment on the implications of our results for philosophers interested in 
mathematical explanation. We first re-emphasise that all the mathematicians in these stud‑
ies were either willing to produce non-proof explanations, or to compare non-proof explana‑
tions. It therefore seems clear that any account of explanation in mathematics—or at least any 
account that wishes to remain faithful to the practices of mathematicians—must, as argued 
by D’Alessandro (2020), be able to account for explanations which are not proofs. Our view 
is that epistemic accounts such as Delarivière et al.’s (2017) and Inglis and Mejía-Ramos’s 
(2021) can do this with relative ease. In contrast, the challenge for ontic accounts seems much 
greater.

More generally, the evidence presented here suggests that mathematicians and undergradu‑
ates have a shared conception of what constitutes an effective explanation in mathematics, at 
least in the context of these rather simple explanations. Hence, this finding serves as founda‑
tion for designing and undertaking further investigations. Future work should explore whether 
this remains the case when different types of explanations, including proofs, are considered. If 
it does, then we see the goal of philosophical accounts of mathematical explanation as being 
to produce an accurate description of what this shared conception actually is. Perhaps, this 
will necessitate a consideration of distinct taxonomic groups (such as definitions, theorems, 
proofs, problem-solving procedures) within which the classification of mathematical explana‑
tions with respect to their quality can be achieved. Having a method available—comparative 
judgement—which seems to be able to reliably measure mathematicians’ explanatory judge‑
ments will allow existing and future accounts to be tested empirically.
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Appendix: Corpus of explanations

Explanation 1

I would say that in its abstract form a vector space is a concept that generalises physical 
entities we know as lines (ℝ1) , planes (ℝ2) , and 3-d space (ℝ3) . Considering these as sets 
of vectors, with the usual addition and multiplication by a real constant, we can confirm 
that they satisfy all ten properties of a vector space. There are a variety of spaces which are 
not geometrically recognisable as vector spaces, but which have an analogous structure. 
For example: Consider V—the set of all 2 × 2 matrices with real entries, with the standard 
addition and scalar multiplication.

Hence, V is closed under addition (satisfies the first property of a vector space). Also, V 
is closed under scalar multiplication (check), and all other eight properties. Hence, V is a 
vector space. Now, consider W—the set of all 2 × 2 matrices with integer entries, with the 
standard addition and scalar multiplication. Is W a vector space? Let’s check: closed under 
addition—yes. There is a zero vector:

Is it closed under scalar multiplication? No, it is not. Here’s a counterexample:

Hence, W is not a vector space. Working with a vector space ensures that you have a ‘nice’ 
structure and allows for efficient ways of reaching conclusions. For example, you can con‑
ceptualise the set of solutions of a homogeneous linear ordinary differential equation as a 
vector space of functions.

Explanation 2

I’d say that a vector space is first and foremost an Abelian group. It also has the action of 
a field. A vector space is an enrichment of an Abelian group. There are two ways to enrich 
an Abelian group (V ,+) : one way is by making it a ring (V ,+, ⋅) , another way is by making 
it a vector space over a field F. Both of those enrichments can be enriched even further to 
become an algebra over a ring.

[

a1 b1
c1 d1

]

+

[

a2 b2
c2 d2

]

=

[

a1 + a2 b1 + b2
c1 + c2 d1 + d2

]

∈ V

[

0 0

0 0

]

1

2

[

2 − 4

6 1

]

=

[

1 − 2

3
1

2

]

∉ W.
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Explanation 3

I would like to avail myself to very simple but illuminating examples, and highlight 
their similarities, despite the difference in mathematical context: 

1.	 The real line, with the usual addition, and multiplication by a real constant.
2.	 The 2-dimensional Cartesian plane, with the usual vector addition, and multiplication 

by a real number.
3.	 Increase the dimension n, and talk about ℝn.
4.	 Let A be a given set. Consider the power set of A and the field ℤ2 ∶= {0, 1} , with vec‑

tor addition as disjoint union, and scalar multiplication defined by the two equations 
(1) 1 ⋅ X ∶= X and (2) 0 ⋅ X ∶= � for all subsets X of A. Then (P(A), ∪̇, ⋅) forms a vector 
space.

The similarities to be highlighted include the (carrier) set V which is the vector space, 
the vector addition, and the scalar multiplication.

Then comes the set of axioms to be satisfied.

Explanation 4

I would say “so far, most of the math you’ve learned is about ℝn . As you probably 
understand, the axioms that define an abstract vector space apply to ℝn . Now we 
want to understand what other mathematical objects satisfy those same axioms. For 
instance, the collection of all polynomials with real coefficients and degree less than 
or equal to n also satisfies those same axioms, and therefore there are ways in which 
studying these polynomials is the same as studying ℝn.

Now you might ask in what ways are they similar? Well, that’s also the goal of 
studying abstract vector spaces—what are the properties of ℝn that rely only on the 
axiomatic properties of being a vector space? For instance, one such property is hav‑
ing a collection of vectors (basis vectors) such that any element of ℝn can be written 
as a linear combination of the vectors in this collection. Since that property of ℝn only 
relies on the axiomatic properties of being a vector space, any other abstract vector 
space (such as the collection of all polynomials with real coefficients and degree less 
than or equal to n) must have that same property, and in that way is similar to ℝn.”
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Explanation 5

I would give some examples, ℝ2 and ℝ3 , then the space of polynomials of degree less 
than or equal to n, and point out the common properties. Once the student is happy with 
those, we would say that “something” with all of those properties is called a vector 
space. By proving (or knowing) something about a vector space, we know it about all of 
those examples. The use of analogy and examples in mathematics is really important.

Explanation 6

I would say that a vector space is just a collection of objects, together with a way to 
combine those objects, and a list of rules that govern how we combine them. We see 
examples of this from the moment we first learn about addition and multiplication of 
numbers. We learn how to add and multiply numbers, and then we learn that there are 
certain rules that addition and multiplication of numbers satisfy. Then we eventually 
learn about functions and that there are ways to combine those functions. We can add 
them, multiply them, or compose them. We can also multiply them by numbers. Then 
we learn that there are certain rules that these operations satisfy. Some of these are 
the same rules that we saw with addition and multiplication of numbers. We have also 
leaned about vectors and matrices, and that there are similar operations that we can do 
with these, such as addition and various forms of multiplication, including multiplying 
by numbers. Then we learned that these operations satisfy many of the same rules that 
we observed with operations on numbers and functions.

The purpose of the abstract notion of a vector space is to extract all of these com‑
mon concepts, objects with operations that satisfy a certain set of rules, and then we 
use these rules as a foundation for proving other things, things that must be true for 
all objects with operations that satisfy this list of rules. Then we explore other things 
in mathematics and in the world around us that share these same features, objects with 
operations that satisfy the same list of rules. When we find something that matches 
these features, we know that they automatically must satisfy all of the extra properties 
and theorems that we proved about abstract vector spaces, without the need to prove 
them again in this specific instance.

Explanation 7

I would say that a vector in 2-dimensional space, such as (1,  2), records a movement 
from a starting point to an ending point. We have a special point, which we call the 
origin, with coordinates (0, 0). The vector (1, 2) is like an arrow starting at the origin, 
and going to its end point, which is one unit right horizontally, and 2 units up vertically 
from the origin. Vectors are often used to describe the force applied to an object, such 
as the force being applied by gravity.

It is useful to add vectors together. Take (3,−5) and (−1, 2) . Each of these corre‑
sponds to an arrow starting at the origin. To find the sum (3,−4) + (−1, 2) , we slide the 
(−1, 2) arrow so that its starting point is now at the ending point of the (3,−4) arrow 
(which changing its direction or length). We now look at the new ending point of the 
(−1, 2) arrow, and we see that it is equal to (2,−2) , which is (3 + (−1), (−4) + 2) . One 
reason for adding vectors in this way is that it shows how forces compound on an object. 
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So if gravity is applying a vector of (3,−5) to an object, and an engine is applying a vec‑
tor of (−1, 2) to the same object, the combined force that the object feels is (−2, 2).

We can also multiply vectors by numbers, so 2 times (−1, 2) is just (2 × (−1), 2 × 2) = 
(−2, 4) . This corresponds to the force becoming twice as large.

When we work in an abstract vector space we are still thinking about vectors, addition, 
and multiplication. But now our vectors do not have explicit coordinates. So instead of 
talking about vectors with coordinates (−1, 2) and (3, 4), we might just have abstract vec‑
tors, which we label with something like u and v. Instead of adding and multiplying coordi‑
nates, we just have rules that tell us what the abstract vector u + v is.

The reason we care about abstract vector spaces is that by studying them, we can study 
all concrete vector spaces simultaneously, and learn how they behave.

Explanation 8

Here’s what I would do. Firstly start with the concrete case of two dimensions. Then (using 
coordinates) talk about length and direction of vectors based at 0 and the properties of scal‑
ing a vector. Then explain these notions are independent of the origin. Then look at three 
dimensions and then begin to abstract these notions as being dimension independent. Now 
to addition. This is like reading a map: go this far in this direction (length and direction) 
and then this far in this other direction.

I would then show how this links up with coordinates in 2D and 3D before abstracting 
away from coordinates. Always remember that vectors add like friendly dogs. Nose to tail!

Explanation 9

I would give geometric explanations and analogies; and show with pictures how the geo‑
metric explanations works for all vectors.

Then I would say that the idea of a vector space makes use of the properties common 
for all vectors, it allows the use of geometric ideas, images or pictures for such quantities 
as solutions to a (linear) differential equation; the notion of an abstract vector space makes 
much easier to understand, for instance, the properties of solutions to a PDE (and most 
explanations of nature are made with PDEs...)

Explanation 10

I would say that it is the generalization of our physical three-dimensional space. I would 
point at a spot in the room where two walls and the ceiling meet and explain that any vec‑
tor in our space is a linear combination of these three (linearly) independent vectors. An 
abstract vector space would be a proper notion to identify a structure similar to our space 
(in arbitrary dimensions).
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