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Abstract
The aim of this study is to develop a descriptive phase model for problem-posing activities 
based on structured situations. For this purpose, 36 task-based interviews with pre-service 
primary and secondary mathematics teachers working in pairs who were given two struc-
tured problem-posing situations were conducted. Through an inductive-deductive category 
development, five types of activities (situation analysis, variation, generation, problem-
solving, evaluation) were identified. These activities were coded in so-called episodes, 
allowing time-covering analyses of the observed processes. Recurring transitions between 
these episodes were observed, through which a descriptive phase model was derived. In 
addition, coding of the developed episode types was validated for its interrater agreement.
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1  Introduction

In re mathematica ars proponendi quaestionem pluris facienda est quam solvendi. 
(Cantor, 1867, p. 26)
Transl.: In mathematics, the art of posing a question is of greater value than solving 
it.

In his statement, Cantor emphasizes the importance of the ability to pose substantial 
questions within mathematics. In fact, problem posing is considered a central activity of 
mathematics (Hadamard, 1945; Halmos, 1980), and at the latest since the 1980s (Brown & 
Walter, 1983; Butts, 1980; Kilpatrick, 1987), it is being investigated with growing interest 
by mathematics education researchers. Since the 1990s, it has been widely used to identify 
or assess mathematical creativity and abilities (Silver, 1994, 1997; Singer & Voica, 2015; 
Van Harpen & Sriraman, 2013; Yuan & Sriraman, 2011). Silver (1997, p. 76) emphasizes 
that to grasp such constructs, both products and processes of problem-posing activities can 
be considered. However, a strong product orientation within research on  problem posing 
is noticeable (Bonotto, 2013; Singer et al., 2017; Van Harpen & Sriraman, 2013); that is, 
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studies aiming to assess mathematical creativity, for example, often focus on the posed 
problems rather than the processes that led to them. This is noteworthy, since processes are 
central to educational research. As Freudenthal (1991) states:

[T]he use of and the emphasis on processes is a didactical principle. Indeed, didac-
tics itself is concerned with processes. Most educational research, however, and 
almost all of it that is based on or related to empirical evidence, focuses on states (or 
time sequences of states when education is to be viewed as development). States are 
products of previous processes. As a matter of fact, products of learning are more 
easily accessible to observation and analysis than are learning processes which, on 
the one hand, explains why researchers prefer to deal with states (or sequences of 
states), and on the other hand why much of this educational research is didactically 
pointless. (p. 87, emphases in original)

Although there are studies considering problem-posing processes (Headrick et al., 2020; 
Ponte & Henriques, 2013), general knowledge about learners’ problem-posing processes 
remains limited (Cai & Leikin, 2020). Only a few studies are dedicated to the development 
of a phase model for problem posing (Cruz, 2006; Pelczer & Gamboa, 2009). Those mod-
els still hold the potential for sufficient generalization and validation. This knowledge could 
help to develop a more sophisticated process-oriented perspective on problem posing. The 
few studies that examine the general process of problem posing (Koichu & Kontorovich, 
2013; Patáková, 2014; Pelczer & Rodríguez, 2011) may benefit from a validated phase 
model. Such a model may also be useful for the effective educational use of problem pos-
ing in the classroom. This study aims to develop a valid and reliable category system that 
allows analyzing problem-posing processes. These kinds of conceptual frameworks play 
a central role in mathematics education research as they enable a better understanding of 
thinking processes (Lester, 2005; Schoenfeld, 2000).

2 � Theoretical background

2.1 � Problem posing

There are two widespread definitions of problem posing which are used or referred to in 
most studies on the topic. As a first definition, Silver (1994, p. 19) describes problem pos-
ing as the generation of new problems and reformulation of given problems. Silver con-
tinues that both activities can occur before, during, or after a problem-solving process. As 
a second definition, Stoyanova and Ellerton (1996, p. 218) refer to problem posing as the 
“process by which, on the basis of mathematical experience, students construct personal 
interpretations of concrete situations and formulate them as meaningful mathematical 
problems.” In the following, we adopt the definition of Silver (1994) as the differentiation 
between the activities of generation and reformulation is beneficial for identifying differ-
ent activities in problem-posing processes. However, both definitions are not disjunctive or 
contradictory but describe equivalent activities.

In both definitions, the term problem is used for any kind of mathematical task, 
whether it is a routine or a non-routine problem (Pólya, 1966). For the former, “one has 
ready access to a solution schema” (Schoenfeld, 1985b, p. 74), and for the latter, one 
has no access to a solution schema. Thus, problem posing can lead to any kind of task 
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on the spectrum between routine and non-routine problems (Baumanns & Rott, 2019; 
Baumanns & Rott, 2021a).

Stoyanova and Ellerton (1996) distinguish between free, semi-structured, and struc-
tured problem-posing situations depending on the degree of structure. A situation is an 
ill-structured problem in the sense that its goal cannot be determined by all given ele-
ments and relationships (Stoyanova, 1997). Because this study focuses on structured 
situations and Baumanns and Rott (2021a) encountered difficulties in distinguishing free 
and semi-structured situations, in this article, we distinguish between unstructured and 
structured situations. Unstructured situations form a spectrum of situations without an 
initial problem. The given information of these situations reaches from nearly none (see 
Table 1, situation 1) to open situations with numerous given information, the structure 
of which must be explored by using mathematical knowledge and mathematical con-
cepts (see Table 1, situation 2). In structured situations, people are asked to pose fur-
ther problems based on a specific problem, for example, by varying its conditions (see 
Table 1, situation 3). The phase model developed in this article aims to describe prob-
lem-posing activities that are induced by situations like those in Table 1. In particular, 
the model is developed using structured situations.

Table 1    Unstructured and structured problem-posing situations

253The process of problem posing: development of a descriptive…



1 3

2.2 � Process of problem posing—state of research

Because products may be more accessible by analysis than processes (Freudenthal, 1991), 
most problem-posing studies focus on posed problems (Bicer et  al., 2020; Van Harpen 
& Presmeg, 2013; Yuan & Sriraman, 2011). However, consideration of the processes 
increases in recent studies (Cai & Leikin, 2020; Crespo & Harper, 2020; Headrick et al., 
2020; Koichu & Kontorovich, 2013; Patáková, 2014; Pelczer & Rodríguez, 2011). Ponte 
and Henriques (2013), for example, examine the problem-posing process in investiga-
tion tasks among university students and found that problem posing and problem-solving 
complement each other in generalizing or specifying conjectures to obtain more general 
knowledge about the mathematics contents. Christou et al. (2005) describe four thinking 
processes that occur within problem posing, namely editing, selecting, comprehending/
organizing, and translating quantitative information. They found the most able students are 
characterized through editing and selecting processes. However, compared to the present 
study, these activities do not tend to describe problem-posing processes by phases. Instead, 
Christou et al. (2005) intend to characterize thinking processes in problem posing. Cifarelli 
and Cai (2005) include problem posing in their model to describe the structure of math-
ematical exploration in open-ended problem situations. They identify a recursive process in 
which reflection on a problem’s solutions serves as the source of new problems.

The studies cited above differ from the present study as follows: They describe and 
analyze only individual processes, they describe the problem-posing process in terms 
of thinking processes rather than phases, or they consider problem-posing processes as 
a sub-phase of a superordinate process. However, there is a lack of studies that attempt 
to derive a general, descriptive phase model of observed problem-posing processes 
themselves from numerous processes. For problem-solving research, the analysis of pro-
cesses through phase models has been established at least since Pólya’s (1945) and Sch-
oenfeld’s (1985b) seminal works. While their models are normative, which means they 
function as advice on how to solve problems, newer empirical studies on the process of 
problem-solving develop and investigate descriptive models, which means they portray 
how problems are actually solved by participants (Artzt & Armour-Thomas, 1992; Rott 
et al., 2021; Yimer & Ellerton, 2009). This study also focuses on descriptive models.

Some researchers interpret problem posing as a problem-solving activity (Arıkan 
& Ünal, 2015; Kontorovich et  al., 2012; Silver, 1995), and there are several established 
models of problem-solving processes (e.g., Mason et  al., 1982; Pólya, 1945). Therefore, 
it is a reasonable question whether a separate phase model for problem posing is needed. 
From the observations of problem-solving and problem-posing activities within the present 
study, we share the argument by Pelczer and Gamboa (2009) that the cognitive processes 
involved in problem posing are of their own nature and cannot be adequately described by 
the phase models of problem solving. For problem posing, Cai et al. (2015) state, “there 
is not yet a general problem-posing analogue to well-established general frameworks for 
problem solving such as Polya’s (1957) four steps” (p. 14).

To find existing research on this topic, we conducted a systematic literature review 
(Baumanns & Rott, 2021a, 2021b). This review encompassed articles from high-ranked 
journals of mathematics education, the Web of Science, PME proceedings, the 2013 and 
2020 special issues in Educational Studies of Mathematics, the 2020 special issue in 
International Journal of Educational Research, and two edited books on problem posing 
(Felmer et al., 2016; Singer et al., 2015). From all reviewed articles, three were dedicated 
to the development of general phases in problem posing similarly to the present study.
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Cruz (2006) postulates a phase model based on a training program for teachers (see 
Fig. 1). For this reason, this phase model is preceded by educative needs and goals. Once 
a concrete teaching goal has been set (1), the episode type of problem formulating begins 
(2). This episode has a problem as its output which is then solved (3). If it cannot be solved, 
the problem may have to be reformulated (4). A solvable problem is further developed 
in the episode type problem improving (5). The complexity of the problem is adapted to 
the learning group and compared with the goal (6 and 7). If the comparison shows that 
the problem is not suitable, either further changes are made to the task (8) or the task is 
rejected as unsuitable.

Pelczer and Gamboa (2009) distinguish five phases—setup, transformation, formula-
tion, evaluation, and final assessment—based on the analysis of problem-posing processes 
in unstructured situations. The setup includes the definition of the mathematical context 
of a situation and the reflection on the knowledge needed to understand the situation. This 
assessment serves as a starting point for the subsequent process. During the transforma-
tion, the conditions of a problem are analyzed, and possibilities for modification are identi-
fied, reflected, and executed. In the formulation, all activities related to the formulation of 
a task are summarized. This includes the consideration of different possible formulations 
of the problem as well as an evaluation of these formulations. In the evaluation, a posed 
problem is assessed in terms of various aspects, for example, whether it fulfills the initial 
conditions or further modifications are needed. In the final assessment, the process of pos-
ing a problem is reflected upon, and the problem itself is evaluated, for example, in terms 
of difficulty and interest. In their study, Pelczer and Gamboa (2009) compare experts’ and 
novices’ problem-posing processes, identifying different trajectories, that is, transitions 
between the stages. While experts more often go through recursive processes, processes of 
novices are more linear and often occur without transformation and final assessment.

Koichu and Kontorovich (2013) developed four stages, observed in the context of two 
successful problem-posing activities: (1) In the warming-up phase, typical problems spon-
taneously associated with the given situation are posed that serve as a starting point. (2) In 
the phase searching for an interesting mathematical phenomenon, participants concentrate 
on selected aspects of the given task to identify interesting aspects that can be used for 
forthcoming problems. (3) Since the intention is to develop interesting problem formula-
tions, in the phase hiding the problem-posing process in the problem formulation, the pos-
ers try to disguise to the potential solvers in which way the task was created. (4) Finally, in 
the reviewing phase, the posers evaluate the problems based on individual criteria such as 
the degree of difficulty or appropriateness for a specific target group.

In general, Cruz’ (2006) phase model does not allow for sufficient generalization to 
processes of sample groups that do not pursue school learning goals such as students or 
mathematicians. The model by Pelczer and Gamboa (2009) has the potential to verify the 
validity by checking objective coding. The stages by Koichu and Kontorovich (2013) are 
developed on a small sample of two people and therefore need to be tested for applicability 
to larger sample groups. All these potentials will be addressed in this article. In addition, 

Fig. 1   Phase model of problem 
posing by Cruz (2006)
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although the models presented have certain similarities, they also show numerous charac-
teristic differences. In comparison, phase models for problem-solving (Artzt & Armour-
Thomas, 1992; Pólya, 1945; Rott et al., 2021; Schoenfeld, 1985b; Yimer & Ellerton, 2009) 
share a very similar core structure. Thus, there is a conceptual and empirical need for a 
generally applicable model for problem-posing research.

The need for developing a phase model for problem posing is, furthermore, based on 
our general observation that the quality of the posed problems did not always match the 
quality of the observed activity. In our opinion, it is therefore not enough to consider only 
the products when, for example, problem posing is used to assess mathematical creativity. 
Furthermore, developing a process-oriented framework serves as research for discussing 
and analyzing these processes (Fernandez et al., 1994, p. 196).

2.3 � Research questions

The research goal of this study is to develop a descriptive phase model for problem-posing 
activities based on structured situations. The lack of phase models constitutes a desidera-
tum from which the following research questions emerge:

(1)	 Which recurring and distinguishable activities can be identified when dealing with 
structured problem-posing situations?

(2)	 What is the general structure (i.e., sequence of distinguishable activities) of the 
observed processes from which a descriptive phase model may be derived?

The goal of these research questions is to develop a descriptive phase model that allows 
analyzing problem-posing processes. To evaluate the quality of this model, we draw on the 
criteria by Schoenfeld (2000) that can be used for evaluating models in mathematics edu-
cation. As this type of coding is highly inferential (Rott et al., 2021; Schoenfeld, 1985b), 
special emphasis is given to interrater agreement.

3 � The study

3.1 � Data collection

The present study is a generative study that aims to “generate new observation categories 
and new elements of a theoretical model in the form of descriptions of mental structures 
or processes that explain the data” (Clement, 2000, p. 557). For such studies, a less struc-
tured, qualitative approach is appropriate that is open to unexpected findings (Döring & 
Bortz, 2016, p. 192), such as task-based interviews. Task-based interviews have particu-
larly been used in problem-solving research to gain insights into the cognitive processes 
of participants (Konrad, 2010, p. 482). The interviews were conducted in pairs to create a 
more natural communication situation and eliminate the constructed pressure to produce 
something mathematical for the researcher (Schoenfeld, 1985a, p. 178). Johnson and John-
son (1999) also underline that cooperative learning groups such as pairs are “windows into 
students’ minds” (p. 213). For this reason, the interviewer avoided intervening in the inter-
action process.

The interviews were conducted with 64 pre-service primary and secondary mathemat-
ics teachers (PST). The PSTs worked in pairs on one of two structured problem-posing 
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situations, either (A) Nim game or (B) Number pyramid, which are presented in Table 2. 
The participants were informed that both problem solving and problem posing were cen-
tral. After the initial problem solving, both situations stated: “Based on this task, pose as 
many mathematical tasks as possible.” This open and restriction-free question should stim-
ulate a creative process. A common question of understanding from participants was, using 
the example of situation (A), whether they should now pose further Nim games or were 
also allowed to depart from them. This decision was left to the PSTs’ creativity.

In total, 15 processes of situation (A) and 17 processes of situation (B), ranging from 
9 to 25  min, have been recorded and analyzed. The processes ended when no ideas for 
further problems emerged from the participants. In total, 7 h and 46 min of video material 
were recorded and analyzed. Thus, the processes had an average length of 14.5 min. Four 
pairs of PSTs each were in the same room under authentic university seminar conditions. A 
camera was positioned opposite the pairs capturing all the participants’ actions. To accus-
tom them to natural communication in front of the camera, short puzzles were performed 
before problem posing.

3.2 � Data analysis

For data analysis, we adapted Schoenfeld’s (1985b) verbal protocol analysis, originally 
used to analyze problem-solving processes. This method is an event-based sampling. Com-
pared to time-based sampling, the processes are not divided into fixed time segments (e.g., 
30  s), which are then coded. Instead, new codes are set when the participants’ behavior 
changes. This method has two steps: At first, the recorded interviews are segmented into 
“macroscopic chunks of consistent behavior” (Schoenfeld, 1985b, p. 292) that are called 
episodes in which “an individual or a problem-solving group is engaged in one large task 
[...] or closely related body of tasks in the service of the same goal” (Schoenfeld, 1985b, p. 
292). In a second step, the episodes are then characterized in terms of content.

Table 2    Structured problem-posing situations used in this study

Situation
(

A)
Nim game 
There are 20 stones on the table. Two players A and B may 

alternately remove one or two stones from the table. 
Whoever makes the last move wins. Can player A, who 

starts, win safely? Based on this task, pose as many 

mathematical tasks as possible. 

(cf. Schupp, 2002, p. 92) 

(
B)

Number pyramid
In the following number pyramid, which number is in 8

th
place from the right in the 

67
th

line? 

Based on this task, pose as many mathematical tasks as possible. 

(cf. Stoyanova, 1997, p. 70) 
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To answer the first research question, verbal protocol analyses were employed in terms 
of inductive category development (Mayring, 2014, pp. 79–87), meaning that the episode 
types were developed data-derived. The descriptions of the episode types were addition-
ally concretized in a theory-based manner. For that, the above-mentioned conceptual and 
empirical findings of problem-posing research (Cruz, 2006; Pelczer & Gamboa, 2009; Sil-
ver, 1994), as well as findings of research on phase models in problem  solving (Pólya, 
1945; Schoenfeld, 1985b), were used. This procedure aims to develop exclusive and 
exhaustive codes (Cohen, 1960), that is, episode types, that can be assigned to the observed 
problem-posing processes.

To answer the second research question, recurring sequences of the episode types were 
identified to develop a general phase model. Both general sequences in the observed pro-
cesses, as well as conceptual insights about problem-posing activities in general, were con-
sidered. To analyze the interrater agreement, an independent second coder was trained. At 
first, the second coder was given the coding manual and a process to code without further 
comment. For this first coding, cases of doubt were discussed within 2 h of training. After 
this training, the second coder analyzed about 2 h and 23 min of the total video material 
of 7 h and 46 min which means 10 randomly chosen processes out of 32. Thus, the second 
coder analyzed about 30.7% of the total video material. Finally, cases of doubt of coding 
were discussed via consensual validation. These codings were used to calculate the inter-
rater agreement to the author’s coding.

The interrater agreement was calculated with the EasyDIAg algorithm by Holle and 
Rein (2015). EasyDIAg provides an algorithm that converts two codes of an event-based 
sampling data set into an agreement table from which Cohen’s kappa (Cohen, 1960) is cal-
culated through an iterative proportional fitting algorithm. Furthermore, in contrast to the 
classical Cohen’s kappa, EasyDIAg provides an interrater agreement score for each value 
of a category. EasyDIAg considers raters’ agreement on segmentation and categorization 
as well as the temporal overlap of the raters’ annotations. This makes this algorithm par-
ticularly suitable for assessing the interrater agreement of the event-based sampling data 
set at hand. For the agreement, we used an overlap criterion of 60% as suggested by Holle 
and Rein (2015). In the online supplement, we provide an example analysis of a process 
that was coded by the authors and the second rater followed by the calculation of the inter-
rater agreement in this manner.

4 � Results

First, to retrace the inductive-deductive category development, the problem-posing process 
of the Nim game by Theresa and Ugur will be described in order to refer back to it when 
describing the developed episode types. The individual episodes are described without 
labelling them. The given periods indicate the minutes and seconds (mm:ss) of the respec-
tive episodes. The recorded time starts with the first attempt at posing problems after the 
initial problem has been solved. Compared to other participants, Theresa and Ugur get the 
solution of the Nim game quickly and without assistance.

Episode 1 (00:00–00:49): Theresa and Ugur first read the task that should initiate the 
problem posing. Ugur considers whether new tasks should now be posed in relation to the 
solution strategy of working backwards. Theresa considers whether the stones should be 
the focus of new tasks. Afterward, both reflect again on their solution strategy and consider 
to what extent they can use it for new tasks.
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Episode 2 (00:49–02:14): Then other games like Connect Four or Tic-tac-toe, which 
may have a winning strategy similar to the Nim game, are collected.

Episode 3 (02:14–05:50): Both participants want to figure out whether there is a 
winning strategy for Tic-tac-toe. After about 3 min, they assume that an optimal game 
always results in a draw. They return to the Nim game and ponder whether player B also 
has a chance to win safely. They conclude that player B can only win if player A does 
not make the first move according to the winning strategy.

Episode 4 (05:50–07:43): They pose the task of how many stones are necessary for 
player B to win safely. Afterward, the text of the task is formulated. They also ask how 
many moves player A needs in order to win.

Episode 5 (07:43–09:03): The last-mentioned question of episode 4 is solved and 
also generalized. Ugur says, you find the number of moves of player A by going from 
the number of stones to the next higher number divisible by three, and then dividing this 
number by three.

Episode 6 (09:03–09:44): Ugur suggests increasing the number of stones that can 
be removed from the table. Specifically, he suggests that one to three stones can be 
removed. Meanwhile, Theresa writes down these ideas.

Episode 7 (09:44–10:32): Theresa writes down the previously posed problems with-
out working on the content of the formulations.

Episode 8 (10:32–13:48): Both play the variation of the Nim game raised in episode 
6. They express that they want to develop a winning strategy for this variation. They 
quickly realize that player B can safely win the game since multiples of four are now 
winning numbers and the 20 stones that are on the table at the beginning are already 
divisible by four. They validate this strategy afterward. At the last minute, the newly 
posed variation is also evaluated as exciting.

Episode 9 (13:48–14:13): Ugur wants to generalize the game further and poses the 
task of how to win when the players can remove one to n stones. Theresa asks Ugur if 
his goal is a general formula.

Episode 10 (14:13–15:48): This task is then solved by Ugur by transferring the struc-
ture of the solution of the initial problem to the generalization. Ugur formulates that if 
you are allowed to remove one to n − 1 stones, the player who has the turn must bring 
the number of stones to n by his turn to win safely.

Episode 11 (15:48–16:42): Subsequently, both work on a suitable formulation for 
this generalized task.

Episode 12 (16:42–18:28): Theresa notes that solving the initial problem is challeng-
ing and therefore suggests providing help for pupils. Theresa suggests that it might help 
when the pupils first develop a winning strategy for the simple case that the players can 
only remove one stone. Ugur suggests further help cards which can be requested by the 
pupils themselves if they get stuck.

Episode 13 (18:28–19:50): Theresa wants to focus on new tasks again. They move 
away from the initial problem and use the stones to create an iconic representation of 
the triangular numbers (1, 3, 6, ...). They formulate the task to find a general formula to 
calculate the n-th triangular number.

Episode 14 (19:50–21:33): Theresa puts the stones in rows of three so that the struc-
ture that leads to the winning strategy is more visible. She evaluates this presentation by 
emphasizing the usefulness of this method for extensions of the Nim game with more 
than 20 stones on the table. The process comes to an end as Theresa and Ugur, when 
asked by the interviewer, agree not to generate any more ideas.
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4.1 � Category development of episode types in problem posing

Using the described evaluation method, five episode categories were developed which 
allow the observed processes to be described in a time-covering manner. These episode 
categories are situation analysis, variation, generation, problem-solving, and evaluation. In 
the following, the developed categories of episode types are described. The episodes of the 
process by Theresa and Ugur (T&U) described above are assigned to these episode types 
for a better comprehension of the episode types. In addition, we provide further anchor 
examples in the online supplement. Subsequently, indications are given for coding the indi-
vidual categories. Finally, the categories are discussed regarding the state of research.

4.1.1 � Situation analysis

Description  During the situation analysis, the posers capture single or multiple conditions 
of the initial task. They usually recognize which conditions are suitable and to what extent, 
to create a new task by variation (changing or omitting single or multiple conditions) or 
generation (constructing single or multiple new conditions). In addition, the subsequent 
investigation of the initial task’s solution is summarized in this episode. This also includes 
the creation of clues or supporting tasks that lead to the solution of the initial task.

In the process of T&U, episode 1 is coded as situation analysis as the participants still 
reflect on their solution strategy. Also, episode 12 is coded as situation analysis because 
both PSTs try to come up with ideas on how to support students with solving the initial 
problem. A further example of other participants who capture the conditions of the initial 
problem can be found in the online supplement.

Coding instructions  It is not always clear when the posers are engaged in reading (see 
non-content-related episodes below) or have already moved on to situation analysis. 
Simultaneous coding is possible here. The creation of supporting tasks, which are sup-
posed to assist in solving the initial problem, is interpreted as an analytical examination of 
the situation and is therefore coded as situation analysis.

4.1.2 � Variation

Description  During variation, single or multiple conditions of the initial task or a task 
previously posed in the process are changed or omitted. No additional conditions are con-
structed. In addition, writing down and formulating the respective task is included under 
this episode.

In the process of T&U, episodes 4, 6, 9, and 11 are coded as variation. In episode 6, for 
example, Ugur varies one specific rule of the Nim game and states that the players are now 
allowed to remove one to three stones from the table. In episode 9, this is further general-
ized by variation.

Coding instructions  For the identification of variation, the What-If-Not-strategy by 
Brown and Walter (2005) should be used. The first step of this strategy is intended to 
extract the conditions of a problem. The Nim game, for example, has at least the following 
five conditions: (1) 20 stones, (2) two players, (3) alternating moves, (4) one or two stones 
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are removed, and (5) whoever empties the table wins. This analysis should be done before 
coding. Omitting or varying these analyzed conditions will be coded as variation. Also, 
omitting or varying conditions of a previously posed problem is coded as variation.

4.1.3 � Generation

Description  During generation, tasks are raised by constructing new conditions to the 
given initial task or a task previously posed in the process. Due to the possible change in 
the task structure, posers sometimes explain the new task. In addition, writing down and 
formulating the respective task is summarized under this episode type. Also, free associa-
tions, in which tasks similar to the initial task are reminded, are coded as generation.

In the process of T&U, episodes 2 and 13 are coded as generation. In episode 13, for 
example, they move further away from the Nim game and use the stones to ask questions 
about dot patterns.

Coding instructions  The episode types variation and generation are not always clearly 
distinguishable from each other. Although the coding focuses on the activity of the poser 
and not on the emerged task, it can help to examine the characteristics of a task resulting 
from variation or generation. In the case of a varied task, the question or the solution struc-
ture often remains unchanged. In the case of a generated task, there is usually a fundamen-
tally different task whose solution often requires different strategies.

4.1.4 � Problem solving

Description  Problem solving describes the activity in which the posers solve a task that 
they have previously posed. If a non-routine problem has been posed, the respondents go 
through a shortened problem-solving process in which the phases of devising and carrying 
out the plan (Pólya, 1945) are the main focus. In some cases, the posers omit to carry out 
the plan if the plan already provides sufficient information on the solvability and complex-
ity of the posed problem. If a routine problem has been posed, the solution is usually not 
explained, since the method of solution is known. However, longer phases of solving rou-
tine tasks are also coded as problem solving.

In the process of T&U, episodes 3, 5, 8, and 10 are coded as problem solving as the par-
ticipants are engaged in solving their posed problems.

Coding instructions  Although solving a routine problem should be differentiated from 
solving a non-routine problem, both activities are labelled with the same code. However, 
the commentary of the coding should specify whether an episode is an activity of solving a 
routine or a non-routine problem.

4.1.5 � Evaluation

Description  In the evaluation, the posers assess the posed tasks based on individually 
defined criteria. In the processes observed, posers asked whether the posed problem is 
solvable, well-defined, similar to the initial task, appropriate for a specific target group, or 
interesting for themselves to solve. On the basis of this evaluation, the posed task is then 
accepted or rejected.
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In the process of T&U, episode 14 is coded as evaluation, and in episode 8, there is 
a simultaneous coding of problem-solving and evaluation. In episode 8, for example, the 
participants are initially engaged in problem-solving. Towards the end of this episode, they 
both assess their posed problem based on their interest in solving it.

Coding instructions  Often, evaluative statements are made about the course of an episode 
of problem-solving, since the criteria for the evaluation of a posed problem (e.g., solvabil-
ity or interest) are based on sufficient knowledge about the solution of the posed prob-
lem. In such cases, the episode types of problem-solving and evaluation cannot be sepa-
rated empirically, which is why simultaneous coding is permitted. The criterion for this 
simultaneous coding is that during an episode of problem-solving, an evaluative statement 
must come within a 30-s window for a simultaneous coding to be made. For example, if 
at least one evaluative statement falls during the first 30 s of a problem-solving episode, 
both types of episodes are coded simultaneously. If at least one evaluative statement also 
falls within the following 30 s of problem-solving, both episode types are again encoded 
simultaneously.

4.1.6 � Non‑content‑related episode types

When participants, for example, ran out of ideas or became distracted during the inter-
view, they engage in the following non-content-related activities. Such activities were 
also identified in descriptive models of problem solving (Rott et al., 2021). In the pro-
cess of T&U, episode 7 was coded as non-content-related episode.

Reading  The episode of reading consists of reading the situation text as well as a shorter 
exchange about what has been read to make sure that the text is understood. Since the par-
ticipants have usually already solved the initial task of the situation, the reading takes place 
rather in between.

Writing  In the episode of writing, posers write down the text of a problem they have 
already worked out orally. Also, the posers write down the solution of a previously posed 
problem. Writing is only coded if no solution or problem formulation is being worked on in 
terms of content (e.g., specify the problem text).

Organization  Organization includes all activities in which the poser is working on the 
situation, but where no content-related work is apparent. This includes, for example, the 
lengthy production of drawings.

Digression  The episode digression is encoded when the posers are not engaged with the 
situation. This may include informal conversations with the other person about topics that 
are not related to the task (e.g., weekend activities) or looking out of the window for a long 
time.

Other  All episodes that cannot be assigned to any other episode type are coded as other.
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4.1.7 � Discussion

To provide a theoretical justification of the data-driven episode types of problem posing, 
we want to connect the five episode types with the presented state of research on problem-
posing phase models.

Situation analysis  In Pelczer’s and Gamboa’s (2009) phase model, we find aspects of situ-
ation analysis in their transformation stage. One sub-process of this transformation stage is 
the analysis of the problem’s characteristics. Terminologically, the episode name is based 
on Schoenfeld’s (1985a, 1985b) analysis, because we observed that, similar to problem-
solving, posers identify what possibilities for problem posing the given situations provide 
through their conditions.

Variation  Pelczer and Gamboa (2009) have aspects of variation in the stage of formula-
tion in which a problem is written down and the formulation is evaluated. Problem formu-
lating can also be found in the model by Cruz (2006). The principle of variation also plays 
a central role in problem solving. Schoenfeld (1985b), for example, suggests posing modi-
fied problems by replacing or varying the conditions of a particular problem that is difficult 
to solve.

Generation  Koichu and Kontorovich (2013) consider spontaneously associated problems 
related to a given problem-posing situation in their model, yet this is only one aspect of 
the generation described above. The distinction between variation and generation is theo-
retically already conceptualized by Silver (1994). In empirical studies on problem posing, 
there are so far no objective criteria that enable distinct identification of both activities. The 
phase model at hand proposes criteria for this distinction.

Problem‑solving  Cruz (2006) explicitly mentions problem solving as a stage in his prob-
lem-posing phase model. In the model by Pelczer and Gamboa (2009), problem solving is 
implicit in the evaluation phase, in which the posed problem is assessed and modified. This 
is presumably done based on the solution of it.

Evaluation  The stage of evaluation in the phase model by Pelczer and Gamboa (2009) 
shares the same name and has similar characteristics. Cruz (2006) implicitly considers 
evaluation when the posers improve the posed problem when they deem it not suitable 
for a specific learning group. The activity of evaluation is closely related to the metacog-
nitive activity of the regulation of cognition (Flavell, 1979; Schraw & Moshman, 1995). 
In research on problem posing, there are hardly any studies that investigate metacognitive 
behavior, yet some frameworks implicitly include aspects of it. Kontorovich et al. (2012), 
for example, consider aptness by means of fitness, suitableness, and appropriateness of a 
posed problem.

4.2 � Derivation of a descriptive phase model for problem posing

There is no predetermined order of episode types which means there can be transitions 
from any episode type to any other. However, there is a kind of “natural order” in which 
episode types appear in most processes and in which transitions often occur. This has 
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been indicated by the order in which the episode types were presented in Sect. 4.1. It was 
observed that first the conditions of a situation are grasped (situation analysis) and then 
new tasks are posed through variation or generation; these tasks are solved in order to 
evaluate them based on the solution. Of course, we did not observe exactly this order in 
every process, but across the participants and the different problem-posing situations, parts 
of this superordinate pattern were identified. Often the situation analysis was observed at 
the beginning of the process and at the end of a longer phase of variation. Also typical 
were frequent changes between variation or generation and problem solving (sometimes 
in combination with evaluation). Furthermore, problem posing was identified as a cycli-
cal activity. Several participants were observed to revise or to further vary their previously 
posed problems. Figure 2 shows the T&U’S process following Schoenfeld’s (1985b) illus-
trations of problem-solving processes. Several characteristic transitions can be observed in 
this process. The vertical lines shown in this figure indicate points in time when a new task 
(either by variation or by generation) was posed.

From these theoretically justifiable as well as empirically observable patterns in the 
sequence of episodes, the descriptive phase model shown in Fig. 3 was derived. It contains 

Fig. 2   Example of a timeline chart of the problem-posing process  by Theresa and Ugur as described in 
Sect. 4 following the illustrations by Schoenfeld (1985b)

Fig. 3   Descriptive phase model for problem posing based on structured situations
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all five content-related episodes as a complete graph. All transitions indicated by arrows 
can occur and have been observed empirically in the study. However, not all episode types 
need to occur in a process. Several participants were observed to revise or to further vary 
their previously posed problems. In addition, in most cases, not only one but several prob-
lems are posed in numerous cycles. The model reflects this observation through its cyclic 
structure. The model is used to represent all these possible paths within the problem-pos-
ing process.

To check the interrater agreement, 30.7% of the total video material of 7 h and 46 min 
was coded by a second independent rater and combined into an agreement table (see 
Table 3) using the EasyDIAg algorithm (Holle & Rein, 2015). As explained in Sect. 4.1.5, 
the episode types of problem solving and evaluation have empirically often been observed 
simultaneously, which is why simultaneous coding was allowed. We have, therefore, con-
sidered this simultaneous coding as a separate category for the verification of interrater 
agreement. If the start or end of a process was coded differently in time by the two raters, 
there are unlinked events in the agreement which are coded as X. The entry X–X in Table 3 
can, therefore, not occur empirically.

With a Cohen’s kappa of κ = 0.81, the interrater agreement is almost perfect (Landis & 
Koch, 1977, p. 165). This high level of agreement is particularly gratifying as the evalua-
tion method is a highly subjective and interpretative procedure, yet the developed catego-
ries are capable of consistent coding. As anticipated, the biggest coding differences are 
observed for the categories variation and generation as well as the distinction between the 
categories of problem solving, problem solving and evaluation, and evaluation. The kappa 
calculated for the separate categories are (with the abbreviations from Table 3 as indices) 
κSA = 0.87, κV = 0.83, κG = 0.72, κPS = 0.87, κPS/E = 0.73, κE = 0.49, and κO = 97.

5 � Discussion

This study aimed to develop a valid and reliable model to describe and analyze problem-
posing processes. Schoenfeld (2000) provides eight criteria for evaluating models in math-
ematics education: (i) descriptive power, (ii) explanatory power, (iii) scope, (iv) predictive 

Table 3    Agreement table for all seven categories of episodes as determined by EasyDIAg. The %overlap 
parameter was set to 60%. Abbreviations: SA situation analysis, V variation, G generation, PS problem-
solving, PS/E problem solving and evaluation (simultaneous coding), E evaluation, O others, X no match)

Rater 1

SA V G PS PS/E E O X Total p

R
a
te

r 
2

SA 22 0 4 0 0 0 0 0 26 0.10
V 2 68 0 0 0 0 2 2 74 0.28
G 0 6 30 4 0 0 0 0 40 0.15
PS 0 0 0 32 2 0 0 0 34 0.13
PS/E 0 4 4 2 26 2 0 0 38 0.14
E 0 0 0 0 2 2 0 0 4 0.02
O 0 0 0 0 0 0 42 0 42 0.16
X 0 3 1 0 0 0 0 – 4 0.02
Total 24 81 39 38 30 4 44 2 262 1.00
p 0.09 0.31 0.15 0.14 0.11 0.02 0.17 0.01 1.00 0.81
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power, (v) rigor and specificity, (vi) falsifiability, (vii) replicability, and (viii) multiple 
sources of evidence. Criteria (i), (iii), (v), and (vii) will be outlined to discuss the potential 
and limitations of the presented framework.

Regarding research question (1), five content-related episode types—situation analysis, 
variation, generation, problem solving, and evaluation—were identified inductively which 
enable objective coding through their operationalization. The episode types of the devel-
oped phase model enable a specific descriptive perspective on all observed problem-posing 
processes in the study in a time-covering manner. This description, we argue, provides a 
better understanding of problem-posing processes in general (i). Furthermore and with 
regard to research question (2), from the observed processes, a general structure in terms of 
the sequence of the episodes was identified from which we were able to derive a descrip-
tive process model for problem posing. The high interrater agreement attests to the replica-
bility of the model (vii). The participants of the study were heterogeneous and ranged from 
PSTs in the first bachelor’s semester for primary school to PSTs in the 3rd master’s semes-
ter for high school. Equally heterogeneous were the processes that could nevertheless be 
analyzed by the developed model (iii). The detailed descriptions, coding instructions, and 
theoretical classifications provide specificity to the terms. In the online supplement, anchor 
examples serve for additional specification (v).

The model developed here provides additional insights compared to existing models 
(e.g., Cruz, 2006; Pelczer & Gamboa, 2009): It distinguishes the episode types variation 
and generation empirically which Silver (1994) already conceptualized theoretically. Addi-
tionally, the model encompasses non-content-related episodes for the description that have 
also been identified in descriptive models of problem-solving (Rott et al., 2021).

The phase model can now be used to characterize, for example, different degrees of 
quality of the problem-posing process which is still a recent topic in problem-posing 
research and for which considering the products and processes seems advisable (Kon-
torovich & Koichu, 2016; Patáková, 2014; Rosli et al., 2013; Singer & Voica, 2017). Thus, 
as in problem-solving research (cf. Schoenfeld, 1985b), a comparison between experts and 
novices might be a fruitful approach to identify different types of problem posers. Further-
more and following the process-oriented research on problem-solving (Rott et al., 2021), it 
would be conceivable that the process of posing routine tasks proceeds differently than the 
process of posing non-routine problems.

Finally, possible limitations to the generalizability of the developed model will be 
addressed. In general, the model offers one possible perspective on problem-posing pro-
cesses. Depending on the selected problem-posing situation, sample, or study design, it 
cannot be ruled out that slightly different or even additional episode types may also occur. 
We also find other perspectives on problem-posing processes in research (e.g., Headrick 
et al., 2020). This study considers two specific structured situations with a non-routine ini-
tial problem. However, the developed phase model has also been successfully applied to 
situations with routine initial problems and other mathematical contents within bachelor 
and master theses. With small changes, the model was also successfully applied to pro-
cesses based on unstructured situations in several master theses. Moreover, this study has 
PSTs as a sample. The phase model was successfully applied in bachelor and master the-
ses to other sample groups such as school students and teachers (iii). Therefore, there are 
strong indications that support the generalizability of the phase model, which could still be 
clarified in follow-up studies.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10649-​021-​10136-y.
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