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Abstract
Understanding the intricate quantifier relations in the formal definitions of both conver-
gence and continuity is highly relevant for students to use these definitions for mathemati-
cal reasoning. However, there has been limited research about how students relearn previ-
ous school mathematics for understanding multiply quantified statements. This issue was 
investigated in a case study in a 5-week teaching unit, located in a year-long transition 
course, in which students were engaged in defining and proving sequence convergence and 
local continuity. The paper reports on four substantial changes in the ways students relearn 
school mathematics for constructing quantified statements: (1) endorse predicate as formal 
property by replacing metaphors of epsilon strips with narratives about the objects ε,  Nε, 
and ∣an − a∣; (2) acknowledge that statements have truth values; (3) recognize that multiply 
quantified statements are deductively ordered and that the order of its quantifications is 
relevant; and (4) assemble multiply quantified statements from partial statements that can 
be investigated separately. These four changes highlight how school mathematics enables 
student to semantically and pragmatically parse multiply quantified statements and how 
syntactic considerations emerge from such semantic and pragmatic foundations. Future 
research should further investigate how to design learning activities that facilitate students’ 
syntactical engagement with quantified statements, for instance, in activities of using for-
mal definitions of limits during proving.

Keywords Quantification · School-university transition · Design research · Commognition · 
Limits

1 Introduction

In tertiary mathematics, mastering quantification is key for understanding mathematical 
statements such as formal definitions of limits. Definitions of limits contain multiple quan-
tifications that are nested in intricate ways (Alcock, 2014). Learning the nested quantifier 
relations in definitions of limits requires students to understand the parts of the definition 
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(Oehrtmann et al., 2014) and to become aware of the relations between the parts, which is 
particularly difficult for students due to the definition’s complex dependencies (e.g., Dawk-
ins & Roh, 2020; Durand-Guerrier & Arsac, 2005; Roh & Lee, 2017). Previous research 
has shown that students can learn these quantifier relations by building on their informal, 
intuitive understanding of limits and metaphors (Dawkins, 2012; Oehrtmann et al., 2011; 
Swinyard, 2011). For instance, by giving students a set of epsilon strips with different 
heights to explore and classify infinite sequences (“epsilon-strip activity”), they can use 
their intuitive understandings to reinvent the formal definitions of sequence convergence 
(Przenioslo, 2005).

The transition to tertiary mathematics is often investigated from a tertiary perspective. 
As such, research has identified many challenges that students face, for example, concern-
ing content learning (Thomas et al., 2015) or life-changing institutional differences (Clark 
& Lovric, 2008). However, a perspective on extending school mathematics towards funda-
mental ideas of tertiary mathematics might offer insights into how students can be prepared 
to learn quantification. This change of perspective allows investigating how school math-
ematical knowledge is being relearned and revisited (Schüler-Meyer, 2019; Stadler, 2011) 
while students come to understand quantification. Furthermore, with this new perspective, 
the limited (Sellers et al., 2021) or informal use of quantification (Dubinsky & Yiparaki, 
2000), which can be problematic in a tertiary context, can be conceptualized as a natural 
starting point to facilitate the use of quantification for making mathematical statements. 
However, little is known about how transition students can learn to use quantified variables 
for making multiply quantified statements1 based on their school knowledge. Therefore, 
more knowledge is needed about students’ learning pathways from school mathematics 
towards understanding quantification.

This design research study investigates this issue in the context of a transition course 
in an upper secondary classroom. The study focuses on a teaching unit on defining limits 
designed to facilitate students in constructing multiply quantified statements. Based on the 
study, this paper discusses the following question:

How do transition students learn to construct multiply quantified statements, particu-
larly definitions of limits, in a teaching unit on sequence convergence and pointwise 
continuity that systematically connects to school mathematics?

Sections 2.1 and 2.2 will present previous research on students’ learning of quantifica-
tion, while Section 2.3 presents the discursive framework used here to investigate students’ 
learning processes. Section 3 presents the hypothetical learning trajectory of the teaching 
unit and its principles. Section 4 outlines the methodology of the study. Section 5 presents 
the main results to answer the research question.

2  Learning quantification

2.1  Quantifier relations and their intricate dependencies

Let us consider a sequence an with values in the set of real numbers and a real number a.

1 This paper is concerned with multiply quantified statements in the form of (∀x) (∃y) R(x, y), where (∀x) is 
the universal quantifier, (∃y) is the existential quantifier, and R(x, y) is the predicate (Dubinsky & Yiparaki, 
2000).
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(an) converges to a if and only if for every ε > 0 there exists an N ∈ℕ such that for all 
n > N, |an − a| < ε

The definition of sequence convergence is a prototypical example of a multiply quanti-
fied statement. In the definition, “for every ε > 0” and “for all n > N” are universal quanti-
fiers, and “there exists an N ∈ ℕ” is the existential quantifier, while the predicate is initiated 
by the keyword “such that” (“so dass” in German or “es gilt”/“it is valid”). The definition 
as a whole is a statement. In particular, it is an existential statement typically used to estab-
lish the convergence of a sequence or to find its limit.

Constructing this definition requires transition students to understand its multiply quan-
tified nature (Alcock & Simpson, 2005). Understanding the definition as multiply quan-
tified statement is particularly demanding because of the definition’s multiple dependen-
cies of different nature: the N is dependent upon ε (“dependence rule”; Durand-Guerrier 
& Arsac, 2005), but ε is independent of N (Roh & Lee, 2011). Furthermore, the predicate 
relates to N in the form of a dynamic process, namely “finding” a suitable N while check-
ing for the validity of the predicate “for all >N, |an − a| < ε.” Similarly, the “choice” of ε is 
a process, and for each “choice” of ε, students would have to repeat the former process of 
finding an N (Dubinsky et al., 1988).

2.2  Language‑related issues in learning quantification

Designing a teaching unit to facilitate students in constructing multiply quantified state-
ments requires a linguistic perspective on students’ previous resources. Students’ resources 
for learning quantified statements are pragmatic and semantic considerations. Semantics 
refers to the chain of references to mathematical objects that a statement enacts (cf. Sfard, 
2008). Pragmatics refers to the individuals’ precedents for the activity of realizing quanti-
fication, such as everyday narratives containing quantifier keywords (Lavie et  al., 2019). 
With respect to pragmatics, everyday precedents seem to inform students’ sense-making 
with quantified statements, while mathematical contexts pose difficulties (Dubinsky & 
Yiparaki, 2000). Particularly, such everyday precedents of quantification and quanti-
fier keywords can inform students’ understanding of quantified mathematical statements 
(Cornu, 1991). Furthermore, pragmatic statements that connect to semantics by convey-
ing “semantically interesting” information are more accessible to students (Dawkins & 
Roh, 2020). Accordingly, the central starting points for transition students to explicitly use 
quantifier keywords in a mathematical way are the mathematical meanings of statements 
(semantics) as well as previous everyday and mathematical knowledge, for instance, about 
logic (pragmatics; Durand-Guerrier & Arsac, 2005).

While pragmatics can act as resource, it can also hinder students’ construction of mul-
tiply quantified statements. A particular problem is that learners might not be aware of 
precedents for quantification, as quantification is often not made explicit in school math-
ematics. For instance, the following statement “a function is continuous whenever it is dif-
ferentiable” has a low level of explicitness because it does not explicitly express underlying 
quantifications, requiring the reader to unpack it (Selden & Selden, 1995, p. 128). Accord-
ingly, transition students might not notice such implicit quantifications (Mesnil, 2017). 
Thus, learning activities are needed to make such implicit quantifications in familiar math-
ematics explicit to students.

The construction of quantified statements requires not only the activation of seman-
tic and pragmatic resources, but also learning to syntactically manipulate statements. In 
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discursive terms, syntax refers to the rules by which a new narrative can be constructed 
from simpler ones (Sfard, 2008, p. 102). Accordingly, when manipulating a quantified 
statement, for example, by constructing the contrapositive or negating it, students have to 
parse this statement from a semantic and pragmatic standpoint, but also from a syntactical 
standpoint. Particularly, students have to engage with syntactic rules such as changing the 
order of quantifications (Chellougui, 2009).

In summary, facilitating students’ construction of multiply quantified statements such 
as the above definition of sequence convergence could begin with semantic and  prag-
matic considerations and informal quantifications. The syntactical dimension of the state-
ment, while very important for capturing its multiple dependencies, is likely unfamiliar 
for students, so that students need to be able to connect this syntactical dimension to their 
pragmatic and semantic understanding.

2.3  Learning quantification from a discursive perspective

Students’ learning processes with respect to quantification are here framed and investigated 
in terms of commognition (Sfard, 2008), because it gives insights into the micro level of 
how students engage with the semantics, pragmatics, and syntax of quantified statements. 
Commognition conceptualizes learning as the development of discourses (Nardi et  al., 
2014). Discourses are characterized by their keywords, visual mediators (representations), 
endorsed narratives, and routines (Sfard, 2008). Routines are patterned activities, where 
patterns are generated from repetition and adaption of precedents (Lavie et al., 2019). Even 
though the linguistic notions of semantics, pragmatics, and syntax are not required within 
this discursive perspective, they provide the necessary connections between commognition 
and previous research on students’ learning of quantification.

Quantified statements can be considered narratives. A narrative is “a series of utter-
ances, spoken or written, that is framed as a description of objects, of relations between 
objects, or processes with or by objects…. [Narratives are] subject to endorsement or rejec-
tion” (Sfard, 2008, p. 300). This description highlights that narratives contain semantic 
information because they constitute a certain chain of references to objects (in this case, 
mathematical). The definition of sequence convergence, for example, is a narrative about 
“convergence” endorsed by the mathematical community. The above-mentioned process of 
endorsement is called substantiation. During substantiation, discursants ensure that a nar-
rative adheres to mathematical metarules that a group has agreed upon.

New narratives are constructed by adapting and changing previously endorsed narra-
tives. Such previously endorsed narratives are selected based on precedents: situations that 
are perceived as sufficiently similar to the current situation to warrant the enactment of a 
particular previously endorsed narrative (Lavie et  al., 2019). Accordingly, the search for 
precedents is guided by pragmatic factors. Two interrelated processes guide the construc-
tion and substantiation of new narratives. First, during additive growth, students adapt 
or combine (school-mathematical) precedent narratives into partly new narratives (Lavie 
et  al., 2019). Second, during metalevel change, students construct narratives that leave 
behind previous narratives in some substantial way and hence require them to agree upon 
new metarules for endorsing such a “ground-breaking” narrative (Sfard, 2008, p. 256). 
For instance, as students may lack precedents for multiply quantified statements (see Sec-
tion 2.2), it can be expected that during their first attempts at constructing a definition of 
sequence convergence, they need to endorse a new metarule about the inclusion of quan-
tification (detailed account of intended changes in Section  3.2). Furthermore, metalevel 
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change can also lead to the endorsement of rules that can be considered syntactic, for 
example, for how to change the order of quantifications.

3  Reinventing the formal definition of limits for convergence 
and continuity

This study was part of a year-long extracurricular transition course intended to familiar-
ize upper secondary school students with tertiary mathematics’ fundamental ideas. The 
course was taught in an urban school in Germany in the penultimate year of upper second-
ary school, within the timeframe of transition to university (Gueudet, 2008). Within this 
course, a 5-week (five lessons of 90 minutes each) teaching unit was dedicated to defining 
and proving in the context of limits. This unit was based on Realistic Mathematics Educa-
tion (RME), because of RME’s benefits for developing students’ understanding of limits 
(Dawkins, 2012; Fisher, 2016; Swinyard, 2011; Swinyard & Larsen, 2012). RME provides 
principles for how the definition of limits can emerge from the organization of phenomena 
encountered during carefully designed learning activities and contexts (van den Heuvel-
Panhuizen, 2019).

3.1  Hypothetical learning trajectory

This study is located in the research program of design research to generate a local theory 
through iterative design experiments (Prediger et  al., 2015). The teaching unit is based 
on a hypothetical learning trajectory (Clements & Sarama, 2004) that prescribes a devel-
opmental trajectory for understanding limits (Cottrill et  al., 1996; Swinyard & Larsen, 
2012). In particular, this hypothetical learning trajectory, described in Table 1, builds on 
both research on the learning of limits (this section) and on a priori assumptions about stu-
dents’ previous knowledge and about the effects of specific activities on students’ learning 
(Section 3.2).

Previous research finds that quantifications can be developed from a generic image 
of ε and N for a convergent function (Pinto & Tall, 2002) or in dynamic graphical rep-
resentations (Cory & Garofalo, 2011; Mamona-Downs, 2001) by encapsulating the 
above-mentioned dynamic dependencies (Section 2.1) into a static quantification scheme 
(Dubinsky et al., 1988). With its focus on defining, the teaching unit rests on the frame-
work of defining as mathematical activity (DMA; Zandieh & Rasmussen, 2010). This 
framework emphasizes engaging students in actively finding, explaining, and using defi-
nitions, as these activities are more beneficial for facilitating understanding than read-
ing definitions (Alcock & Simpson, 2017). DMA conceptualizes defining as a trajectory 
where, at the beginning, students construct a definition to capture their mathematical 
activity (definition-of), and later, use their definition for their mathematical reasoning 
(definition-for; Zandieh & Rasmussen, 2010). This trajectory facilitates the pragmatic 
and semantic side of constructing a definition from previous narratives, as they support 
the connection to previous knowledge and the use of precedents, for instance, about cat-
egorizing and about functions (see Section 2.2).

The teaching unit’s starting point is the epsilon strip activity (Przenioslo, 2005), where 
students are given a set of epsilon strips with different heights to explore and classify both 
convergent and divergent sequences. By recognizing that one has to first choose a strip 
with a specific height and then has to find a point from which this strip covers all further 
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terms of the sequence, the students can develop a y-first perspective (Swinyard & Larsen, 
2012). By realizing that one strip is a generic example of the possibility to choose any 
strip, that is, any epsilon, the students can also develop an arbitrary closeness perspective 
(ibid.). Thus, in the epsilon strip activity, the multiply quantified nature of the definition 
of sequence convergence can be implicitly experienced as a sequence of steps of using 
strips. In other words, this activity can potentially connect syntactic considerations with 
pragmatic and semantic considerations rooted in the experiences of the epsilon strip activ-
ity (see Section 2.2).

3.2  Transition students’ intended learning pathways from a discursive perspective

The learning trajectory design rests on a priori assumptions about students’ activities in 
terms of the justification of the learning activities, as shown in Table 1. As can be seen, 
because students perceive the task situation of the epsilon strip activity (Session 1) as suf-
ficiently similar to discourses on functions, they endorse rules for activities from these dis-
courses (e.g., movement solely in x and y direction). Additionally, the visual mediators of 
infinite sequences are sufficiently similar for students to adapt functional narratives. Fur-
thermore, the routine of categorizing mathematical objects is familiar from school math-
ematics, so students should be able to categorize an infinite sequence into two categories: 
convergent and divergent. However, the routine of using an epsilon strip likely needs to be 
scaffolded by the teacher, as it entails new metarules (Section 3.1). In particular, students 
need to investigate the question of the potentiality of using any strip. Otherwise, students 
could decide that a sequence is convergent based on the use of one strip (Sellers et  al., 
2021), which would prevent the realization of the universal quantifier at a later point in the 
learning trajectory. The symbolization of facets of convergence in a treasury (Fig. 1) pre-
pares such an intended quantified use of variables. Furthermore, if students adopt school-
mathematical “tends-to” narratives of limits, the teacher needs to intervene and remind stu-
dents to closely describe the epsilon strip activity instead.

In the defining task (Task 2, Session 2), students are engaged in think-pair-share. In 
the think phase, individual students use their treasury (Fig. 1) to formulate a description 
of the epsilon strip activity. In the pair phase, pairs of students compare their descriptions 
concerning whether they adequately capture the epsilon strip activity. In this phase, the stu-
dents’ definition could consist of partial narratives for each activity step with epsilon strips. 
These narratives could be connected through keywords that indicate time (“first,” “then”) 
or a property (“in order to,” “to check whether”). In the share phase, the teacher facilitates 
the students’ comparisons of their definitions with respect to mathematical viability, based 
on the epsilon strip activity, the graphical representation, and the treasury, with the aim of 
finding a shared definition. This discussion is informed by students’ knowledge of prec-
edents of school textbook definitions, with their problematic lack of explicitness of quanti-
fication (see Section 2.2).

Regarding the realization of the existential and universal quantifier, the teacher likely 
needs to scaffold students to frame the choice of an arbitrary strip as the imaginary activity 
of trying any strip, potentially resulting in the phrases “for any strip with height m” or “for 
any height m.” Similarly, finding a point from which all subsequent terms are covered leads 
to the existential quantifier. At this stage, a predicate is a description of terms being in a 
strip, with school-mathematical precedents for distance and absolute value.

In Session 4 of the teaching unit, the students use their reinvented definition of sequence 
convergence to construct a multiply quantified definition of local continuity of a function. 
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It is expected that the epsilon strip activity and the defining activity in Session 2 act as 
precedents such that students combine the graphical representation of strips and the equiv-
alent narrative about arbitrary close neighborhoods from Session 2 into a definition of local 
continuity. This way, students replicate the above steps of defining sequence convergence 
for defining local continuity of functions but avoid tends-to metaphors.

Fig. 1  Excerpt of the students’ treasury for sequence convergence. Red text was added by students in 
Session 3, after comparing their definition of sequence convergence with a textbook definition.  Transla-
tions added in italics by author
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4  Methodology

4.1  Data collection in iterative design experiments

This study is an exploratory case study that focuses on the learning processes of one group 
of students. In line with design research, the data were collected in iterative design experi-
ments. The teaching unit investigated here represents the design’s third iteration. It was 
implemented in a laboratory setting with a group of five upper secondary school students. 
The groups’ activities were filmed from two angles to capture both work in pairs and 
whole-group work. Hence, the data consists of five 90-min sessions of video material. The 
design experiments were implemented by two master’s students, where one student imple-
mented the second and the other the third iteration (Otto & Heese, 2017). The master’s 
students were experienced university mathematics tutors and acted as teachers to enact the 
learning trajectory shown above.

The participating students (aged 16–18) were recruited from upper secondary mathe-
matics classrooms at the beginning of the school year. The students self-selected for par-
ticipating in a transition course. As such, they also volunteered to be part of the teaching 
unit presented here. The students were highly proficient in their regular mathematics class-
rooms and also highly motivated. They also declared an interest in picking up mathemat-
ics-related university studies.

In this study, tasks with a focus on defining were investigated:

• Session 1, Task 2—compiling a treasury for sequence convergence
• S2T2—defining sequence convergence
• S4T3—compiling a treasury for pointwise continuity
• S4T5—defining pointwise continuity
• S5T2—comparing tertiary textbook definition of continuity with the reinvented defini-

tions of both continuity and sequence convergence

4.2  Qualitative methods of data analysis in a discursive framework

The sensitizing concept for the data analysis was the use of quantifier keywords, for 
example, “for every” (“für jedes”), “exists” (formal: “existiert,” informal: “gibt”), and 
“so that”/”such that” (“so dass,” but also the colloquial “es gilt” is possible, which trans-
lates as “it is valid”). Discursive theory suggests that keyword use develops from expres-
sive use towards object-driven use (Sfard, 2008; Table 2). The use of quantifier keywords 
has to develop towards expressing the intricate quantifier relations of the intended defini-
tion’s partial narratives, as described above (Section 2.1). Throughout the students’ learn-
ing pathways in the teaching unit, these keywords should develop from informal everyday 
use towards using them to establish the intricate quantifier relations between the partial 
narratives (Sections 2.2 and 3.1). It is assumed that the highest level of object-driven use 
will indicate metalevel developments, because the flexible use of these keywords suggests 
that students have endorsed a new (possibly syntactic) rule for how to use them, instead of 
being guided by pragmatic or semantic factors such as precedents or similar narratives that 
act as guiding examples.

Using the sensitizing concept of objectified quantifier keyword use, the video 
material and its transcriptions were analyzed qualitatively by building on an initial 
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turn-by-turn analysis for segmenting the material. Subsequently, all segments were iden-
tified in which one of the quantifier keywords or their informal/everyday synonyms were 
used. These segments were analyzed further to identify partial narratives and quantifier 
relations, resulting in a task-specific overview of the developments of each of the three 
quantifier keywords towards their object-driven use. Episodes of object-driven uses 
were further analyzed to identify metalevel changes, using the analytical instruments of 
commognition (Sfard, 2008), such as additive growth, objectification, and narratological 
analyses in terms of Lavie et al. (2019).

5  Results

This study finds four metalevel developments towards the construction of multiply 
quantified definitions of limits over the five sessions of the teaching unit. Notably, these 
metalevel changes occurred during the construction and interpretation of definitions of 
limits (S2T2, S5T2), but not during the other tasks (see Section 4.1). The most likely 
reason for this phenomenon is that during the construction and interpretation of defi-
nitions, students were actively using quantifications for establishing relations between 
partial narratives under the guidance of the teacher. During the defining activities in 
task S4T5, students did not discuss quantifier relations, as they reproduced a school-
mathematical definition of continuity by using precedents rooted in school-mathemati-
cal tends-to narratives.

The four metalevel changes are illustrated in Fig.  2. The accompanying discursive 
developments that lead to and enable these changes are indicated by arrows. The fore-
grounded arrows will be discussed in the following sections. Extended arrows indicate 
that the respective development continues to enable later metalevel changes.

Fig. 2  Metalevel changes and their underlying discursive developments
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5.1  Metalevel change 1: embrace formalization to replace metaphors of epsilon strips 
with narratives about objects

Before the following episode, the students discovered that, for an infinite sequence to be 
convergent, there is a certain point A(m) [Nε] after which all following terms are “in” a 
selected epsilon strip. A(m) is the result of a discussion where students determined that 
the “distance value” A is dependent upon (the choice of) m [ε] (see Fig. 1), in a functional 
sense. In that discussion, students also agreed that one has to take a y-first perspective, 
where one first has to choose a strip with a specific height (the y-value m) to find a cor-
responding A.

353 Lawrence       there exists an A m, whom [sic!] contains all following elements 
        [Dennis writes for a second time: “there exists an A(m),” Fig. 3]
354 Teacher       Where should they then be contained in?
355 Lawrence       Ah, for the, the #
356 Leif       # smaller than the maximum value
357 Lawrence      # the, smaller than or equal to m. […]
359 Lawrence       ehm, exists an A m whose d is smaller than or equal to m.
# indicates that a student takes over a turn.

At the beginning of the episode, Lawrence substantiates the following predicate nar-
rative: “whom [sic!] contains all following elements” (T353). This narrative is informal, 
rooted in the epsilon strip activity and the use of epsilon strips as containers (“container-
schema”; Lakoff & Núñez, 2000).

Initiated by the teacher’s request to reframe this informal container narrative (T354), the 
students endorse the formal narrative “d smaller than or equal to m” (T355–T359). This 
new narrative has been endorsed previously because it was found to be equivalent to the 
former informal container narrative (T330, not shown here). This move towards formalism 
suggests the students begin to adopt metarules that favor symbolism and signifying rel-
evant aspects of convergence through symbols. Therefore, metarules of formalization lead 
to the realization of the predicate as formal property “d smaller than or equal to m.”

Formalization is here enabled by two previous semantic additive growths of the dis-
course. First, A(m) has been reified into a function object before this episode. Following 
this previous reification, A(m) seems here to be framed initially as a domain that con-
tains all subsequent terms (“whom contains”), towards A(m) as a functional object with 
certain properties (“whose”) towards A(m) as a point (“at which,” “from this A(m) it is 
true”). Hence, there are two complementary school-mathematical notions of A(m) that are 
endorsed here as being complementary, namely, A(m)-as-object and A(m)-as-point, while 
the notion of a domain seems to be dropped in the following. Even though the functional 
perspective on A(m)-as-object can be problematic (Section  2.1), it is here a beneficial 
interim notion of Nε that helps the students to construct a formal predicate.

Translation: For every m greater than 0 exists an A(m), there exists an A(m) 

Fig. 3  Partly developed definition at Turn 305
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Second, the processes of selecting and moving strips have been reified into objects. As 
a result, d and m are not only aspects of the epsilon strip activity (as captured in the treas-
ury, Fig. 1) but also objects in their own right (“abstract discursive object”; Sfard, 2008, 
pp. 172f). In particular, the distance d is realized as having specific properties, in this case 
being smaller than m. It can be speculated that school-mathematical narratives for vari-
ables, where variables are used to signify objects and have certain properties, are a neces-
sary precondition for this reification.

In sum, the reification of A(m), m, and d into objects throughout S2T2 allows the stu-
dents to talk about these objects’ properties and how they relate to each other. The treasury 
provides the necessary foundation for these objectifications, as the treasury helps students 
to use shared symbolism and terminology in their construction of narratives about the epsi-
lon strip activity. Furthermore, in commognitive terms, the treasury supports the develop-
ment of A(m), m, and d into abstract objects, which allows leaving behind the experiential 
notion of primary objects (“objects that are perceptually accessible”; Sfard, 2008, p. 173). 
Consequently, the students can replace informal talk about the processes of choosing m 
or finding A(m) with more formal neighborhood narratives, enabling the adoption of the 
metarule of formality.

5.2  Metalevel change 2: acknowledge that statements have truth values

The discursive developments A(m)-as-point and predicate as formal property prepare a 
second metalevel change, namely, students’ transition towards investigating the truth value 
of statements. This second metalevel change becomes evident a few turns after Episode 1:

367 Leif      Yes, but then we cannot write, “there exists a distance value” [3 sec.].  
       Can’t we?
368 Lawrence       For me it did make sense, but
369 Teacher     Well, what Lawrence attempted to say was that to the right of this 
       distance value, there we need to think how we can describe this to the  
       right. That to the right of this distance value all terms of the sequence  
       are within this strip.
370 Leif    Suggestion: There exists a distance value, an A(m), [laughing], at 
       which every d is smaller than or equal to m.
371 Ludwig          Yes, if this here is valid [points at what Dennis has written down; Fig. 3]
372 Lawrence      Yes, that’s what I already said.
373 Leif      Ok, convinced. I was with the distance value a bit…
374 Lawrence     [strikes second “there exists an A(m)” through; Fig. 3. Adds: “from 
                           which on”]
375 Lawrence     [to teacher] can I now write: from this A m [onwards] it is valid d is  
       smaller than or equal to m [2 sec] or from which on is valid?

Based on the teacher’s request for a new description (T369), the students frame the 
predicate as formal property in terms of truth, which highlights a central metalevel change 
towards predicate as the satisfaction of a formal property. Ludwig initiates talk about truth 
in terms of satisfaction of a narrative: “Yes, if this here is valid [gilt]” (T371), referring 
deictically to the partial narrative “for every m > 0 exists an A(m)” (see Fig. 3). Later, Law-
rence adopts the keywords “it is valid [‘gilt’]” (T375) to write down the final definition as 

303How transition students relearn school mathematics to construct…



1 3

a description of A(m)-as-point. The keyword “it is valid [‘gilt’]” highlights that the predi-
cate as formal property is now framed in terms of satisfaction (Tarski, 1944). Satisfac-
tion means that the arbitrary discursive objects A(m), d, and m can be potentially replaced 
with a certain constellation of experiential objects in the epsilon strip activity, which would 
allow evaluating the truth value of the associated predicate narrative that connects A(m), d, 
and m. Through the idea of satisfaction, truth has become a property of the narrative.

The nature of the satisfaction that students investigate suggests that the metalevel change 
predicate as the satisfaction of a formal property is facilitated through pragmatic discursive 
developments where talk about experiences is replaced with talk about narratives. Starting in 
Episode 1, the students have shifted from experiential narratives about the epsilon strip activ-
ity (container narrative; Section 5.1) towards a formal predicate. The students determine the 
satisfaction of this predicate pragmatically based on it being consistent with already endorsed 
narratives. This shift towards consistency of narratives is evidenced by Ludwig’s deictic lan-
guage and the students’ negotiations of different phrasings (T367, 370, 375). It is enabled by 
reifying A(m), m, and d into abstract discursive objects, as described in Episode 1. Consistency 
with previous narratives can be seen as a form of deductive order, which is a feature of uni-
versity mathematics. Notably, Tall (1991) identifies the shift away from experiential narratives 
towards deductively organized narratives as a significant step towards university mathematics.

The predicate as the satisfaction of a formal property “it is valid that d is smaller than 
or equal to m” (T375f) does not evolve into a quantified statement in the form of ∃N ∈ ℕ, 
P(N). While the students connect this predicate to the existential quantifier with different 
keywords (“whom,” T353; “whose,” T359; “at which,” T370; “it is valid,” T375), the use 
of the existential quantifier keyword “there exists” remains a static element in a routine. 
Particularly, the students use of “there exists” acts as a jumping-off point for the routine of 
constructing the predicate (routine-driven use; see T353, T359, T367, T370). This use is 
evidenced by the fact that the existential quantifier is used in the same way as it has been 
written down originally as “there exists an A(m)” (Fig. 3). Accordingly, the use of “there 
exists” does not fulfill the function of quantification here. Therefore, students do not yet 
realize a quantified statement in S2T2.

5.3  Metalevel change 3: recognizing that multiply quantified statements are 
deductively ordered, and that the order of their quantifications is relevant

In Session 5, Task 2, students compare a textbook definition of pointwise continuity with 
the familiar formal definition of sequence convergence as realized in Session 2. The text-
book definition of local continuity given to the students was phrased as follows:

A function f is continuous in x0 ∈ ℝ if and only if for every ε > 0 there exists a δ > 0 such 
that if |x − x0| < δ then it is true that |f(x) − f(x0)| < ε

334 Leif        No, ε cannot tend to zero, that’s why it is written the other way around. If  
             for every delta [1 sec.] x minus x0 is smaller than δ, then this is valid [colloquial 
                “gilt”] [2 sec.] f(x). And the δ can become, like, zero at the jump point, but  
            the ε does not take every value, then not every ε exists [colloquial “gibt”]  
              [2 sec.] I will do it with the middle line again, but in principle, if one takes  
           ε over the concrete length or not, it does not matter. [draws as shown in  
              Fig. 4]. Then epsilon can, hence, only ehm#
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335 Dennis      #till a certain line, and then it is not for all.
336 Leif          Yes (…) ε minimal equals # [writes εmin=b–a].
337 Dennis      #two, three or so.
338 Ludwig     Yes, that is written like that in the definition.
339 Leif       And because of that, for every epsilon that exists, I mean, not every ε,  
                bigger than 0 [exists]. Where the definition says, if for every ε > 0.
340 Dennis      And if it is not fulfilled, it is not continuous.
# indicates that a student takes over a turn.

The episode illustrates a third substantial change in the metalevel development of the 
discourse on the formal definition of limits, namely, the syntactic recognition of the deduc-
tively ordered nature of the definition. This metalevel change is evidenced by Leif’s utter-
ance that indicates a hierarchy: “that’s why it is written the other way around” (T334). 
While investigating a function with jump discontinuity, Leif finds that δ has to be “chosen” 
in order to decide whether an epsilon can be found (“if x minus x0 is smaller than δ, then 
this is valid”; T334, T339). Similarly hierarchical, Leif connects the existential and univer-
sal quantifiers: “And the δ can become, like, zero at the jump point, but the ε does not take 
every value, then not every ε exists” (T334).

The change towards recognizing deductive order is closely related to the students’ sub-
stantiation of relevant quantified sub-statements. In the graphical representation, the stu-
dents realize |f(x) − f(x0)| in terms of an epsilon strip, and argue that “I mean, not every ε, 
bigger than 0 [exists]” (T339). Consequently, the students investigate the correctness of the 

Fig. 4  Leif’s drawing of a discontinuous function
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implicitly present, singly quantified statement “For every ε, it is true that |f(x) − f(x0)| < ε,” 
as suggested by Leif’s utterance “not every ε exists” (T334) or Dennis’ utterance “then it is 
not for all” (T335). Accordingly, the students seem to “carve out” this statement from the 
definition, allowing them to investigate its truth value separately. Notably, as in Episode 2, 
this statement’s truth value is determined pragmatically and semantically in terms of sat-
isfaction based on both experiential narratives in the graphical representation as shown in 
Episode 2 and formal narratives about narratives (Section 5.2). For instance, Leif translates 
Dennis’ experiential narrative in T335 about neighborhoods into a formal narrative about ε 
(T335f; also evident within T334).

In contrast to the previous predicate as the satisfaction of a formal property in S2T2, 
quantification now has a crucial role, leading to the singly quantified statement “For every 
ε, it is valid that |f(x) − f(x0)| < ε.” The students’ starting point for substantiating this singly 
quantified statement is the investigation of a counterexample, during which the students 
keep the existential quantifier narrative static. In particular, the students assume the exist-
ence of δ as a precondition that is met: “If for every delta (.) x minus x0 is smaller than δ, 
then this is valid” (T334). Accordingly, students assume an x-first perspective, because δ is 
the foundation for the further investigation of the singly quantified statement. By focusing 
on the singly quantified statement, particularly the predicate “|f(x) − f(x0)| < ε,” and by using 
the δ-narrative as starting point, they change their perspective towards a y-first, x-fixed per-
spective. This coordination of the two perspectives is likely enabled by drawings of epsi-
lon-delta rectangles and the given textbook definition, that is, by pragmatic considerations. 
These considerations allow Leif to use deictic language to refer to previous narratives and 
to coordinate the narratives’ hierarchical order.

The discursive developments in this episode build on and extend the previous meta-
level changes from S2T2. First, concerning the first metalevel change of formalization, the 
students continue the objectification of central elements (Episode 1; Fig. 2, left side). For 
instance, ∣f(x) − f(x0)∣ is treated as an object with properties, and the students conceptu-
alize distances in the form of neighborhoods. Second, the students connect experiential 
narratives with formal narratives that reference previous narratives (Episode 2; Fig. 2, mid-
dle), as highlighted above for Leif and Dennis (T335f). Third, truth values are determined 
through the satisfaction of narratives, in this case of quantified statements (Episode 2).

5.4  Metalevel change 4: realize a multiply quantified statement as an assemblage 
of partial narratives.

Concerning metalevel change, the episode above highlights a fourth metalevel change of 
students adopting the notion that a multiply quantified statement is an assemblage of par-
tial narratives. Students achieve the multiple quantifications of the textbook definition by 
adopting the metarule that a quantified statement is endorsable if it adequately describes 
the epsilon-delta rectangle in both the x-first or y-first x-fixed perspective.

The metalevel change towards multiply quantified statement as the assemblage of par-
tial narratives is enabled by all previous discursive developments. Formalization prepares 
talk about properties of formal objects such as ε, and the focus on the truth value of nar-
ratives prepares the investigation of singly quantified statements, which in turn allows stu-
dents to “carve out” partial statements from a multiply quantified statement and to investi-
gate them separately.
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6  Summary and discussion

This paper contributes to knowledge about how students learn to understand and construct 
multiply quantified statements. It offers three major contributions:

First, it identified four substantial changes in the ways in which students need to relearn 
school mathematics when they engage with the construction of multiply quantified state-
ments while defining limits in tertiary mathematics: students have to (1) endorse a predi-
cate as formal property by replacing metaphors of epsilon strips with narratives about the 
objects ε, Nε, and ∣an − a∣; (2) acknowledge that statements have truth values; (3) recognize 
that multiply quantified statements are deductively ordered and that the order of their quan-
tifications is relevant; and (4) assemble a multiply quantified statement from partial state-
ments that can be carved out from a multiply quantified statement and can be investigated 
separately. These substantial changes extend previous knowledge on genetic decomposi-
tions for learning limits (Cottrill et al., 1996) and learning quantifier relations (Dubinsky 
et al., 1988; Dubinsky & Yiparaki, 2000) by highlighting how the norms (Yackel & Cobb, 
1996) or metarules (Sfard, 2008) of what counts as acceptable mathematics need to change 
throughout learning formal definitions of limits.

Second, the findings emphasize the roles of language, particularly of semantics, prag-
matics, and syntax in students’ learning to construct multiply quantified statements, con-
firming previous research on the topic (Dawkins & Roh, 2020; Durand-Guerrier & Arsac, 
2005). Particularly, with respect to semantics (see its commognitive definition in Sec-
tion 2.2), this paper was able to show that students’ constructions of definitions were ena-
bled by the experiences in the epsilon strip activity and especially, the chain of references 
to familiar school-mathematical objects of functions and variables that this activity elic-
ited. These semantic considerations informed students’ attempts at making multiply quanti-
fied statements—initially in the form of talk about concrete material actions and later as 
talk about the epsilon-N/delta rectangle both as graphical representation and as a signifier 
of abstract objects ε, δ, Nε.

In addition, concerning pragmatics, it was found that students relied heavily on school 
mathematical precedents to frame the quantified nature of ε and Nε/δ. Naturally, the 
above-described semantic chain of references to familiar school-mathematical objects also 
requires students to have knowledge about these objects. Prototypically, the precedent nar-
rative about the function object shows how precedents can act as interim narratives on the 
students’ pathway towards the intended definitions of limits. Previous research has sug-
gested that students need to relearn school mathematics in substantial ways (Stadler, 2011; 
Thomas et  al., 2015). Yet, this proof of existence of the relevance of interim narratives 
highlights the importance of school mathematics in understanding the formal definitions of 
limits. This finding points towards the need for research to further investigate the potential 
of carefully connecting school mathematics with tertiary mathematics to enhance students’ 
learning. However, it also needs to be noted that interim narratives can be a double-edged 
sword: as an interim narrative, the school-mathematical narrative about functions enables 
relevant metalevel changes. Yet, in the long run, this interim notion might turn out to be 
problematic, as ε and Nε/δ are not functionally related (see Roh, 2010).

Furthermore, this paper was able to provide empirical evidence that pragmatics plays 
a relevant role in making true statements. Previous research has found no evidence that 
pragmatics has an impact on making true statements, even though it has been hypothe-
sized (Dawkins & Roh, 2020). This paper presents evidence that students’ previous every-
day notions of truth—in terms of satisfaction of a property—are a crucial prerequisite to 
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constructing quantified statements in terms of their truth value. Thus, the presented find-
ings extend previous knowledge and suggest that the previously hypothesized double role 
of pragmatics for (a) making true statements and (b) making “statements that are worth 
saying” (Dawkins & Roh, 2020) does indeed need to be considered when designing learn-
ing opportunities.

With respect to syntax, which was conceptualized here as the rules by which a new 
narrative can be constructed from simpler ones (Sfard, 2008, p. 102), it is evident that 
the construct of metalevel change allows identifying the emergence of formal syntactical 
rules. The metalevel changes found (Fig. 2) illustrate how students adopt new metarules 
for how to construct new narratives and how these narratives relate to one another, lead-
ing to the construction of quantified statements. These metarules are heavily informed 
by semantic and pragmatic factors, extending previous research on the topic (Dawkins 
& Roh, 2020; Durand-Guerrier, 2003; Durand-Guerrier & Arsac, 2005). For instance, 
the investigation of a singly quantified statement is enabled by the idea of satisfaction 
of properties (Tarski, 1944), which is informed by students’ pragmatic considerations 
of everyday precedents. Beyond semantics and pragmatics, the findings in this paper 
support the hypothesis that metarules are also tightly intertwined with syntactical rules, 
as evidenced by the third substantial change of deductive order where sub-statements 
are coordinated through syntactic rules (Section  5.3). Yet, even though this paper 
finds some evidence that metarules could relate to syntactical rules, further research is 
needed to understand whether and how syntactical rules develop from, or together with, 
metarules. For instance, activities of defining should allow students to engage with rules 
of formal logic (Chorlay, 2019), but from the perspective of discourse development, it 
is unclear if students also adopt new metarules while doing so. Possibly, to investigate 
this issue, activities where students use previously constructed quantified statements for 
their mathematical reasoning (definition-for, Zandieh & Rasmussen, 2010, p. 58) could 
give students opportunities to engage with mathematical statements in a more syntacti-
cal way (Durand-Guerrier, 2003). By adopting commognitive theory, such a study could 
add substantial insights into how syntactical rules emerge from students’ pragmatic and 
semantic considerations.

Finally, and thirdly, this study contributes to commognitive theory. It exemplifies 
how commognition can inform the design of learning activities that facilitate specific 
discursive developments (Schüler-Meyer, 2020; Viirman & Nardi, 2021). Furthermore, 
commognitive theory, and particularly the notion of metalevel change, has shown their 
potential for studying the language resources that students use in learning to engage 
with (multiply quantified) mathematical statements. Accordingly, future commognitive 
research could use the presented construct of metalevel change to design learning activi-
ties that facilitate students’ learning of syntactical rules for interpreting and construct-
ing mathematical statements. More generally, while commognitive theory is suitable to 
design a learning trajectory, the here identified metalevel changes were not predicted in 
the a priori analysis. Even though this finding is not surprising, it nevertheless strength-
ens calls for local instruction theories as basis and as result of design research (Prediger 
et al., 2015) also for commognitive theory. In fact, the four substantial changes above 
could support such a local commognitive theory for constructing multiply quantified 
statements, as they could enable designing learning activities that specifically facilitate 
these changes.
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