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Abstract
Visuospatial representations of numbers and their relationships are widely used in math-
ematics education. These include drawn images, models constructed with concrete manip-
ulatives, enactive/embodied forms, computer graphics, and more. This paper addresses 
the analytical limitations and ethical implications of methodologies that use broad cate-
gorizations of representations and argues the benefits of dynamic qualitative analysis of 
arithmetical-representational strategy across multiple semi-independent aspects of display, 
calculation, and interaction. It proposes an alternative methodological approach combining 
the structured organization of classification with the detailed nuance of description and 
describes a systematic but flexible framework for analysing nonstandard visuospatial rep-
resentations of early arithmetic. This approach is intended for use by researchers or practi-
tioners, for interpretation of multimodal and nonstandard visuospatial representations, and 
for identification of small differences in learners’ developing arithmetical-representational 
strategies, including changes over time. Application is illustrated using selected data from 
a microanalytic study of struggling students’ multiplication and division in scenario tasks.

Keywords  Arithmetical problem-solving · Multimodal data · Multiplicative reasoning · 
Qualitative methodology · Representation · Inclusion

1  Introduction

Representation is central to mathematical activity, such as for summarizing information, 
reasoning, offloading memory storage, coordinating results of intermediate calculations, 
and recording and communicating numerical or functional relationships (Zahner & Corter, 
2010). As commonly interpreted in mathematics education research, external representa-
tions are any visible or tangible productions that encode, stand for, or embody mathemati-
cal ideas or relationships (Goldin, 2018). Their significance in learning is widely acknowl-
edged, and various kinds of representation have attracted the attention of educators, being 
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studied through many theoretical lenses and empirical methodologies, particularly since 
the 1980s (Presmeg, 2006), when Hughes suggested:

[O]ur understanding of learning and teaching mathematics might well be enhanced if 
we can identify those images and analogies which are particularly useful in connecting 
the formal and the concrete - and conversely those which are not. (Hughes, 1986, p.171)

Mathematics pedagogy has been enhanced by now decades of study of imagery, and a 
recently increasing focus on patterns (Mulligan et  al., 2020). However, there have been per-
vasive assumptions and traditions which are problematic, relating to the ways in which both 
representations and the learners who use them are described, classified, and, in too many cases, 
pathologized. Firstly, a great deal of research has contrasted mathematical representations 
which are considered to be ‘formal’, ‘abstract’, or ‘standard’ with those considered informal, 
concrete, or nonstandard (chosen terminology varies) as though these were distinct binaries. 
More generally, the extent of diversity of representational strategies to be found, even within a 
single mathematical idea or task type, is insufficiently widely acknowledged. Secondly, there 
are frequently explicit or implicit a priori assumptions regarding hierarchies of representational 
forms, and thus of those who use them. (This relationship is contextual: when world-class 
mathematicians such as Maryam Mirzakhani have worked on new material primarily through 
visuospatial representations, it is commonly considered unusual but brilliant; when children do 
so in school mathematics, it is commonly interpreted as indicating lower potential (Ben-Yehuda 
et al., 2005).) This second point has a corollary: we must ask not only which (and whose) repre-
sentations are valued, and why, but which (and who) are excluded from datasets, or researched 
as a separate ‘atypical’ group compartmentalized from the normalized population.

This paper adds to the small but growing body of literature and discussion (e.g., within 
the representations working group at CERME (Baccaglini-Frank et al., 2019)) that not only 
acknowledges but appreciates the diversity of both observed representational strategies and 
the learners who use them, while looking for more flexible, nuanced, and inclusive ana-
lytical approaches. In the first half, I address some of the theoretical, methodological, and 
ethical issues in researching representational activities, particularly of learners to whom 
mathematics does not come easily, and, in the second, share an example of an alternative 
framework for qualitative analysis of arithmetical-representational strategies. In Finesilver 
(2017b), I argued for teachers to observe and value the diversity and creativity in learners 
and their representations; here I argue for researchers to do so.

The specific research objective addressed in this paper is to construct an analytical 
framework that can capture the diverse representational strategies developed when stu-
dents work on multiplication- and division-based problems which they are unable to solve 
through standard methods.

This paper is not a report of empirical findings, but uses selected data from a wider 
project to illustrate points of interest. Details of the original research context are provided 
below, after the theoretical background.

1.1 � Example 1: Disappearing vehicles

Before addressing theories and analyses of arithmetical representation, an introductory 
illustration of the phenomena of interest may be helpful to the reader. Consider the two 
visuospatial representations shown in Example 1, produced by two dyslexic 13-year-old 
students during a series of multiplication- and division-based tasks based on scenarios 
involving vehicles. (Refer to Table 1 for definitions of italicized terms if unfamiliar.)
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Figure 1a represents three vans, each of which contains six boxes, each of which con-
tains four bottles; the task was to calculate the total number of bottles. The participant 
(Wendy) was initially unable to make any attempt at this at all, so was provided with a 
prompt: the researcher drawing one ‘van’ container with six ‘box’ containers in it, one of 
which had four ‘bottles’ in it (purple ink). Wendy first filled in ‘bottles’ for the remaining 
‘boxes’ in the first ‘van’ (black ink) and then continued to draw all units of the remaining 
groups-within-groups, but without the ‘vans’ or ‘boxes’. Of particular interest here is that 
she has replicated the spatial configuration of units in equal groups, but without the use of 
these containers to delineate these groups. You may also notice she made a minor error 
(two missing bottles) but still gave the correct total: this may be surprising, considering 
that enumeration was done by counting all units. This correct count was enabled by the 
rhythmicity of Wendy’s enumeration; with a steady pattern of four numbers being counted 
verbally and emphasized with a tapping finger moving with regularity between sets, she 
did not notice that one box actually only contained two visible marks.

Figure 1b  was entirely independent work, produced by George to calculate the number of 
7-seater taxis required to transport 28 passengers. His first ‘taxi’ is car-shaped and has wheels 
that some might call ‘decorative’, as they function neither as units to be counted nor in organiz-
ing the units to be counted. (The role of such elements is addressed below.) Similar to Fig. 1a, 
in the replications, increasing portions of ‘car’ are discarded as unnecessary. By the end, his 
representation is becoming the rows and columns structure of a unit array with the divisor in 
each row; dot arrays turned out to be a representational form he much favoured in later tasks.

The inconsistency of resemblance and spatial structuring is the main point to which I 
draw attention here. In both cases, the representational strategies were initiated with a quite 
high level of visual resemblance to the scenario as described (i.e., the first ‘van’ and ‘car’ are 
recognizable as such), but then the non-mathematically functional elements disappeared not 
between one task and the next, but intra-representation, as did the container forms that had 
been part of the initial spatial structuring of the units (visually delineating the equal groups). 
Meanwhile, other aspects of the representations remained constant: the mode, media, their 
unitcountable nature (i.e., the total quantity represented with one-to-one correspondence), 
and enumeration (rhythmic/grouped counting of units). To simply classify these arithmetical 

a
b

Fig. 1   a–b Two representations with intra-representation changes to the mathematically functional and non-
functional elements depicted (Wendy, George). Changing: resemblance, spatial structuring. Constant: unit-
countability (also media, mode)
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problem-solving representations as ‘pictorial’ rather than ‘abstract’, or ‘concrete’ rather than 
‘formal’ (etc.), would miss these details and potentially important changes.

2 � Theoretical background

2.1 � Representation and arithmetic

It is generally thought that most learners’ arithmetical-representational strategies 
begin with intuitive actions such as manipulating physical objects and end with stand-
ardized symbolic forms. Theorization of this developmental trajectory bears a lasting 
influence of Piaget’s ‘stage theory’ of progression from sensorimotor to formal (Pia-
get, 1952), and Bruner’s enactive, iconic, and symbolic (EIS) ‘modes of representa-
tion’ (Bruner, 1974).

In their early encounters with quantitative relations involving natural numbers, 
children become aware of concepts such as conservation of quantity, counting, and 
additive relations, through interactions with collections of objects. For example, addi-
tion as the joining of collections of objects, and subtraction as removing a subset of 
objects from a collection—in which ordering of objects is unimportant—can be con-
sidered basic conceptual ‘grounding metaphors’ (Lakoff & Núñez, 2000). These meta-
phors, also described in the literature as ‘primitive’, ‘intuitive’ (etc.), underpin various 
early models for arithmetic, not only counting and additive reasoning but more cog-
nitively complex quantitative relationships, such as ratio and proportion. Metaphors 
for arithmetic are not the same as representational strategies, but the two are linked; 
for example, Lakoff and Núñez’s (2000) ‘Arithmetic as Object Collection’ metaphor 
can be extended from addition and subtraction to multiplication and division, by see-
ing these as operating with equally sized sets of objects. The increased complexity of 
multiplicative relationships (compared to additive) is widely considered a significant 
qualitative change (Greer, 1994; Nunes & Bryant, 1996) but involves struggle for many 
(Brown et  al., 2010). Anghileri (1997) has noted that early models of multiplicative 
relationships generally seem to involve sets of items organized into equal-sized sub-
sets; many examples of this have been observed. However, the many and varied ways 
to metaphorize and/or visuospatially represent the nature of one-to-many correspond-
ence deserve closer attention.

The visuospatial representations made by children as they explore mathematical rela-
tionships are diverse, creative, and sometimes unexpected (Deliyianni et  al., 2009; Wor-
thington & Carruthers, 2003), compared to those for whom the material has become famil-
iar and routine. Learners representing their mathematical thinking in not-yet-routinized 
ways can be a particularly valuable source of data for researchers, analysis of which can 
provide a window into early mathematical understanding and reasoning, in particular the 
awareness of patterns and structures which is fundamental to mathematical development 
(Mulligan et al., 2020).

However, where linear sequences of stages are theorized, certain representational 
characteristics can become associated, explicitly or implicitly, with particular ages or 
curricular stages—even if, like Bruner’s EIS, they were not intended this way. Although 
theoretical perspectives have broadened to move away from traditional notions of 
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mathematical reasoning as ‘abstract’ and ‘disembodied, to contemporary views that it 
is ‘embodied’ and ‘imaginative’ (English, 2013), or involves dynamic and recursive 
cycling between representational modes (e.g., Mason, 1980; Pirie & Kieren, 1994), there 
is still a widespread view in both research and practice that the less that arithmetical 
representations superficially resemble formal symbolic notation, the lower the level of 
arithmetical thinking demonstrated. In classrooms, learners’ observed representational 
strategies may be judged immature: it is not uncommon to hear rigid views like ‘By [X] 
age, children should no longer…’ expressed by teaching staff. Meanwhile in research, 
overly categorical, linear, and/or age-linked interpretations of representational trajecto-
ries also have several significant methodological and ethical issues; furthermore, I will 
argue below that the effects of this may both stigmatize and pedagogically disadvantage 
‘atypical’ learners.

2.2 � Diversity of learners’ representational strategies

Firstly and most obviously, while the application of broad stage models to arithmetical 
representations may have some use in population-level description, it is well established 
that individual development is ‘messier’ and should not be treated as progressing linearly 
through neat stages. At a given time, individual children and adults may use a variety of 
strategies for a given arithmetic problem (Baroody & Tiilikainen, 2003; Dowker, 2005)—
considered by some to reflect an ‘overlapping waves’ model (e.g., Opfer & Siegler, 2007; 
van der Ven et al., 2012). Problem-solvers may use ‘backup strategies’ (e.g., Gonzalez & 
Espinel, 2002; Ostad, 1997; Zhang et al., 2013) or vary their strategies adaptively to meet 
the situational demands (Siegler, 1988); this flexibility is valuable. It is not always stated 
explicitly that such strategic variability may apply not only to the calculations carried out, 
but to their representational preferences.

Secondly, the representative strategies employed by learners are, unsurprisingly, 
strongly influenced by the implicit and explicit expectations of the classroom. For exam-
ple, Deliyianni et  al.’s (2009) comparison of children in pre-school and the first year of 
school describes ‘visual creativeness’ turning to ‘obedience to the didactical contract rules’ 
(p.108) regarding representational forms. This is unsurprising in educational cultures in 
which formal symbolic notations are perceived as ‘the almost sole desired and valued out-
comes of mathematics learning’ (Karsenty et al., 2007), and Mason (1980) addresses some 
of the educational problems that result from using symbols without due consideration. 
While few would argue that symbolic notation and standard calculation procedures are not 
highly useful mathematical tools, an education system that rushes learners into exclusively 
symbolic notation can result in the performance of conceptually empty ‘maths-like behav-
iours’ made of fragments of poorly understood symbolic representation, and the unfortu-
nate acceptance (or even misguided encouragement) of this by teachers (Finesilver, 2017b). 
In fact, analysis of individuals’ visuospatial representational strategies would ideally be 
considered not only in terms of individual cognitive development, but in relation to the 
educational contexts in which they learn. In practice, this is a considerable challenge, and 
may not be possible in smaller studies, but one can at least avoid treating representational 
choices as though they were intrinsic to an individual mind and independent of classroom 
cultures and norms.

There is a third issue with overly linear categorical stage models that is surprisingly absent 
from much of the discourse. Where there exists a perception of what ‘typical’ development 
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or progression looks like, a contrasting group is thus implicitly created of all learners with 
‘atypical’ development (often interpreted as those who have failed to progress as expected 
according to local norms). Some studies—particularly those using quantitative meth-
ods—have contrasted the strategies of participant groups predefined on such bases, e.g., 
‘normal’/‘mathematically disabled’ in Ostad (1997), ‘high’/‘low achievers’ (Gray et  al., 
2000; Karsenty et al., 2007), ‘highly-’ or ‘less-able’ (Mulligan et al., 2020), and ‘typically 
achieving students’/‘poor performance’/‘arithmetic learning disabilities’ (Gonzalez & Espi-
nel, 2002). While this is sometimes done with good intentions—such as better understanding 
difficulties in order better to support learning—there is a danger of considerable oversimplifi-
cation in dividing up student populations in this way, and problematizing those who do not or 
cannot comply with narrow culture- and context-dependent expectations. As noted by Lewis 
(2014), ‘disability’ is overwhelmingly conceptualized in this literature as individual cognitive 
deficit, rather than, e.g., social or interactionist constructions where cultures bear responsibil-
ity for disabling those individuals through failure to support diverse paths of development.

This relationship between representation types and assumptions about ‘ability’ is cyclic: 
normative hierarchical assumptions regarding age-appropriate arithmetical understanding, 
calculation methods, and representational strategies not only derive from but feed back into 
perceptions of learner attributes such as attainment, educational dis/ability, individual capaci-
ties for ‘abstract’ or ‘symbolic’ reasoning, and more. Thus, observation of learners already 
judged as ‘high/low ability’ or ‘normal/disabled’ (etc.) leads to views of what types of rep-
resentational strategy are desirable, while hierarchies of representational strategy lead to the 
judging of those who use them as having ‘ability’, being ‘normal’, etc.—or not. There have 
been attempts to use representations to categorize learners in ways which are intended to 
convey neutral differences rather than positive/negative judgements (e.g., as ‘visualizers’ 
or ‘verbalizers’), but these still result in simplistic assumptions about individuals and their 
capacities (e.g., for ‘abstraction’) which may narrow future learning experiences (Cox, 1999).

While consideration of the ethical implications of diversity within student populations 
may be found elsewhere in educational research (e.g., studies of academic selection and 
grouping in schools), it is not as yet sufficiently acknowledged within the subset dealing 
with mathematical representation.

2.3 � Categorizing and describing representations

As well as the ethical issues of classifying learners discussed above, there are also method-
ological issues relating to the actual assignment of representations to unilateral categories. 
There have been many taxonomies employed, and the aim here is not to critique individual 
systems, but to address the ongoing cumulative issues of this theoretical practice overall in 
(mis-)shaping how we understand learners’ mathematics.

There are two particularly influential forms of empirical research in arithmetical 
representation which historically contributed to oversimplified analytical frameworks and 
overgeneralized conclusions. The first is teaching experiments where participants were 
instructed to perform tasks either with or without specific researcher-provided manipulatives 
(see Carbonneau et  al. (2013) for examples). The second is analyses of graphic imagery 
consisting of a set of preordained theoretically-generated types—either involving images chosen 
by researchers and presented to participants, or with participants being directly instructed 
to draw a ‘diagram’/‘picture’/etc. for tasks. Some examples of popular categorizations are 
decorative, representational, and organizational (originally from Levin (1981), referenced in 
Carney and Levin (2002); Elia et al. (2007); and Elia and Philippou (2004)); concrete, pattern, 
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kinaesthetic, and dynamic imagery (Presmeg, 1986); or dramatic, physical, pictorial, verbal, 
and symbolic representations (Verschaffel & De Corte, 1996). One issue pertains to how 
the taxonomies cited above have been recruited by later researchers in different pedagogical 
and research contexts—for example, using them to assign a single assumed function or role 
to participant-produced representations, with no additional data for triangulation (e.g., their 
accompanying verbalizations, gestures or explanations).

A related issue is that many participant-produced representations do not fall neatly into cat-
egories, even within quite narrow methodological limitations. For example, learners who are 
not forced into either concrete modelling of tasks or drawing may combine both (see Fig. 2), 
perhaps along with symbols. Representations may be neither wholly ‘decorative’/‘pictorial’/
etc. nor ‘organizational’/‘schematic’/etc. but combine elements of both (see Fig. 4). This has 
not stopped some researchers choosing still to unilaterally divide all participant-produced rep-
resentations into only two categories—e.g., deciding that they must all be either ‘schematic’ 
or ‘pictorial’ (Hegarty & Kozhevnikov, 1999). While some research explicitly acknowledges 
the non-dichotomous nature of their data (e.g., Ainsworth et al. (2002), who included ‘mixed 
(pictorial and mathematical)’ as a category), this still frames representations that fit neatly 
into categories as the norm, and those that do not as atypical. I suggest that diverse ‘mixed’ 
arithmetical-representational strategies should be both expected and valued.

Of the studies involving collecting and analysing the images and models produced by 
students during mathematical problem-solving, some choose descriptive rather than tax-
onomic approaches, which allows greater nuance and detail. For example, Saundry and 
Nicol (2006) used thick description of how students produced and interacted with their 
images. Such approaches have been effective in identifying the misconceptions and par-
tial understandings of learners struggling with basic arithmetical reasoning (Karsenty 
et al., 2007), or different ways children use imagery in their numerical processing (Gray 
et al., 2000). Regarding the ethical concern above, studies using more descriptive qualita-
tive approaches are less likely to contrast groups of learners pre-judged as ‘high’ or ‘low’, 
but have rather indicated significant intra-group variation in arithmetical problem-solving 
(Brown et  al., 2008) and associated representational strategies (Deliyianni et  al., 2009). 
However, there are limitations in analysis based predominantly on rich description: it does 
not lend itself well to structured analysis of inter- or intra-participant patterns.

The rise in qualitative microgenetic methodology (see Siegler and Crowley (1991) for an 
introduction) has been particularly helpful in shedding light on individual developmental tra-
jectories (Meira, 1995; Voutsina, 2012) and understanding differences as well as difficulties 
(Fletcher et al., 1998). Meanwhile, dynamic testing and assessment approaches have been pos-
itively influential in developing targeted educational interventions, not to mention critiquing 
the classification of children (Elliott et al., 2018). Wide availability and ease of recording and 
digitization of data have provided increased opportunities for observing microprogressions, 
cooperative work, and more. When these methodologies are applied to arithmetical represen-
tation, more flexible analytical frameworks are required to unlock the potential of the data.

The analytical framework described below is intended to illustrate a way of combining 
the structured nature of categorical models with the detailed nuance of descriptive methods 
and so address some of the main issues that can constrain the study and appreciation of 
diverse representational strategies in mathematics. An effective analysis of visuospatial rep-
resentations should be able to address issues of both form and function while acknowledg-
ing their interrelation, and the ways an inclusive spectrum of participants actually interact 
with and employ the various representational elements. Thus I propose conducting analysis 
of arithmetical representations not in terms of any singular category choice, but along multi-
ple simultaneous aspects of representational strategy, as outlined below.
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3 � Research context

Although the main concern of this paper is theoretical principles and methodology for 
qualitative analysis, not the reporting of empirical results, an explanation of the context 
in which the framework was developed is needed, as some research data are included as 
illustrative examples. The overarching project (Finesilver, 2014) used microgenetic meth-
ods to study emerging and developing multiplicative structure in students’ visuospatial 
representations.

3.1 � Participants

Appropriate representational experiences are of importance for not only younger learn-
ers encountering new concepts (Goldin & Shteingold, 2001) but older ones who are still 
struggling (Jitendra et al., 2016). With an aim to exploring the nature and extent of rep-
resentational diversity in this latter group, I collected/recorded representations produced 
by or with 11–15-year-old students during problem-solving activities in a specific area of 
arithmetic (multiplication and division) with which they were not as secure as might be 
assumed. The participants attended two typical inner London schools and were selected 
through identification by teachers as struggling the most in mathematics compared to 
their peers. Unsurprisingly, this group turned out to be diverse across multiple axes of 
identity, including neurodiversity. While neurological diversity is ‘an inherent and valu-
able part of the range of human variation’ (Dyck & Russell, 2020), it is invisible in much 
research literature, and thus the opportunity for a methodologically inclusive approach 
was welcome.

3.2 � Data

The data derived from a series of six interactive problem-solving interviews methodologi-
cally situated at a point between clinical interview and naturalistic pedagogic activity, with 
the dynamic assessment principle of first gauging unassisted capability on a task, then cali-
brating support (if any) in situ to the needs of the individual (Elliott et al. 2018). The guid-
ing principles regarding representation were (1) strong encouragement of students’ free-
dom to follow their own preferences, ideas, and strategies and (2) absence of time pressure 
on tasks (see Finesilver (2017b) for further discussion of this point).

The two main task scenarios employed were ‘Biscuits’ (partitive division, where a num-
ber of biscuits is to be shared between a given number of children) and ‘Passengers’ (quo-
titive division, where one calculates the number of vehicles required to transport a given 
number of passengers). A full list of tasks and individual rationales may be found in Fine-
silver (2014), and detailed analysis of two particular tasks in Finesilver (2009, 2017a). The 
representational media available were multilink cubes, coloured pens, and paper.

The main dataset consisted of over 200 unique visuospatial representations collected 
from task-based activity (an exact figure is not possible, as participants sometimes re-
appropriated whole or parts of their prior representations for subsequent tasks), many of 
which contained multiple mixed concrete, drawn, symbolic, and/or textual elements that 
defied any categorization to be found in prior literature. These were accompanied by audio 
recordings and contemporaneous field notes for indications of how the visuospatial repre-
sentational elements related to calculation.
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3.3 � Analysis

Using a bottom-up research methodology influenced by grounded approaches, I collected 
the data first and then identified patterns through a process beginning with thick description 
of the arithmetical-representational activity, followed by repeated coding and sifting of the 
full set of collected representations, comparing representational elements and the relations 
between them, and their use over time, participants, and task types (see Finesilver (2014)). 
Constructing the analytical framework involved returning to the data repeatedly to check the 
constructs and sense-making processes, both reflexively and with peer debrief (Creswell & 
Miller, 2000). This resulted in the final set of thirteen analytical aspects in Table 1, which 
were tested qualitatively for their power in pinpointing changes, discriminating between 
superficially similar but differently functioning representations, and teasing apart the inter-
connected and independent variations in arithmetical-representational strategies.

4 � The analytical framework

The complete list of analytical aspects is presented here, organized for ease of application into 
three groups. This is followed by further explanatory detail. Note that while certain aspects are 
specific to multiplicative relationships with natural numbers, some could also be applied to other 
arithmetic (e.g., additive structures, rational number work) or problem-solving more broadly.

Table 1   General framework of aspects for qualitative analysis of visuospatial arithmetical-representational 
strategies

Aspects that may be determined from the finished representation
   Media means of production, e.g., cubes, pen/paper, fingers, pixels on screen
   Mode(s) means of meaning-making, e.g., modelling, drawing, words, symbols
   Resemblance visual resemblance of the drawing/model to the task scenario
   Spatial structuring visuospatial organization of representational elements (e.g., groups of units) 

through separation in space, use of containers, alignment in one or more 
dimensions, etc

   Unitcountability if unitcountable, each represented unit (cube, tally mark, etc.) = 1, and enu-
meration could be achieved by direct unitary counting (i.e., counting them in 
ones); if non-unitcountable, the ‘ones’ are not individually represented

   Completeness whether the student produces a complete set of observable externally repre-
sented elements (a special form of consistency)

   Strategic soundness whether the strategy would produce a correct solution if no errors are made in 
its execution

Aspects of arithmetical-representational strategy to observe in action
   Motion whether the representation is static once created, or involves ongoing move-

ment of elements while in use for calculation
   Enumeration how quantities are derived, e.g., unit-counting, step-counting, number fact 

retrieval
   Consistency whether a single coherent strategy is used from start to finish, or changes occur
   Execution errors e.g., in number fact retrieval, verbal count sequence, finger pointing movement, 

notation
Aspects of interactive co-production
   Verbal e.g., teacher’s (or other person’s) spoken prompts, suggestions for calculation
   Visuospatial e.g., teacher’s (or other person’s) gestures, participation in modelling/drawing
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4.1 � Aspects that may be determined from the finished representation

First are the immediately observable characteristics of a representation, which do not nec-
essarily relate to the precise ways in which the elements actually do function in calculation 
(or in terms of focus, affect, etc.).

Traditionally, representations for scenario-based tasks have been compared based on 
how much they visually resemble the stated scenario or its underlying structure. However, 
as discussed, these have often been in constructed binaries, for example, ‘abstract’ versus 
‘concrete’ (e.g., Gray et al., 2000) or ‘schematic’ versus ‘pictorial’ (e.g., Hegarty & Koz-
hevnikov, 1999). These tend to conflate three aspects which may actually vary somewhat 
independently. Media and mode are common aspects of representational analysis deriv-
ing from social semiotics (see, e.g., Bezemer and Kress (2008) for further details); math-
ematical problem-solving representations are often multimodal and maybe multimedia. 
Furthermore, conventional media and mode choices are not intrinsically more ‘abstract’ 
or mathematically advanced than others. For the purposes of more detailed qualitative 
analysis, media, mode, and resemblance should be considered separately, with resem-
blance better considered not categorically but on a spectrum between literally enacting 
the scenario with the actual objects stated (e.g., sharing out some actual biscuits between 
actual people) and calculating using a standard configuration of symbols which could 
represent any isomorphic calculation. Two or more representations (whether by differ-
ent individuals, or the same individual at different points in time) might be compared as 
having higher or lower resemblance through noting the presence/absence and depiction of 
different elements.

The spatial structuring of representational elements and the methods of enumera-
tion for which they are employed are also sometimes unhelpfully conflated, as is the 
unitcountability—often the result of attempts to focus on only one of these aspects, 
but then not wishing to entirely ignore the others. The study of calculation aspects of 
arithmetic (such as whether and how a participant counts, calculates, or retrieves an 
answer from memory), while receiving a great deal of attention, has historically taken 
place separately from the analysis of visuospatial representations. The organization of 
representational elements within the workspace (where present) is highly relevant to 
the calculation process—but again, they can vary independently. This is particularly 
the case in unitcountable representations (e.g., arrays of dots and squares in represent-
ing multiplicative structure, as compared by Izsák (2005), or container and array rep-
resentations in scenario tasks by Van Dooren et al., (2013). Individuals may represent 
the same calculation in different ways and, conversely, calculate differently with the 
same representation; furthermore, equivalent spatial structurings may be found in dif-
ferent modes/media (see Example 2 below). While unitcountability and a great deal of 
the spatial structuring may be determined by looking at an inscription or model alone, 
they must be observed in use to see whether the user actually counted (in ones or oth-
erwise), or the order in which structures were constructed; it is necessary to separate 
how the representation appears from how it is employed. Note that unitcountability 
was highly salient in this particular project, as one-to-many correspondence is consid-
ered by some to be the origin of multiplicative reasoning (Nunes & Bryant, 1996), and 
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a learner moving from one-to-one correspondence to using a single element (whether 
symbol, icon, or object) to stand for a larger number, is clearly a very important indi-
cator of arithmetical development; it may be less so elsewhere.

In common usage, completeness has positive associations and incompleteness nega-
tive; this is not the case here. Like the move from unitcountable to non-unitcountable 
representation, an incomplete representation means that not all units are individually rep-
resented, which is particularly telling when combined with a sound strategy and/or cor-
rect answer. However, it is noted that these are not always separated out in quantitative 
research paradigms, although they provide different information about the participant’s 
arithmetic.

4.2 � Aspects of arithmetical‑representational strategy to observe in action

Motion has for some time been considered a relevant aspect of visuospatial represen-
tation, whether it be embodied cognition of gesture in expressing mathematical con-
cepts (Broaders et  al., 2007), the kinetic deployment of fingers as countable media 
(Anghileri, 1995), rearranging concrete units into equal group configurations (Squire 
& Bryant, 2002), or dynamic virtual manipulatives (McLeod et al., 2012). Motion has 
been analysed qualitatively as well as quantitatively and is not confined to particu-
lar media, e.g., Saundry and Nicol (2006) described patterns of movement in students 
manipulating pictures on the page, moving, eliminating, sharing, and distributing. For 
an example of how motion relates to both spatial structuring and enumeration, con-
sider a student counting while drawing, pointing to, or moving units (see Example 2 
and Finesilver (2017a)).

Enumeration, as mentioned above, should ideally be determined from observation. 
While there may be indications that remain—for example, a symbolic notation of cal-
culation—these can be misleading, e.g., a learner writing what they believe is culturally 
expected, having in fact derived their answer a different way. Similarly, observing how 
an arithmetical-representational strategy was carried out may provide salient informa-
tion on what execution errors caused an incorrect answer from a sound strategy. Con-
sistency, like completeness, is a neutral descriptor, and inconsistency can be a positive 
sign; for example, while changes in spatial structuring and unitcountability may be seen 
from the finished representation, the researcher may observe an individual begin their 
enumeration by unitary counting and then change to step-counting partway through.

4.3 � Aspects of interactive co‑production

These aspects refer to the potential involvement of a third party in the representa-
tional activity. It is increasingly the case that teacher-researchers, particularly those 
of a more Vygotskian bent, interact with participants in ‘co-construction’ (Carruthers 

281Beyond categories: dynamic qualitative analysis of visuospatial…



1 3

& Worthington, 2011), becoming involved via verbal or visuospatial interactions in a 
joint representational/semiotic process. The distinction between reasoning with self-
produced representations versus those presented by others is vital (Papert, 1993), and 
it is not coincidental that the need for this framework became apparent during a study 
where learners were explicitly encouraged to be creative in their representational 
strategies.

5 � Applying the framework: further examples

Clearly the tiny subset of representations reproduced in this paper cannot give a fair 
impression of the variety of representational strategies collected in the project, let 
alone of all those that the reader might have observed (or can imagine) diverse and 
creative problem-solvers using; neither are the brief commentaries included here with 
each intended to substitute for thorough analysis. They are selected for the purpose of 
providing a varied set of ‘snapshots’ into some emerging multiplicative thinking, and 
how a multidimensional qualitative framework may be applied. In Example 1 (above), 
I focused on inconsistency in the spatial structuring of two unitcountable representa-
tions, indicating decreased need for container elements and more reliance on layout of 
units. Examples 2 and 3 focus on changes in media/mode and unitcountability; Exam-
ple 2 is chosen as a more strongly researcher-led interaction on a single task strategy, 
while Example 3 shows more independent open-ended work on multiplicative relation-
ships. Example 4 is used to further explore the role of resemblance when working with 
larger quantities.

5.1 � Example 2: A ‘sharing biscuits’ scenario represented in physical modelling 
and drawing

Paula, a 14-year-old student with severe quantification difficulties (potentially dyscalculia) 
and limited grasp of symbolic notation, was working on partitive division (‘Biscuits’) tasks, 
which required a high level of supportive interaction. She initially failed even to share a set 
of physical objects into a requested number of equal groups, so the researcher employed a 
visuospatial prompt of drawing circles (‘plates’ for the ‘biscuits’), into which she moved 
cubes (i.e.,  spatial structuring of unitcountable units). After some practice ‘dealing’ (see 

a b

Fig. 2   a–b Two partitive division representations (Paula with researcher). Changing: media, mode. Con-
stant: spatial structuring, motion (also resemblance, unitcountability, completeness, consistency)
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Finesilver (2019) for detailed discussion), she was able to reliably create equal groups 
(Fig. 2a). Following this, she was encouraged to try moving from an enactive mode using 
physical media to an iconic mode using only drawing (Fig. 2b). Initially very confusing to 
her, this was achieved through maintaining identical spatial structuring, an equivalent level 
of resemblance to the task scenario and, especially, equivalent motion: her hand traced a 
similar sequential pattern in the workspace when picking up cubes from an initial collection 
above the ‘plates’ containers to distribute in sequence, and when deleting dots from an ini-
tial collection above to redraw them inside the containers. By maintaining these strong links 
with a secure strategy, she achieved the transition more smoothly than might be expected. 
While, as mentioned above, there is no theoretical difference in mathematical sophistication 
between these two representations, having the capability to solve arithmetical tasks with a 
pen and paper rather than having to find a collection of suitable objects to count out is of 
practical benefit for ease of participation in lessons and formal assessments, and for self-
esteem amongst peers who work predominantly with pen and paper.

5.2 � Example 3: Multiplicative relationships with ‘unit containers’ and ‘number 
containers’

Tasha, a 12-year-old student with ADHD and a history of low performance in school math-
ematics, was initially comfortable with exploring multiplication and division only through 
unitcountable representations such as Fig.  3a, enumerating by grouped unitary counting. It 
is relevant that she used identical container forms to spatially structure equal groups of units 
for both multiplication and division tasks: this reinforces the relationship between the opera-
tions. In Fig. 3b, she was finding the number of 5-seater taxis needed to transport 30 people and 
decided to record the number in each group with symbols as well as unit marks. This choice 
to duplicate information, which may seem redundant to the casual viewer, provided her a link 
between her previous secure strategy and the new one shown in Fig. 3c (where she was explor-
ing the different possible divisions of 30 into equal groups). Note that, in contrast to Example 
1, Tasha retains the familiar containers, even after replacing the groups of units with number 
symbols. Again, these elements may seem ‘unnecessary’, but this nonstandard form, ‘number 
containers’, likely provided the link supporting the major cognitive leap from unitcountable to 
non-unitcountable representation (i.e., marks representing ones, to marks representing higher 
numerosities).

a b c

Fig. 3   a–c A selection of one student’s container-based representations of various equal group calculations 
(Tasha). Changing: mode, unitcountability. Constant: spatial structuring (also media, completeness)

283Beyond categories: dynamic qualitative analysis of visuospatial…



1 3

5.3 � Example 4: Number containers, ‘decoration’, and text in tasks with larger 
quantities

Some participants worked on tasks involving larger quantities (e.g., calculating the number 
of coaches or planes required for > 100 passengers). Here, two students independently and 
successfully employ non-unitcountable representations with spatial structuring by number 
containers, as seen in Example 3, but with some non-mathematically-functional elements 
that deserve particular attention.

Figure 4a–b are later productions by Wendy (of the disappearing van in Fig. 1a). In that 
earlier unitcountable representation that was enumerated by rhythmic group-counting, she 
had discarded both containers and decoration. Here, she has gained confidence in using num-
ber symbols (i.e., non-unitcountable representations) and enumerates by repeated addition. 
The point of note is that numbers are spatially structured with containers, and resemblance is 
increased through pictorial elements (wheels on the buses, aeroplane-shaped containers with 
windows). Wendy was a highly motivated, engaged student who never doodled or wasted 
time, so the significant time she chose to spend drawing these elements indicates that while 
they do not contribute directly to enumeration, there was some other reason she chose to 
include them. She had made considerable progress in sessions even by ‘typical’ classroom 
standards and was tackling increasingly challenging division calculations. This was achieved 
through highly visual metaphoric reasoning (imagining quotitive division as an initial quan-
tity of people filling up equally-sized vehicles), which allowed her to manipulate numbers that 
were still very intimidating when presented in bare form; I speculate that pictorial elements 
here acted affectively to reinforce the reassuring and helpful metaphor, avoiding anxiety.

In Fig. 4c, Sidney also uses number containers to represent a set of coaches each carrying 21 
people but prefers to label them with text than make the containers visually resemble coaches. 
This is an unusual choice (particularly the repetition of the text label) but equally valid. Perhaps 
even more surprising is Fig. 4d, where a number of taxis are drawn and labelled to success-
fully represent the quotient, but neither the dividend, divisor, nor calculation were visually repre-
sented. (While drawing, he step-counted aloud in fives up to the required total.) This representa-
tional choice may have been helpful to him in some way and, while unexpected, does no harm.

a b

c

d

Fig. 4   a–d Representations that include non-mathematically functional elements, used for four of the later 
‘Passengers’ tasks (a–b Wendy, c–d Sidney)
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6 � Discussion

6.1 � Diversity of arithmetical‑representational strategies

I set out to investigate the diversity to be found in student-produced arithmetical-represen-
tational strategies. Despite employing limited media and a basic task set with only natural 
numbers, by allowing an inclusive group of students the time, space, and encouragement to 
work with arithmetical relationships in the ways that made most sense to them, they pro-
duced a diverse set of multimodal data. The full set of 200 + may be viewed in Finesilver 
(2014), but the few examples shown here give a flavour. If one were to study a larger and 
more diverse set of participants, or expand the tasks set, even greater diversity might be 
expected. If we wish to understand the nuances of developing mathematical understanding, 
looking in depth and detail at learners’ representations is important in taking account of 
the ‘messiness’ of variation and development, as opposed to forcing them into artificially 
delineated categories or expected stages. Frameworks are required with the capacity to 
address multiple aspects of arithmetical-representational strategies which may vary (semi-)
independently and non-linearly.

Some structural and functional similarities, differences, and changes may be studied 
through the dissection of completed inscriptions. Ideally, though, arithmetical-representa-
tional strategies should be studied through observation of their production in context, and 
dynamic usage. For example, what directional relations and interplay are observed between 
spatial structuring, enumeration, and error types? (I have used a subset of this framework 
to focus on these aspects in a cuboid array task (Finesilver, 2017a).) While observation is 
not always practicable, researchers cannot presume to know all the thinking involved in a 
representation from only seeing the end product.

6.2 � Non‑mathematically functional elements

Research on arithmetical representations has, understandably, focused on their direct usage 
in calculation. However, there are other factors affecting representational choices, perhaps 
particularly those of struggling learners. All elements of a representation are created for 
some reason and may indirectly be supporting problem-solving activity, rather than directly 
denoting quantities or organizational structures. The ‘decorative’ elements in Examples 1 
and 4 are not there by chance, nor the back-and-forth motion in Example 2, or the container 
circles in Example 3. It could be entirely appropriate for learners to make choices that help 
them maintain focus, reduce stress, etc. rather than those associated with the perceived effi-
ciency, ‘abstraction’, or conformity that teachers generally prize.

An anxious affective state particularly impairs the reasoning required for mathematical 
problem-solving (Trezise & Reeve, 2017) and can also cause students to feel they are in a 
‘race’ (Dowker, 2019). Thus, students stressed by their mathematical environment may not 
choose arithmetical-representational strategies that take longer, even when they could help. 
That my research data contradicted this from the start (in a Cartesian product task (Finesilver, 
2009), for which a partial early version of this framework was used) may almost certainly be 
attributed to absence of (a) time pressure and/or (b) teachers or peers overlooking their work. 
It may be that struggling learners benefit from being allowed/encouraged to include familiar 
elements or aspects which might not seem necessary to the observer, to maintain emotional 
security when working on challenging and potentially anxiety-provoking tasks. This deserves 
further study under de-pressured and exploration-encouraging conditions.
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6.3 � Change and capabilities

Where particular symbolic notations are an idealized ‘end product’ of school mathe-
matics, many potentially limiting assumptions are made about levels of understanding 
and capability of learners employing nonstandard representational strategies, whether 
they have been labelled in some way, e.g., as disabled or neurodivergent, or are seen 
through a more general lens of (prior) low attainment. Broad categorizations and 
hegemonic perceptions of development such as those referenced earlier in this paper 
implicitly feed into this tendency, reading learners’ attainment in fixed ways, and con-
tributing to stigmatizing rather than supporting. However, by naming and separating 
out arithmetical-representational aspects, one can capture exactly what is constant and 
what changes, ‘regressions’ that may take place alongside ‘progressions’, and the many 
other tiny changes (or ‘microprogressions’) which can be particularly relevant for strug-
gling learners. (I have used subsets of aspects of this framework in this way, in microge-
netic case study approaches in atypical individuals’ problem-solving tuition (Finesilver, 
2014, 2019).)

I suggest that using flexible multidimensional frameworks, such as the one proposed in 
this paper, could be a factor in challenging perceptions of individual deficits and design-
ing more inclusive methodologies for qualitative research, to form more nuanced assess-
ments of learners, and find mathematical capabilities, ingenuities, and possibilities which 
go unseen under crude taxonomies.

7 � Concluding comments

Learners’ explorations of nonstandard visuospatial representations are a valuable way 
for them to explore and understand arithmetical relationships and a valuable source 
of data for researchers and teachers to understand and value diverse learning trajec-
tories. They have been undervalued and oversimplified partly because of a history of 
analytical approaches based on over-broad taxonomic categories, and also resulting 
from overly-hegemonic representational hierarchies. Both of these factors can result 
in unduly limiting judgments being made on children’s capabilities and potential, 
which should be an ethical concern. I have argued the need for a more flexible, multi-
dimensional approach, which avoids unnecessary binaries and hierarchies and allows 
for more fine-grained, in-depth, and dynamic analysis of arithmetical-representational 
strategies and the mathematical thinking of those who use them. Rather than just 
choosing a different set of categories in which to slot representations, I have proposed 
the alternative approach of employing a set of independently analytical aspects.

To illustrate this principle, I have presented a framework and showed how aspects can 
be used to compare and contrast various elements of visuospatial representations for learn-
ers engaged in arithmetical problem-solving, highlighting structural and functional simi-
larities, differences, and changes. The characteristics that make this framework unique (to 
my knowledge) and particularly effective are as follows: (1) the level of detail provided by 
treating the different aspects of representation as varying independently, combined with a 
systematic organizational structure for describing representational activity and (2) that it 
can be applied to drawing, modelling, enactive, and other visuospatial strategies, plus any 
mixture of modes and media. Although not unique in this, further advantages are that (3) it 
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highlights interactive relationships between representation and calculation and (4) it does 
not impose a single hierarchical structure on representations or the learners who use them.

While the genesis of this framework was within the specific context of natural num-
ber multiplication and division, I suggest the principles may have wider utility in various 
research, diagnostic, and practitioner situations, as there are many occasions when it may 
be useful to specify in detail similarities and differences of representational strategy. For 
example, one might need to make detailed comparisons within a static dataset (e.g., multi-
ple students’ representations of a mathematical task on a single occasion) or a dynamic one 
(e.g., an individual student’s representations changing longitudinally). It is appropriate for 
both research and practice, where arithmetical representations with visuospatial elements 
are involved, and may be helpful in encouraging closer study of the diverse mathemati-
cal behaviours and competencies of more inclusive groups of learners. I welcome broader 
growth in the use of this kind of approach, with the developing of similar qualitative ana-
lytical frameworks of aspects for other areas of mathematics or related subjects.
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