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Abstract
Rational number knowledge is a crucial feature of primary school mathematics that pre-
dicts students’ later mathematics achievement. Many students struggle with the transition 
from natural number to rational number reasoning, so novel pedagogical approaches to 
support the development of rational number knowledge are valuable to mathematics edu-
cators worldwide. Digital game-based learning environments may support a wide range 
of mathematics skills. NanoRoboMath, a digital game-based learning environment, was 
developed to enhance students’ conceptual and adaptive rational number knowledge. In this 
paper, we tested the effectiveness of a preliminary version of the game with fifth and sixth 
grade primary school students (N = 195) using a quasi-experimental design. A small posi-
tive effect of playing the NanoRoboMath game on students’ rational number conceptual 
knowledge was observed. Students’ overall game performance was related to learning out-
comes concerning their adaptive rational number knowledge and understanding of rational 
number representations and operations.

Keywords Rational numbers · Game-based learning · Adaptive expertise · Conceptual 
knowledge · Natural number bias

1 Introduction

Many aspects of work and everyday life require an understanding of rational numbers 
(Handel, 2016; Reyna & Brainerd, 2007), and rational numbers are seen as a major obstacle 
to further progress in mathematics (NMAP, 2008). Rational number understanding has been 
linked to algebra readiness and algebra ability (Booth & Newton, 2012; Hurst & Cordes, 
2018; Siegler et  al., 2012). Moreover, rational number knowledge predicts arithmetic 
proficiency and later mathematics achievement in general (Bailey et al., 2012; Siegler et al., 
2011). Hence, research findings have indicated the importance of good rational number 
skills, and at the same time, they show that many students and even educated adults, 
including (prospective) teachers, find rational numbers difficult. Many learners struggle with 
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the transition from natural number reasoning to rational number reasoning (Depaepe et al., 
2015; McMullen et al., 2015; Ni & Zhou, 2005; Van Hoof et al., 2018). Thus, there is a 
need to develop instructional interventions that aim to promote rational number knowledge. 
The purpose of this study was to examine the learning outcomes of a quasi-experimental 
classroom intervention that used a new digital game-based learning environment, the 
NanoRoboMath game. We used a pre- and post-test design with experimental and control 
conditions to investigate the effects of playing the game with respect to (a) rational number 
conceptual knowledge and (b) adaptive rational number knowledge.

2  Natural number bias and conceptual change

A long history of research has investigated various qualitative changes in the way children 
understand numbers, including transformations from multiplicative reasoning with whole 
numbers to rational numbers (Fuson, 1988; Gelman & Gallistel, 1978; Nunes & Bryant, 
1996). Many difficulties learners face in understanding rational numbers can be explained 
by a phenomenon called natural number bias, which is a tendency to apply natural number 
features in rational number tasks in which natural number reasoning leads to an incorrect 
answer (Ni & Zhou, 2005; Vamvakoussi et  al., 2018). Multiple theories of conceptual 
change argue that prior conceptions can constrain students’ ability to learn new content 
(Chi, 2008; diSessa, 2008; Vosniadou & Verschaffel, 2004). In mathematics, previous 
research has shown that conceptual change is needed to accommodate learners’ initial 
natural number biased ideas to new aspects of rational numbers that are incompatible with 
their prior knowledge. Typical examples of natural number biased errors relate to size, 
representations, operations, and density (Merenluoto & Lehtinen, 2004; Van Hoof et al., 
2015b; Vosniadou et al., 2008).

First, the representation of a rational number is not related to its size in the same way 
it is with natural numbers. Students often mistakenly think that longer decimal representa-
tions correspond to larger numbers (Resnick et  al., 1989; Smith et  al., 2005). Moreover, 
learners wrongly assume that the magnitude of the fraction increases as its denominator or 
both the denominator and numerator increase without paying attention to the relationship 
between these two components (Clarke & Roche, 2009; Stafylidou & Vosniadou, 2004). 
Second, learners are faced with the difficulty that despite the differences in their notation 
and context of use, fractions, decimals, and percentages are not different types of numbers 
but are merely alternative ways to represent rational numbers. As they do not realize that 
the same number can be written in infinitely many different ways (for example, 50% = 0.50 
= 0.500 = 2/4 = 3/6), they treat the different symbolic representations as different numbers 
(Vosniadou et al., 2008).

Third, the effects of arithmetic operations on the magnitude of the result differ from the 
natural number context. Learners may keep assuming that the rules “multiplication makes 
bigger” and “division makes smaller” are valid in the rational number context (Christou, 
2015; Fischbein et al., 1985; Vamvakoussi et al., 2012; Van Hoof et al., 2015b). However, 
with rational numbers, the product may be smaller than the multiplicand if the magnitude 
of the multiplier is smaller than one (for example, 0.4 × 8 = 3.2). Similarly, if the magni-
tude of the divisor is less than one, then the quotient can be greater than the dividend (for 
example, 3 ÷ 0.5 = 6). Fourth, many learners struggle to understand the dense structure of 
rational numbers (Neumann, 1998; Vamvakoussi & Vosniadou, 2004; Vamvakoussi et al., 
2011). Every natural number n has a unique successor n + 1, and there is a finite number 
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of natural numbers between any two natural numbers. For any rational number, there is no 
next larger rational number, and between two different rational numbers, there are always 
infinitely many rational numbers.

Research findings have suggested that substantial conceptual change may be required 
to understand fully the inconsistencies between natural and rational number reasoning 
(McMullen et al., 2018; Van Hoof et al., 2018). However, aspects of rational numbers that 
are incongruent with natural numbers are rarely explicitly stated in mathematics instruc-
tional material (Van Dooren et al., 2019). This is problematic, because teachers themselves 
may have limited content knowledge and pedagogical content knowledge on rational num-
bers (Depaepe et  al., 2015). Without explicit material to support instruction, the natural 
number biased aspects of rational numbers may be dealt with insufficiently in a compre-
hensive school context.

Developing students’ intuitive concepts of number towards rational number reasoning 
is challenging for learners and teachers (Merenluoto & Lehtinen, 2004; Vosniadou et  al., 
2008). Even instructional interventions that aim to elicit conceptual change appear to 
have limited effects on student learning, for example, in the case of density knowledge 
(Vamvakoussi & Vosniadou, 2012). On the one hand, approaches in which students are 
explicitly forced to confront their misconceptions have appeared successful. For example, 
refutational texts, which systematically attempt to engage, challenge, and remediate readers’ 
misconceptions, have been found to facilitate conceptual change in different areas of 
science and mathematics education (Christou & Prokopou, 2019; Mikkilä-Erdmann, 2001; 
Tippett, 2010). On the other hand, some researchers have suggested that we should work 
with — rather than against — students’ intuitions and in an empowering way shift students’ 
perceptual attention towards properties aligned with expertise (Shvarts & Abrahamson, 
2019; Smith et al., 1993). Further research is needed to determine the teaching approaches 
that are effective in different contexts (Leonard et  al., 2014). Vosniadou and Verschaffel 
argued that the role of instruction is to enable intentional learners to develop metacognitive 
skills and multiple new perspectives to overcome the barriers imposed by their initial 
explanatory frameworks (Vosniadou & Verschaffel, 2004). Some studies have indicated 
that game-based learning might be one approach that is helpful in supporting this process 
(Ketamo & Kiili, 2010; Koops & Hoevenaar, 2013). To build on this body of knowledge, 
we examined the effectiveness of a digital game-based learning environment in promoting 
rational number knowledge in this study.

3  Adaptive rational number knowledge

Many studies have concentrated on difficulties in rational number understanding (for 
example, Fuchs et al., 2013; Tian & Siegler, 2017), but there is also some work aimed at 
investigating and supporting the development of high-level skills and adaptive expertise 
with rational numbers (Baroody, 2003; Verschaffel et al., 2009). Previous examinations of 
high-level rational number knowledge have focused either on specific aspects of conceptual 
knowledge, such as density concepts (Vamvakoussi & Vosniadou, 2004), or more nebulous 
constructs of a rational number sense that involve a wide range of skills and knowledge 
unsuitable for large-scale, targeted investigations (for example, Moss & Case, 1999). 
Recently, McMullen and colleagues (2020) examined students’ capability to integrate 
multiple features of their procedural and conceptual knowledge of rational numbers in a 
novel task, as a means to examine a specific behavioural manifestation of adaptive expertise 
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with rational numbers, which they called adaptive rational number knowledge. According 
to Baroody (2003), adaptive expertise depends on well-connected conceptual knowledge 
and its integration with procedural knowledge for use in novel contexts.

Adaptive expertise in arithmetic problem-solving involves switching between multiple 
solution strategies and choosing the most appropriate strategy for a given problem based on 
task characteristics, personal characteristics, and socio-cultural norms (Verschaffel et al., 
2009). Thus, it has been theorized that adaptive expertise with arithmetic is supported by 
two key components, flexible switching between solution strategies in a problem-solving 
situation (Torbeyns et al., 2006) and adaptive number knowledge (McMullen et al., 2016). 
Adaptive number knowledge is defined as a rich network of knowledge of numerical char-
acteristics and the arithmetic relations between numbers, which can be flexibly applied in 
solving novel tasks. This knowledge includes being aware of the nature of the number sys-
tem and identifying numerical characteristics, such as being close to “nice” numbers (for 
example, 47 is close to 48, which has many factors) (Dowker, 1992) and recognizing or 
estimating factors and multiples.

Adaptive number knowledge was first considered with whole numbers (McMullen et al., 
2016, 2017), but the concept has recently been extended to rational numbers (McMullen 
et al., 2020). The arithmetic and numerical skills and knowledge needed for strong adaptive 
rational number knowledge appear to align with features of conceptual knowledge. How-
ever, adaptive rational number knowledge was distinct from students’ conceptual and pro-
cedural knowledge of rational numbers (McMullen et al., 2020). Based on their analysis 
of students’ responses to the rational number version of the arithmetic sentence produc-
tion task, McMullen and colleagues (2020) suggested that the integration of this knowl-
edge across multiple concepts most clearly supports adaptive rational number knowledge, 
for instance, making a connection between the following: (a) knowledge of magnitude 
(for example, knowing that 0.25 is less than 1), (b) knowledge of the effects of arithmetic 
operations (for example, knowing that 0.25 × 4 is less than four), and (c) representations 
knowledge (for example, knowing that 0.25 and ¼ are interchangeable, so ¼ × 4 is equal to 
0.25 × 4). Such rich cross-conceptual connections and their affordances in creating novel 
procedural solutions are in line with theoretical descriptions of adaptive expertise.

As with adaptive whole number knowledge (for example, McMullen et al., 2016), we 
expect that there are specific arithmetic and numerical skills and knowledge related to 
adaptive rational number knowledge. Numerical knowledge may revolve around the nature 
of the rational number system, for example, extending the base-ten structure of whole num-
bers to decimal numbers and linking this representation with the representation of frac-
tions. In addition to the principles extended from the natural number context, like com-
mutativity and associativity, well-developed arithmetical skills needed for strong adaptive 
rational number knowledge may include skills like simplifying and extending fractions and 
finding common denominators. For example, in the subtraction problem  2.25 − 3/4, cru-
cial arithmetic and numerical knowledge may involve recognizing that 2.25 is two and one 
quarter but is also nine quarters, close to two, or one quarter less than two and a half. Simi-
larly, 3/4 is 0.75 but is also one quarter less than one, close to one, or a half and one quar-
ter. Both numbers are multiples of quarters, there are two whole numbers between them, 
both differ from the closest whole number by a quarter, 2.25 is a multiple of 3/4, and so 
on. Being aware of the characteristics of numbers and their relations influences the strategy 
chosen to calculate the difference (Threlfall, 2002).

An ability to use adaptive number knowledge when carrying out whole number arith-
metic is a relevant component of students’ mathematical knowledge (McMullen et  al., 
2017, 2020). Substantial individual differences in adaptive number knowledge exist from 
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primary to university levels (McMullen et  al., 2016, 2020). These individual differences 
cannot be fully explained by procedural or conceptual knowledge. In a sample of middle 
school students, adaptive rational number knowledge substantially differed even among the 
top 45% of students, who all had strong conceptual knowledge of rational numbers’ size, 
representations, and operations as well as strong procedural knowledge of rational number 
arithmetic. Those students with high adaptive rational number knowledge were fluent in 
switching between decimal and fraction notation, and they could integrate different aspects 
of rational number procedural and conceptual knowledge flexibly. Adaptive number knowl-
edge with both whole and rational numbers uniquely predicts later pre-algebra skills, even 
after taking into account conceptual knowledge and procedural fluency (McMullen et al., 
2017, 2020).

4  Digital game‑based learning environments for rational number 
learning

Playful learning is considered fundamental in early cognitive development (Pellegrini, 
2009; Rogers & Sawyers, 1988). Mathematical knowledge can develop through exploratory 
play activities (for example, Ginsburg, 2006), and technology may enhance mathematical 
thinking by providing a new kind of tool for the discovery of mathematical ideas (Devlin, 
2011). In addition, technology may have positive effects on students’ attitudes towards 
mathematics and may increase engagement with the subject matter as well as improving 
students’ mathematical achievement and conceptual understanding (Baker et  al., 2015; 
Guerrero et al., 2004; Kiili et al., 2018; Li & Ma, 2010). Deeper engagement and deeper 
forms of learning are supported by immersion and flow in the imaginary world of play 
(Csikszentmihalyi, 2014). Thus, games, playful learning, and the use of technology are 
recommended in many policy documents and curricula (for example, the Finnish National 
Agency for Education, 2014; OECD, 2010, 2018).

However, technology is often used only as an alternative content-delivery method with-
out providing novel ways to interact with educational content (Bray & Tangney, 2017). 
Hence, the potential affordances of technology for mathematics education have not yet 
been fully exploited. Most game-based learning environments focus on drill-and-practice 
exercises (Laato et al., 2020), which aim to enhance procedural fluency while neglecting 
other aspects of mathematical proficiency, such as conceptual understanding, strategic 
competence, and adaptive reasoning (Byun & Joung, 2018). In many cases, the relationship 
between game features and mathematical learning content is problematic. Integrating learn-
ing content into the design of educational digital games instead of just placing it as an addi-
tional extra has been seen as vital for successful educational game design (Devlin, 2011; 
Habgood & Ainsworth, 2011; Young et al., 2012). Such integrated game design directly 
links core game mechanisms with learning objectives. Achieving coherence between game 
features, learning content, and means of measuring intended learning outcomes requires 
an iterative process of design and testing (Brezovszky, 2019; Vanden Abeele et al., 2012).

In recent years, studies examining the effects of digital game-based learning 
environments on players’ rational number competencies have yielded positive 
results. For example, games have been shown to support students’ understanding of 
fraction equivalence and comparison, number line estimation, arithmetic skills, and 
attitudes towards fraction learning (Gresalfi et  al., 2018; Masek et  al., 2017; Nejem 
& Muhanna, 2013; Riconscente, 2013). Further, the affordances and efficiencies 
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provided by properly designed digital games may improve students’ engagement and 
motivation and enhance their conceptual understanding of rational numbers (Zhang 
et  al., 2020). In general, research has highlighted several criteria for well-designed 
learning environments. They should be engaging and challenging, provide feedback 
and accommodate individual needs, support sense-making with visual representations, 
grow curiosity and support exploration, stimulate interaction, and be intuitive to use 
(Pelton & Pelton, 2011; Zhang et al., 2020). A game design model recently developed 
for fraction learning emphasized also the role of immersion and the player’s identity 
(avatar), the need to increase complexity gradually, rewards for completing levels, a 
variety of ways to monitor players’ progress, and above all, the need to be instructional 
in a way that enables players to learn on their own by meeting the challenges of the 
game (Cyr et al., 2019).

One of the main ways games achieve positive learning effects is the use of vis-
ual models to support the cognition process (Zhang et  al., 2020). Examples of such 
models include the concept of splitting and the use of area models to develop play-
ers’ understanding of the part–whole meaning of fractions as in the games Refraction 
(Martin et  al., 2015), Pizza al Lancio (Gaggi et  al., 2018), and Slice Fractions (Cyr 
et al., 2019). Another type of visual model that emphasizes the measurement interpre-
tation of rational numbers is the number line, which was used, for example, in Semi-
deus (Ninaus et al., 2017), Motion Math (Riconscente, 2013), and Catch-the-Monster 
(Braithwaite & Siegler, 2020) to support players’ understanding of numerical magni-
tudes. Notably, many studies advocate the use of number lines in fractions instruction 
over part–whole representations (Hamdan & Gunderson, 2017; Sidney et  al., 2019; 
Siegler et al., 2010).

Evidence suggests that these game-based environments improve students’ concep-
tual understanding of rational numbers. There are two main limitations of these studies 
that the present study aims to address. First, they mostly deal with magnitude concepts 
and visual and symbolic fraction representations. Second, previous studies rarely uti-
lized conceptual change perspectives in designing learning environments. Game-based 
learning environments may allow for the playful exploration of assumptions such as 
“multiplication makes bigger, division makes smaller”. Thus, the present study aims 
to address the above-mentioned limitations by determining whether the use of explora-
tion learning and a conceptual change approach in game design can support students’ 
conceptual knowledge of fraction and decimal operations, representations, and density.

Game-based learning environments have also been proposed as one way to support 
adaptive expertise in mathematics (Lehtinen et al., 2017). The opportunities to explore 
numbers and arithmetic relations afforded by game-based learning environments may 
promote the rich network of knowledge needed for adaptive expertise in mathematics 
(Yu & Denham, 2021). For example, a digital math game, Wuzzit Trouble (Pope & 
Mangram, 2015), promotes a wide range of competences indicated by students’ num-
ber sense. Further, a large-scale randomized classroom trial showed that the Number 
Navigation Game promotes adaptive number knowledge with whole numbers by pre-
senting players with opportunities to explore numerical characteristics and arithme-
tic relations (Brezovszky et al., 2019). Another large-scale intervention found that an 
online game-based learning environment, Hit the Target, improves players’ algebraic 
reasoning during gameplay (van den Heuvel-Panhuizen et al., 2013). However, we are 
not aware of any game-based learning environments that target adaptive expertise with 
rational numbers.
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5  Present study

The aim of the present study was to explore the effects of playing in a digital game-based 
learning environment, NanoRoboMath, on fifth and sixth grade primary school students’ 
(a) conceptual and (b) adaptive rational number knowledge. NanoRoboMath integrates 
mathematical concepts and practices into the core mechanics of the game (Habgood & 
Ainsworth, 2011) to improve players’ conceptual rational number knowledge of size, repre-
sentations, effects of operations, and density. Moreover, following the constructivist game 
design framework, NanoRoboMath aims to engage players in exploring and experiment-
ing with domain-relevant representations emphasized by Holbert and Wilensky (2019) to 
enhance their adaptive rational number knowledge. The game-like environment is expected 
to support cognitive and motivational factors that lead to conceptual change, such as high-
lighting natural number prior conceptions, increasing sensitivity to novel mathematical 
aspects, and promoting tolerance for ambiguity (Merenluoto & Lehtinen, 2004). A detailed 
description of the game design has been provided in a recent study by Kärki et al. (2021).

In the game, players adopt the role of a superhero who carries out challenges by navi-
gating a nanorobot along a number line using four basic arithmetic operations and rational 
numbers. In the prototype piloted in this study, the player’s challenge was to clean polluted 
water by finding and destroying bacteria or to destroy a virus and cure a pet. The player’s 
goal was to move the nanorobot from a starting position (the “10” in the upper screenshot 
of Fig. 1) to a target position (the “ 31

4
 ” in Fig. 1). These positions are indicated in a number 

line that re-scales (zooming in or out) based on the distance between the location of the 
nanorobot and the target (see the difference between the number lines in the two screen-
shots of Fig.  1). The upper part of the screen shows a calculation panel for moving the 
nanorobot. Players are challenged by a problem-solving situation that resembles equation 
solving and must create an arithmetic sentence to move the nanorobot towards the target. 
The current location of the nanorobot (the “10” and “5” in Fig. 1) is given in the panel. 
The player chooses one of the four basic arithmetic operations (for example, the division 
and minus symbols selected from the drop-down menu in Fig. 1) and tries to determine 
a favourable rational number as a second operand (see the “2” and “1.75” that the player 
inserted). After pressing the calculate button, the game calculates the result of the arith-
metic operation entered by the player, and the nanorobot moves to this new value (moving 
from 10 to 5 between the upper and lower screenshots of Fig. 1).

The player may use several moves and ways to reach the target. Hence, the game is not 
just drill-and-practice of rational number arithmetic, but it enables the free exploration of 
rational numbers and their operations. In our previous study (Kärki et al., 2021), three fifth 
grade students and one seventh grade student tested a preliminary version of the game. 
The goal of the study was to investigate what kind of rational number arithmetic practices 
NanoRoboMath elicits and what kind of playing strategies the players use. We found that a 
prototype of NanoRoboMath engaged players with rational number arithmetic and induced 
them to use a large variety of number–operation combinations. Observed combinations 
varied between players and in individual games. In this way, the game should support the 
formation of well-connected knowledge about the relations between numbers and opera-
tions and therefore enhance the adaptive rational number knowledge of players. The pre-
sent study aims to examine this possibility.

One of the instructional implications of the conceptual change approach is that it can be 
used to identify concepts in mathematics that will probably cause particular difficulties in 
students’ learning and predict common systematic errors (Vosniadou & Verschaffel, 2004). 
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In our game design, these concepts were natural number biased features: size, represen-
tations, effects of operations, and the density of rational numbers. To this end, there are 
several basic design features of the game that aim to improve players’ conceptual under-
standing about rational numbers. First, the number line representation is used to support 
players’ understanding of rational number magnitude. The dynamic, scalable number line 
might also help students understand that one can always find an infinite number of rational 
numbers between any two rational numbers. Hence, it aims to trigger conceptual change 
concerning the concept of density of the rational number set. The numbers shown on the 
number line are represented using decimal notation, but in the calculation panel, the player 
uses either decimal numbers, fractions, or a mixture of these representations in one arith-
metic sentence. Thus, recognizing connections between symbolic calculations with differ-
ent rational number representations and decimal numbers positioned on the number line 
might enhance players’ representation knowledge.

The two playing modes in the game were designed to promote students’ adaptive and 
conceptual rational number knowledge. The power mode encourages players to explore the 
numerical characteristics and arithmetic relations of rational numbers. In these tasks, players 
should reach the target by consuming as little power as possible. Power is represented by the 

Fig. 1  Screenshots of NanoRoboMath showing a player moving from 10 to 3 1

4
 in two steps. Translations: 

valikko = menu, mene kohteen täsmälliseen sijaintiin = go to the exact location of the target, kohde = target, 
pisteet = score, timanttiraja = diamond limit, kultamitaliraja = gold medal limit
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magnitude of the number entered as the second operand in the arithmetic calculation. Hence, 
successful game performance requires that players minimize the magnitudes of the numbers 
used in arithmetic operations, which often makes the use of multiplicative operations and mul-
tiplicative inverses beneficial. Players are challenged by rewards and hints to take this feature 
into account. Experimenting with multiplying and dividing by numbers less than one could 
challenge the misconception that multiplying makes bigger and dividing makes smaller. In 
time mode tasks, players should move to a given interval surrounding the target as quickly 
as possible. Players gain more points the closer to the exact target the nanorobot gets and the 
faster the given target interval is reached. Thus, there is a strategic trade-off between (a) quick 
approximate and (b) slower precise calculations. Quick approximate calculations might lead 
players to estimate the magnitudes of rational numbers involved in the calculations and pay 
more attention to the relationship between magnitudes and operations, something that is not 
necessarily automatic (Braithwaite & Siegler, 2020).

In this study, we used a prototype of the game, which consisted of three sessions each con-
taining two intro levels, six ordinary levels, and two bonus levels. The sessions differed from 
each other in the way they represented rational numbers in the calculation panel. The first ses-
sion used decimal representations, the second session used fraction representations, and the 
third session contained calculations with both representation types. Intro levels consisted of 
two tasks (targets), while ordinary levels had four tasks, and extra levels had eight tasks. Half 
the levels were power mode tasks and the other half were time mode tasks. Students had to 
play ordinary levels in a given order, and the next level could only be opened after the previ-
ous level was completed. Intro levels could be played at any time, and extra levels could only 
be completed after finishing the preceding ordinary levels.

To examine whether NanoRoboMath could be an ecologically valid instruction tool that 
supports the development of conceptual and adaptive rational number knowledge in primary 
education, we carried out a quasi-experimental classroom intervention in which a group of 
students played NanoRoboMath during three mathematics lessons. A control group attended 
normal (business-as-usual) math lessons, which did not contain rational number instruction. 
Both groups participated in pre- and post-tests that measured adaptive rational number knowl-
edge and aspects of conceptual knowledge of rational numbers. We investigated the following 
research questions:

Does playing NanoRoboMath enhance students’ rational number conceptual knowledge, 
and in particular conceptual knowledge of:

Representations of rational numbers,
Effects of operations with rational numbers,
The density of rational numbers?

Does playing NanoRoboMath enhance students’ adaptive rational number knowledge?
Does students’ performance on NanoRoboMath predict the development of mathematical 
learning outcomes?
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6  Methods

6.1  Participants

Participants were 195 fifth and sixth grade primary school students from two schools in 
two cities in the southwest of Finland. Overall, 10 classes took part in the study. Randomi-
zation to experimental and control conditions was done at the classroom level, because 
classrooms are considered ecologically valid units of measurement in the field of education 
(Hedges & Rhoads, 2010). One fifth grade and one sixth grade class from School A and 
two fifth grade and two sixth grade classes from School B formed the experimental group. 
One fifth grade and one sixth grade class in both Schools A and B formed the control 
group. Table 1 provides a description of the distribution of participants by grade in experi-
mental and control groups.

The ethical guidelines of the University of Turku were followed. Participation was vol-
untary, the informed consent of parents was obtained, and students gave verbal assent to 
participate in the study. Students could remove themselves from the study at any time. 
All students in experimental classes played NanoRoboMath during their normal math-
ematics lessons. Data were only gathered from students who had volunteered to partici-
pate in the study. Participants completed pre- and post-tests as part of their regular school 
work. For ethical reasons, the teachers of control classes were given the opportunity to use 
NanoRoboMath in their mathematics lessons after the post-test.

6.2  Procedure

Classrooms participated in the intervention either at the end of the autumn semester or 
at the beginning of the spring semester. For all classes, pre- and post-tests were within 
2 weeks of each other. All measurements were carried out in a 7-week window. Overall, 
two thirds of experimental classes and half the control classes participated in the interven-
tion during the autumn semester. Between tests, classes in the experimental group played 
NanoRoboMath in three mathematics lessons, whereas control classes continued with 
their regular school work. Before data gathering, teachers of classes in the experimental 
group received information about the main features of NanoRoboMath and written instruc-
tions on how to use the game during lessons. They also participated in a short training 
session, in which some technical aspects of playing the game and the basic game mechan-
ics were demonstrated. Teachers could freely choose if they wanted their students to play 
the game in pairs or individually, and in case of pair play, teachers selected the pairs. The 
game was distributed to the experimental group on individual pen drives and was played 
on personal computers. Pen drives were also used to store players’ game log data. Game-
play replaced regular mathematics teaching; thus, the intervention group did not receive 

Table 1  Number of participants 
by grade and experimental 
condition

Group Grade Total

5 6

Experimental 53 65 118
Control 34 43 77
Total 87 108 195
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more mathematics training than the control group. Control group teachers did not receive 
any instructions concerning mathematics lessons during the intervention period. According 
to teachers’ notifications, mathematics teaching for the control group did not concentrate 
on rational number knowledge. Owing especially to the novel nature of tasks, the control 
group was used for controlling the testing effect caused by the repeated performance of a 
similar test.

In the beginning of each of the three playing sessions, teachers of experimental groups 
were instructed to play the two intro levels with the whole class. Whole-class discussion 
about the different choices of moves was encouraged. After the intro levels, students were 
supposed to play at least six additional levels independently. Based on log data, the aver-
age total playing time in the six experimental classes was 90  min (SD = 20  min). Aver-
age gameplay time varied from 81 to 110 min between classes, meaning that some classes 
spent almost half an hour more playing than other classes. We interpreted these differences 
in gameplay time as a natural variation that occurs when this type of method is introduced 
in a naturalistic school context. Our aim was to create an ecologically valid design, so we 
included all classes in comparisons between experimental and control groups despite these 
time differences.

6.3  Measures

Pre- and post-tests consisted of paper-and-pencil measures of rational number knowledge, 
including adaptive rational number knowledge and conceptual knowledge of (a) repre-
sentations, (b) arithmetic operations, and (c) density. Due to limitations in testing time, 
we did not measure size concept separately but considered it relevant in the measures of 
adaptive rational number knowledge (McMullen et  al., 2020) and operations (Siegler & 
Lortie-Forgues, 2015). These four measures appeared in this order in both tests and were 
calculated separately as their own sum variables. To create a balanced overall measure 
of rational number conceptual knowledge, we calculated the mean of the z-standardized 
scores of the three conceptual knowledge variables. The tests were administered by one of 
two testers, a researcher and an assistant, who used an automatic slide show, including a 
standardized timer and sound signals. The tests took around 20 min to complete. Both tests 
were coded to an electronic form by a research assistant who was unaware of the treatment 
applied to any given group.

Adaptive rational number knowledge was measured using the arithmetic sentence pro-
duction task (McMullen et al., 2017), which aims to capture students’ ability to recognize 
and use different numerical characteristics and relations. In each item of the task, students 
were given five numbers and a target number and were asked to generate, in 90 s, as many 
mathematically correct arithmetic sentences as possible that combined some of these five 
numbers and produced the target number. The time limit was controlled by the tester, 
whose task was to ensure that all students turned their pages at the same time. No prob-
lems with following the time limit rules were observed. In arithmetic sentences, students 
could use four basic arithmetic operations, parentheses, and each of the given numbers 
repeatedly. The pre-test began with a practice item that asked students to produce arith-
metic sentences with whole numbers 1, 2, 3, and 4 and a target number 6 in 60 s. After 
this item, students could ask clarifying questions to ensure that they had understood the 
task. In the post-test, there was no practice item. Table 2 shows the items for the pre- and 
post-test. Note that each item included two pairs of equivalent fractions and decimals (for 
example, ½ and 0.5, ¼ and 0.25). In terms of scoring, 1 point was given for each answer if 



112 T. Kärki et al.

1 3

it was mathematically correct, only used given numbers, and was not a literal repetition of 
previous answers. However, the correct use of parentheses was not required, and sentences 
with equivalent rational number representations were both counted as correct. For exam-
ple, 2 − ¾ + ¾ = ½ was interpreted as 2 − (¾ + ¾) = ½, and ½ + ½ was counted as correct, 
even if the student previously answered 0.5 + 0.5. Cronbach’s α for arithmetic sentence pro-
duction tasks was 0.89 for the pre-test and 0.85 for the post-test.

Conceptual knowledge of representations was measured using an adapted version of the 
Number Sets Test (Geary et al., 2009). Students had 1 min to identify the symbolic and 
non-symbolic representations of a given rational number. There were two items in both 
tests. Each item had 15 alternatives, of which nine were correct. For each correct answer, 
1 point was added, and for each incorrect answer, 1 point was subtracted. Hence, the maxi-
mum number of points per item was 9. The target numbers were ½ and 0.9 in the pre-test 
and ¼ and 0.1 in the post-test. Cronbach’s α for representation knowledge tasks was 0.75 
for the pre-test and 0.76 for the post-test.

Knowledge of rational number operations was measured using six multiple choice items 
adapted from Van Hoof et al. (2015a). Items tested students’ knowledge of the effects of 
arithmetic operations with fractions and decimals using questions, including the follow-
ing: “Is the outcome of 40 × 1/3 smaller or larger than 40?” and “What is half of 1/6?” This 
test measured students’ performance on items that would be answered incorrectly if natu-
ral number biased reasoning was used. One point was given for each correct answer. The 
pre- and post-tests contained the same items. Cronbach’s α for rational number operations 
knowledge tasks was 0.52 for the pre-test and 0.66 for the post-test.

Density knowledge was assessed using multiple choice items adapted from Vamva-
koussi and Vosniadou (2010). Items asked students how many numbers there were in a 
given interval between two rational numbers, x and y. For each item, four options were 
given, which were scored as follows: totally sparse (“There are no numbers between”) was 
given 0 points, a limited set (“There are numbers x1, x2 … and xn between x and y”) was 
given 1 point, partial density (“There are a lot of numbers between”) was given 2 points, 
and full density (“There are an infinite number of numbers between”) was given 3 points. 
Pre- and post-tests contained exactly the same items; see Table 3. Cronbach’s α for rational 
number density knowledge tasks was 0.71 for the pre-test and 0.85 for the post-test.

Table 2  Items of the arithmetic 
sentence productions task for 
pre- and post-tests

Item Given numbers Target number

1 ½, 0.5, ¼, 0.25, 4 1
2 ¼, 0.25, ¾, 0.75, 2 ½
3 ½, 0.5, ¾, 0.75, 3 1.5
4 ¾, 0.75, 3/2, 1.5, 2 3

Table 3  Intervals [x, y] and 
limited sets x1, x2 … and xn of 
density items

Item Interval Limited set of intermediate numbers

1 [1/8, 5/8] 2/8, 3/8, 4/8
2 [1/5, 2/5] 3/10
3 [0.42, 0.47] 0.43, 0.44, 0.45, 0.46
4 [0.8, 0.9] 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 

0.87, 0.88, 0.89
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Game performance was measured using log data from each player. The number of com-
pleted tasks, total score for power mode tasks, and total score for time mode tasks were 
computed from game log data. We argue that these measures of gameplay can be used as 
reliable estimates of students’ practice with different combinations of rational numbers and 
operations during the game. Together, they reflect the quantity and quality of participants’ 
gameplay. Thus, the three measures were independently z-standardized and summed to 
create a balanced measure of overall gameplay. We note that the total number of completed 
tasks does not mean that all these tasks were different; students could repeat the same task 
to achieve a better score. Similarly, the total score was the cumulative score obtained by a 
player every time they completed a task. On average, students completed M = 68.02 tasks 
(SD = 27.47) with a range of 11–150 tasks. The average total power mode task score was 
M = 2632.90 (SD = 1172.74) with a range of 517–6177, and the average total time mode 
task score was M = 2254.26 (SD = 1208.69) with a range of 154–5767. To ensure suffi-
cient gameplay, we excluded from the analysis students whose number of completed tasks 
was lower than two standard deviations below the mean of all players. Moreover, to avoid 
including players who only repeated the first few levels, students who completed less than 
four ordinary levels (16 different tasks) were excluded. Based on these exclusion criteria, 
which were agreed in the pre-registration of our study (https:// osf. io/ gj23k), eight of the 
118 students in the experimental group were excluded from the data analysis.

7  Results

First, we wanted to test the effects of the intervention on students’ rational number con-
ceptual knowledge, both overall and separately as its three components. For each rational 
number conceptual knowledge measure, we conducted a repeated measures ANOVA with 
condition (experimental or control group) as a between-subject factor. Following the analy-
sis plan set out in the pre-registration, we considered the interaction effect of condition 
and time as the main test for the overall effectiveness of the intervention. According to the 
pre-registration, we relied on one-sided tests and Holm–Bonferroni corrections of multi-
ple tests to determine statistical significance. The results of this analysis have been pre-
sented in Table 4, which shows that the intervention had a small positive effect on students’ 
rational number conceptual knowledge. The percentage of correct answers increased from 
37 to 39% in the experimental group and decreased from 46 to 44% in the control group. In 
addition, students’ conceptual knowledge concerning rational number operations showed a 
statistically significant positive effect, but there were no statistically significant interaction 
effects concerning representation and density knowledge. Note that the negative values in 
measures of rational number conceptual knowledge are due to standardization when form-
ing the composite overall measure.

As a second research question, we investigated whether or not playing NanoRoboMath 
enhanced students’ adaptive rational number knowledge. Following the pre-registration, 
this was also tested with the interaction of condition and time in a repeated measures 
ANOVA. Table 4 shows that although performance improved in the experimental group 
more than in the control group, the interaction effect in the case of adaptive rational num-
ber knowledge was not statistically significant.

To investigate how participants’ gameplay predicted their learning outcomes, linear 
hierarchical regression analyses were conducted. We explored the impact of game perfor-
mance on the experimental group’s learning outcomes considering their adaptive rational 

https://osf.io/gj23k
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number knowledge and rational number conceptual knowledge of representations, the 
effects of operations, and density. As shown in Table 5, after taking into account grade-
level and pre-test scores, game performance still explained part of the variance of adaptive 
rational number knowledge and knowledge of representations and operations. However, for 
density knowledge, the effect of game performance was not statistically significant.

8  Discussion

The main objective of this study was to determine whether a new game-based learning 
environment, NanoRoboMath, improved players’ rational number knowledge. Results 
showed small but significant effects of gameplay on rational number conceptual knowledge. 
Moreover, students’ game performance predicted their improvement in adaptive rational 

Table 4  Repeated measures ANOVAs showing the interaction effect of condition and time

* Statistically significant after Holm–Bonferroni correction.
ϯ Conceptual knowledge variable was standardized
Max, maximum of the scale; Repr., representations; ArNK, adaptive rational number knowledge; Expr., 
experimental group; Control, control group

Max Pre-test M (SD) Post-test M (SD) F p �
2

p

Conceptualϯ Expr.  − 0.12 (0.69)  − 0.05 (0.74) 5.60 0.019* 0.04
Control 0.27 (0.79) 0.15 (0.81)

Repr. Expr. 18 10.98 (4.07) 10.67 (3.86) 2.05 0.15 0.01
Control 12.37 (3.31) 11.40 (3.60)

Operations Expr. 6 1.33 (1.29) 1.62 (1.61) 5.22 0.024* 0.03
Control 2.19 (1.54) 1.99 (1.74)

Density Expr. 12 3.49 (2.54) 3.66 (2.51) 0.02 0.89 0.000
Control 3.92 (1.89) 4.15 (3.07)

ArNK Expr. 1.53 (1.60) 2.13 (1.80) 3.40 0.067 0.02
Control 2.17 (1.55) 2.49 (1.60)

Table 5  Hierarchical linear regression analysis showing the impact of game performance on mathematical 
learning outcomes in the experimental group (n = 110)

* p < 0.05, **p < 0.01, ***p < 0.001.
ArNK, adaptive rational number knowledge; Repr., representations; Pre-test, corresponding pre-test variable 
to the post-test variable (ArNK, representations, operations, density)

Post-test

ArNK Repr. Operations Density

β ΔR2 β ΔR2 β ΔR2 β ΔR2

1 Grade-level 0.09 0.03 0.05 0.02 0.19* 0.08** 0.01 0.00
2 Pre-test 0.77*** 0.74*** 0.52*** 0.46*** 0.52*** 0.32*** 0.53*** 0.31***

3 Game performance 0.19*** 0.03*** 0.36*** 0.10*** 0.22** 0.04** 0.15 0.02
Total R2 0.80 0.58 0.45 0.33
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number knowledge and in conceptual knowledge of the representations of rational numbers 
and the effects of operations with rational numbers. However, we did not observe an effect 
of game performance on students’ understanding of the density of rational numbers.

In this study, rational number conceptual knowledge comprised three aspects, namely, 
representations, the effects of operations, and density. Interventions that aim to improve 
students’ understanding of these kinds of natural number biased aspects of rational num-
bers appear to have restricted learning effects (see, for example, Vamvakoussi & Vosnia-
dou, 2012). Our results showed that playing NanoRoboMath seemed to have a small posi-
tive impact on students’ rational number conceptual knowledge in general, but in terms of 
its components, a positive effect was perceptible only in students’ understanding of opera-
tions. While the experimental group’s performance improved during the intervention, their 
answers did not indicate a firm understanding of the effects of operations. On average, only 
27% of students’ answers concerning rational number operations were correct in the post-
test, which was still less than the corresponding percentage in the control group (33%). It 
should be noted that the performance of the control group was lower in the post-test than 
in the pre-test, but this could have been at least partly due to the use of different items in 
the two measurements, even though items were similar overall. Moreover, reliability values 
concerning the scale of operations were low, so the positive effects of NanoRoboMath on 
students’ rational number conceptual knowledge should be interpreted cautiously.

The intervention had no significant effect on density scores. In both groups and for both 
measurements, the average proportion of correct solutions was 29–34%. Moreover, game 
performance had no significant impact on students’ density knowledge, even though it had 
a positive effect on representation and operation knowledge. While this is in line with ear-
lier findings, which suggest that a correct understanding of rational number density may 
be difficult to accomplish (Vamvakoussi et al., 2011), the density property had a different 
role in the game than representation and operation knowledge. In the game, players had to 
mix the different representations of rational numbers, and they needed a good understand-
ing of the effects of operations to achieve high scores in power mode tasks. In contrast, the 
density property was only indirectly manifested in the zooming feature of the number line, 
as when students moved closer to the target, it revealed more and more rational numbers 
between the nanorobot and the target. Moreover, the scores and completed tasks indicated 
the overall amount and quality of gameplay, but there was no specific measure of gameplay 
designed for measuring the understanding of the density property.

In addition to conceptual knowledge, our aim was to examine how playing 
NanoRoboMath affected students’ adaptive rational number knowledge. Free exploration 
with rational numbers, observed in an earlier investigation of NanoRoboMath (Kärki et al., 
2021), should develop well-connected knowledge about the relations between numbers and 
operations and, therefore, enhance players’ adaptive number knowledge (Lehtinen et  al., 
2015). Our short intervention of three 45-min gaming lessons did not induce a significant 
difference in the development of adaptive rational number knowledge between the experi-
mental and control groups. However, students in the experimental group improved their 
performance so that in the post-test, they created approximately 0.6 correct arithmetic sen-
tences more than in the pre-test, while the average improvement was only 0.3 sentences in 
the control group. The increase in both groups might be partly explained by practice effects 
created by repeated testing, especially taking into account the novel nature of the sentence 
production task. Moreover, there was a small but statistically significant positive impact of 
game performance on adaptive rational number knowledge after taking into account par-
ticipants’ grade-level and pre-test scores. This result encourages us to further develop the 
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game, keeping in mind that the exploration of different number–operation combinations 
has a potential positive impact on adaptive number knowledge.

In future research, the implementation of the gaming intervention should be reconsidered 
to measure the learning outcomes of the game more reliably. NanoRoboMath should 
be considered a tool of instruction in a holistic classroom context and not an isolated 
learning method. Although the number line has been seen as a key representational tool 
for improving students’ conceptual understanding of rational numbers (Hamdan & 
Gunderson, 2017; Sidney et  al., 2019; Siegler et  al., 2010), it might be that the implicit 
feedback and hints in the game are insufficient for explaining the concepts of rational 
numbers and their operations, for example, the idea that multiplying can “make smaller”. 
Even though completing tasks in NanoRoboMath is fairly easy, good performance in the 
game requires either firm pre-knowledge of the meaning of rational numbers and their 
operations or appropriate pedagogical support. The supportive educational context and the 
role of the teacher are critical factors in the successful integration of digital technologies 
into mathematics classes (Drijvers, 2015; Gresalfi et  al., 2018). Therefore, teachers were 
instructed to enable peer and whole-group discussion about different playing strategies. 
However, the timing of the present study prevented the full integration of the game into 
existing rational number instruction. Future studies should consider the role of the game 
in rational number instruction and whether it should be used as a supplement, extension, 
or elaboration of typical instruction. Future interventions using NanoRoboMath should 
also take into account in their study design the complexity and gradual development of 
the aspects of rational number knowledge that require conceptual change, for instance, by 
including a delayed post-test.

Following the iterative process of designing and testing game-based learning environ-
ments (Brezovszky, 2019; Vanden Abeele et al., 2012), this study suggests that the density 
concept should be more emphasized in future versions of NanoRoboMath. Game mech-
anisms should be more directly linked to learning objectives (Devlin, 2011; Habgood & 
Ainsworth, 2011; Young et  al., 2012), and students should be explicitly guided to con-
front their misconceptions about density. For example, the game will contain tasks that 
require students to get closer and closer to a target without touching it, thereby illustrating 
the idea that there is no next larger or next smaller rational number. The intervention pro-
duced some improvements in students’ operation knowledge, but improvements were less 
evident in the case of representation knowledge and adaptive rational number knowledge. 
An understanding of the effects of operations is firmly integrated into the game’s design, as 
players are given points when they demonstrate a skillful use of operations. In future ver-
sions of the game, we could also consider integrating the flexible use of different rational 
number representations as well as the versatile use of number–operation combinations in 
scoring mechanisms.

One of the weaknesses of our study was the somewhat unsuccessful randomization at 
the classroom level. The control group obtained higher scores of adaptive and conceptual 
rational number knowledge in both tests, especially in the pre-test. Hence, original skill 
levels were different between the groups, so the effect of repeated testing might have dif-
fered between them. In addition, we did not control the content of the regular teaching of 
the control group. Thus, results cannot be interpreted as a comparison between a tradi-
tional learning method and a game-based method. Given the small number of classrooms 
included in the study, it was impossible to take into account possible classroom effects 
arising from the nested nature of our data. To confirm the effectiveness of the game, future 
studies would need to use an a priori power analysis that acknowledges the nested structure 
of the data.
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There is earlier evidence that game-based learning environments could be used to 
support (a) adaptive number knowledge in the case of natural numbers (Brezovszky 
et al., 2019) and (b) conceptual rational number knowledge, especially in the case of the 
size concept (Ketamo & Kiili, 2010; Kiili et al., 2017; Zhang et al., 2020). Based on our 
textbook analysis, in a Finnish context, traditional mathematics teaching is not targeted 
to improve students’ adaptive rational number knowledge or systematically help students 
overcome challenges related to conceptual change in rational number learning. This lim-
ited the role of the business-as-usual group in our study design. Hence, our study did 
not enable conclusions to be drawn regarding the effectiveness of NanoRoboMath rela-
tive to other approaches to learning rational numbers.

Overall, the results of the pre-registered regression analysis that examined individ-
ual effects and the repeated measures analysis that examined group effects showed some 
indications of the positive effects of this intervention. Hence, we provided further evi-
dence that digital learning environments could be helpful in rational number instruction. 
We note that some features of NanoRoboMath, such as the zooming of the number line 
and the flexible trial and error possibilities in exploring the effects of rational number 
operations, would have been difficult to implement non-digitally. Teaching and learning 
adaptive knowledge and the correct conceptual understanding of rational numbers are 
demanding. Many teachers lack the required content knowledge, and learning materials 
often ignore natural number  biased aspects, so game-based learning environments are 
a valuable and recommended teaching tool that complements traditional methods. Our 
study showed that students’ adaptive rational number knowledge and conceptual knowl-
edge of the representations and operations of rational numbers are, to some extent, sensi-
tive to this type of short-term game-based interventions. However, developing a correct 
understanding of the density concept seems to require a different approach. In the future, 
large-scale testing of the effectiveness of NanoRoboMath with respect to learning goals 
is needed, and more wide-ranging tests, including also other aspects of rational numbers, 
such as procedural fluency in rational number arithmetic, could be used.
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