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Abstract
Constructing multiplicative reasoning is critical for students’ learning of mathematics,
particularly throughout the middle grades and beyond. Tzur, Xin, Si, Kenney, and
Guebert [American Educational Research Association, ERIC No. ED510991, (2010)]
conclude that an assimilatory composite unit is a conceptual spring to multiplicative
reasoning. This study examines patterns in the percentages of students who construct
multiplicative reasoning across the middle grades based on their fluency in operating with
composite units. Multinomial logistic regression models indicate that students’ rate of
constructing an assimilatory composite unit but not multiplicative reasoning in sixth and
seventh grades is significantly greater than that in eighth and ninth grades. Furthermore,
the proportion of students who have constructed multiplicative reasoning in sixth and
seventh grades is significantly less than the proportion of those who have constructed
multiplicative reasoning in eighth and ninth grades. One implication of this is the
quantitative verification of Tzur, Xin, Si, Kenney, and Guebert’s (2010) conceptual
spring. That is, students who construct assimilatory composite units early in the middle
grades are likely to construct multiplicative reasoning; students who do not construct
assimilatory composite units early in the middle grades likely do not construct multipli-
cative reasoning in the middle grades.
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1 Introduction

Multiplication is a topic of elementarymathematics instruction, butmultiplicative reasoning is a form
ofmathematical thinking that is a cognitive precursor tomany formsof advancedmathematics (Clark
&Kamii, 1996).Multiplicative reasoning is pervasive in themiddle-gradecurriculum(e.g.,Common
Core State Standards Initiative [CCSSI], 2010) and supports students’ development of advanced
concepts such as fractional reasoning (Hackenberg, 2007, 2013) and algebraic reasoning
(Hackenberg,2013;Hackenberg&Lee,2015).Despite itsprevalenceand importance,manystudents
cannot reason multiplicatively by the middle grades (Kosko, 2019; Kosko& Singh, 2018; Ulrich &
Wilkins, 2017;Wilkins,Woodward,&Norton, 2020).Thismakesmanyof thedemandsof amiddle-
grade curriculum difficult, if not impossible. Understanding key developmental hurdles to children’s
multiplicative reasoning could make it possible to better support this development.

There are multiple perspectives through which students’ multiplicative reasoning could be
studied and understood. For instance, Vergnaud’s (1988) pioneering work on children’s multi-
plicative reasoning defines multiplicative structures as a conceptual field made up of “a set of
situations, the mastering of which requires mastery of several concepts of different natures” (p.
141). In this view, children’s multiplicative reasoning develops through a comprehensive inves-
tigation of simple and multiple proportion problems within many contexts involving multiplica-
tion and division. In addition, Davydov and Elkonin propose to view the development of
multiplicative reasoning through a measurement perspective in which children understand mul-
tiplication “as the use of an intermediate unit to find the number of units in a quantity” (Dougherty
& Simon, 2014, p. 206). In this view, children’s development of multiplicative reasoning does not
derive from their counting, but instead from the manipulation of a derived measurement unit. A
third viewpoint, which we use to ground our study, is that of Steffe (1992), who defines
multiplicative reasoning as mental actions that support the distribution of one composite unit
(i.e., a unit of units) over another composite unit. Steffe’s (1992) definition further asserts that
students construct multiplicative reasoning by making modifications to their additive numerical
reasoning schemes, which initially derive from their early counting schemes.

Building from Steffe’s view of multiplicative reasoning, Tzur et al. (2010) qualitatively
demonstrated that an assimilatory composite unit instigates the construction of multiplicative
reasoning; however, this result has not been quantitatively tested. The purpose of the current
research is to determine the existence of and nature of the relationships between students’
construction of multiplicative reasoning in the middle grades and their fluency operating with
composite units, thereby testing the qualitative result that an assimilatory composite unit
launches the construction of multiplicative reasoning.

2 Literature review

Amain distinction between additive and multiplicative reasoning is a “hidden assumption” (Carrier,
2014, p. 87) that must be understood to reasonmultiplicatively about a situation. Additive reasoning
involves operating on units of one. For example, adding a group of three apples to a group of four
apples is additive and thus requires reasoning only about units of one—apples. Multiplicative
reasoning requires interpreting a problem involving units of one and also units of units (i.e.,
composite units). To determine howmany apples are in three bags of four apples each, for instance,
is multiplicative because it requires students to reason about units of one (apples) and about
composite units (bags of apples). The composite units are the hidden assumption.
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The hidden assumption can be understood through Piaget’s (1941/1965) work. He pointed out
that reasoning multiplicatively requires the coordination of two units. Steffe (1992) similarly
indicated that for a situation to be multiplicative “it is always necessary at least to coordinate two
composite units in such a way that one of the composite units is distributed over the elements of
another composite unit” (p. 264). In this context, a composite unit is a unit that is formed as the
result of mentally uniting a group of singleton units into a larger unit (e.g., apples into bags; Ulrich,
2015). The distribution of the elements of one composite unit over another is accomplished
mentally when students can conceive of filling each of the three bags with a group of four apples.

In addition to difficulty identifying the hidden assumption, students may also conflate
additive and multiplicative reasoning (Degrande, Verschaffel, & Van Dooren, 2018, 2019,
2020; van Dooren, de Bock, & Verschaffel, 2010). Degrande et al. (2018, 2019) determined
that students’ conflations may result from preferring additive reasoning over multiplicative, or
vice versa. Alternatively, some students made decisions about reasoning additively or multi-
plicatively based on irrelevant criteria, such as whether or not the result had an integer value.
Degrande et al. (2019) conducted an additional analysis of the additive and multiplicative
preferences of students who demonstrated both additive and multiplicative skill (i.e., accuracy)
and discrimination (i.e., determining whether tasks required additive or multiplicative reason-
ing). This allowed the researchers to ascertain that a preference for additive reasoning was a
significant predictor of erroneously applying additive reasoning to multiplicative tasks, despite
demonstrating multiplicative skill and discrimination. Similarly, a preference for multiplicative
reasoning was a significant predictor of erroneously applying multiplicative reasoning to
additive tasks, despite demonstrating additive skill and discrimination. This research contrib-
utes important results to an understanding of students’ applications of additive and
multiplicative reasoning; however, multiplicative skill is distinct from multiplicative
reasoning. Thus, research must continue to examine whether students who demonstrate a
preference for additive reasoning in multiplicative situations have constructed the cognitive
structures that Steffe (1992) described as necessary to support multiplicative reasoning,
namely, the distribution of one composite unit over another.

Clark and Kamii (1996) examined the thinking of elementary students and found that 45% of
second graders demonstrated some level of multiplicative reasoning. However, by fifth grade, only
49% of students demonstrated consistent and successful multiplicative reasoning. This illustrates
students’ transition from additive to multiplicative reasoning as a slow climb and highlights that a
majority of students does not reason multiplicatively by the conclusion of the elementary grades.

Clark and Kamii’s (1996) percentages are similar to Kosko’s (2019) and Kosko and Singh’s
(2018). In two related studies, 54.3% of third-grade students were premultiplicative (Kosko &
Singh, 2018), where premultiplicative implies the student is yet to construct composite units in
activity, thereby precluding them from reasoning multiplicatively as Steffe (1992) describes.
However, only 15.7% of fourth-grade students and 6.8% of fifth-grade students were
premultiplicative. Conversely, 62.5% of fifth-grade students reasoned multiplicatively at the
most sophisticated stage (Kosko, 2019). This result is more optimistic than Clark and Kamii’s
(1996), but illuminating the complementary result that 37.5% of fifth-grade students are not
reasoning multiplicatively (Kosko, 2019) with a level of sophistication that will support their
conceptions of fractions and algebraic concepts is troubling.

The most sophisticated stage of multiplicative reasoning aligns with Steffe’s (1992, 1994)
arithmetic stage, which implies students’ preparedness to construct concepts of quotative and
partitive division (Steffe, 1994), fractions as “numbers in their own right” (Hackenberg, 2007, p.
27), and to write and reverse multiplicative algebraic equations (Hackenberg & Lee, 2015). The
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theoretical implications of reasoningmultiplicatively for middle-grade mathematics bring Clark and
Kamii’s (1996), Kosko’s (2019), and Kosko and Singh’s (2018) results into focus by theoretically
rationalizing some of the mathematical difficulties that many middle-grade students encounter.

Tzur et al. (2010) offer insight into the difficulty students have in constructing multiplica-
tive reasoning. Their research presented the results of a constructivist teaching experiment (see
Steffe & Ulrich, 2013) involving 12 fourth- or fifth-grade students with learning disabilities
who did not reason multiplicatively. The students also had not constructed assimilatory
composite units, meaning they could not mentally operate on composite units of apples within
bags, for instance. This aligns with Steffe’s (1992) definition of multiplicative reasoning,
making it an unsurprising result. However, Tzur et al. (2010) found that when students
constructed an assimilatory composite unit, it served as a “conceptual spring” (p. 9) that
preceded the construction of multiplicative reasoning.

Characterizing assimilatory composite units as conceptual springs that precede and even
instigate students’ construction of multiplicative reasoning (Tzur et al., 2010) provides a
theoretical basis for the present research study. This study seeks to quantitatively examine
Tzur et al.’s result by determining the rates at which students with different levels of fluency
operating on composite units construct multiplicative reasoning in the middle grades. This
question will be analyzed within the number sequences framework (Steffe, 2010; Ulrich,
2016b) which distinguishes between students who (1) do not construct composite units, (2)
construct composite units in activity, (3) assimilate with composite units and do not reason
multiplicatively, and (4) assimilate with composite units and reason multiplicatively.

3 Theoretical framework

The number sequences (Steffe, 2010) form a stage theory that describe students’ interpretations of
and operations on number. They are based, in part, on students’ units coordination and construction
(Ulrich, 2015;Ulrich, 2016a).Within this frame of reference, students’ construction ofmultiplicative
reasoning can be attributed tomodificationsmade to their number sequences (Steffe, 1992), which is
to say thatmultiplicative reasoning is “rooted in and indicative of” the number sequences (Tzur et al.,
2013, p. 95). Accordingly, the number sequences will be used as a framework for understanding
students’ construction ofmultiplicative reasoning in this study. The number sequences (Steffe, 2010;
Ulrich, 2016b) are a neo-Piagetian hierarchy of stages through which students construct an
increasingly complex understanding of number. Each distinct stage is based on the student’s ability
to construct and operate on units with increasing complexity (Ulrich, 2015, 2016a).

The original number sequence trajectory, as defined through work with elementary-grade
children, included the initial number sequence (INS), tacitly nested number sequence (TNS),
explicitly nested number sequence (ENS), and generalized number sequence (GNS; Steffe,
2010). In related work with middle-grade students, Ulrich (2016b) defined the advanced tacitly
nested number sequence (aTNS), which falls between the tacitly and explicitly nested number
sequences. Ulrich’s amendment to the number sequence hierarchy will be considered as a step
toward the construction of multiplicative reasoning in the present research.

Figure 1 shows the trajectory of number sequences from least (INS) tomost (GNS) sophisticated.
The number sequences are shown in an Euler diagram, with the more sophisticated number
sequences subsuming the less, because students who have constructed a GNS, for instance, have
also constructed each of the less sophisticated number sequences. A GNS student can operate in a
manner that is consistent with an ENS, or any less sophisticated number sequence. Therefore, to
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speak of a GNS student or a student who has constructed a GNS implies that the student has also
constructed an INS, TNS, aTNS, and ENS. The mental constructions that define the number
sequences and facilitate multiplicative reasoning are also shown in Fig. 1 to summarize relevant
criteria for attributing multiplicative reasoning based on number sequence attribution.

INS, TNS, and aTNS students can only reason additively, whereas ENS and GNS students
can reason additively and multiplicatively. Students’ construction of multiplicative reasoning
is consistent with having constructed an ENS (Tzur et al., 2013; Ulrich, 2016a). Therefore, to
understand the numbers of students who have constructed multiplicative reasoning, and who
have yet to construct multiplicative reasoning, the remainder of this section focuses on
explicating the INS, TNS, aTNS, and ENS as they relate to multiplicative reasoning.

3.1 Initial number sequence

Students’ construction of an INS is marked behaviorally by counting on (Steffe, 2010). This
means that if told that two collections of counters had seven and four counters, respectively, an
INS student could find the total number of counters by saying “seven; eight, nine, ten, eleven.”
For an INS student, the number word “seven” stands in for the counting sequence from one
through seven, making it unnecessary for them to count the first collection. Counting on is
supported by the mental construction of one level of units in activity and is “initial” because it
is the first stage of numerical reasoning (Steffe, 2010).

Although INS students are numerical, “the mathematical reality [of INS students] was
premultiplicative” (Steffe, 1992, p. 304). This conclusion was drawn from longitudinal research
in which INS students attempted to solve multiplicative tasks. An INS student, Zachary, was told
there were four rows of three blocks under a cover, and some more rows of three blocks were
added, totaling seven rows of three blocks. When asked how many rows were added, Zachary
formed a goal of using his number concept for seven and counting three, seven times. He used
finger patterns for three to count by threes. However, he lost track of how many times he had
counted by three and stopped when he reached 24, rather than 21. Moreover, Zachary missed the
point of the task, whichwas to find a number of rows. In a second attempt, Zachary attended to the
rows, but finally conceded that “I can’t do that one [task]” (Steffe, 1992, p. 265). Without a TNS,
Steffe (1992) concludes that Zachary, and other INS students, remains premultiplicative.

3.2 Tacitly nested number sequence

Students can construct a TNS once they can construct composite units in activity (Steffe, 2010).
This implies that the student interprets a number, such as seven, as seven individual units of one
but in mental activity can imagine chunking the seven units into one composite unit (Fig. 2).

TNS
Assimilates with 1 level of 
units, constructs composite 
units in activity

INS
Constructs 1 
level of units in 
activity

aTNS 
Assimilates with 
composite units 
(i.e., 2 levels of 
units)

ENS 
Assimilates with 
composite units, 
iterates units of 1, 
disembeds

GNS 
Assimilates with 3 
levels of units, 
iterates composite 
units, disembeds

Fig. 1 Number sequence trajectory, from the least (left) to the most (right) sophisticated. Each stage of the
number sequences is associated with students’ operations on increasingly complex levels of units. Grayed
number sequences indicate the stages at which students reason multiplicatively
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Because the composite unit is constructed in mental activity, it is not anticipated prior to activity,
nor is it available for reflection following activity (Ulrich, 2015). It is the lack of anticipation and
reflection that makes the students’ conception of composite units “tacit” in nature.

The construction of a composite unit in activity is powerful because it allows TNS students
to make sense of questions like how many blocks are in four rows of three, without counting
by ones (Steffe, 1992). This situation is not multiplicative to TNS students.

Steffe (1992) describes a TNS student, Maya, who solved this task by filling each unit of
the composite units of four with a unit of three in mental activity. However, while the mental
activity of filling one composite unit with the elements of a second composite unit is
multiplicative in nature, Maya’s activity does not constitute multiplicative reasoning because
it is only implicitly multiplicative (Steffe, 1992). As long as composite units must be
constructed in activity, multiplicative reasoning cannot be explicit.

3.3 Explicitly nested number sequence1

ENS students assimilate with composite units which means that they can immediately interpret
a number, such as seven, as a composite unit containing seven individual units of one.
Assimilating with composite units makes the students’ conception of a composite unit
anticipatory and material for reflection and, in turn, allows the students’ conception to be
“explicit.” With this explicit understanding of a composite unit, ENS students can, in mental
activity, construct a unit of units of units—21 as three groups of seven, for example (Fig. 3),
although the third level of units is not anticipated prior to activity and decays following activity
(Ulrich, 2016a). Furthermore, ENS students have constructed a disembedding operation and
an iterable unit of one (Steffe, 2010). A disembedding operation allows ENS students to think
about mentally removing units from the composite unit without destroying either quantity
(Ulrich, 2016a). This facilitates comparison of the two units. An iterable unit of one implies
the ability to mentally repeat a unit of one and conceive of it as identical to other units of one
(Olive, 2001). In combination, disembedding and iterating units of one facilitate multiplicative
reasoning (Ulrich, 2016a) because they support ENS students in reasoning that a composite
unit of seven, for instance, is seven times the size of one. Assimilating with composite units,
disembedding, and iterating units of one make an ENS the onset of multiplicative reasoning
(Tzur et al., 2013; Ulrich, 2016a).

These operations support the multiplicative reasoning of ENS students, like Johanna
(Steffe, 1992). Johanna was shown four rows of three blocks and told there were some more
rows of three blocks hidden beneath a screen, for a total of seven rows. When asked how many

1 Recall that the number sequence trajectory is TNS➔ aTNS➔ ENS (Fig. 1; Ulrich, 2016b; cf. Steffe, 2010). In
this section, however, the ENS is discussed prior to the aTNS because aTNS students demonstrate reasoning that
is characteristic of both TNS and ENS students. By discussing the aTNS after the TNS and ENS, it can be
situated between the two number sequences.

Seven as seven individual units of one Seven as one composite unit, containing 

seven individual units of one

1     2     3    4     5     6      7 1     2     3 4     5     6      7

Fig. 2 A visual representation of seven as units of one (left) and as a composite unit (right). Adapted from Ulrich
(2015)
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rows were hidden, she almost immediately responded that there were three. Johanna could
operate on the rows as if they were units of one while mentally maintaining the three blocks
within the rows (composite units), which constitutes multiplicative reasoning (Steffe, 1992).

3.4 Advanced tacitly nested number sequence

aTNS students assimilate with composite units (Ulrich, 2016b), which is more sophisti-
cated than TNS students (Ulrich, 2016a), and the qualifier “advanced” in aTNS is literal
in its meaning (Ulrich, 2016b); aTNS students have a more advanced concept of
composite units than do TNS students. For aTNS students, a number like seven can be
assimilated as a unit containing seven units. Then, in mental activity, aTNS students can
conceive of a unit of units of units—21 as three groups of seven, for example (Fig. 4).
Although the three-level unit structure is not anticipated prior to activity and decays
following activity, the composite unit is available for reflection (Ulrich, 2016a). This is
in comparison to TNS students, for whom the composite unit is unavailable for reflection
following mental activity (Ulrich, 2015).

aTNS students’ reasoning about number, however, is less sophisticated than ENS students’.
Whereas both groups assimilate with composite units, aTNS students neither disembed nor
iterate units of one (Ulrich, 2016b). ENS students can conceive of a number, such as seven, as
seven iterations of identical units of one, and can mentally disembed and compare units to the
composite unit (see Fig. 3); aTNS students cannot. Rather, aTNS students conceive of seven as
a counting sequence from one to seven, or ten to sixteen, for example. Furthermore, to
mentally remove a unit from the composite would destroy the mental records of the composite
unit for aTNS students. For these reasons, the cognitive structures of aTNS students do not
support multiplicative reasoning.

Seven as one composite unit, containing 

seven identical iterations of one. Beneath is a 

representation of a disembedded unit that can 

be compared to seven multiplicatively.

Twenty-one as one unit, containing three 

composite units of seven.

1     1 1 1 1 1 1

1

7

14

21

Fig. 3 A visual representation of a composite unit and a disembedded unit of one (left) and a three-level unit
structure (right)

Seven as one composite unit, containing 

seven individual units of one

Twenty-one as one unit, containing three 

composite units of seven 

1     2     3    4     5     6      7
1     2     3    4     5     6      7

8     9    10    11   12    13  14

15   16   17    18   19   20    21

Fig. 4 A visual representation of a composite unit (left) and a three-level unit structure (right)
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4 Purpose and research questions

Students construct multiplicative reasoning when they make accommodations to their number
sequences (Steffe, 1992). Research has also directly linked number sequences to constructing
multiplicative reasoning. Wilkins et al. (2020) found that students who construct an INS by the
beginning of second grade are 1.79 and 2.80 times more likely to construct multiplicative
reasoning by the beginning of fourth and fifth grades, respectively, compared to students who
have not constructed at least an INS in second grade. Similarly, students who construct a TNS
by the beginning of second grade are 2.03 and 4.57 times more likely to construct multipli-
cative reasoning by the beginning of fourth and fifth grades, respectively, compared to students
who had not constructed at least an INS. These results quantify the relationship between
students’ number sequences and their construction of multiplicative reasoning. Furthermore,
Tzur et al. (2010) stated that “when teaching does promote construction of … numbers as the
conceptual prerequisite—substantial progress into multiplication and division can be nurtured”
(p. 10, emphasis in original). Therefore, students must construct sufficiently sophisticated
concepts of number, including assimilatory composite units, before the spring that engenders
multiplicative reasoning is released.

The purpose of this study is to examine students’ construction of multiplicative reasoning,
as understood through the number sequences. This study asks: Do the proportions of students
who have constructed multiplicative reasoning compared to the proportions who have not
constructed multiplicative reasoning differ across the middle grades? Analyzing this question
through the number sequence framework supports a focus on students’ fluency with composite
units: INS students do not construct composite units, TNS students construct composite units
in activity, aTNS students assimilate with composite units but do not reason multiplicatively,
and ENS students assimilate with composite units and reason multiplicatively. Thus, we will
analyze the relative proportions of these different groups of students between grade levels to
investigate Tzur et al.’s (2010) conclusion that assimilating with composite units, as indicated
by a student’s construction of an aTNS in this study, is a conceptual spring to multiplicative
reasoning, as indicated by a student’s construction of an ENS in this study. This will be
accomplished by comparing the proportions of students at each grade level who have not
constructed assimilatory composite units (i.e., INS and TNS students) to multiplicative
reasoning (i.e., an ENS) and the proportions of students at each grade level who have
constructed assimilatory composite units but not multiplicative reasoning (i.e., aTNS students)
to multiplicative reasoning (i.e., an ENS). A significant difference in these proportions would
indicate the significant role of assimilatory composite units in the development of multiplica-
tive reasoning.

5 Methods

5.1 Participants

This study was conducted in the rural southeastern USA and involved 326 students in grades 6
through 9. Participants in grades six through eight attended a single middle school, and students
in grade 9 attended a single high school. All students who attended the participating middle
school would advance to the participating high school upon entrance to ninth grade, and no
other middle schools advanced to the participating high school. Therefore, the participants
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represent a trajectory within a school district. The town in which the school district is located
has approximately 7000 residents and is located in Appalachia. At the schools included in the
study, 49.1% of students are identified as economically disadvantaged, and 92.0% are White.

All students in grades six through nine who were present at school and enrolled in a
mathematics class during data collection were invited to participate. Of the students in the
school, 74.6% of sixth-grade students (100 out of 134), 79.3% of seventh-grade students (92
out of 116), 63.2% of eighth-grade students (74 out of 117), and 56.6% of ninth-grade students
(60 out of 106) participated. Among all grades, 5.7% of students did not participate because
they did not give assent, and 25.4% were not surveyed due to scheduling conflicts or absences.
Overall, 68.9% of students (326 out of 473) participated in the study.

Of the 326 students who participated in the study, all sixth-grade students were in a general
Math 6 course. Seventh-grade students were split between a Pre-Algebra course and a general
Math 7 course. Eighth-grade students were split between anAlgebra 1 course and a Pre-Algebra
course, and ninth-grade students were split among an Algebra 1-part 2 course, a Geometry
course, and an Algebra 2 course. In total, students from 18 classes participated: four sections of
Math 6, three sections of Math 7, four sections of Pre-Algebra, one section of Algebra 1, two
sections of Algebra 1 Part 2, two sections of Geometry, and two sections of Algebra 2.

The school district in which data were collected did not have a prescribed curriculum; rather,
the teachers independently developed lessons based on the state standards (Virginia Department
of Education, 2016). These standards prescribe that multiplicative reasoning be explicitly ad-
dressed in Math 6 and Math 7. In Math 6, students learn to represent, notate, find equivalencies,
and compare ratios, fractions, mixed numbers, decimals, and percents. They also multiply and
divide fractions, mixed numbers, decimals, and integers. InMath 7, students investigate powers of
10, and solve problems using rational numbers and proportions. None of the additional course
standards for the classes in which participants were enrolled had an explicit focus on multiplica-
tive reasoning, or operations on whole numbers, integers, or rational numbers. Although the
autonomy given to teachers within this school district makes it difficult to parse out the role of
curriculum in students’ construction of multiplicative reasoning in this study, this brief description
is offered to provide context to the participants’ mathematical experiences.

5.2 Measures

5.2.1 Number sequences

To ascertain students’ number sequence, we used a survey instrument designed to elicit students’
ways of operating that are characteristic of each number sequence (Ulrich &Wilkins, 2017). The
instrument includes 25 questions, and students were given approximately 1 h to complete the
survey. Face and content validity were established by aligning survey items with existing theory
and by consulting an expert in mathematics education. Further validity evidence was provided by
comparing student classifications based on the survey with the classifications based on clinical
interviews. Interrater reliability, as indicated by a weighted Kappa statistic, for the overall student
classifications based on the instrument was documented to be 0.95 (Ulrich & Wilkins, 2017).
Figure 5 shows selected items from the survey. The cupcake task was accessible to most students
regardless of their number sequence and elicited varied solution strategies based on their number
sequences. On this item, the cupcakes represent units of one and the boxes of cupcakes represent
units of three, therefore allowing the researchers to interpret the students’written work in terms of
their operations on composite units.
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The bars tasks (Fig. 5) also elicited different solutions for students who had constructed
different number sequences. The five tasks are ordered here by increasing difficulty, although
they are not arranged in succession on the survey. In each of these tasks, the small rectangle
represents a composite unit. Ulrich and Wilkins (2017) found a statistically significant, and
strong, positive association between the tasks and the number sequences such that INS students
did not solve any of the bar tasks, TNS students typically only solved B1, aTNS students typically
solved B1-B3, and ENS students typically solved all of the tasks. This result is theoretically
supported by the students’ increasingly sophisticated operations with composite units.

This survey instrument was selected because scores from the survey assign a stage
classification to students. Stage classifications are related to the student’s number sequence
and are hierarchical. The classifications are as follows: (1) pre-numerical or INS, which
includes students whose responses overwhelmingly indicated that they had constructed at
most an INS; (2) TNS, which includes students whose responses overwhelmingly indicated
that they had constructed at most a TNS; (3) aTNS, which includes students whose responses
overwhelmingly indicated that they had constructed at most an aTNS; and (4) ENS or GNS,
which includes students whose responses overwhelmingly indicated that they had constructed
at least an ENS.

The stage classifications acknowledge the limitations of assessing students’ number se-
quences using a paper survey because it is possible that an ENS student, for example, may
solve problems in a manner that is consistent with any of the less sophisticated number
sequences. Thus, the stage classifications are understood to represent the “lower bound”
(Ulrich & Wilkins, 2017, p. 7) of students’ number sequence attributions.

The surveys were scored independently by two researchers. The researchers calibrated their
scoring by individually scoring 10% of the surveys using the scoring guide and rubric (Ulrich

Cupcake Task: You have baked 39 cupcakes and you will put the cupcakes in boxes of 3. 

How many boxes will you fill?

Bar Tasks:

Fig. 5 Selected items from the survey instrument (Ulrich & Wilkins, 2017)
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& Wilkins, 2015). Then, the researchers reconciled scoring inconsistencies on individual
questions. After reconciling scores, each researcher independently scored the remaining
surveys. The resulting stage classifications were compared, and the researchers reconciled
inconsistencies in stage classification.

To assess the level of agreement, or interrater reliability, for the stage classifications, we
computed the weighted kappa statistic, Κ, (Cohen, 1968). The weighted kappa statistic is
appropriate due to the ordinal nature of the stage classifications and because there are more than
two levels (Cohen, 1968). By using weighted kappa, mismatched stage classifications between
researchers are weighted proportionately based on the level of disagreement. The weighted
kappa statistic ranges between 0 and 1, where 1 represents perfect agreement. The weighted
kappa statistic for grades six (K = 0.92), seven (K = 0.87), eight (K = 0.88), and nine (K = 0.94),
represent “almost perfect” agreement (Landis & Koch, 1977, p. 165). The overall weighted
kappa score (K = 0.91) also represents “almost perfect” agreement (Landis & Koch, 1977, p.
165). These kappa statistics are consistent with those presented by Ulrich and Wilkins (2017).

5.2.2 Grade level

To measure students’ developmental levels, we used their grade level. We created four
dummy-coded variables to indicate student grade level (grade 6, grade 7, grade 8, and grade 9).

5.3 Data analysis

To address our research question, we estimated a multinomial logistic regression model that
regressed the existence of multiplicative reasoning on grade level. The model was used to
analyze patterns in the proportions of students’ construction of multiplicative reasoning in the
middle grades, as measured by an ENS stage classification. Tzur et al.’s (2010) conceptual
spring suggests that students who assimilate with composite units may construct multiplicative
reasoning at different rates than students who do not. Accordingly, a multinomial logistic
regression model facilitated a comparison of the proportions of students who have constructed
multiplicative reasoning to the proportions who have constructed each of the preceding stages
at each grade level.

The regression model used is : Logit Yð Þ ¼ ln
P Yð Þ

1−P Yð Þ
� �

¼ bo þ b1X 1i þ b2X 2i þ b3X 3i:

In this model, Y is the dependent variable which represents the student’s construction of
multiplicative reasoning and includes the four stage classifications: INS, which indicates no
operations on composite units; TNS, which indicates construction of composite units in
activity; aTNS, which indicates assimilatory composite units but not multiplicative reasoning;
and ENS, which indicates assimilatory composite units and multiplicative reasoning. ENS was
the reference category because it is used as a proxy for measuring student’s multiplicative
reasoning. X1i, X2i, and X3i are the independent variables, representing a student’s enrollment in
sixth, seventh, or eighth grade, respectively. Each of these was dummy coded, and ninth grade
was the reference category. b1, b2, and b3 quantify the change in the logit of Y associated with a
student belonging to the identified grade level. Finally, b0 is the model’s intercept. Statistical
significance of the coefficients was determined using a Wald chi-square statistic. After
estimating the model, each regression coefficient was exponentiated to produce the odds ratios
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of constructing multiplicative reasoning in each grade relative to each of the preceding stage
classifications. Then, relative risks were calculated to better facilitate interpretations; odds
ratios often lead to less straightforward interpretations. According to Olivier, May, and Bell
(2017), relative risks of 1.22, 1.86, and 3.00 represent benchmarks for small, medium, and
large effect sizes, respectively. We offer these benchmarks as a guide, but caution readers
when interpreting relative effect sizes absolutely without context or reference (Bakker et al.,
2019). In our study, we view relative risk, in terms of an effect size, as a “measure of clarity”
with regard to the meaningfulness of differences between groups (Simpson, 2020, p. 129).

The aim of this analysis was to determine the existence of and nature of the relationship
between students’ construction of multiplicative reasoning in the middle grades and their
operations on composite units. Are the proportions of students who reason multiplicatively
similar to the proportions of students who do not construct composite units, construct
composite units in activity, and assimilate with composite units? Which of these groups, all
of whom are constrained to additive reasoning, are most likely to construct multiplicative
reasoning, and is this construction more likely to happen at certain points in time across the
middle grades? By answering these questions, we are able to explicitly link differences in
proportions by number sequence to the conceptual spring, and in particular, answering these
questions will investigate the role of assimilatory composite units in children’s construction of
multiplicative reasoning.

6 Results

6.1 Descriptive statistics

Students who are constrained to reasoning additively, measured by not yet having constructed
an ENS, make up 60.1% (196 out of 326) of the middle-grade students surveyed (Table 1).
The largest group of students who are still constrained to additive reasoning are aTNS students.
They make up 46.6% (152 out of 326) of the sample, and 77.6% (152 out of 196) of the
additive reasoners.

The percentage of students who assimilate with composite units but do not reason multi-
plicatively (i.e., aTNS students) is comparable in grades six and seven, and in grades eight and
nine, and drops approximately 20% from seventh grade to eighth grade (Fig. 6). In a
complementary pattern, the percentage of students who assimilate with composite units and
reason multiplicatively (i.e., ENS students) is similar in grades six and seven, and in grades
eight and nine, but from grades 7 to 8 the number of students who have constructed at least an
ENS increases by approximately 23%. No such patterns emerged for students who do not

Table 1 Percentage of students by number sequence and grade

Additive Multiplicative

Pre-numerical/INS TNS aTNS ENS/GNS Total

Grade 6 10.0% (10) 7.0% (7) 54.0% (54) 29.0% (29) 100% (100)
Grade 7 5.4% (5) 6.5% (6) 55.4% (51) 32.6% (30) 100% (92)
Grade 8 6.8% (5) 2.6% (2) 35.1% (26) 55.4% (41) 100% (74)
Grade 9 6.7% (4) 8.3% (5) 35.0% (21) 50.0% (30) 100% (60)
Total 7.4% (24) 6.1% (20) 46.6% (152) 39.9% (130) 100% (326)
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assimilate with composite units (i.e., INS and TNS students), indicating that the numbers of
students who had constructed only an INS or a TNS were relatively consistent across the
middle grades.

6.2 Relationship between students’ construction of multiplicative reasoning
and grade level

Multinomial logistic regression models were estimated, in which students’ construction of
multiplicative reasoning was regressed on their grade level. The results from the model
utilizing the ENS stage classification as the reference group are presented in Table 2.2

Incorporating students’ grade level as a predictor into this model significantly improved model
fit compared to the null model (likelihood ratio test: χ2(9) = 20.545, p = 0.015).

Interpreting the regression coefficients based on their statistical significance, or lack thereof,
leads to the conclusion that the proportion of students constructing an INS relative to an ENS is
not significantly less in grades 6 through 8 compared to grade 9 (grade 6: b11 = 0.950, ns; grade
7: b12 = 0.223, ns; grade 8: b13 = − 0.089, ns). The rate of students constructing a TNS relative
to an ENS is also not significantly less in grades 6 through 8 compared to grade 9 (grade 6:
b21= 0.370, ns; grade 7: b22 = 0.182, ns; grade 8: b23 = − 1.229, ns). Thus, the proportion of

2 The model was also estimated with grades 6, 7, and 8 as the reference group to support interpretations of
relevant grade-level comparisons. All of these models are statistically equivalent, therefore, for brevity and to
eliminate the redundancy of a repeated model, these additional comparison results are presented in the text, as
appropriate.
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Fig. 6 The percentage of students who have constructed an advanced tacitly nested number sequence (aTNS)
decreases from grade 7 to 8, while the percentage of students who have constructed at least an explicitly nested
number sequence (ENS) increases. There are no similar changes in the percentages of students who have
constructed an initial number sequence (INS) or a tacitly nested number sequence (TNS)
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students who have constructed multiplicative reasoning compared to the proportions of those
who do not construct composite units (i.e., INS students) and of those who construct
composite units in activity (i.e., TNS students) does not increase in higher grades. This
suggests that INS and TNS students have the same likelihood of constructing multiplicative
reasoning when they exit the middle grades as they did when they entered the middle grades.

In contrast, the proportions of students constructing an aTNS relative to an ENS were
significantly greater in several grade-level comparisons, as indicated by statistically
significant regression coefficients (Table 2). The proportion of sixth-grade students
who assimilate with composite units and are constrained to additive reasoning (aTNS)
relative to reasoning multiplicatively (ENS) is larger than the proportion in ninth-grade
(b31 = 0.978, p < 0.01); this is also the case for seventh-grade students compared to ninth-
grade students (b32 = 0.887, p< 0.05). Thus, sixth- and seventh-grade students are more
likely to construct an aTNS than ninth-grade students. Similarly, the proportions of sixth-
and seventh-grade students who assimilate with composite units and are constrained to
additive reasoning relative to multiplicative reasoning are statistically significantly great-
er than the proportion of eighth-grade students (grade 6: b31 = 1.077, SE = 0.340, p =
0.002, OR = 0.341; grade 7: b32 = 0.986, SE = 0.340, p = 0.004, OR = 0.373). Although
the proportions of students who have constructed an aTNS relative to an ENS were
greater in sixth and seventh grades compared to eighth and ninth grades, the proportions
of students were not significantly different in sixth compared to seventh grade (b31 =
0.091, SE = 0.325, p = 0.780), nor in eighth compared to ninth grade (b33 = 0.099, ns).
Sixth- and seventh-grade aTNS students construct multiplicative reasoning at a greater
rate than eighth- and ninth-grade aTNS students.

Relative risks were calculated to facilitate the interpretation of the effect sizes of the larger
proportions of aTNS students to ENS students in sixth and seven grades compared to eighth
and ninth grades. Sixth-grade students were approximately 1.54 times more likely to have
constructed an aTNS in comparison to both eighth- and ninth-grade students. Seventh-grade
students were approximately 1.57 times more likely to have constructed an aTNS than eighth-
and ninth-grade students. In combination, sixth- and seventh-grade students are more likely to
have constructed assimilatory composite units and be constrained to additive reasoning than
eighth- and ninth-grade students. These effect sizes indicate that the larger proportion
of students in sixth and seventh grades who assimilate with composite units and are

Table 2 Results of the multinomial logistic regression utilizing ninth grade as the reference group

Intercept:bi0 Grade 6: bi1 Grade 7:bi2 Grade 8:bi3

INS relative
to ENS

b1j (SE) − 2.02* (0.532) 0.95 (0.65) 0.22 (0.72) − 0.09 (0.71)

OR (95% CI) 2.59 (0.73, 9.18) 1.25 (0.31, 5.11) 0.92 (0.23, 3.70)

TNS relative
to ENS

b2j (SE) − 1.79** (0.48) 0.37 (0.64) 0.18 (0.66) − 1.23 (0.87)

OR (95% CI) 1.45 (0.41, 5.09) 1.20 (0.33, 4.36) 0.29 (0.05, 1.61)

aTNS relative
to ENS

b3j (SE) − 0.36 (0.29) 0.98** (0.37) 0.89* (0.37) − 0.10 (0.38)

OR (95% CI) 2.66 (1.30, 5.45) 2.43 (1.19, 4.98) 0.91 (0.43, 1.91)

Likelihood ratio test: χ2 (9) = 20.55, p = 0.015. *p < 0.05, **p < 0.01. OR, odds ratio
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constrained to additive reasoning compared to those in eighth and ninth grades
represents a meaningful difference.

Examining the trends in the construction of multiplicative reasoning shows that eighth-
grade students are 1.91 times more likely to have constructed multiplicative reasoning than
sixth-grade students and 1.69 times more likely to have constructed multiplicative reasoning
than seventh-grade students. We also find that ninth-grade students are 1.72 times and 1.52
times more likely to have constructed multiplicative reasoning than are sixth- and seventh-
grade students, respectively. These effect sizes suggest that the larger proportion of students in
eighth and ninth grades who construct multiplicative reasoning compared to students in the
sixth and seventh grades represents a meaningful difference.

7 Discussion

Clark and Kamii (1996) concluded that the number of students who reason multiplicatively
changes slowly across the elementary grades. This was based on the result that 45% of second-
grade children were reasoning multiplicatively in some capacity, but only 49% of fifth-grade
students progressed to a level of consistent multiplicative reasoning. The present study found
that in the middle grades, however, these changes are quite swift. As opposed to a 4% increase
in multiplicative reasoning across the elementary grades, this study shows an approximate
23% increase in the percentage of students who reasoned multiplicatively in seventh grade
compared to eighth and a complementary 20% decrease in the percentage of students who
assimilated with composite units but were constrained to additive reasoning in seventh
grade compared to eighth. The log odds associated with these changes were both
statistically significant. Thus, the swift construction of multiplicative reasoning is
unique to the middle grades.

Additionally, unique to the middle grades is the stagnant growth of INS and TNS students.
The proportion of students who had constructed an INS relative to an ENS, and a TNS relative
to an ENS, was not significantly different in grades 6 through 8 compared to grade 9. This is
presented in comparison to Wilkins et al.’s (2020) finding that students who have constructed
an INS or a TNS in second grade are significantly more likely to construct multiplicative
reasoning by fourth or fifth grade than are students who have not constructed an INS or TNS in
second grade. This points to the time-sensitive nature of students’ development of number.

7.1 Theoretical implications

The data suggest that aTNS students are the only group of students for whom the swift
construction of multiplicative reasoning occurred. Figure 6 visually represents this swift
construction, as well as the relative stagnancy in the percentages of students who have
constructed an INS and a TNS across the middle grades. The rate of INS or TNS students
to ENS students is no different in any grade-level comparison; however, the rate of aTNS
students to ENS students is lower in eighth and ninth grades compared to that in sixth and
seventh grades. This suggests that an assimilatory composite unit hastens the construction of
multiplicative reasoning in the middle grades. This provides a quantitative verification of Tzur
et al.’s (2010) “conceptual spring” (p. 9) and suggests that the spring’s release is time sensitive.

Tzur et al.’s (2010) research included fourth- and fifth-grade students with learning
disabilities in a constructivist teaching experiment. The results of studying elementary students
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with learning disabilities were not a priori assumed to apply to the participants in this study, the
majority of whom did not have documented learning disabilities and all of whom were in the
middle grades. Regardless, the construction of assimilatory composite units proved just as
important for students in the present study because the proportion of students with an
assimilatory composite unit who were constrained to additive reasoning increased between
seventh and eighth grades, whereas the proportion of students without an assimilatory
composite unit did not change significantly at any point during the middle grades. Therefore,
the higher proportion is attributed to the students’ construction of an assimilatory composite
unit. In addition to verifying the importance of an assimilatory composite unit to poise students
to construct multiplicative reasoning, the results of this study suggest that an assimilatory
composite unit becomes particularly critical in seventh grade.

Norton and Wilkins (2013) have documented a parallel conceptual spring in middle-grade
students’ construction of fractional thinking3 and the splitting operation. Splitting refers to a
student’s simultaneous application of iterating and partitioning (Steffe & Olive, 2010). A
typical splitting task shows an arbitrary line segment and says, “The stick shown is five times
as long as your stick. Draw your stick.” Students must posit a hypothetical stick that has a one-
to-five relationship with the given stick to solve the task. Splitting is critical in students’
conceptions of fractions (Steffe & Olive, 2010) because it fosters thinking of the shorter stick
as one-fifth of the longer stick, in the preceding example. Norton and Wilkins (2013) found
that the odds of students who have constructed fractional thinking by the end of sixth grade
constructing splitting by the end of seventh grade are 13.33 times the odds of a student who
has not constructed fractional thinking by the end of sixth grade constructing splitting by the
end of seventh grade. Thus, fractional thinking is the parallel “spring” that catalyzes the
construction of splitting for students between sixth and seventh grades.

Norton and Wilkins (2013) also found that the odds of students who have constructed
fractional thinking by the end of sixth grade constructing splitting by the end of seventh grade
were 9.30 times the odds of a student who had not constructed fractional thinking by the end of
sixth grade constructing even fractional thinking by the end of seventh grade. This result
parallels the stagnancy observed in the percentages of INS and TNS students in the present
study because INS and TNS students have constructed neither fractional thinking nor splitting.
The present study demonstrates that the percentages of INS and TNS students did not change
significantly between grades six and seven, which implies that the percentages of students who
have constructed fractional thinking in sixth and seventh grades also did not change signifi-
cantly. The present study’s results also extend those of Norton and Wilkins because in this
study, the percentages of INS and TNS students did not change significantly across the entirety
of the middle grades. Norton and Wilkins’ conceptual spring to the construction of splitting is
engaged by constructing fractional thinking by the end of sixth grade. The present study adds
that if the spring is not engaged by the end of sixth grade, it is unlikely to be engaged in the
middle grades at all.

Another extension of this result is the significant decrease in the percentages of aTNS
students between grades seven and eight; this deviates from the pattern of change observed
among INS and TNS students, and from the result observed by Norton and Wilkins (2013).
aTNS students have not constructed fractional thinking. Thus, Norton and Wilkins’ result

3 To say that students have constructed fractional thinking is synonymous with saying they have constructed the
partitive unit fraction scheme, which supports their thinking about a whole being n-times the size of a unit
fraction, 1/n (Steffe & Olive, 2010).

Zwanch K., Wilkins J.L.M.166



would predict that the likelihood of an aTNS student constructing fractional thinking or
splitting by the end of seventh grade is lower than their peers who have constructed fractional
thinking in sixth grade. This result is upheld in the present study because the rate of aTNS to
ENS students in sixth grade compared to seventh grade was not significantly different.
However, this study found that sixth- and seventh-grade students are 1.54 and 1.57 times
more likely, respectively, to have constructed an aTNS than eighth-grade students. Given the
preparedness of ENS students to construct fractional thinking and a splitting operation (Steffe
& Olive, 2010), these grade-level effect sizes indicate that students who have not constructed
fractional thinking and splitting in seventh grade (i.e., aTNS students) may construct fractional
thinking and splitting in eighth grade. Longitudinal research should build on Norton and
Wilkins’ (2013) result by examining students’ construction of fractional thinking and splitting
across the middle grades, because the present study suggests that the rate at which students
without fractional thinking and splitting construct these operations may increase in eighth
grade if they assimilate with composite units.

A limitation of this study is that it cannot conjecture a rationale for the significant change in
the numbers of students who constructed multiplicative reasoning between seventh and eighth
grades. Nor can this study conjecture a rationale for the non-significant changes in the numbers
of students who had constructed multiplicative reasoning between sixth and seventh grades
and between eighth and ninth grades. Because this study was cross-sectional, conclusions are
drawn between students. A more striking case could be made by examining the within-student
changes afforded by longitudinal data. This is a topic for future consideration. Furthermore, as
this study outlined the trajectory of children’s construction of number as it relates to multipli-
cative reasoning, the unit of analysis was the child; our focus was to document a student-level
phenomenon. As our study was situated within one school district, it was limited in its
investigation of contextual factors associated with community and culture; thus, we caution
broader generalizations. Also, our study did not involve enough classrooms differing by course
curriculum to investigate the role of curriculum and instruction on students’ developmental
trajectories. Future research should consider classroom- and school-level factors, in particular,
curricular and cultural factors that may impede or advance the timing with which children
construct multiplicative reasoning.

7.2 Instructional implications

Early middle-grade instruction should foster students’ construction of assimilatory composite
units, as this study shows that such a construction instigates multiplicative reasoning. Tzur
et al. (2013) found that an instructional activity using snap cubes supports this construction by
shifting students’ focus from units of one to composite units (see alsoWilkins & Ulrich, 2017).
In this activity, students are asked to “go and bring me five towers of three cubes each,” for
example. In response, students snap together five groups of three cubes and then determine the
total number of cubes. Wilkins and Ulrich (2017) similarly showed how manipulatives can be
used to support students’ construction of assimilatory composite units on problems such as the
cupcake task (Fig. 5). Creating the towers or boxes of cupcakes and determining the number of
cubes physically simulates the nature of mentally constructing composite units and may also
support anticipation of composite units, thereby supporting multiplicative reasoning.

Other instructional activities that support assimilatory composite units are a series of apps
created by the Learning Transformation Research Group (LTRG; CandyFactory, CandyDepot,
and CandyBot). In the CandyDepot app, for instance, students group candy bars into bundles
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and place bundles into boxes, with the goal of loading a delivery truck with the correct amount
of candy in the fewest possible number of boxes, bundles, and bars. The bundling actions
inherent in this app mimic the mental actions of students’ units coordination, thereby
supporting assimilation with composite units (LTRG, 2013). The physical replication of
uniting units of one into composite units and repeating these units allows students to reflect
on composite units constructed in activity, subsequently supporting assimilatory composite
units. This study finds that such instructional strategies are critical in sixth and seventh grades
to support multiplicative reasoning.

These activities engender students’ construction of more sophisticated whole number
operations as a means of supporting multiplicative reasoning. However, typical middle-
grade curriculum in the USA focuses on fraction concepts (CCSSI, 2010). Boyce and
Norton (2016) concluded that “fractions may be a fertile context for students to continue
developing units coordination” (p. 23), including assimilatory composite units. Thus, in
instances where middle-grade curriculum limits instruction of whole number concepts,
fractional instruction may provide a more curriculum-appropriate setting to engender
students’ construction of assimilatory composite units, thereby supporting the release of
the conceptual spring to multiplicative reasoning. Future research may also consider the
effects of different curricula on students’ construction of assimilatory composite units and
multiplicative reasoning.

8 Conclusion

The overarching purpose of this research study was to examine students’ construction of multipli-
cative reasoning in the middle grades, as understood through the number sequences framework
(Steffe, 2010; Ulrich, 2016b). In response to this purpose, this study finds that aTNS students
construct multiplicative reasoning at a different rate than INS and TNS students do. Moreover,
aTNS students are uniquely poised to constructmultiplicative reasoning due to their construction of
an assimilatory composite unit. Theoretically, this result provides a quantitative validation of Tzur
et al.’s (2010) conceptual spring and additionally highlights the importance of focusing early
middle-grade instruction on supporting students’ construction of assimilatory composite units.
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