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Abstract   
The aim of the present study is to reconcile previous findings (a) that testing mode has 
no effect on test outcomes or cognitive load (Comput Hum Behav 77:1–10, 2017) and 
(b) that younger learners’ working memory processes are more sensitive to computer-
based test formats (J Psychoeduc Assess 37(3):382–394,  2019). We addressed key 
methodological limitations in past cognitive load research by employing a repeated 
measures design with 263, year 9 (aged 13–14) science students in Western Australia. 
Question difficulty (intrinsic cognitive load) and test mode (extraneous cognitive load) 
were manipulated to measure changes in test performance, cognitive load and scratch 
paper use on equivalent paper and computer-based versions of an Ohm’s Law revi-
sion quiz. Hierarchical linear modelling indicated significantly higher paper-based test 
performance on difficult questions in addition to greater cognitive load and scratch 
paper use for all paper questions. Testing mode effects on test score, as well as both 
measures of cognitive load, were not significant when controlling for working memory 
capacity, although the testing mode*question difficulty interaction remained signifi-
cant. Together, these results contradict previous findings that computer-based testing 
can be implemented without consequence for all learners. With the increased use of 
computer-based testing in national and international-level assessments, these find-
ings warrant further research into the effect of different testing modes on school-aged 
students.
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Introduction

The use of computers in Australian schools continues to increase (Hatzigianni 
et  al., 2016; Vassallo & Warren, 2017), finding a place not only in learning 
environments but also in summative and high-stakes assessment. For instance, 
the National Assessment Program in Literacy and Numeracy (NAPLAN) in 
Australia is intended to be conducted entirely online by 2022 (School Curricu-
lum and Standards Authority, 2014) whilst the Programme for International 
Student Assessment (PISA) has been transitioning to digital formats for nearly 
16  years (OECD, 2010). The purported benefits of computer-based learning 
and assessment range from increased efficiency and accuracy for teachers in 
evaluating student performance (Prisacari & Danielson, 2017; Selwyn, 2014, 
2016) to improved learning outcomes and test performance for students (Ack-
erman & Lauterman, 2012; Prisacari & Danielson, 2017).

Most research in this area has focused on whether the mode in which a test is 
taken (i.e., on computer or paper) leads to differences in testing outcomes (i.e., 
test scores, which validate primarily a student’s retention of knowledge). How-
ever, testing mode (i.e., whether a student takes an assessment on computer or 
on paper) may affect school-aged students in inequitable ways based on their age 
and working memory capacity (Batka & Peterson, 2005; Bennett et  al., 2008; 
Carpenter & Alloway, 2019). For instance, some studies point to subtle changes 
in cognitive load, metacognitive activity, and test-taking behaviours such as 
scratch paper. Prisacari and Danielson (2017) propose that when tackling some 
assessment questions, students may require additional support for their working 
out by adding key pieces of information they have memorised, sketching rela-
tionships between variables, or algebraic rearranging of formula. This is espe-
cially true for questions that include calculations (Bennett et al., 2008; Prisacari 
& Danielson, 2017). The reliance on spare paper to add additional steps required 
to arrive at a solution to a question is termed scratch-paper use.

Previous research highlights that experiences of an assessment question taken on 
computer compared to one taken on paper may not necessarily be reflected in differ-
ences in test scores (Galy et al., 2012; Mueller & Oppenheimer, 2014; Paas & Van 
Merriënboer, 1993; Prisacari & Danielson, 2017; Sidi et al., 2017). These observa-
tions warrant further investigation of computer-based teaching and assessment with 
school-aged students. In particular, there is a need for consideration of whether tra-
ditional measures of performance (i.e., test scores) are truly reflective of the subtle 
ways in which testing mode may provide a selective advantage to certain students 
(Martin, 2014).

To advance the scholarship in this area, this research compared the differences 
in (1) test scores, (2) subjective reports of cognitive load, and (3) test behaviour, 
in equivalent computer and paper-based versions of a grade 9 physics quiz. This 
research addressed the limitations evident in Prisacari and Danielson’s (2017) 
study in that key sources of error (between-subjects measurements taken across 
multiple days) have been removed. Before outlining the study, a brief literature 
review is presented.
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Literature Review

Cognitive Load in Learning Tasks

According to CLT, when the demands of a task exceed a learner’s working mem-
ory capacity (WMC), the learner experiences an increase in cognitive load (CL), 
resulting in poorer test performance, poorer efficiency in answering questions, or 
poorer retention of content knowledge (Paas & Van Merriënboer, 1993; Sweller 
et al., 2019; Sweller, 1988, 2020). It should be acknowledged that CLT literature 
draws its theoretical base from a wide range of influences including theoretical 
models of cognitive architecture (Anderson, 1983), dual-channel models of work-
ing memory (Baddeley & Hitch, 1994) and Mayer’s theory of multimedia learn-
ing (Mayer, 2003). However, this article refers primarily to the terminology of the 
tripartite model of cognitive load (Sweller et al., 1998).

This model proposes three types of cognitive load associated with a learning 
task. First, intrinsic load (IL) is associated with the complexity of the material 
being learned. Material that is high in element interactivity (EI) is said to be high 
in IL because the number of units of information intrinsic to the goals of the learn-
ing or assessment task that must be concurrently processed in working memory is 
relatively high (Likourezos et al., 2019). Recent developments to the conceptual-
ization of IL account for the fact that the subjective experience of IL depends on 
individual learner characteristics (Kalyuga & Singh, 2016; Klepsch et  al., 2017; 
Skulmowski & Xu, 2021). For instance, learners with high prior knowledge and 
high WMC are likely to report lower levels of IL on questions of equivalent dif-
ficulty (Beckmann, 2010; Klepsch et al., 2017; Naismith et al., 2015; Park et al., 
2015). Furthermore, IL also operates as a function of a learner’s motivation to 
engage with a task, or achieve a given instructional goal (Kalyuga & Singh, 2016; 
Schnotz & Kürschner, 2007). The implication of this is that learners who feel 
demotivated or who have low self-efficacy are less likely to engage in a learning or 
assessment task (Pajares, 2005) and thus report lower cognitive load.

The second type of load, extraneous load (EL), is associated with factors that 
do not relate to learning or content. Typically, this equates to load arising from 
instructional design or environment and is responsible for the majority of cogni-
tive load effects (Sweller, 2020). In multimedia learning and assessment environ-
ments, EL is commonly caused by irrelevant information or digital distractions, 
often termed seductive details (Korbach et  al., 2018), or causing a split-atten-
tion effect that arises when learners are required to split their attention between 
different sources of information (Sweller et  al., 2019). EL and IL are additive 
to determine the total cognitive load experienced by a learner (De Jong, 2010; 
Jiang & Kalyuga, 2020; Kalyuga, 2011; Sweller, 2010; Sweller et al., 2011). In 
other words, when the demands of the content being learned (IL), coupled with 
demands of the instruction and learning environment (EL), exceed a learner’s 
working memory capacity, students typically experience poorer test performance, 
poorer comprehension, and poorer attention control (Ayres, 2001, 2006; Debue & 
Van De Leemput, 2014; Mayes et al., 2001; Schmeck et al., 2015). The intrinsic 
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load of a given task is constant (for learners of equivalent expertise) whilst extra-
neous load on the other hand can be manipulated by design of learning and 
assessment tasks (Likourezos et al., 2019). Therefore, the goal of CLT is to iden-
tify ways to reduce EL, thus freeing cognitive resource that can be devoted to 
learning (see Fig. 1).

As Fig. 1 illustrates, the same learner (represented here by identical “bandwidth” 
provided by working memory resources in each scenario) is presented with an identi-
cal task (represented by the same amount of IL) under different conditions. In the first 
example (Fig. 1A), the learner’s working memory resources are overloaded and there 
are insufficient resources available to process, manipulate, or retain information. In the 
second example (Fig. 1B), working memory capacity is not exceeded. The remaining 
working memory resources can be devoted to successful task completion.

The third type of load proposed by the original CLT model, germane load, is asso-
ciated with the cognitive resources devoted to dealing with the content of a task. This 
has since been incorporated into IL and has been removed from the tripartite model as 
a discrete type of load (Jiang & Kalyuga, 2020; Skulmowski & Xu, 2021), as it is no 
longer theorised to contribute to the overall load of a task (Sweller et al., 2019).

Cognitive Load in Assessment Tasks

Traditionally, CLT seeks to minimise total CL (by minimising EL and optimising 
IL (Sweller, 2018; Van Merrienboer et al., 2006)) and maximise residual working 
memory resources through selective use of instructional sequences. In doing so, 
incoming information can be processed with minimal error, and new schema can 
be formed in long-term memory (LTM) (Sweller, 2020). In applying CLT to assess-
ment, it is reasonable to assume that, just as the success of a learning sequence is 
determined by the cognitive conditions under which information is processed as it 
enters LTM, so too should the success of assessment activities be determined by 
the cognitive conditions under which information is retrieved from LTM. Follow-
ing descriptions of human cognitive architecture, students who are completing an 
assessment task must access existing schematic knowledge held in LTM, which 
must be manipulated in working memory to fit the context of a given assessment 
question (Sweller et al., 1998). Therefore, one might conclude that if the conditions 

Fig. 1  The effect of increased extraneous load on the same learner completing the same task 
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under which students are assessed place learners under sufficient extraneous load, 
there may not be sufficient WMC to meet the demands of the assessment task.

Comparisons of Computer vs Paper‑Based Mediums

With respect to the ways in which testing modality influences a student’s experience 
in processing information, recent studies highlight that digitally presented informa-
tion does not necessarily impede comprehension when compared to information 
presented on paper (Latini et  al., 2020; Ronconi et  al., 2022). However, digitally 
presented information has been shown to lead to longer reading time in school-aged 
male students (who also over-estimate their performance more than school-aged 
female students when reading on a computer) (Ronconi et al., 2022). Furthermore, 
on-screen information has also been shown to induce shallower processing than 
information presented on paper (Delgado & Salmerón, 2021; Delgado et al., 2018). 
Research by Latini et  al. (2020) used eye-tracking measures to show that under-
graduate students show more efficient eye gaze transitions between corresponding 
elements of textual and pictorial information when reading information presented 
on paper. This finding is thought to reflect the fact that students process on-screen 
information more shallowly (Annisette & Lafreniere, 2017) and leads them to over-
estimate the extent to which they have understood key elements of a text (Ackerman 
& Lauterman, 2012; Sidi et  al., 2017). In summary, whilst on-screen information 
may not necessarily always lead to differences in comprehension, there are subtle 
changes in student behaviour (such as completion time, eye tracking patterns, and 
self-evaluation of performance) that reflects differences in student experiences when 
encountering information on a computer.

In relation to cognitive load during computer or paper-based assessments, there 
is a lack of consensus around which mode is superior, with a number of studies 
suggesting that students achieve higher test scores on computer tasks (Ackerman & 
Lauterman, 2012; Noyes et al., 2004; Prisacari & Danielson, 2017). Prisacari and 
Danielson (2017) employed a between-subjects comparison by presenting under-
graduate chemistry learners with three chemistry quizzes comprised of differing 
difficulty (definition, algorithmic, and conceptual). They reported no effect of test 
mode on either test score or subjective experiences of cognitive load. However, 
given the variation associated with the experience of intrinsic load at an individual 
level, the use of within-subjects comparisons is consistent with recommendations 
made by previous CLT research (Brünken et al., 2002; Debue & Van De Leemput, 
2014; Prisacari & Danielson, 2017).

Many studies report that CBT places younger learners at a disadvantage. For 
example, a study conducted by Bennett et  al. (2008) with 1970 eighth grade stu-
dents reported superior performance on paper over computer-based assessments—a 
phenomenon also reported in other research focused on primary school-aged chil-
dren (Chu, 2014; Logan, 2015). According to Endres et al. (2015), one factor that 
accounts for this difference appears to be WMC. Carpenter and Alloway (2019) con-
ducted working memory assessments in both paper and computer-based modalities 
with 1339 British children aged 4 to 11 years. They reported poorer scores when 
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working memory assessments were taken on computers. These findings are consist-
ent with evidence to suggest that CBT environments interfere with students’ meta-
cognitive processes (Ackerman & Lauterman, 2012; Noyes & Garland, 2003; Noyes 
et al., 2004; Sidi et al., 2017). These changes may be reflected in subtle changes in 
test behaviour, such as the increased use of scratch paper for questions imposing a 
high IL (Prisacari & Danielson, 2017). Working memory remains a central principle 
of CLT because the degree to which a learner’s WMC is exceeded depends largely 
on the amount of pre-existing knowledge they hold in LTM.

However, there may also by extraneous factors that consume WM resources inde-
pendent of prior knowledge. For instance, it has also been observed that the repeated 
measurement of cognitive load throughout an assessment task may itself impose an 
extraneous load on learners which, in particular, may disadvantage students with low 
WMC (Anmarkrud et al., 2019). Therefore, the inclusion of WMC as a covariate in 
analyses of cognitive load may be a useful way controlling for differences in work-
ing memory demands that arise due to the measurement of cognitive load rather 
than due to addressing requirements of a test question (Anmarkrud et al., 2019; De 
Jong, 2010). Such measures may provide additional rigour to an analysis because 
they provide a measure of the “system capacity” (De Jong, 2010, p. 123) that may be 
influenced by factors other than prior knowledge.

Additionally, if computer-based mediums add a working memory load to learn-
ing and assessment tasks otherwise absent in paper-based tasks, it is reasonable to 
assume that switching one’s attention between computer and paper mediums comes 
at a cost (Collette & Van der Linden, 2002; Ophir et al., 2009; St Clair-Thompson & 
Gathercole, 2006). For instance, this is likely to occur when completing a test on a 
computer and relying on scratch paper to support one’s calculations. This cost mani-
fests in an increase of the overall cognitive load experienced by a learner and has 
implications for the way in which students engage with supportive behaviours such 
as the use of scratch paper during an assessment. For instance, students may rely 
less on scratch paper when completing a CBT because the computer-based environ-
ment itself imposes excessive extraneous load to allow the student to switch atten-
tion from screen to paper.

Present Study

The first goal of this study was to advance Prisacari and Danielson’s research (2017) 
of test mode effects on cognitive load and test taking behaviour by focusing on school-
aged students. Importantly, the majority of CLT research has focused on optimising 
learning through instructional sequences. Given the prevalence of relatively high-
stakes testing such as PISA and NAPLAN being delivered online, there is a distinct 
need for consideration of cognitive load experienced under different testing modes. 
Secondly, this study prioritised comments raised in past research (Ayres, 2015; Mar-
tin, 2014; Mayer, 2005; Skulmowski & Xu, 2021) by measuring CL during assess-
ment tasks designed to possess high face validity to students sitting them. Drawing 
on the work of De Jong (2010) and Skulmowski and Xu (2021), the present study was 
designed to employ learning and assessment tasks in which students have a specific 
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interest and motivation to succeed. These authors identified this focus as a key cri-
terion to enhancing the confidence with which classroom practitioners apply CLT 
research to their own learning and assessment contexts. This was achieved by giving 
students tests that were meaningful to learners in the context of their in-school assess-
ment programmes. Furthermore, feedback on the quizzes was central to success in an 
end-of-topic tests students were scheduled to complete in the days following their par-
ticipation in this study. Moreover, tests were administered with relatively high ecologi-
cal validity: in students’ regular classes by their normal teacher. This included working 
with classroom teachers and their learners in authentic learning contexts during regu-
lar timetabled classes and using assessment material directly linked to their curriculum 
and assessment programmes.

In referring to tasks that have authenticity, some authors have highlighted the need 
for greater use of contextualised learning and assessment tasks (Anmarkrud et  al., 
2019; De Jong, 2010; Martin, 2014). These recommendations are based on observa-
tions that learning and assessment tasks that do not appear authentic (i.e., which have 
low face validity to the students sitting them) are likely to be less reflective of genu-
ine student classroom behaviour (Martin, 2014; Skulmowski & Xu, 2021). Here, De 
Jong (2010) highlights that a number of cognitive load studies rely on tasks with arti-
ficial time constraints or which sample participants who have no specific interest in 
the domain being assessed (e.g., psychology students learning economics, or biology 
content—for example, see Park et al. (2015), Schmeck et al. (2015), Van Gog et al. 
(2012), and Korbach et al. (2018)). The authors note that this may become problematic 
when drawing generalised conclusions about real-world applications of the underlying 
theory, particularly from the perspective of classroom practitioners. Therefore, such 
research ought to prioritise learning characteristics by relying on tasks that occur in 
authentic learning contexts (as defined by De Jong (2010)) with activities that have 
meaning for students’ learning (e.g., tasks that bear direct consequences for students’ 
in-school assessment programmes).

Based on previous findings (Bennett et  al., 2008; Carpenter & Alloway, 2019; Chu, 
2014; Logan, 2015), it was hypothesised that students would perform better on paper-
based tests compared to computer-based tests (H1). Secondly, students would experience 
increased cognitive load during computer tasks, and the difference between computer and 
paper-based tests would be greatest for questions of high element interactivity (i.e., difficult 
questions)—H2. Thirdly, test mode effects would be absent when controlling for individual 
differences in working memory capacity (H3). Finally, students would demonstrate greater 
use of scratch paper during paper-based tests compared to computer (H4).

Methods

Participants

The present study was conducted with 263 grade 9 science students at two inde-
pendent (nongovernment) coeducational high schools in Perth, Western Aus-
tralia (Index of Cultural and Socio-Economic Advantage (ICSEA) = 1158  [97th 
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percentile] and 1118  [90th percentile] respectively). Data were collected on three 
occasions during the 2021 and 2022 academic years.

Across both participating schools, there were 465 year 9 students (aged 13–14) 
enrolled in three cohorts during the data collection. After removing (1) students 
due to absences, (2) those unable to complete all three required tasks, (3) those 
who chose not to participate, and (4) those who experienced technical difficulties 
during data collection, a total of 263 students participated in this study (M = 140, 
F = 109, other = 14). Within this sample, there were 14 individual classes taught 
by 7 different teachers. Given that formative assessment prior to end-of-unit 
assessment tests is common practice in classrooms, an opt-out consent proce-
dure was implemented. Students were informed that data would be collected in 
the form of revision quizzes during one regular timetabled science lesson, which 
served as students’ formative assessment, in the week prior to their summative 
end-of-topic test. This study was approved by the first author’s University Human 
Research Ethics Committee.

Design

A counterbalanced repeated measures design was employed, ensuring students 
completed all three components (computer and paper quizzes, and working mem-
ory capacity test) in a single, regular timetabled science lesson, with all testing 
procedures administered by students’ regular classroom teacher. Approximately 
half of participants (organised by class groups) completed the paper-based test 
followed by the computer-based test (N = 127) and with remaining participants 
completing the computer-based test followed by the paper-based test (N = 136).

Material

The material used in this study included equivalent versions of a paper-based 
and computer-based quiz, as well as an online working memory capacity (reverse 
digit span) test. These materials were written to be commensurate in difficulty 
and content with the Western Australian Curriculum. The Ohm’s Law calcula-
tion questions designed for this study were based on common revision questions 
sourced from widely available student book materials.

Quiz Question Design

Each version of the revision quizzes consisted of eight electrical circuit ques-
tions. To ensure equivalency between modalities, eight questions were written 
and validated for difficulty and element interactivity—in collaboration with four 
expert teachers (who were colleagues of the lead researcher). The eight questions 
(including circuit diagrams, question prompts and suggested working) were ran-
domised and presented to the expert teachers who were asked to categorise the 
questions into two groups of high and low difficulty (based on their perception 
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of element interactivity). This process resulted in four questions of low difficulty 
(low element interactivity) intended to place learners under low IL and four ques-
tions of high difficulty (high element interactivity) intended to place learners 
under high IL. The categorisations from the four expert teachers returned 100% 
agreement on six of the eight questions, with the remaining two questions return-
ing 75% agreement. Further discussion was held with the teachers to clarify dis-
crepancies for these two final questions. This resulted in a set of descriptive crite-
ria that was used for the final categorisation of questions, shown in Table 1.

Following this, each question was duplicated and modified to create an equivalent 
version of the original test for use in during CBT. The duplicate test contained cir-
cuits whose components had a slightly different arrangement and whose values (e.g., 
assigned voltage, current, or resistance) differed in magnitude. The wording of ques-
tions in each mode was identical (see Table 2).

The electrical circuits were drawn and designed using Circuit Diagram online 
software (Circuit Diagram Editor, 2022), and all images were saved as 370 × 230 
jpeg files for use in both CBT and PBT modalities. Finally, the expert teacher cat-
egorisations were validated using the protocol reported by Prisacari and Danielson 
(2017), by establishing that objective ratings of question difficulty and student per-
formance were negatively correlated.

Computer‑Based Quiz

The computer-based quiz was designed and distributed using Qualtrics XM software 
(Qualtrics,  2020). Participants were initially presented with a brief set of written 
instructions, followed by the eight questions presented in random order. Following 
each electrical circuit question, students were required to write their answers into a 
blank text box, before giving two subjective CL ratings using the sliding selector, 
shown in Fig.  2. Finally, at the bottom of the screen, students were able to navi-
gate between questions freely, regardless of having provided a response or not, by 
clicking on appropriate “forward” and “back” icons. During CBT, students were 
instructed to use the back page of their PBT quiz for scratch paper. The Ohm’s Law 
formula (V = IR) was printed at the top of this page because it was assumed that 
when students needed to refer to this, they would likely also be relying on use of 

Table 1  Criteria for categorising easy vs difficult questions 

Easy (low EI) question criteria Difficult (high EI) question criteria

• No calculation in some instances (only interpreta-
tion of data provided in circuit)

• No algebraic transformation of formula
• Series circuits
• No more than two elements in a circuit
• All elements added to a circuit are identical (all 

bulbs)
• At most a simple addition operation is required 

prior to application of formula

• Algebraic rearrangement of formula
• Parallel circuits
• Series circuit with 2 or more elements whose 

values (e.g., resistance) must be derived from 
the total value (e.g., resistance) of the circuit 
through division after the formula for Ohm’s 
law has been applied



 Educational Psychology Review (2023) 35:67

1 3

67 Page 10 of 33

Table 2  Examples of equivalent easy vs difficult questions presented in computer and paper modes

Paper-based question Equivalent computer-based 

question

Suggested working

Calculate the voltage 

across the resistor in this 

circuit.

Voltage = Current x 

Resistance

Voltage = 4 x 5

Voltage = 20 V

Predict the current 

flowing through point F in 

the circuit above, 

assuming the light bulbs 

are of equal resistance.

Resistance in bottom circuit 

2 is 2 x resistance in top 

circuit = 6 A

So, current in bottom 

circuit = ½ current in 

bottom circuit = 3A

Current at point F = 3 + 

9 = 12 amps

This example includes two circuit-based electricity problems of low element interactivity (low intrinsic 
load) in the top row and high element interactivity (high intrinsic load) in the bottom row. In the first 
example (top row), students were provided with the formula relating voltage, current, and resistance. Stu-
dents needed to identify the correct variables and calculate the final voltage. The second question (bot-
tom row) is high in element interactivity for two reasons. Firstly, the circuit has many more components 
to consider simultaneously. Secondly, students were required to devise the algebraic relationship between 
the resistance in each half of the circuit themselves in order to answer the question correctly, placing 
them under relatively high cognitive (intrinsic load)
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scratch paper to support their working. Providing the formula here therefore limited 
the number of times students would be required to switch between paper and com-
puter media.

Paper‑Based Quiz

The paper-based quiz was created using MS Word (Arial, 22-point font) and con-
tained a cover page featuring instructions and the relevant University logo in the page 
header, followed by the eight questions (one on each page). To limit order effects, four 
versions of the PBT were created, each with questions in a randomised order. Each 
question (including the back page which was provided as scratch paper for use dur-
ing CBT) was presented with the Ohm’s Law formula (V = IR) at the top of the page 
in bold font and electrical circuit diagram aligned to the top left of the page (to allow 
scratch paper working space in the adjacent area). Under each circuit diagram, stu-
dents were presented with an imperative prompt (e.g., “Calculate the resistance of the 
light bulb in the circuit above”) and then prompted to provide their answer on a blank 
line. Under this, students were provided a replica image of the 9-point difficulty and 
mental effort scales shown in Fig. 2, which they marked in pen.

Working Memory Capacity Assessment

This study used an adaptive reverse digit span protocol for measuring WMC. The 
digit span WMC test is a commonly used procedure for measuring working memory 
in CLT research (Carpenter & Alloway, 2019; Chen et al., 2018; Mayes et al., 2001) 
and has been an integral component of Weschler Intelligence Scales. The reverse 
digit span protocol presents participants with single digits one at a time, with par-
ticipants required to recall the numbers in reverse order of presentation, thus plac-
ing them under relatively higher working memory load than the forward digit span 
protocol, and serving as a more time-efficient measure of WMC (Maerlender et al., 
2004; Wilde et al., 2004).

The WMC was constructed using Qualtrics XM software (Qualtrics, 2020) using 
a procedure consistent with descriptions provided by Kessels et  al. (2008) and 
Wilde et  al. (2004). Noteworthy, an adaptive procedure was incorporated for time 
efficiency, allowing the completing of CBT, PBT, and WMC tasks to be completed 
within a single lesson (roughly 55 min). Participants were initially presented with 
a brief set of written instructions on the screen. Each trial was initiated with a “ + ” 
priming cue for one second. For each trial, single digits (0–9) were presented at ran-
dom for one second, each followed by a blank (white) spacer for 0.5 s. The test began 
with the presentation of a number string of two digits. The number string increased 
by one digit each time participants correctly recalled the sequence in reverse order. 
Following a false response, the subsequent trial presented students with a number 
string of identical length. The test continued until participants returned two consecu-
tive incorrect trials. WMC was deemed to be the last digit string length that was cor-
rectly recalled. Immediately following the termination of the digit span test, students 
were prompted to enter information about their gender and preference for testing 
mode.
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Measuring Cognitive Load

Cognitive load has historically been measured using three broad techniques: indi-
rect measures (such as subjective rating scales), secondary task measures, and 
physiological measures (Prisacari & Danielson, 2017; Sweller et al., 2011). Whilst 
a detailed consideration of each category is beyond the scope of this article, the 
focus of this study is subjective participant ratings of CL based on a 9-point rating 
scale (Bratfisch et al., 1972; Paas et al., 1994). The use of subjective scales in CLT 
research suggests they are sensitive to task complexity and have relatively high lev-
els of reliability (Ayres, 2006; Klepsch et al., 2017; Paas et al., 1994). Ayres (2006) 
employed a 7-point CL scale following a series of mathematical bracket expansion 
tasks. Whilst it was concluded that subjective CL measures were sensitive to subtle 
changes in the experience of CL that were not reflected in learners’ rates of error, 
it has been suggested that subjective scales may be less valid when used with low-
level learners who have poorer schema formation and thus poorer grasp of task com-
plexities (Naismith et al., 2015).

The present study employed two 9-point scales of perceived difficulty and mental 
effort (Fig. 2), which is more commonly used than the equivalent 7-point Paas scale 
(Sweller & Paas, 2017). Following each question, provided ratings of difficulty and 
effort and these scores were averaged for easy (low element interactivity) and dif-
ficult (high element interactivity) questions.

These 7-point and 9-point scales have reported Cronbach’s alpha scores of between 
0.6 and 0.9 (Ayres, 2006; Klepsch et al., 2017; Paas et al., 1994). Internal consistency 
measures for the present study ranged between 0.91 and 0.93. Taking measurements 
following every question provides a sensitive, valid, and reliable measure of item-level 
variations in CL (Klepsch et al., 2017; Korbach et al., 2018; Prisacari & Danielson, 
2017; Schmeck et al., 2015; Sweller & Paas, 2017). Additionally, compared to physio-
logical measures and secondary task measures, the subjective measures of CL provide 
the least intrusive, time efficient, and most ecologically valid way to detect item-level 
changes in cognitive load (Korbach et al., 2018; Prisacari & Danielson, 2017; Raaij-
makers et al., 2017).

Test‑Taking Behaviour (Scratch Paper Use)

Prisacari and Danielson (2017) operationalised test-taking behaviour with a simple 
count of whether students used scratch paper or not. This was achieved by scoring 
each question as a 0 (student did not use scratch paper) or a 1 (student did use scratch 
paper). However, this provided a rather crude measure of scratch paper use. The present 
study addressed recommendations put forward by Prisacari and Danielson (2017) to 
consider how much students write on scratch paper (e.g., the number of “moves” used 
on scratch paper). For both versions (CBT and PBT), students were provided scratch 
paper space. In the PBT, students were provided with working space to the right-hand 
side of each circuit diagram. For the CBT, students were instructed to use the back 
page of their PBT, which was provided as a blank page and titled “Please use this page 
for working out during your computer-based revision quiz.” To account for testing 
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mode differences in scratch paper use during calculations in each quiz, the numbers of 
working out steps taken by students were counted. Writing or rearranging a formula, 
identifying variables in a question, or adding variables together were each counted as 
one step. Any responses that could not be directly linked to a question or could not be 
interpreted were ignored. To ensure reliability of this procedure, the lead researcher 
and an independent reviewer initially moderated 10 papers, reaching a consensus on 
all discrepancies following a brief discussion. Following this, an additional 10 papers 
were co-moderated, with both reviewers achieving agreement on 95% of all questions. 
Finally, the remaining papers were assessed for scratch paper use in both modalities by 
the independent reviewer.

Procedure

Prior to data collection, participating classroom teachers were briefed by the lead 
researcher, receiving a complete set of PBT materials, PBT answer keys, and scripted 
instructions and URLs for the CBT and WMC tests. Scripted instructions read by 
teachers were designed such that participants were presented with a brief learner train-
ing explanation of cognitive load and element interactivity as this has been shown to 
increase learners’ ability to discriminate between questions of high and low cognitive 
load (Klepsch et al., 2017). Students were first instructed to generate their own unique 
de-identified code. This was recorded at the start of both test modalities and the WMC 
test for data matching purposes. Students were given 15 min for each version of the 
test. Following this, students were given 10 min to complete the WMC test. Finally, 
students were provided with a marking key corresponding to their paper-based quiz 
version (feedback was not provided on answers given to CBT questions due to time 
constraints and the fact that questions in each testing mode relied on identical pro-
cesses) and instructed to self-assess their own paper quiz for formative feedback using 
a different coloured pen, under teacher supervision, and provided with assistance for 
questions of concern. The total time for data collection was approximately 50 min.

Data Analysis and Modelling Approach

Hierarchical linear models were used for the main analysis using Jamovi (The jamovi 
project, 2022) with random effects included in each model to capture the study design 
(i.e., the repeated measures of students, nested within classrooms, nested within teach-
ers, and nested within cohort). Rather than using HLM to engage in a model selection 
process, the technique was used to test for main effects and interactions pertaining to 
hypotheses 1–4.

Testing Mode Effects on Test Score

To address hypothesis 1, a hierarchical linear model was fitted to the response vari-
able test scores (model 1). The fixed effects captured the research objectives (i.e., 
to assess the effect of assessment mode (CBT vs PBT) and whether that difference 
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depended on question difficulty). To control for individual differences in working 
memory, WMC was added as a covariate to model 1a.

Testing Mode Effects on Cognitive Load

Because cognitive load was operationalised by both students’ ratings of perceived 
difficulty of questions and mental effort invested, two hierarchical linear models 
were fitted to address hypothesis 2. The first was fitted with perceived difficulty as 
the response variable (model 2). Like model 1, the fixed effects captured the research 
objectives (i.e., to assess the effect of assessment mode and whether that difference 
depended on question difficulty).

For the second model assessment mode effects on cognitive load, a hierarchical 
linear model was fitted, with mental effort as the response variable (model 3), and 
fixed effects capturing the effect of testing mode on cognitive load, and whether the 
difference depended on question difficulty. To control for individual differences in 
working memory, WMC was added as a covariate to models 2a and 2b.

Testing Mode Differences in Test‑Taking Behaviour

To address hypothesis 4, a hierarchical linear model was fitted to the response vari-
able scratch paper use, with the same fixed and random effect structure as the previ-
ous models (model 4).

Results

For all statistical tests employed in the following analysis, an alpha level of 0.05 was 
used (in some instances, a Bonferroni correction was applied). All significance val-
ues for mean differences are two tailed. Exact p values have been reported except for 
very small values, in which was < 0.001 is used.

Validation of Test Materials

To verify the subjective categorisation of quiz questions according to difficulty (i.e., 
easy vs difficult), the protocol reported by Prisacari and Danielson (2017) was used. 
This resulted in a significant, strong negative correlation between subjective dif-
ficulty ratings provided by students and the objective difficulty determined by the 
proportion of students correctly answering each question on paper (r(6) =  − 0.966, 
p < 0.001) and computer (r(6) =  − 0.875, p = 0.004). Furthermore, to ensure that 
equivalency of all four paper versions of the quiz and to mitigate for potential order 
effects due to the limited number of possible permutations of question order, a one-
way ANOVA was conducted. There were no significant differences in test scores for 
the four versions of the PBT (F(3, 259) = 1.31, p = 0.273).
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Nested Data Structure

To validate the nested structure of the data used in this analysis, intraclass correla-
tions were calculated for the four main models used to test hypotheses H1 to H4, 
shown in Table 3. From this analysis, between 51 and 73% of variance in the data 
was attributed to variability between students. Between 7 and 19% of the variance 
was attributable to differences between class groups, and between 2 and 9% of the 
variance was attributable to differences between cohorts. Interestingly, negligible 
variance in the data was attributable to differences between teachers.

Testing Mode Effects on Test Score

This model indicated that students performed better on easy CBT questions 
(M = 2.92, 95% CI = 2.24, 3.61) compared to easy PBT questions (M = 2.65, 95% 
CI = 1.96, 3.34), whilst students performed better on difficult PBT questions 
(M = 1.50, 95% CI = 0.73, 2.26) compared to difficult CBT questions (M = 1.03, 95% 
CI = 0.28, 1.79). Out of a total possible score of 4, the difference between modali-
ties for easy questions (0.27) represents approximately 7%, whilst the difference 
between modalities for difficult questions (0.46) represents 11.5%. As shown in 
Fig. 3, there was a significant main effect for mode (F(1,767.18) = 4.07, p = 0.044); 
difficulty (F(1,7.82) = 570.92, p < 0.001); and also for the mode*difficulty interac-
tion (F(1,759.66) = 63.14, p < 0.001). Bonferroni adjusted post-hoc comparisons 
indicated that the differences between mode for easy questions were significant 
(t(763.1) = 4.17, p < 0.001). Testing mode differences for difficult questions were 
also significant (t(763.2) =  − 7.03, p < 0.001). See Table 4 for full model results.

Testing Mode Effects on Cognitive Load

Students rated paper questions as more difficult (M = 4.17, 95% CI = 3.46, 4.88) 
compared to computer questions (M = 3.97, 95% CI = 3.26, 4.68). As shown in 
Fig.  4, there was a significant main effect for mode (F(1,760) = 11.66, p < 0.001); 
for difficulty (F(1, 756) = 162.63, p < 0.001); but not for the Testing mode*difficulty 
interaction (F(1,756) = 3.80, p = 0.052). Bonferroni-adjusted post-hoc comparisons 

Table 3  Intraclass correlations for the four main models analysed

Model Outcome variable Students Class groups Teacher Cohort

1 Test scores 0.51 0.07  < 0.001 0.09
1a (with WMC) Test scores 0.49 0.05 0.00 0.06
2 Perceived difficulty 0.73 0.16 0.00 0.02
2a (with WMC) Perceived difficulty 0.73 0.16 0.00 0.01
3 Mental effort 0.67 0.19 0.00 0.02
3a (with WMC) Mental effort 0.67 0.17 0.00 0.01
4 Scratch paper 0.64 0.08 0.00 0.07
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indicated that the testing mode differences for easy questions were not significant 
(t(752) =  − 1.05, p = 1.00). Testing mode differences for difficulty questions were 
significant (t(752.1) =  − 3.79, p < 0.001). See Table 5 for full model results.

Students invested more effort in paper questions (M = 4.08, 95% CI = 3.19, 4.96) 
compared to computer questions (M = 3.71, 95% = 2.83, 4.59). Bonferroni-adjusted 
post-hoc comparisons indicated a significant difference between modalities for easy 
questions (t(752.7) =  − 5.19, p < 0.001) and also difficult questions (t(752.8) =  − 2.73, 
p = 0.039). As shown in Fig. 5, this model resulted in a significant main effect for mode 
(F(1,760.7) = 31.14, p < 0.001) and difficulty (F(1,37.6) = 204.85, p < 0.001), but not for 
the testing mode*difficulty interaction (F(1,755.6) = 3.03, p = 0.08). See Table 6 for full 
model results.
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Fig. 3  Interaction between testing mode and question difficulty (element interactivity). Note. Error bars 
show standard error of estimated marginal means

Table 4  Effect of testing mode on test score (models 1 and 1a) 

Model 1 Model 1a (with WMC)

Fixed effects B 95% CI p B 95% CI p
  (Intercept) 2.04 [1.72–2.35] 0.006 2.04 [1.80–2.23] 0.004
  Test mode 0.09 [0.002–0.19] 0.045 0.09 [− 0.002–0.18] 0.06
  Question dif-

ficulty
 − 1.53 [− 1.62 to − 1.44]  < 0.001  − 1.52 [− 1.61–1.43]  < 0.001

  Mode × difficulty 0.74 [0.55–0.92]  < 0.001 0.74 [0.56–0.92]  < 0.001
  WMC 0.12 [0.07–0.17]  < 0.001

Random effects Variance Variance
  σ2 0.56 0.75
  Participant ID 0.57 0.73
  Class group 0.04 0.17
  Teacher 0.000 0.000
  Cohort 0.05 0.18
  Marginal R2 0.33 0.75
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Effect of Working Memory on Test Score and Cognitive Load

This model (model 2a, Table  5) resulted in a nonsignificant effect of WMC 
on perceived difficulty (F(1,250) = 0.45, p = 0.51); significant effects for mode 
(F(1,757) = 11.92, p < 0.001); difficulty (F(1,753) = 161.0, p < 0.001); and a non-
significant testing mode*difficulty interaction (F(1,753) = 4.49, p = 0.06). Secondly, 
when WMC was added to the model fitted with mental effort as the outcome variable 
(model 3a, Table 6), this resulted in a nonsignificant effect of WMC on mental effort 
(F(1,255) = 2.03, p = 0.16); significant effects for testing mode (F(1,758) = 31.66, 
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Fig. 4  Perceived difficulty of questions by testing mode and question difficulty (element interactivity). 
Note. Error bars show standard error of estimated marginal means 

Table 5  Effect of testing mode on perceived difficulty (models 2 and 2a) 

Model 2 Model 2a (with WMC)

Fixed effects B 95% CI p B 95% CI p
  (Intercept) 4.07 [3.75–4.93] 0.002 4.06 [3.76–4.37] 0.002
  Test mode 0.20 [0.09–0.31]  < 0.001 0.20 [0.09–0.32]  < 0.001
  Question difficulty 0.75 [0.63–0.86]  < 0.001 0.75 [0.63–0.86]  < 0.001
  Mode × difficulty 0.23 [− 0.001–0.46] 0.052 0.22 [− 0.01–0.45] 0.06
  WMC  − 0.04 [− 0.14–0.07] 0.51

Random effects Variance Variance
  σ2 0.89 0.88
  Participant ID 2.37 2.38
  Class group 0.17 0.16
  Teacher 0.00 0.00
  Cohort 0.01 0.007
  Marginal R2 0.04 0.04
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p < 0.001); difficulty (F(1,752) = 207.97, p < 0.001); and a nonsignificant testing 
mode*difficulty interaction (F(1,752) = 3.40, p = 0.07). Finally, controlling for indi-
vidual differences in WMC on test scores (model 1a, Table 4) resulted in a nonsig-
nificant effect of mode (F(1, 768) = 3.64, p = 0.057); significant effects for difficulty 
(F(1,760) = 1073.95, p < 0.001); WMC (F(1,252) = 19.45, p < 0.001); and also the 
testing mode*difficulty interaction (F(1,760) = 63.64, p < 0.001).

Testing Mode Effects on Test Behaviour (Scratch Paper Use)

Students used scratch paper more during PBT (M = 1.91, 95% CI = 0.30, 3.52) com-
pared to CBT (M = 1.26, 95% CI =  − 0.35, 2.87). Bonferroni-adjusted post-hoc 
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Fig. 5  Mental effort invested in questions according to testing mode and question difficulty. Note. Error 
bars show standard error of estimated marginal means

Table 6  Effect of testing mode on mental effort (models 3 and 3a)

Model 3 Model 3a (with WMC)

Fixed effects B 95% CI p B 95% CI p
  (Intercept) 3.90 [3.53–4.27] 0.003 3.89 [3.56–4.21] 0.003
  Test mode 0.36 [0.24–0.49]  < 0.001 0.37 [0.24–0.49]  < 0.001
  Question difficulty 0.93 [0.80–1.06]  < 0.001 0.93 [0.80–1.06]  < 0.001
  Mode × difficulty  − 0.22 [− 0.48–0.03] 0.08  − 0.24 [− 0.49–0.01] 0.07
  WMC  − 0.07 [− 0.18–0.03] 0.16

Random effects Variance Variance
  σ2 1.06 1.05
  Participant ID 2.13 2.14
  Class group 0.25 0.22
  Teacher 0.00 0.00
  Cohort 0.02 0.007
  Marginal R2 0.07 0.07
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comparisons revealed a significant difference in scratch paper use for both easy ques-
tions (t(766) =  − 2.69, p = 0.044) and difficult questions (t(766) =  − 4.61, p < 0.001). 
Of key interest is that not only did students use scratch paper less during CBT, but their 
use of scratch paper decreased as question difficulty increased. As shown in Fig. 6, this 
model resulted in a significant main effect for mode (F(1,767) = 26.61, p < 0.001), a non-
insignificant effect for difficulty (F(1,766) = 0.08, p = 0.78), and nonsignificant testing 
mode*difficulty interaction (F(1,766) = 1.86, p = 0.17). See Table 7 for full model results.

Discussion

The present study addressed whether the effects of manipulating extraneous cog-
nitive load through test mode year 9 students’ experiences of cognitive load and 
test behaviour and whether these effects were dependent on increases in intrinsic 
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Fig. 6  Scratch paper use by testing mode and question difficulty. Note. Error bars show standard error of 
estimated marginal means

Table 7  Effect of testing mode 
on scratch paper use

Model 4

Fixed effects B 95% CI p
  (Intercept) 1.59 [0.81–2.36] 0.06
  Test mode 0.65 [0.40–0.90]  < 0.001
  Question difficulty  − 0.04 [− 0.28–0.21] 0.78
  Mode × difficulty 0.34 [− 0.15–0.84] 0.17

Random effects Variance
  σ2 4.07
  Participant ID 7.10
  Class group 0.35
  Teacher 0.00
  Cohort 0.30
  Marginal R2 0.009
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cognitive load (determined by question difficulty) and individual differences in 
working memory capacity. The results from this study provide support for hypoth-
esis 1 (that students would perform better on PBT questions). The results revealed 
an inverse relationship of that predicted by hypothesis 2 (that students would report 
greater cognitive load for CBT questions). The results partially supported hypothesis 
3 (that test mode effects would be absent when controlling for differences in WMC), 
because this was only true for models with test score as the outcome variable. It was 
not the case for models with measures of cognitive load as the outcome variable. 
Finally, the present results support hypothesis 4 (that scratch paper use would be 
greatest for PBT). Surprisingly, scratch paper use decreased during CBT as question 
difficulty increased.

Methodologically, the present study sought to address recommendations in previ-
ous research highlighting the need for greater use of repeated measures designs, in 
authentic learning contexts with high face and ecological validity (Anmarkrud et al., 
2019; De Jong, 2010; Skulmowski & Xu, 2021). Of the studies that have employed 
a within-subjects comparison of performance in paper and computer modality, most 
indicate that students perform better on paper than computer in both test scores (Car-
penter & Alloway, 2019; Hardre et al., 2007) and memory formation processes (Noyes 
& Garland, 2003). The findings based on present methodology support these claims 
and therefore make a substantial contribution to CL and testing mode research.

The present findings are consistent with previous studies which have shown that 
primary and secondary school-aged students achieve better scores when taking their 
assessments on paper, and that testing mode effects depend on both intrinsic and extra-
neous loads imposed learning and assessment tasks (Bennett et al., 2008; Carpenter & 
Alloway, 2019; Chu, 2014; Logan, 2015). This suggests that school-aged students are 
increasingly disadvantaged when answering questions on a computer as the task diffi-
culty increases. Out of a total possible score of 4, the difference between modalities for 
easy questions (0.27) represents approximately a difference of 7%, whilst the differ-
ence between modalities for difficult questions (0.46) represents a difference of 11.5%. 
This contrasts with previous research suggesting that testing mode has no effect on test 
outcomes or the experience of cognitive load (Prisacari & Danielson, 2017).

Contrary to expectations however, students performed better on easy CBT ques-
tions compared to PBT. One plausible explanation for this lies in the additive nature 
of intrinsic and extraneous sources of load. In comparing differences between test-
ing modalities, the present study controlled for variations in intrinsic load by using 
equivalent forms of test questions. CLT posits that learning environments are most 
effective with EL is minimised and IL is optimised within the limits of students’ 
WMC (Van Merrienboer et al., 2006). So, where a student is under relatively low IL, 
factors such as motivation to engage or differences in attention control are likely to 
influence the extent to which a student answers question correctly (Schnotz, 2010; 
Schnotz & Kürschner, 2007). For instance, school-aged students have been shown 
to read on-screen information more quickly, yet they also overestimate their compre-
hension of these on-screen texts (Ronconi et al., 2022). Therefore, it is plausible that 
for easy questions, the higher CBT scores on easy questions can be accounted for 
because on-screen tasks are more engaging, or demand greater attentional resources 
without placing students under excessive cognitive load. In other words, the CBT 
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mode may be sufficiently increasing germane processing under low intrinsic load 
(De Jong, 2010; Skulmowski & Xu, 2021), thus accounting for the higher test 
scores. This is consistent with research by Likourezos et al. (2019) who presented 
expert and novice learners with materials of increasing variability and found that 
knowledgeable learners perform more poorly on tasks that induce low levels of load. 
This supports the assertion that task outcomes are enhanced when intrinsic load is 
optimised within the limits of total cognitive load, especially as learner expertise 
increases. Conversely, as question difficulty (i.e., intrinsic load) increases, students 
are placed under greater total load. If one accepts the assumption that computer-
based testing environments add extraneous load, the present findings are consistent 
with the CLT. This is because once IL (i.e., question difficulty) exceeds a student’s 
working memory capacity, the added EL associated with the computer-based test-
ing environment becomes deleterious to performance, and thus test scores decrease. 
Together, this finding highlights not only the fact the testing mode affects test per-
formance in school-aged students, but that understanding this effect requires consid-
eration of other mediating factors such as cognitive load.

Test Mode Effects on Cognitive Load

One key aspect of this study was the effect of test mode on the experience of cog-
nitive load, measured by mental effort and perceived difficulty of questions. The 
results indicated that students perceived paper-based tests as more difficult and 
invested more effort in these questions. There was a marked difference between 
the two modalities in the mental effort reported for easy questions, with students 
investing much greater effort in easy PBT questions, despite performing better on 
computer for these questions. Given the previous evidence to support the increased 
demand placed on working memory capacity associated with the extraneous load 
imposed by computer-based tests (Carpenter & Alloway, 2019), one might expect 
that computer-based modalities would lead to an increase in students’ reports of 
cognitive load. Past research has shown that when students are under low levels of 
intrinsic load, the deleterious effect of extraneous load on performance decreases 
and, in some instances, reverses (Sweller & Chandler, 1994). For instance, Park 
et al. (2011) measured the effect of extraneous distracting information on learning 
high school science content using a multimedia environment. Their results indicated 
that extraneous load had beneficial effects on student learning under low levels of 
additional cognitive load. However, given that EL and IL have been shown to oper-
ate in an additive manner (Jiang & Kalyuga, 2020; Kalyuga, 2011; Skulmowski & 
Xu, 2021; Sweller et al., 2011), we offer three interpretations to account for the pre-
sent results.

Firstly, whilst both participating schools employ a 1:1 device policy (whereby all 
students are equipped with their own laptop or iPad), both schools provide summa-
tive assessment to students on paper. Therefore, a logical conclusion must address 
the fact that students in both schools were very familiar with computer-based envi-
ronments and more likely to report relatively low levels of load associated with their 
use. However, the participating students are also more familiar (and therefore more 



1 3

Educational Psychology Review (2023) 35:67 Page 23 of 33 67

confident) in answering assessment questions on paper. This increased familiarity 
with paper-based modality for assessment tasks may explain the increase in effort 
invested in answering paper-based questions. This view of students’ experience of 
CL is consistent with previous research that underscores the relationship between 
the experience of cognitive load and one’s motivation to engage with it (Jiang & 
Kalyuga, 2020; Kalyuga & Singh, 2016; Schnotz & Kürschner, 2007).

A second explanation to account for the increase in CL during PBT may lie in 
the measurement of CL itself. The scales for difficulty and effort used in the pre-
sent study refer specifically to the nature of the question being answered (e.g., “rate 
how difficult you perceived this question”) with no explicit reference to the extrane-
ous difficulty or effort associated with answering the question in a specific modality 
(e.g., “rate how difficult it was to answer this question on paper”). This may indi-
cate that the subjective scales used were sensitive to perceptions of differences in 
intrinsic load, but less sensitive to differences in extraneous load imposed by testing 
mode, or that students were placed under insufficient load during easy questions to 
provide accurate estimates using the Paas scale (Sweller, 2018).

A third explanation of the present results suggests that paper-based tests may have 
greater face validity for students, and therefore induce more performance-conducive 
behaviours in learners. This is consistent with findings that when presented with 
information on paper, students are better able to reconcile pieces of separate infor-
mation compared to information presented on computer, as measured objectively by 
eye tracking techniques (Latini et al., 2020). Because improved test scores were con-
comitant with an increase in reported extraneous load, an important question that 
research must now consider is what the optimal theoretical and empirical threshold 
of CL might be in a given context. Additionally, testing formats that induce greater 
effort (rather than those that are the easiest to complete, administer or mark) will 
align with those that have the greatest face validity for learners and are likely to pro-
duce better academic outcomes.

Importantly, although the design of the present study ensured that intrinsic load 
was kept constant between modalities, students reported higher levels of load under 
PBT. This may reflect increases in germane processing—or the processes involved 
in information that is intrinsic to the assessment questions (Sweller et  al., 2019). 
Although no longer conceptualised as contributing to the overall experience of 
cognitive load, germane processes have been associated with motivational factors 
that increase engagement with a task (Skulmowski & Xu, 2021). For instance, it 
has been suggested that the costs associated with greater extraneous load induced 
by CBT modes mediated by individual student characteristics such as motivation, 
affect, or physiological responses (Choi et  al., 2014). In turn, this may contribute 
to increased germane processing (De Jong, 2010; Skulmowski & Xu, 2021). If stu-
dents are more motivated to engage with one assessment environment over another, 
this may lead to them experiencing greater germane processing as they answer 
questions. Whilst the intrinsic load induced by questions across both CBT and PBT 
should have remained the same, and whilst the extraneous effect of CBT did not lead 
to the predicted increase in load, it is possible that students reported greater invest-
ment of effort in PBT because they appeared more valid as a form of assessment.
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Skulmowski and Xu (2021) highlight that forms of assessment associated with 
a given extraneous load must be chosen based on the nature of germane processing 
they stimulate. Therefore, assessment environments must seek to minimise extrane-
ous loading that is not directly linked to germane processing. In other words, CBT 
environments may have an unavoidable extraneous load cost. However, they may 
also invoke a beneficial increase in germane processing, leading to better test out-
comes. Applying this line of thinking to the present results, as question difficulty 
increased, the cost of increased in extraneous load derived from CBT may ultimately 
have exceeded the concomitant benefit associated with greater germane processing 
invoked by the on-screen environment.

The Role of Working Memory in Cognitive Load and Test Behaviour

Previous research has shown that computer-based tasks interfere with student meta-
cognition, leading to subtle changes in test behaviour (Ackerman & Lauterman, 
2012; Mayes et al., 2001; Noyes & Garland, 2003; Noyes et al., 2004; Sidi et al., 
2017). Scratch paper use during assessment tasks has previously been associated 
with more favourable outcomes and is thought to be reflective of working memory 
processes required to answer questions correctly (Bennett et al., 2008; Prisacari & 
Danielson, 2017). The present study compared scratch paper use in both modali-
ties and observed significantly more scratch paper use in the PBT, with the big-
gest difference between the modalities occurring for difficult (high IL) questions. 
These findings are similar to those of Prisacari and Danielson (2017) who found an 
increase in scratch paper use on difficult PBT questions. However, the present data 
reflects a negative trend in scratch paper use as IL increases during CBT. Consistent 
with the research by Sidi et al. (2017), one explanation is that working memory is 
sensitive to extraneous load of computer-based tasks in ways that result in changes 
to underlying metacognitive processes. The present data supports this by showing 
that these changes in metacognitive processes are observable in differences in test 
behaviour, such as scratch paper use. Furthermore, the extraneous load imposed 
by computer-based tasks may not be immediately obvious until learners are placed 
under increasing IL, which accounts for the decrease in performance on difficult 
CBT questions.

An alternative explanation for the greater use of scratch paper for paper com-
pared to computer tests is that there may be a cognitive load cost to switching from 
between computer and paper media (De Jong, 2010). Whilst completing PBT, the 
scratch paper available to students was adjacent to the question and required mini-
mal shift of attention to be accessed. On the other hand, during CBT, students may 
be required to shift their gaze from the computer screen to their piece of scratch 
paper, locate and pick up their pencil and transfer details from the question from 
their screen onto the page. Indeed, the decrease of scratch paper use as IL increased 
for question difficulty may reflect the fact that as IL increases, students have fewer 
working memory resource available and cannot afford the cognitive load cost associ-
ated with shifting the details of the question from the screen to paper. Furthermore, 
it may also be possible that CBT scores were lower for difficult questions because 
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accessing the scratch paper required to support their working was associated with 
too great a cognitive load cost.

However, given that scratch paper use is associated with more positive test out-
comes, increasing scratch paper use alongside more difficult questions should be 
encouraged, regardless of the mode in which a test is taken. These results do indi-
cate that school-aged students may benefit from greater learner training and meta-
cognitive strategy support when using computer-based assessments because the use 
of scratch paper in these contexts is associated with better outcomes. However, an 
important question that remains unaddressed is the effect of offering digital scratch 
paper space that can be accessed without forcing students to switch between on-
screen and paper environments during an assessment.

Outside CL research, there is also evidence that suggests the way learners inter-
act with computers fundamentally changes their cognitive approaches to organising 
information during learning. For instance, research by Mueller and Oppenheimer 
(2014) showed that students who take notes on a computer (compared to those who 
write paper-based notes by hand) tend to write information verbatim, rather than 
process content more deeply, synthesising it as they work. The outcome of this sub-
tle shift in behaviour is a decrease in performance on conceptual questions that, 
compared to factual recall questions, impose a greater intrinsic load on students. 
These findings are consistent with the decrease in scratch paper use and concomitant 
decrease in performance on difficult CBT questions observed in the present study.

In relation to the role of working memory, this study offered a significant con-
tribution by including working memory capacity measures in its analysis. It was 
hypothesised that testing mode effects would depend on individual differences 
in WMC; however, this was only true when considering the mode effects on test 
scores, but not for the modality*difficulty interaction or either measure of CL. Based 
on these results, it appears that individual differences in WMC may moderate the 
effect that testing mode has on test scores, although the effects of adding WMC to 
the models in this study were small. Of interest is the fact that there was no change 
in the modality*difficulty effect on test scores when controlling for WMC. One pos-
sible reason for this may relate to the sensitivity of the WMC measure used in the 
present design. If the effect of testing mode is inherently small and the effect of 
question difficulty is much larger, then using a low-sensitivity measure of WMC is 
unlikely to produce drastic shifts in modelling.

These results support previous findings indicating that testing mode may inequi-
tably affect school-aged students with lower WMC (Batka & Peterson, 2005; Logan, 
2015). Carpenter and Alloway (2019) concluded that test mode effects may result 
from cognitive load imposed by CBT environments; however, the results from the 
present study do not support this because the addition of WMC measures rendered 
no statistical change in test mode effects for models predicting either measure of CL. 
This finding presents an interesting question for future CL research because despite 
being founded theoretically on the architecture of human cognition; there was lim-
ited support for the causal link between WMC and the experience of cognitive load. 
However, it is also worth acknowledging that the extent to which a student experi-
ences cognitive overload operates as a function of background knowledge (Sweller, 
2020), for which there are no practical precise measures, and so the influence of 
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WMC as a covariate in CLT analyses may be inseparable from this. Future research 
should also consider using alternative measures of WMC to assess the validity of 
this finding.

Limitations and Future Research

The intention of the current study was to explore the differences between paper and 
computer-based assessments in science classrooms. Data was only collected from 
students attending schools with relatively high socio-economic advantage. It should 
be acknowledged that the results from the hierarchical linear models used in the pre-
sent study suggest that the majority of variance (in excess of 50%) was attributable 
to differences between individual students, rather than class (7%), teacher (0%), or 
cohort (9%) factors. However, a wider range of data from students of more diverse 
backgrounds would be beneficial. Additionally, the present methodology meant it 
was impossible to control how students were interacting with their devices during 
CBT. Whilst there is evidence supporting claims of an increase in digital distrac-
tion when learning on a computer (Ehrlick, 2014; Flanigan & Titsworth, 2020) and 
whilst data points that indicated students had spent excessive amounts of time on 
any CBT task were removed, it is possible that learners were using notes or online 
resources during the CBT tasks, depending on how the task was proctored by class-
room teachers. Future research would benefit from considering different task types 
that reflect computer literacy, such as qualitative response tasks (e.g., text construc-
tion and writing tasks that are dependent on skills such as typing speed). Because 
computer-based tasks have been shown to increase task completion time (Ronconi 
et  al., 2022), tasks that take longer to complete may exacerbate working memory 
depletion effects (Chen et  al., 2018). This line of inquiry is especially important, 
given the assumptions behind the rationale for the online delivery of national level 
testing, such as NAPLAN, for which it is claimed:

While access to computers at home or at school varies, students’ performance 
during the test is likely to depend on how familiar they are with the device they 
are using for the test, rather than how often they use a computer… ACARA 
research shows that online writing is similar to handwriting in terms of the 
quality of writing produced by students at each year level (National Assess-
ment Programme, FAQs, NAPLAN – General, 2016)

The findings from the present study do not support this assumption because famili-
arity with computers was largely controlled for, yet there were clear differences in both 
test score and cognitive load experienced due to differences in testing mode. How-
ever, an important factor to establish in future research is whether these effects are also 
observed in extended writing tasks that are commonly found in literacy assessments 
such as NAPLAN which require students to construct qualitative texts.

This study highlights the need for ongoing educational research in authentic 
learning contexts. Future research in this area may consider testing mode effects 
on patterns of learner interaction with assessment material (such as changes in the 
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length of time to complete assessments, or student sensitivity to distracting infor-
mation associated with navigational features of computer-based assessment tasks). 
There has been some exciting work using pupillometry in the measurement of CL 
which may offer the technology to explore test mode effects on the division of 
attentional resources. These resources may rely on temporal dimensions of visual 
searches to deduce how students devote attention during digital learning (Debue & 
Van De Leemput, 2014; Szulewski et al., 2017).

Secondly, measurement of cognitive load remains a contentious topic in CL 
research. Subjective scales are not without their criticisms, and their validity may be 
increased by triangulating data with the use of objective or physiological measures, 
such as ECG, eye-tracking tools (Ayres et al., 2021; Galy et al., 2012; Solhjoo et al., 
2019), and fMRI (Whelan, 2007). A recent review of studies employing physiologi-
cal and subjective measures by Ayres et  al. (2021) found that although subjective 
measures have been found to be relatively high in validity, their sensitivity to intrin-
sic load is maximised when used in combination with physiological measures. How-
ever, it was found that further research is needed on the effect of factors that increase 
extraneous load. This presents many challenges for collecting large amounts of data 
in authentic classroom contexts, given the intrusive nature of the equipment required 
to take many physiological measurements. One solution to this may lie in future 
CL research incorporating learner reflections or think-aloud protocols that provide 
learners the opportunity to elaborate on how they engaged with a particular task. 
As such, turning to a new source of data in understanding learner differences in CL 
may be a potentially fruitful line of inquiry for future research. The present study 
attempted to address this by including a brief learner training element to the instruc-
tions provided to students. However, the present study would have benefited from 
greater emphasis on this element to ensure greater validity of CL measures to sup-
port learners in differentiating between intrinsic and extraneous sources of load.

A third limitation of the present study relates to scratch paper use. Only the num-
ber of steps for which students relied on scratch paper was considered. The present 
data do not provide any insights into the qualitative differences in scratch paper use 
between testing modalities, nor whether these differences might be associated with 
more favourable test outcomes. Future research may also consider links between 
metacognitive strategies and scratch paper use in students of differing abilities. 
There are also exciting opportunities to explore the effect of learner training on the 
use of scratch paper and the way this translates to changes in cognitive strategies 
during learning and assessment tasks.

Finally, it is important to recognise that the measure of WMC may have provided 
a selective advantage to learners who are more confident in numeracy than those 
who are not. For instance, Carpenter and Alloway (2019) acknowledge the need for 
a wider array of WM measures to be taken to better understand the component of 
WM that are affected by different testing modes. Furthermore, Cowan et al. (2005) 
note that traditional storage-and-processing tasks like the reverse digit span make it 
difficult to determine whether a student’s WMC score is determined by their atten-
tional control, specific processing skills (i.e., verbal, linguistic, or spatial reasoning), 
or a combination of both. The justification for the inclusion of reverse digit span in 
the present study was based on (a) the numeracy component of the science content 
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being tested and (b) relative ease and efficiency of administration to allow data col-
lection to occur within a single lesson. However, it is important to acknowledge that 
alternative measures of WM (such as N-back tasks, or visuospatial tasks such as the 
Corsi block recall) may provide more robust and insightful data about individual dif-
ferences in WMC that are specifically affected by on-screen learning and assessment 
environments. Additionally, CLT posits that the experience of intrinsic load oper-
ates as a function of element interactivity and learner expertise. Thus, the extent to 
which a learner is placed in cognitive overload is dependent on not only their WMC 
but also domain knowledge. One important consideration for future analyses may be 
to include measures of learner expertise. In the context of school-aged students, this 
may include existing school grades for a given topic or subject.

Conclusion

To the knowledge of the authors, this is the first study to directly address test most 
effects on cognitive load in school-aged students whilst accounting for individual 
differences in working memory capacity. As the use of computers continues to make 
its way into the realm of assessment, it is important for educators to maintain a criti-
cal stance towards disruption-promising EdTech discourse (Selwyn, 2014) evoking 
“ideologically-charged common sense” (Friesen, 2008, p. 2). The present findings 
suggest that not all testing modalities affect all learners in equitable ways, especially 
when presenting school-aged learners with lower working memory capacities with 
more demanding tasks. It is also worth acknowledging that computer and multime-
dia environments can add extraneous element interactivity to a task (Sweller, 2020). 
In this study, both CBT and PBT versions were designed to appear equivalent to 
students in order to isolate testing mode effects. However, it is likely that computer-
based learning and assessment environments will, in general, employ greater use of 
interactive elements and sources of digital distraction. Therefore, it is plausible that, 
in practice, the use of computer-based tasks adds a greater level of extraneous load 
than those identified here.

The present study highlights the need for research to consider optimal con-
textually appropriate cognitive load thresholds. This is consistent with previous 
research acknowledging the importance of alignment between costs of extraneous 
load induced by digital assessment environments and the potential benefits asso-
ciated with the increases in germane processing these environments may invoke 
(Skulmowski & Xu, 2021). Additionally, these results highlight the importance of 
face validity of assessment in optimising student performance: although assess-
ing students on a computer is more efficient from an administrative perspective, 
computer-based assessment environments are not universally beneficial. These 
findings are consistent with recent meta-analyses indicating that students achieve 
higher reading comprehension for information-based texts. Additionally, when 
under higher task demands induced by time constraints (i.e., extraneous load), the 
advantage of paper over computer-based texts increases (Clinton, 2019; Delgado 
et  al., 2018). Ultimately, when dealing with younger learners, moving learning 
and assessment tasks from paper to computer is associated with a cost that is 
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likely to produce lower test scores, particularly as the intrinsic load of content 
increases and student WMC decreases. Because the primary goal of CLT is to 
generate instructional strategies that better facilitate learning (Sweller & Paas, 
2017), the present research supports the interests of equitable assessment prac-
tices. This work underscores the importance of designing assessment practices 
to ensure teachers, educators, and policy makers are fairly and equitably testing 
content rather than creating assessments that place learners under an unnecessary 
testing load.
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