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Abstract
Much research shows academic self-concept and achievement are reciprocally 
related over time, based on traditional longitudinal data cross-lag-panel models 
(CLPM) supporting a reciprocal effects model (REM). However, recent research has 
challenged CLPM’s appropriateness, arguing that CLPMs with random intercepts 
(RI-CLPMs) provide a more robust (within-person) perspective and better con-
trol for unmeasured covariates. However, there is much confusion in educational-
psychology research concerning appropriate research questions and interpreta-
tions of RI-CLPMs and CLPMs. To clarify this confusion, we juxtapose CLPMs 
and RI-CLPMs relating math self-concept (MSCs), school grades, and achieve-
ment tests over the five years of compulsory secondary schooling (N = 3,425). We 
extend basic models to evaluate: directional ordering among three rather than only 
two constructs; longitudinal invariance over time (multiple school years) and mul-
tiple groups (school tracks); lag-2 paths between non-adjacent waves; and covari-
ates (gender, primary-school math and verbal achievement). Across all basic and 
extended RI-CLPMs and CLPMs, there was consistent support for the REM bidi-
rectional-ordering hypothesis that self-concept and achievement are each a cause 
and an effect of the other. Consistent with the logic of these models, extensions of 
the basic models had more effect on CLPMs, but the direction and statistical sig-
nificance of cross-lagged paths were largely unaffected for both RI-CLPMs and 
CLPMs. This substantive-methodological synergy has important implications for 
theory, methodology, and policy/practice; we support the importance of MSC as a 
predictor of subsequent achievement and demonstrate a more robust methodological 
framework for evaluating longitudinal-panel models.
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Self-concept is a person’s perceptions of themselves, formed through their expe-
riences with and interpretations of their environment, and impacted by others’ 
evaluations. It affects how we act, feel, and adjust to a changing environment. 
In educational settings, the focus of our study, previous research has shown that 
academic self-concept (ASC) is linked to a variety of educational outcomes, 
including academic achievement (Marsh & Craven, 2006; Marsh & Martin, 2011; 
Marsh, et al., 2018a, 2018b; Marsh, Hau, et al., 2005; Marsh, Trautwein, et al., 
2005), interest and satisfaction in school, achievement emotions (Marsh, et  al., 
2018a, 2018b; Pekrun, 2006; Pekrun et  al., 2017), course selection (Marsh & 
Yeung, 1997; Marsh et al., 2019; Parker et al., 2014) persistence, and long-term 
attainment (Guo et al., 2015; Guo, Marsh, et al., 2015; Guo, Parker, et al., 2015; 
Guo, Parker, et al., 2015; Marsh & O’Mara, 2008). Particularly good support for 
the generalizability of the correlation between ASC and achievement comes from 
the cross-national studies. The positive correlations between ASC and achieve-
ment generalize over countries based on studies using Programme for Interna-
tional Student Assessment (PISA) data (Basarkod et  al., 2020; Marsh & Hau, 
2003; Nagengast & Marsh, 2011; Seaton et al., 2009) and the combined Trends in 
Mathematics and Science Study (TIMSS) and Progress in International Reading 
Literacy Study (PIRLS) database. However, even though ASC and achievement 
are substantially correlated, a critical question with important theoretical and pol-
icy-practice implications is the directional ordering of these constructs. Hence, 
the critical question is whether this correlation reflects a non-causal association, 
causal effects of prior ASC on achievement, causal effects of prior achievement 
on subsequent ASC, or causal effects in both directions.

Here we briefly review the considerable body of research showing that ASC and 
achievement are reciprocally related over time, supporting a reciprocal effects model 
(REM). However, nearly all this research is based on a between-person perspective 
using traditional cross-lag-panel models (CLPMs) of longitudinal data. In contrast 
to this traditional approach, recent research has challenged CLPMs’ appropriate-
ness, arguing that CLPMs fail to uncover the within-person effects linking ASC and 
achievement (Murayama et  al., 2017). CLPMs with random intercepts (Hamaker 
et al., 2015) have been proposed to provide a more robust (within-person) perspec-
tive and better control for unmeasured covariates. However, there is limited research 
juxtaposing results from these two approaches in educational psychology, and much 
ambiguity about appropriate use and interpretation of these models and their exten-
sions. Hence, the overarching purpose of the present investigation is to compare 
these two approaches and demonstrate important extensions to them. In particular, a 
critical unanswered question is whether the substantial body of REM findings based 
on the between-person (CLPM) approach holds up for within-person (RI-CLPM) 
analyses and extensions of the CLPM? Following Marsh and Hau (2006), who origi-
nally coined the term, our study is a methodological-substantive synergy that applies 
a cutting-edge methodology to address substantive issues with implications for the-
ory, methodology, and policy/practice.
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Support for the Reciprocal Effects Model

Byrne (1984) proposed three criteria that studies addressing directional ordering 
must satisfy: (a) a statistical relationship must be established, (b) a clearly estab-
lished time precedence must be evident, and (c) a causal model must be tested 
using appropriate statistical techniques such as the use of structural equation mod-
els (SEMs). Traditional approaches to this issue (Calsyn & Kenny, 1977) took an 
“either-or” approach—either prior achievement leads to subsequent ASC (a skill 
development model) or prior ASC leads to subsequent achievement (a self-enhance-
ment model). However, integrating theoretical and statistical perspectives, Marsh 
(1990) argued for a dynamic reciprocal effects model (REM) that incorporates both 
the skill development and the self-enhancement model (see also Pekrun, 1990). This 
theoretical model predicts that better ASCs lead to better achievement, and that bet-
ter achievement leads to better ASCs. We emphasize that the theoretical hypothesis 
is clearly causal. Marsh further noted that it was well established that students base 
their ASCs at least in part on their prior achievement (the skill development path). 
Hence the critical issue is whether higher ASCs also lead to higher achievement, 
regardless of whether this self-enhancement path is larger or smaller than the skill-
development path.

The REM hypothesis is clearly causal in nature, a theoretical hypothesis of the 
causal ordering of variables over time. Indeed, the REM naturally leads to the hypoth-
esis of reciprocal effects that are causal. Thus,  Marsh, Trautwein, et al. (2005, p. 397) 
conclude: Reciprocal effects models of longitudinal data show that ASC is both a 
cause and an effect of achievement. The REM generated a substantial research litera-
ture that treats these reciprocal effects as causal and a number of methodological stud-
ies on how to test it (e.g., Usami, Murayama, et al., 2019; Usami, Todo, et al., 2019). 
For example, from a between-person perspective, a critical empirical question is: For 
students with the same levels of achievement at wave one, will students with higher 
ASCs have higher achievement in subsequent waves than those with lower ASCs? 
Positive evidence answering this question would support REM hypotheses and might 
reflect a causal effect. However, this interpretation is compromised by a lack of control 
for a potentially infinite number of covariates (i.e., effects might change if researchers 
controlled for the right covariates). Our position is that appropriate statistical models 
capture one key component of causality, namely directionality, by providing empirical 
tests of directional "causal" hypotheses.

However, there are potential competing interpretations that compromise inter-
pretation—as is always the case with claims of causality. Nevertheless, to deflect 
concerns about using the broad, potentially ambiguous term of causality (or 
Granger causality; Granger, 1969), we use the more focused term of "direction-
ality" (i.e., tests of directionality of causal tests effects rather than causal order-
ing). Indeed, tests of the directionality of effects have a long history concerning 
this research. Thus, for example, Bandura (1986) noted causal relations between 
self-efficacy and outcomes are bidirectional (i.e., reciprocal) rather than unidirec-
tional. We also note that the terms directional, unidirectional, and bidirectional 
are widely used in relation to cross-lagged panel studies (e.g., Bailey et al., 2020; 
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Wu & Griffin, 2012). Thus, the term directionality (and the reliance on bidirec-
tional models) has a long history concerning our theoretical hypotheses, is more 
focused than the term causality, and better reflects what is being tested. Neverthe-
less, we emphasize that the REM hypothizes a bidirectional model that is causal. 
Hence, the central question is whether empirically demonstrated reciprocal rela-
tions between ASC and achievement can be given a causal interpretation that is 
consistent with the REM hypothesis.

REM’s theoretical hypothesis of the directional ordering of causal relations is 
testable when both ASC and achievement are collected in at least two but preferably 
three or more waves of data. Following Marsh (1990), there is a substantial research 
literature supporting REM predictions, including comprehensive meta-analyses and 
systematic reviews (e.g., Huang, 2011; Valentine et al., 2004; Wu et al., 2021; also 
see Marsh & Craven, 2006; Marsh & Martin, 2011). Consistent with ASC theory 
and research, it is not surprising that prior achievement affects ASC. However, the 
meta-analyses demonstrated that the effect of prior ASC on subsequent achieve-
ment, controlling the effects of prior achievement, was also highly significant overall 
and positive in most of the studies they considered. These authors clearly interpreted 
support for the REM hypothesis of reciprocal effects as causal effects, noting impli-
cations concerning the need for interventions that simultaneously enhance both ASC 
and achievement. Thus, Marsh and Craven (2006; also see Huang, 2011) argued: "If 
practitioners enhance self-concepts without improving performance, then the gains 
in self-concept are likely to be short-lived….If practitioners improve performance 
without also fostering participants’ self-beliefs in their capabilities, then the perfor-
mance gains are also unlikely to belong-lasting" (p. 159).

In REM studies, achievement is typically assessed by standardized tests or school 
grades, but the different achievement indicators have different implications. School 
grades are a particularly salient source of feedback to students and their parents, are 
easily compared among classmates, and have important implications for academic 
careers. Hence, school grades tend to be more correlated with ASCs than test scores 
(Marsh et  al., 2014, 2014a, 2014b, 2014c; Marsh et  al., 2014; Marsh, Hau, et  al., 
2005; Marsh, Morin, et al., 2014; Marsh, Trautwein, et al., 2005). However, school 
grades typically are idiosyncratic to particular teachers, settings, and schools. In 
particular, teachers typically grade on a curve, allocating the best and worst grades 
to the relatively better and poorer performing students within a classroom. Hence, 
teachers use the classroom as a narrow frame of reference in their grading proce-
dure, largely ignoring students’ absolute levels of achievement in their class relative 
to a common metric that generalizes over all students. Although the classic meta-
analyses support REM hypotheses for both school grades and test scores, most indi-
vidual studies have included only one of these achievement indicators. Moreover, 
few studies have fully juxtaposed the two over an extended developmental period 
nor evaluated the consistency of effects over time.

In a critique of CLPMs like those used in nearly all REM studies, Hamaker et al. 
(2015) proposed the RI-CLPM to analyze within-person relations over time. They 
argue that this approach is more appropriate for evaluating within-person relations 
between constructs. Specifically, the RI-CLPM shows how within-person deviations 
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in one construct are related to subsequent within-person deviations in another con-
struct. CLPMs confound the within- and between-person processes.

Based on this within-person perspective, Ehm et al. (2019, 2021) evaluated sup-
port for the REM based on CLPMs and RI-CLPMs using the same sample of young 
primary school students in separate studies of reading and mathematics. For read-
ing constructs, Ehm et al. (2019) found support for REM with CLPMs but not RI-
CLPMs. Indeed, their RI-CLPMs provided no support for either skill development 
or self-enhancement perspectives; there were no statistically significant cross-paths 
from prior ASC to subsequent achievement or from prior achievement to subsequent 
ASC. For math outcomes (Ehm et al., 2021), the CLPM and RI-CLPM results were 
similar and provided partial support for the REM. For both models, the cross-lagged 
effects were non-significant from Year 1 to Year 2, but there were reciprocal effects 
for Year 2 to Year 3. In their discussion of limitations and directions for further 
research, Ehm et al. noted issues specific to the measurement of ASC with young 
children, developmental processes that are evolving at these young ages, and the 
need to test the generalizability of the results with older children. Indeed, a variety 
of theoretical perspectives suggest that children only begin to use social comparison 
processes as a basis of self-evaluation at the age of 7 or 8 (e.g., Harter, 1998; Piaget 
& Inhelder, 1969; Ruble, 1983; but also see Marsh et al., 2002). Hence, there might 
have been a developmental shift in the qualitative nature of ASCs, potentially under-
mining the rationale of the CLPMs and especially the RI-CLPMs. Emphasizing this 
issue and noting prior support for the REM was based largely on CLPMs with sec-
ondary-school students rather than primary-school students, Ehm et al. (2019, 2021) 
called for studies comparing CLPMs and RI-CLPMs based on secondary students: 
Further research and also open discussions about the appropriateness of different 
assumptions and corresponding methods for analyzing the longitudinal relations 
among achievement and self-concept are necessary (Ehm et al., 2019, p. 33).

In pursuit of this call for further research proposed by Ehm et  al. (2019), our 
study is a methodological-substantive synergy. We juxtapose the application of RI-
CLPMs, CLPMs, and extensions of these models to test REM hypotheses for a large 
longitudinal study of secondary students. Substantively we evaluate the REM for 
math self-concept (MSC), math achievement test scores, and math school grades 
over the first five years of secondary school. Methodologically, we critically evalu-
ate and compare results for CLPMs and RI-CLPMs. In addition, we demonstrate 
extensions of basic CLPMs and RI-CLPMs: focusing on the measurement model, 
the inclusion of covariates, generalizability of multiple groups, invariance over 
time, and incorporation of three constructs (MSC, math achievement, and math test 
scores) into a single model (i.e., tripartite rather than the typical bivariate CLPMs 
and RI-CLPMs). For these purposes, we provide further analyses and extend the 
analyses presented by Marsh et al., (2018a, 2018b).

In theory, reciprocal effects linking ASC and achievement can be located at both 
within- and between-person levels. Specifically, from a cognitive-motivational 
perspective, effects of achievement on ASC, and effects of ASC on achievement, 
are built on within-person mechanisms. A typical causal process may involve the 
following steps. First, achievement (e.g., one’s grade in math) is perceived by the 
individual student and then attributed to ability. Especially with cumulative success 
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or failure and consistent attributions to ability or lack of ability, respectively, these 
attributions lead to the formation of self-perceptions of ability that are stored in 
long-term memory and can be reported as self-concept of ability. Second, when 
confronted with achievement tasks, the student re-activates task-related ASCs from 
memory. These ASCs guide motivation to invest effort and make strategic choices, 
which, in turn, contributes to subsequent achievement (Marsh, Pekrun, Murayama 
et al., 2016). From this perspective, reciprocal effects of ASC and achievement are 
located within persons (i.e., within the individual brain) in the first place. However, 
when repeated over time, the within-person effects can contribute to between-person 
differences in achievement and ASC and drive the between-person effects that link 
between-person distributions of the two variables over time, as traditionally ana-
lyzed in between-person CLPMs.

Furthermore, it is unclear whether either traditional CLPMs or RI-CLPMs cap-
ture these within-person processes. In particular, although the RI-CLPM takes a 
within-person perspective, it does not actually posit within-person mechanisms to 
explain the reciprocal effects. Thus, for example, Niepel et  al. (2021) argue that 
these traditional CLPM and RI-CLPM approaches leave the intraindividual dynam-
ics (within-person processes) in a black box. Hence, although the RI-CLPM pro-
vides a within-person perspective in terms of the underlying statistical model (a 
residualized or person-centered statistical analysis), it does not test within-person 
mechanisms that lead to the reciprocal effects between ASC and achievement. 
Hence, terms such as person-centered or residualized models might more appropri-
ately describe the RI-CLPM approach than the term within-person perspective. This 
is an important distinction in evaluating the strengths of the RI-CLPM. Of course, 
it is possible to extend both the CLPM and RI-CLPMs to test within-person mediat-
ing mechanisms. Thus, for example, Marsh, Hau, et al. (2005), Marsh, Trautwein, 
et al. (2005) evaluated the role of academic interest in tests of the REM based on 
the CLPM, showing that support for the REM was little affected by the inclusion 
of math interest measured at each wave of the design. They suggested the need for 
research that includes a variety of academic choice behaviors to evaluate better 
mediational processes underpinning the REM.

Methodological Focus: Models of Cross‑lagged Panel Data 
and Reciprocal Effects

Cross‑Lagged Panel Data

Cross-lagged panel data are used to test REM hypotheses about relations between 
MSC and math achievement. In panel designs, the same variables (MSC and math 
achievement) are measured repeatedly over time. Critical parameters are the sta-
bility paths (leading from one variable to the same variable in the next wave) and 
the cross-lag paths leading from one variable to the other variable in the next wave 
(e.g., effects of prior MSC on future math achievement, controlling for prior math 
achievement). The critical results are the directionality of the cross-lag effects—if 
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there is a directional ordering among the variables and whether it is unidirectional or 
reciprocal.

Although it is possible to test CLPMs with only two waves, basic RI-CLPMs 
require at least three waves, and even more waves are desirable. Because most tests 
of REMs are based on only two waves of data, studies typically considered only 
lag-1 effects (i.e., paths relating variables in adjacent waves). However, when there 
are three or more waves, it is possible to consider the invariance of effects over mul-
tiple waves and paths between non-adjacent paths (i.e., lag-2 effects). Thus, Marsh 
and colleagues (Arens et al., 2017; Marsh et al., 2017, 2018a, 2018b) argued that 
lag-2 effects are typical in CLPMs and should be included in CLPMs. They further 
noted that the improved fit was achieved primarily by adding lag-2 stability coeffi-
cients; lag-2 cross-paths were largely non-significant, whereas lag-1 cross-lag paths 
were relatively unaffected by the inclusion of additional lag-2 paths. lag-2 paths 
might have a theoretical basis (e.g., skills mastered in school year t may be directly 
relevant in year t + 2 and beyond, in addition to their relevance to year t + 1). How-
ever, including lag-2 paths also provides a more robust control for prior effects and 
potentially confounding covariates than models based on a single wave (Lüdtke & 
Robitzsch, 2021; Marsh, et al., 2018a, 2018b; VanderWeele et al., 2020). Hamaker 
and colleagues (Hamaker et al., 2015; Mulder & Hamaker, 2021) also suggested that 
CLPMs often have to include lag-2 effects to achieve a goodness-of-fit comparable 
to the RI-CLPMs. As suggested by Marsh and et  al., (2018a, 2018b), for us, the 
critical issues are whether the addition of lag-2 paths improved fit and particularly 
whether their inclusion altered the interpretation of the cross-lag paths and support 
for REMs—a sensitivity test.

Recent research has contrasted a wide variety of complex statistical models that 
can be applied to cross-lag-panel data (Kenny & Zautra, 1995; McArdle, 2009; Orth 
et al., 2021; Usami, Murayama, et al., 2019; Usami, Todo, et al., 2019; Zyphur et al., 
2020). However, comparisons of the different models based on multiple data sets 
(Orth et al., 2021) or simulated data (Usami Murayama, & Hamaker, 2019; Usami, 
Todo, et  al., 2019) showed that only RI-CLPMs and particularly CLPMs consist-
ently converged to proper solutions. Although CLPMs consistently converged to 
proper solutions, RI-CLPMs sometimes did not—even when the RI-CLPM structure 
was used to generate the simulated data (Usami, et al., 2019a, 2019b). Furthermore, 
Orth et  al. reported that the CLPM produced more consistent cross-lagged effects 
both within and between samples.

Because CLPMs are nested under RI-CLPMs, RI-CLPMs necessarily result in a bet-
ter fit for indices that do not correct for CLPMs’ greater parsimony. This is sometimes 
used to argue in favor of RI-CLPMs over CLPMs. However, Orth et al. (2021) noted 
that the choice of models should also be based on theoretical grounds and appropri-
ate interpretations of the results rather than only goodness-of-fit. Hence, goodness-of-fit 
should be only one of the considerations in the choice of models and their interpreta-
tion. Furthermore, Marsh and et al. (2018a, 2018b, p. 271; also see Lüdtke & Robitzsch, 
2021) argued that the addition of lag-2 paths substantially improved the fit of a CLPM 
and served for "providing stronger controls for preexisting differences." Although they 
did not consider a RI-CLPM, the fit of their CLPM with covariates and lag-2 effects 
approached the fit of the corresponding measurement model (in which all constructs 
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were merely correlated). Because the RI-CLPM and CLPM are both nested under the 
measurement model, this suggests that their extended CLPM with lag-2 effects would 
have fit their data as well as a RI-CLPM. If this were the case more generally, goodness-
of-fit would no longer be a critical issue in comparing the RI-CLPM and the extended 
CLPM with lag-2 effects. In the present investigation, we pursue this issue in our juxta-
position of the two models.

Distinguishing Between RI‑CLPM (Within‑Person) and CLPM (Between‑Person) 
Perspectives

Historically, tests of the REM in ASC research have been based almost entirely on 
CLPMs, but, following Hamaker and colleagues (Hamaker & Muthén, 2020; Hamaker 
et  al., 2015, 2020; Mulder & Hamaker, 2021), there has been a recent surge in the 
popularity of RI-CLPMs. Nevertheless, Orth  et al. (2021) emphasized that the two 
models address different questions, result in different interpretations, and are based on 
different assumptions. Because both models and their juxtaposition are relevant, we 
argue that it is crucial to understand how the underlying rationales of these two models 
differ (see Fig. 1).

Structural Characteristics

The primary structural difference between the two models is that RI-CLPMs include 
a stable trait factor (Tx, Ty, and Tz in Fig. 1), whereas CLPMs do not. In this sense, 
CLPMs are nested under the RI-CLPM. CLPMs evaluate how the effects of individ-
ual differences at each wave are related to those in subsequent waves (an undecom-
posed between-person perspective). RI-CLPMs evaluate how within-person devia-
tions at each wave differ from a student’s stable trait (a decomposed between-person 
difference), and how these within-person differences from one wave are related to 
those in the next wave (a within-person perspective).

Importantly, CLPMs and RI-CLPMs differ in the interpretation of the term "between-
person." In CLPMs, between-person effects reflect a combination of within-person (i.e., 
deviations from a global trait) and between-person (e.g., stable trait) effects. This is con-
sistent with the term’s use in most individual difference studies of relations among varia-
bles and most cross-sectional studies. However, RI-CLPMs decompose these effects into 
separate components reflecting within- and between-person components. Thus, within 
the context of each model, the use of the generic term between-person is appropriate. 
However, to avoid confusion, we refer to these as "decomposed" between-person effects 
(RI-CLPM) and "undecomposed" between-person effects (CLPM).

For our study based on three latent constructs, the critical parameters for both 
RI-CLPMs and CLPMs are the auto-regressive stability paths (Bxx, Byy, and Bzz in 
Fig. 1), and particularly the cross-paths relating achievement and MSC (Bxy, Byx, 
Bxz, Bzx in Fig. 1), but also cross-paths relating the two indicators (school grades 
and test scores) of math achievement (Byz and Bzy). If both sets of paths leading 
from achievement to MSC and from MSC to achievement are statistically signifi-
cant, the variables are said to be reciprocally related. If only one of the sets of paths 

2704 Educational Psychology Review (2022) 34:2697–2744



1 3

is significant (and differs significantly from the other path), the directional order-
ing is said to be unidirectional rather than reciprocal. Most recent CLPMs tests of 
REMs are latent, at least for the ASC construct (i.e., there are multiple indicators 
of the ASC factor—the unlabeled boxes in Fig. 1). However, the latent versions of 
the RI-CLPM have been developed only recently, so this model has few substantive 
applications (Mulder & Hamaker, 2020; also Ehm et al., 2019, 2021).

We also note that most applications of latent RI-CLPMs are bivariate models, 
based on two constructs (e.g., MSC and test scores) or separate analyses of each 
pair of constructs when more than two are considered (e.g., Ehm et al., 2019, 2021). 
However, our focus is on relations among three constructs (MSC, test scores, and 
school grades). Hence we extend the basic bivariate RI-CLPMs and CLPMs to 
include three constructs: tripartite RI-CLPMs and CLPMs. Our study is one of only 

Fig. 1   Diagram of cross-lag-panel-model (A) and random intercept cross-lag-panel-model (B) with 
covariates. Three constructs were measured in the first five years of secondary school (Years 5 – 9): 
X = math self-concept; Y = Math grade; Z = Math standardized test. Covariates included verbal and math 
achievement from the last year of primary school (Year 4). Math self-concept was based on responses to 
6 items, but all other constructs were single-item constructs. Excluded in order to avoid clutter are corre-
lated uniquenesses relating responses to the same math self-concept item administered in different years, 
and correlated residual covariances among the three constructs in Years 6 – 9
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a few applications of the tripartite RI-CLPMs with latent variables, particularly for 
REM studies of ASC and achievement (but see Van Lissa et al., 2021; Burns et al., 
2019; also see Hübner et al., 2022; we elaborate on the importance of this contribu-
tion in Discussion section).

RI‑CLPMs and CLPMs Address Different Research Questions

For longitudinal panel data, the multiple waves (level 1) are nested under the person 
(level 2). Here, the level 2 variables in RI-CLPMs are the average levels of ASC and 
achievement over time for each student (i.e., the random intercepts or latent means; 
Hamaker et al., 2015). The assumption is that for a given student, these represent stable 
traits that are consistent over time for the duration of the study but differ from student 
to student. In contrast, the CLPM is like a single-level model that evaluates relations 
between ASC and achievement within-waves and over time without controlling for per-
son-level differences in these variables (an undecomposed between-person focus that 
does not separate within-person and between-person effects). The RI-CLPM estimates 
relations between these variables after controlling (decomposed) between-person stable 
trait effects, person-level intercepts; that is, it provides a within-person perspective.

To simplify this distinction, we focus on MSC (X in Fig.  1) and achievement, 
which could refer to either math school grades (Y in Fig.  1) or math test scores 
(Z in Fig.  1), or both. However, these same distinctions also apply to other pairs 
of variables. It is important to note that the undecomposed between-person effects 
in CLPMs are the effects of individual differences in some construct X (MSC) on 
change in the individual differences in achievement (Y or Z in Fig. 1). This is based 
on the covariance of X (wave-1) and achievement (wave-2), controlling wave-1 vari-
ables. Thus, for CLPMs, change is based on the residual change in individual dif-
ferences in achievement from wave-1 to wave-2 and aims to predict change in indi-
vidual differences (or rank-order change). In contrast, change in the RI-CLPM is 
based on how within-person deviations for X at wave-1 (i.e., the difference between 
X at wave-1 from the latent mean of X across all waves) are related to deviations in 
achievement at wave-2, controlling deviations in wave-1 variables. These two per-
spectives are easily confounded, but are related to different research questions and 
often lead to different interpretations. To make this distinction more concrete, we 
offer the following research questions that are appropriate for each model:

•	 CLPMs: When students have high MSCs (compared to other students), are 
they more or less likely to experience a subsequent rank-order increase in 
math school grades (compared to other students)? Likewise, when students 
have a high achievement (compared to other students), are they more or less 
likely to experience a subsequent rank-order increase in MSC (compared to 
other students)? Thus, do individual differences in MSC positively predict 
rank-order change in relative achievement, and do individual differences in 
achievement positively predict rank-order change in relative MSC?

•	 RI-CLPMs: When students experience higher than their usual MSC (com-
pared to their long-term average MSC over the duration of the study), are 
they more or less likely to experience a subsequent higher than their usual 
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achievement (compared to their long-term average achievement over the dura-
tion of the study)? Likewise, when students experience higher than their usual 
achievement (compared to their long-term average achievement), are they 
more or less likely to experience a subsequent higher than their usual MSC 
(compared to their long-term average MSC)?

The Role of Covariates

For both RI-CLPMs and CLPMs, the possible confounding of effects with unmeas-
ured covariates is a potentially serious threat to interpreting results. Advocates of 
the RI-CLPM argue that the critical advantage of this approach is that it provides 
greater protection for time-invariant (between-person) covariates that are not meas-
ured as part of the study (e.g., Hamaker et  al., 2015; Mulder & Hamaker, 2020). 
The logic is that true time-invariant (between-person) covariates will only affect the 
global trait factors (Tx, Ty, & Tz in Fig. 1), which are statistically independent of 
the within-person autoregressive factors (Ax, Ay & Az in Fig. 1). Thus, unmeasured 
(undecomposed between-person) time-invariant covariates might affect the sizes of 
the (decomposed between-person) global trait factors. However, they do not affect 
the within-person autoregressive factors used to test directional ordering (i.e., statis-
tically, the random intercept factor and the within-person components are independ-
ent; Hamaker et al., 2015). This has critical interpretational advantages, particularly 
concerning tests of directional ordering.

RI-CLPMs can incorporate measured covariates as part of the study. For these 
measured covariates, Mulder and Hamaker (Mulder & Hamaker, 2020) proposed 
that these should be regressed on the manifest trait scores for variables measured 
by a single indicator (school grades and test scores in the present investigation). 
Although they did not consider a fully latent model with covariates, we interpret 
their approach to mean that covariates are regressed on the undecomposed latent 
variables (i.e., the X latent factor representing MSC in Fig. 1) rather than the mani-
fest indicators of each trait, the within-person autoregressive factors (the Ax factors 
in Fig. 1). However, for a fixed covariate with time-invariant effects, all or most of 
the time-invariant effects will be absorbed by the global trait factors (Tx, Ty & Tz in 
Fig. 1).

CLPMs also control for measured variables by including them as additional 
covariates in the statistical models. However, CLPMs assume that all relevant covar-
iates are measured or captured by those included covariates, a selection-on-observ-
ables strategy (Little, 2013; Reichardt, 2019). For example, if we are interested in 
estimating the cross-lagged effect of Xt-1 on Yt, we need to assume that all relevant 
variables that affect Xt-1 as well as Yt are included. Covariates that are constant 
across the investigated time period (e.g., demographic variables, achievement in pri-
mary school) can be easily included in CLPMs as additional predictors of Xt and 
Yt at each wave t. This is also the case for covariates Zt that vary across time (e.g., 
grades, math interest), even though the issue of time-varying covariates has received 
less attention in the application of CLPMs. One challenging aspect of time-varying 
covariates is that they should not be affected by the treatment. For example, if we 
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estimate the effect of Xt-1 (e.g., ASC at wave t–1) on Yt (e.g., test scores at wave t) 
and include Zt-1 (e.g., grades at wave t–1) as a time-varying covariate in the CLPM, 
we need to rule out that Zt-1 has not been affected by Xt-1. Otherwise, Zt-1 would not 
be a confounder but a mediator (i.e., a variable that is on the causal pathway from 
Xt-1 to Yt). In practical applications, it is often difficult to decide whether Zt-1 acts as 
a mediator or confounder, particularly when the time-varying covariate Zt-1 is meas-
ured at the same time as the treatment Xt-1 (e.g., see Marsh, Hau, et al., 2005; Marsh, 
Trautwein, et al., 2005, on the role of time-varying measures of academic interest in 
REM tests of reciprocal effects between MSC and achievement).

Overall, the CLPMs are based on the assumption that all relevant covariates (time-
invariant and time-varying) are measured (or controlled by those that are measured). 
Thus, compared to RI-CLPMs—which control the effects of time-invariant confound-
ers—CLPMs provide less protection against the confounding effects of unmeasured 
(time-invariant) confounders. However, both models provide limited protection concern-
ing unmeasured time-varying covariates or fixed-covariates whose effects vary over time.

Neither CLPMs nor the RI-CLPMs provide particularly good controls for 
unmeasured time-varying covariates (or fixed covariates measured only once with 
effects that vary from wave to wave, possibly reflecting an unmeasured process). 
However, support for the consistency of effects over waves (based on invariance 
tests) suggests that these potentially confounding covariates specific to a particu-
lar wave do not substantially affect the results. Furthermore, Marsh et al., (2018a, 
2018b) suggest that the extension of the CLPM to include lag-2 effects provides 
stronger controls for covariates.

The most effective way to control the effects of unmeasured (fixed and time-var-
ying) covariates is to measure them and include them in statistical models. Thus the 
selection of covariates is crucial for RI-CLPMs and particular CLPMs. Hence, we 
find it surprising that this issue has been given limited attention in the design, analy-
sis, and interpretation of these models (see VanderWeele, 2019, for discussion of 
alternative strategies for selecting covariates; also see Hübner et al., 2022).

Cattell’s (1966) Data Cube  Cattell’s (1966) data cube helps distinguish within- and 
between-person perspectives. It represents data concerning three dimensions: per-
sons, variables, and occasions (Marsh & Grayson, 1994). Voelkle et  al. (2014) 
emphasize that the vast majority of educational and psychological studies focus on 
relations between variables across persons (undecomposed between-person varia-
tion) and, to a much smaller extent, relations on variables across occasions (decom-
posed within-person variation). In his classic manifesto on an idiographic approach 
to psychology, Molenaar (2004) noted the need to shift from a focus on the level 
of inter individual variation in the population to the level of intra individual varia-
tion characterizing the life histories of individual subjects. Noting the importance of 
between-person questions (e.g., MSC predicts achievement), Voelkle et  al. (2014) 
also emphasized the importance of evaluating the consistency of within-person 
effects over time for a given individual. However, they emphasized that interindi-
vidual and intraindividual effects are only likely to be equivalent under very limited 
conditions (ergodicity): stationarity (invariance over time of means, variances, and 
covariances) and homogeneity (same relations between variables for all individuals, 
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such that the same generating model can be applied to all individuals and individu-
als are not grouped or nested). Because these conditions are unlikely to be met, Voe-
lkle et al. (2014) argued that rather than seeing within- and between-person analy-
ses as competing research paradigms, the focus should be on appropriate research 
questions and, perhaps, the juxtaposition between interpretations based on the two 
models.

Juxtaposing CLPMs and RI‑CLPMs

CLPMs and RI-CLPMs are very different. They differ in terms of their conceptual 
and statistical underpinnings and the questions they address. Historically, most stud-
ies of unidirectional, bidirectional, and reciprocal effects have used CLPMs (an 
undecomposed between-person perspective). However, there has been a surge in the 
popularity of RI-CLPMs (a within-person model based on a decomposed between-
person perspective) and much discussion about the relevance of each.

The inability of the traditional CLPM model to disaggregate within (i.e., state-
like) and between (i.e., trait-like) effects (Curran & Bauer, 2011) has led to impor-
tant criticisms of this approach (e.g., Berry & Willoughby, 2017; Hamaker et  al., 
2015; Mund & Nestler, 2019). These criticisms have led to the emergence of a wide 
variety of new models specifically designed to address this limitation (e.g., Biaco-
ncini & Bollen, 2018; Curran et al., 2014; Hamaker et al., 2015; Mund & Nestler, 
2019; Zyphur et  al., 2020). As a result, the recent surge in popularity of the RI-
CLPM has created a zeitgeist in which some educational psychology researchers 
suggest that the decomposed between- and within-person perspective provided by 
the RI-CLPM is always more appropriate (Nunez-Reueiro et al., 2021; but also see 
discussion by Asendorpf, 2021; Orth et al., 2021).

However, several researchers recently critiqued considering the RI-CLPM as the 
default approach to analyzing cross-lagged panel designs (Asendorpf, 2021; Hübner 
et al., 2022; Lüdtke & Robitzsch, 2021; Orth et al., 2021). More specifically, Lüdtke 
and Robitzsch (2021) studied the RI-CLPM from a causal inference perspective 
(e.g., Imbens & Rubin, 2015; Pearl et al., 2016) using mathematical derivation and 
simulated data. Their overall goal, consistent with our study, was "to provide a more 
balanced discussion of two main approaches (CLPM and RI-CLPM) for analyzing 
cross-lagged panel designs, and we would like to emphasize that—despite recent 
methodological recommendations—there are still good reasons to use the traditional 
CLPM when estimating cross-lagged effects" (p. 3). Using simulated data, they 
showed that the RI-CLPM has limited ability to control for unmeasured confounder 
variables, including fixed confounders (e.g., demographic variables), when their 
effects vary over time. Drawing in part on early research by Marsh and et al., (2018a, 
2018b), Lüdtke and Robitzsch noted that beneficial consequences of including lag-2 
effects to provide a stronger control for confounding (also see VanderWeele et  al., 
2019; 2020). They also noted that the inclusion of lag-2 effects in CLPMs resulted 
in goodness-of-fit that was as good as RI-CLPMs. Thus, the choice of models is not 
a question of fit, and this positions CLPMs with lag-2 effects as a viable alternative 
to the RI-CLPM, even in terms of goodness-of-fit. Noting that there are still issues 
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with CLPMs, even with the inclusion of lag-2 effects, they argued for a selection-on-
observables CLPM approach based on the observed information in the data (previous 
measures of the treatment and outcome, and additional covariates), instead of stable 
trait factors (that are based on modeling assumptions in RI-CLPMs). This approach 
is consistent with VanderWeele et al.’s (2020; see also VanderWeele et al., 2016) per-
spective on causal inference with longitudinal data and has also been recently empha-
sized by Hübner et al. (2022).

CLPMs and RI-CLPMs address different questions and often result in different—
even contradictory—interpretations. Because the strengths, weaknesses, and appro-
priate interpretations of each are the basis of ongoing research and extensions of 
these models, applied researchers need to understand the differences between the 
two. In the present investigation, we intend  merely to present a more balanced view 
of the different perspectives concerning the issue of the causal ordering of ASC and 
achievement based on appropriate cross-lagged panel data. We aim this presentation 
to applied researchers based on what might be the classic application of the cross-
lagged panel design in educational psychology, the REM that dates back to at least 
the 1970s (e.g., Calsyn & Kenny, 1977) and has been the basis of many studies and 
multiple meta-analyses. Our study is one of the first to juxtapose the theoretical 
rationale and results based on CLPMs, RI-CLPMs, and extensions of these models 
in tests of the directional ordering of ASC and achievement. In pursuit of these aims, 
we operationalize extensions of particularly RI-CLPMs that have mainly been dem-
onstrated with simulated data, consider lag-2 effects, and show their usefulness in 
our applied study (VanderWeele et al., 2020).

The Present Investigation: Two A Priori Research Hypotheses 
and Three Research Questions

In the present investigation, we chose for purposes of secondary data analysis 
what we judged to be the strongest database to juxtapose CLPMs and RI-CLPMs 
relating ASC, school grades, and achievement tests across secondary school 
years. The Project for the Analysis of Learning and Achievement in Mathemat-
ics (PALMA; Arens et al., 2017; Frenzel et al., 2012; Marsh et al., 2017, 2018a, 
2018b; Marsh, Parker, et  al., 2016; Marsh, Pekrun, et  al., 2016; Pekrun, 2006; 
Pekrun et  al., 2017, 2019) is a large-scale longitudinal study investigating the 
development of math achievement and its determinants during secondary school 
years. Although the directional ordering of achievement and math self-concept 
has been a component of previous PALMA research, this has always been from 
a between-person perspective. In this sense, PALMA is ideally suited for our 
purpose of juxtaposing CLPMs and RI-CLPMs in support of the REM. Here we 
extend these models to test longitudinal invariance over time (multiple school 
years) and multiple groups (school tracks), lag-2 paths between non-adjacent 
school years, and covariates (gender; primary school math and verbal achieve-
ment). CLPMs and particularly RI-CLPMs are typically based on two variables 
(bivariate models). However, here we extend the models to include three vari-
ables (tripartite models; MSC and the two distinct forms of achievement). The 
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key issues here involve juxtaposing between- and within-student perspectives on 
the directional ordering of three variables: MSC and two achievement indicators.

Based on our review of the substantive literature on achievement and MSC, we 
offer the following two research hypotheses (where there is a clear basis for offer-
ing a priori directional hypotheses). In addition, we offer three additional research 
questions that involve critical issues and extensions of the basic CLPMs and RI-
CLPMs for which there is not sufficient basis for offering a priori hypotheses. For 
the research questions, we also discuss the relevant issues.

Research Hypotheses

Research Hypothesis 1 Directional‑Ordering: Model of Reciprocal Effects.  We hypoth-
esize a priori that students’ MSC will be reciprocally related to both measures of 
achievement (grades and test scores). The paths from MSC in one wave to both achieve-
ment measures in subsequent waves will be significantly positive. Likewise, the paths 
from both achievement measures in one wave to MSC in the next wave will be signifi-
cantly positive (see Fig. 1). Our hypotheses are consistent with the REM and extensive 
research showing that MSC and achievement are reciprocally related (Huang, 2011; 
Marsh & Craven, 2006; Valentine et al., 2004; Wu et al., 2021). Also consistent with 
previous research, we view these hypothesized cross-lagged effects as "causal" (but see 
earlier discussion of the rationale for using the term "directional ordering").

Research Hypothesis 2: Alternative Measures of Achievement.  Based on prior 
research and following from Research Hypothesis 1, we hypothesize a priori that all 
stability and cross-paths will be positive and statistically significant in models based 
on test scores, school grades, and the combination test scores and school grades. 
Also, following previous research (e.g., Marsh, 2007; also see Wu et  al’s., 2021, 
meta-analysis), we anticipate that MSC within and across waves will be more highly 
correlated with school grades than test scores. Compared to models relating MSC 
to each of these achievement indicators separately, we anticipate that the combined 
model based on all three will have smaller paths—particularly stability paths for the 
two achievement measures, and cross-paths relating the two achievement measures 
and MSC. However, we hypothesize that support for Research Hypothesis 1 will 
generalize over all models based on alternative measures of achievement.

Research Questions: Juxtaposition and Extensions of CLPMs 
and RI‑CLPMs to Evaluate Sensitivity

Research Question 1: Juxtaposition of CLPM and RI‑CLMP Results.  The central research 
question is whether support for the REM (Research Hypothesis 1) differs for CLPMs and 
RI-CLPMs. Although there is overwhelming support for the REM based on prior research, 
we note that particularly at the secondary school level, this support is largely based on 
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CLPMs rather than RI-CLPMs. However, as Hamaker et al. (2015) and others (also see 
earlier discussion) emphasize, there is no a priori basis for anticipating how estimates from 
the two models will differ in size or even direction. Hence, we leave this issue as a research 
question.

Research Question 2: Extended Models: Lag‑2 Effects.  For both CLPMs and RI-
CLPMs, we evaluated extended models with lag-2 effects. Following earlier dis-
cussion (e.g., Marsh, et  al., 2018a, 2018b; also see Lüdtke & Robitzsch, 2021), 
this extension should substantially improve the fit of the CLPMs. However, we see 
this extension of the models as a sensitivity test to determine whether the inclu-
sion of lag-2 effects influences support for Research Hypothesis 1—a substantial 
issue. Nevertheless, an important methodological contribution is to test the sup-
position following from Marsh and et al., (2018a, 2018b; also see Lüdtke & Rob-
itzsch, 2021) that adding lag-2 paths to the CLPM will largely eliminate differ-
ences in goodness-of-fit and provide stronger controls for preexisting differences.

Research Question 3: Extended Models: Covariates and Multiple Groups.  We evalu-
ated extended models for CLPMs and RI-CLPMs that included controls for covari-
ates (gender; prior verbal and math achievement from primary school, before 
starting secondary school) and multiple groups (school tracks). Although there is 
substantive interest in how these effects are related to students’ achievement and 
MSC, our primary focus is on how these covariates affect the results concerning 
directional ordering. Thus we again see this extension of the models as a sensitivity 
test in relation to support for Research Hypothesis 1, and thus a research question.

Method

Sample

Our study is based on secondary data analysis of data from PALMA, a large-scale 
longitudinal study investigating the development of math achievement and its deter-
minants during secondary school in Germany. The Data Processing and Research 
Center (DPC) of the International Association for the Evaluation of Educational 
Achievement (IEA) conducted sampling and the assessments. Samples were drawn 
from secondary schools within the state of Bavaria and were representative of the 
student population of this state in terms of student characteristics such as gender, 
urban versus rural location, and family background (SES; for details, see Pekrun 
et  al., 2007). The data consisted of five measurement waves spanning Grades 5 to 
9 and school grades from the last year of primary school (Year 4). On the basis of 
the primary school results, students (N = 3,425; 50% girls; mean age = 11.7 at Year 
5, SD = 0.7) were allocated to either the high-achievement (Gymnasium: 37%), mid-
dle-achievement (Realschule: 30%), or low-achievement (Hauptschule: 33%) school 
tracks. Students answered the questionnaire in the first two weeks of July, toward the 
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end of each successive school year. All instruments were administered in the stu-
dents’ classrooms by trained external test administrators. Participation in the study 
was voluntary, and parental consent was obtained for all students. The agreement 
was high (100% for schools and over 90% for students at each data wave), and the 
final sample closely represented the intended sample and population more generally 
(Pekrun et al., 2007). Surveys were anonymized to ensure participant confidentiality.

Measures

MSC was measured in each of the five secondary schools Years (5–9) with the same 
set of six items, using a 5-point Likert scale: not true, hardly true, somewhat true, 
largely true, or absolutely true. Across the five waves, the alpha estimates of reliabil-
ity were consistently high (Year 5 α = 0.88; Year 6 α = 0.89; Year 7 α = 0.89; Year 8 
α = 0.91; Year 9 α = 0.92). The items used to measure MSC were: “In math, I am a 
talented student”; “It is easy for me to understand things in math”; “I can solve math 
problems well”; “It is easy for me to write tests/exams in math”; “It is easy for me to 
learn something in math”; “If the math teacher asks a question, I usually know the 
right answer.”

Students’ achievement was measured with school grades (math in Years 4–9; 
German in Year 4) and math standardized achievement test scores (Years 5–9). 
School grades were end-of-the-year final grades obtained from school documents. 
The standardized PALMA Math Achievement Test (Murayama et al., 2013; Pekrun 
et  al., 2007) was based on multiple-choice and open-ended items to measure stu-
dents’ modeling and algorithmic competencies in arithmetic, algebra, and geometry. 
The test was constructed using multi-matrix sampling with a balanced incomplete 
block design; the number of items increased with each wave, varying between 60 
and 90 items across the five waves, with anchor items to allow for the linkage of the 
two test forms and the five measurement points. The achievement scores were scaled 
using one-parameter logistic item response theory, confirming the unidimensionality 
and longitudinal invariance of the test scales (Murayama et al., 2013).

Statistical Analyses

All analyses were done with Mplus (Muthén & Muthén, 2008–20, Version 8). We 
used the robust maximum likelihood estimator (MLR), which is robust against many 
violations of normality assumptions.
Missing Data.  As is typical in large longitudinal field studies, a substantial portion 
of the sample had missing data for at least one measurement wave due primarily to 
absence or students changing schools. Across the five waves, 39% participated in 
all five measurement waves (i.e., Grades 5 to 9), and 9%, 19%, 15%, and 18% took 
part in four, three, two, or one of the assessments, respectively. We included all stu-
dents who responded to at least one wave. Particularly in longitudinal studies, there 
is increasing awareness of the limitations of traditional approaches to missing data 
(Enders, 2010). Here, we applied the full-information maximum likelihood (FIML) 
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method to fully use cases with missing data (Enders, 2010). FIML results in trust-
worthy, unbiased estimates for missing values even in the case of large numbers of 
missing values (Enders, 2010) and is an appropriate method to manage missing data 
in large longitudinal studies (Jeličič et al., 2009). More specifically, as emphasized 
in classic discussions of missing data (e.g., Newman, 2014), under the missing-at-
random (MAR) assumption that is the basis of FIML, missingness is allowed to be 
conditional on all variables included in the analyses, but does not depend on the 
values of variables that are missing. This implies that missing values can be condi-
tional on the same variable’s values collected in a different wave in a longitudinal 
panel design. This feature of the data makes it unlikely that MAR assumptions are 
seriously violated, as the key situation of not-MAR is when missingness is related 
to the variable itself. Hence, having multiple waves of parallel data provides strong 
protection against this violation of the MAR assumption. Also, the appropriateness 
of FIML is further strengthened by support for the invariance of parameter estimates 
over time (see subsequent discussion of invariance constraints).

Goodness‑of‑Fit.  Applied SEM studies typically focus on fit indices that are 
relatively sample-size independent (Marsh et  al., 2004; Marsh, Hau, & Gray-
son 2005), such as the root-mean-square error of approximation (RMSEA), the 
Tucker-Lewis index (TLI), and the comparative fit index (CFI). Population val-
ues of TLI and CFI vary along a 0-to-1 continuum, in which values greater than 
.90 and .95 typically reflect acceptable and excellent fits to the data, respectively. 
Values smaller than .08 and .06 for the RMSEA support acceptable and good 
model fits, respectively. For comparing nested models, Cheung and Rensvold 
(2002) and Chen (2007) suggested that if the decrease in fit for the more parsimo-
nious model is less than .01 for incremental fit indices such as the CFI, there is 
reasonable support for the more parsimonious model. For indices that incorporate 
a penalty for lack of parsimony, such as the RMSEA and the TLI, it is also pos-
sible for a more restrictive model to result in a better fit than would a less restric-
tive model. For present purposes, to facilitate communication, we present primar-
ily TLIs in the written summaries of the results. In addition, however, we present 
the Chi-square, degrees-of-freedom, RMSEA, CFI, and TLI in the corresponding 
tables. Nevertheless, these cut-off values for these indices constitute only rough 
descriptive guidelines rather than “golden rules” (Marsh et al., 2004).

Invariance Constraints
A Well‑Defined Measurement Model.  Particularly as multiple MSC indicators are 
parallel over the multiple waves, it is relevant to test measurement invariance over 
time and multiple groups (the three school tracks). For both longitudinal and mul-
tiple group data, it is typical to evaluate a set of models that systematically vary 
the invariance constraints (Marsh et  al., 2014; Marsh et  al., 2014; Marsh, Morin, 
et al., 2014; Marsh, Parker, et al., 2016; Meredith, 1993; Millsap, 2012): configural 
(no invariance constraints), metric (factor loading invariance), and scalar (intercept 
invariance). For longitudinal data, Marsh et al. (2013) recommended that correlated 
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uniquenesses relating residual variance terms for the same item in different waves 
should also be tested (Jöreskog, 1979; Marsh & Hau, 1996). Failure to include them 
will typically undermine goodness-of-fit and bias parameter estimates. Thus, the 
measurement model’s invariance is relevant to the rationale underlying statistical 
models of longitudinal data. These invariance constraints also substantially reduce 
the number of estimated parameters, resulting in a more parsimonious model. Par-
ticularly in complex models, this can also improve the convergence behavior of 
models and increase power. There are two aspects to invariance in the present inves-
tigation: invariance over the multiple groups (different academic tracks) and invari-
ance over time.

Importantly, these preliminary tests of the measurement model are not based on 
any particular model (e.g., CLPM or RI-CLPM) but merely evaluate the extent to 
which the constructs are well-defined. Nevertheless, unless there is reasonable sup-
port for at least configural invariance, the application of subsequent CLPMs and par-
ticularly RI-CLPMs is dubious. If there is no support for the invariance of factor 
loadings, then tests of invariance of other parameters associated with these factors 
(e.g., stability and cross-paths in CLPMs and RI-CLPMs) are also dubious.

Longitudinal Structural Invariance Constraints  For the CLPM studies based on three 
or more data waves, Marsh and et al. (2018a, 2018b) adopted the term "development 
equilibrium" for the imposition of invariance for the stability paths and the cross-
lagged paths over time. Their focus was mainly on whether the sizes of the stability 
and cross-paths varied as a function of age for school students. However, this pat-
tern of constraints is also typical in RI-CLPMs (Mulder & Hamaker, 2020), greatly 
facilitating the interpretation of results. Nevertheless, because this terminology is 
somewhat idiosyncratic to development studies, we refer to this set of constraints as 
longitudinal equilibrium. In invoking this constraint, we constrained to be invariant 
over time the three stability paths (Byy, Bxx, & Bzz; Fig. 1) and the six cross-lag 
paths (Bxy, Byx, Bxz, Bzx, Byz, Bzy; Fig. 1).

PreliminaryAnalyses
Longitudinal Invariance  We tested a series of measurement models based on invari-
ance over time. The models were based on responses to 40 indicators—6 MSC 
items, one math test score, and one math school grade in each of five waves (i.e., 
8 indicators × 5 waves). For present purposes, to facilitate interpretations, all items 
for MSC were standardized (Mn = 0, SD = 1) to a common metric, based on wave-1 
responses (i.e., Year-5, the first year of secondary school). Marsh et al. (2013) rec-
ommended that our a priori model included correlated uniquenesses relating resid-
ual variance terms for the same items at different waves (for further discussion, see 
Marsh et al., 1996; Joreskog, 1979). As expected, the measurement model with no 
correlated uniqueness (MM0 in Table 1) provided a poorer fit than other measure-
ment models. Measurement model MM1 (configural invariance) model with cor-
related uniquenesses but no invariance constraints provided a very good fit to the 
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data (RMSEA = .016, CFI = .989, TLI = .986; see results in Table 1). In Model MM2 
(metric invariance) with the imposition of factor loading invariance also resulted in 
a good fit (RMSEA = .018, CFI = .987, TLI = .982). In the final model MM3 (sca-
lar invariance) model, the imposition of intercept invariance resulted in a slightly 
poorer fit (RMSEA = .020, CFI = .983, TLI = .979), but one that was still excellent 
based on traditional guidelines. The results demonstrate that the factor structure gen-
eralizes well over the multiple waves—the first five years of secondary school.

Multi‑Group Invariance  Next, we tested a series of measurement models based on 
invariance over the multiple groups (representing the three academic tracks). We 
based these models on the same data as the tests of longitudinal invariance. Meas-
urement model MM4 (configural invariance) model with correlated uniquenesses 
but no invariance constraints over the multiple groups provided a very good fit to 
the data (RMSEA = .018, CFI = .987, TLI = .982; Table  1). In Model MM5 (met-
ric invariance) with the imposition factor loading invariance also resulted in a good 
fit (RMSEA = .018, CFI = .987, TLI = .983) as did MM6 (scalar invariance) model 
(RMSEA = .019, CFI = .985, TLI = .982). The results demonstrate that the factor 
structure generalizes well over the multiple groups.

Combining Longitudinal Invariance and Multi‑Group Invariance  When considered 
separately, our results support scalar invariance over time (longitudinal invari-
ance) and academic track (multigroup invariance). In the final model (MM7; also 
see Supplemental Materials for Mplus syntax), we simultaneously impose scalar 

Table 1   Goodness-of-Fit for Confirmatory Factor Analysis (CFA) Measurement Model: Invariance of 
the Measurement Factor Structure Over multiple Waves and Multiple Groups

Summary of Goodness-of-fit statistics for the different factor analyses considered in the present investi-
gation. CFA = confirmatory factor analysis; Chi-SQ = Chi-square; df = degrees of freedom; CFI = com-
parative fit index; TLI = Tucker-Lewis Index; RMSEA = Root-Mean-Square Error of Approximation. 
Model; INV = invariance constraints (constraining parameters to be invariant over time); CU = correlated 
uniqueness (relating residual variances associated with the same item over the multiple waves)

CFA Model Chi-SQ Df RMSEA CFI TLI

Longitudinal Invariance
MM0 No-Correlated Uniquenesses No Invariance 2133 645 .026 .971 .965
MM1 configural M0 with Correlated Uniquenesses 1133 585 .016 .989 .986
MM2 metric M1 with factor loadings invariant 1288 608 .018 .987 .982
MM3 Scalar M2 with intercept invariance 1497 629 .020 .983 .979
Multiple Group Invariance
MM4 configural with Correlated Uniquenesses 2444 1755 .018 .987 .982
MM5 metric M4 with factor loadings invariant 2496 1805 .018 .987 .983
MM6 Scalar M5 with intercept invariance 2608 1855 .019 .985 .982
Longitudinal & Multiple Group Scalar Invariance
MM7 Longitudinal & Multiple Group Scalar Invariance 2900 1895 .021 .980 .976
Covariates
MM2 + Covariates 1773 754 .020 .983 .978
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invariance for both time and group. The fit of this highly constrained model is very 
good (TLI = .976; Table 1), further demonstrating that the factor structure general-
izes over the multiple wave and multiple groups.

We use this final measurement model MM7 for subsequent CLPMs and RI-
CLPMs. To facilitate interpretations, we identified all solutions by fixing the fac-
tor loading of the first indicator of each MSC factor to a constant value. However, 
instead of fixing the value to 1.0, we fixed it to the standardized factor loading in 
the scalar invariance solution. This results in a model in which factor loadings are 
invariant over time and group. The factor variance is 1.0 in wave-1, but is allowed to 
vary across waves. In this way, all responses are standardized relative to a common 
metric (that facilitates comparing parameter estimates in different waves), resulting 
in an unstandardized solution similar to a standardized solution. This parameteriza-
tion is particularly useful in the comparison of different cross-lag paths associated 
with different constructs.

We also note that all subsequent CLPMs and RI-CLPMs considered here are 
nested under our measurement model MM7. Hence, the measurement model MM7 
provides an important basis of comparison for all subsequent CLPMs and RI-
CLPMs, the structural invariance constraints imposed on them, and their exten-
sions to include additional lagged parameters. More specifically, because all rela-
tions among the 15 factors (MSC, school grades, and test scores in each of the five 
waves) are freely estimated, this model MM7 is fully saturated in terms of these 
relations. In contrast, all the various CLPMs and RI-CLPMs place constraints upon 
these relations. To the extent that the constraints are reasonable, the fit of the con-
strained CLPMs and RI-CLPMs should approach that of our measurement model 
MM2. We consider this a fundamentally important contribution to evaluating fit for 
the CLPMs and RI-CLPMs that is rarely considered—even in studies based on fully 
latent CLPMs and RI-CLPMs.

Results

Relations Among the Variables

Table  2 is a latent correlation matrix of relations between the 15 factors (MSC, 
school grades, and test scores in each of the five waves). This is a latent multi-
trait–multimethod (MTMM) correlation matrix in which time is the "method" fac-
tor (for further discussion, see Marsh & Huppert et al., 2020; Marsh, et al., 2010). 
Thus, the results indicate that all three constructs are highly stable and consistent 
over the five waves. The average lag-1 correlations (i.e., test–retest correlations 
in adjacent waves separated by one year) for matching traits are .71 (.68-0.75) for 
MSC, .82 (.77-.86) for test scores, and .64 (.58-.68) for school grades. Reflecting 
the typical simplex pattern, lag-2 test–retest correlations are somewhat smaller, but 
still substantial for all three constructs. Indeed, Year 5 factors are significantly corre-
lated even with Year 9 factors, particularly for test scores (r = .71) but also for MSC 
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(r = .50) and school grades (r = .45). These results indicate substantial stability over 
time for all three constructs, consistent with the rationale for the RI-CLPM.

Compared to the stability (test–retest) correlations, mean correlations among dif-
ferent constructs within the same wave are systematically smaller: .34 for MSC and 
Test scores; .56 for MSC and school Grades; and .45 for Grades and Test scores. 
Consistent with expectations (see Research Hypotheses), MSCs are systematically 
more highly correlated with school grades than test scores. Although lag-1 corre-
lations among the different constructs are lower than those in the same wave, the 
pattern of correlations remains consistent. These results support the distinctiveness 
(discriminant validity) of the three constructs.

Also relevant are the relations between covariates (demographic variables) with 
our measures of MSC, school grades, and test scores (Table 2). Our primary interest 
is how incorporating these covariates into our model affects support for the REM 
hypotheses. However, we are also interested in relations of the covariates with MSC 
and achievement, and their consistency over time. Gender differences consistently 
favor boys for MSC and, to a lesser extent, math test scores. However, there are 
almost no gender differences in terms of math school grades. Also consistent with 
gender stereotypes, achievement at the end of primary school favors girls for verbal 
achievement and boys for math achievement. Primary school math grades consist-
ently correlated highly with math test scores over the subsequent five years (.65 to 
.70). However, they were also significantly correlated with math school grades and 
MSC in subsequent years. Compared to primary school math grades, primary school 
German grades were less positively correlated with math test scores and grades, and 
were almost uncorrelated with MSC. Thus, for purposes of the present investigation, 
primary school grades provide particularly strong covariates to control achievement 
levels from before the start of secondary school.

The results also demonstrate differences between the tracks. Not surprisingly, the 
largest differences are for primary school grades that were the main basis for assign-
ing students to secondary school tracks (.62 and .58 for High track, -.66 and -.66 for 
low track). Differences in test scores are also substantial (.43-.53 for High track, -.60 
to -.51 for low track). In contrast, reflecting grading-on-a-curve and well-established 
frame-of-reference effects, track differences are much smaller for school grades and 
MSCs (for further discussion, see Marsh, et al., 2018a, 2018b).

Directional Ordering

Directional Ordering: CLPMs.  For the basic CLPMs (see Basic Models MB1a-MB3a 
in Tables 3 and 4), we found support for our a priori (REM) hypotheses for paths 
from MSC to school grades (MB1a), test scores (MB2a), and the combination school 
grades and test scores (MB3a). In addition, the model fit was good for all three basic 
CLPMs. However, the fit for the CLPM MB3a (Table 3, e.g., TLI = .954) was not 
as good as the corresponding measurement model MM7 (Table 1, e.g., TLI = .976).

The critical parameter estimates of the CLPMs (see Fig.  1) for testing REM’s 
hypotheses are the cross-lag paths relating two achievement measures and MSC 
(Bxy, Byx, Bxz, Bzx—the values are shaded in Table 4). However, also of interest 
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are the stability coefficients (Bxx, Byy, Bzz), and the cross-lag paths relating the two 
achievement measures (Bzy, Byz). We note that each of these paths was constrained 
to be equal across the five waves of data. In support of REM hypotheses, all eight of 
these paths are significantly positive in all three models (MB1a, MB2a, and MB3a in 
Table 4). Also consistent with Research Hypothesis 2, paths in the MB3a based on all 
three constructs are somewhat smaller than the corresponding paths in models with 
MSC and only grades (MB1a) or MSC and only test scores (MB2a).

Nevertheless, even in the more demanding model MB3a, all stability and cross-
lag paths are significantly positive and consistent with models MB1a and MB2a. 
Substantively, the interpretation of the CLPM results is straightforward. There are 
modest but highly consistent reciprocal effects between MSC, math school grades, 
and math test scores.

The primary focus for Research Hypotheses 1 and 2 is the autoregressive stabil-
ity and cross-paths relating constructs from one wave to the next. However, it is also 
relevant to consider the undecomposed (between-person) within-wave variances and 
covariances (Table 5). At wave-1, these are substantial, but residual variances and 
covariances for waves 2–4 (controlling values from the preceding wave) are substan-
tially smaller. Nevertheless, the variance explained in each construct by the same 
constructs in the immediately preceding wave is substantial (MultR2 = .55, MSC; 
.54, tests; .46, grades).

Directional Ordering: RI‑CLPMs.  For RI-CLPMs (Tables 3, 4 and 5), we evaluated 
models that parallel the corresponding CLPMs of structural invariance. Again, we 
found support for the REM (Research Hypothesis 1 and 2) hypotheses for MSC for 
school grades (MB1b), test scores (MB2b), and the combination school grades and 
test scores (MB3b). Each of these models had an excellent fit to the data (TLIs: 

Table 3   Relations between Math Self-concept, Standardized Achievement Test Scores, and School 
Grades over time. Goodness-of-Fit for Basic Cross-lag Panel Models (CLPMs) and Random Intercept 
Cross-lag Panel Models (CLPMs)

RMSEA = root-mean-square error of approximation, CFI = confirmatory fit index, TLI = Tucker-Lewis 
index.: MSC = math self-concept. For both for CLPMs and RI-CLPMs, we present results separately for 
models with achievement represented by only school grades (MB1), only test scores (MB2), or both test 
scores and school grades (MB3, see Fig. 1)

Basic Models (MB) Chi-SQ Df RMSEA CFI TLI

Cross-Lag-Panel Model (CLPM)
MB1a. Grade Only 3117 1636 0.028 0.965 0.962
MB2a. Test Only 3135 1636 0.028 0.965 0.962
MB3a. Grades and Tests 4312 2156 0.029 0.958 0.955
CLPM with Random Intercepts (RI-CLPM)
MB1b. Grade Only 2732 1629 0.024 0.974 0.972
MB2b. Test Only 2561 1629 0.022 0.978 0.976
MB3b. Grades and Tests 3510 2137 0.023 0.973 0.971
MB3b. Grades and Tests new 3496 2140 0.023 0.974 0.971

2720 Educational Psychology Review (2022) 34:2697–2744
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.971-0.976). Furthermore, the fit of MB3b approached the fit of the corresponding 
measurement model (TLI = .971 for MB3b in Table 3 and .976 for MM7 in Table 1).

The global trait factors representing decomposed between-person differences are 
the unique feature of RI-CLPMs. Consistent with expectations and in support of the 
appropriateness of the RI-CLPMs, the global trait factors account for much of the 
variance in MSC, test scores, and school grades (Table 5). Furthermore, these trait 
factors are substantially correlated (rs = .64 to .80, Table  5). In contrast, the vari-
ances and covariances for the within-person components are substantially smaller, 
although they are all are positive and statistically significant (Table  5). Because 
the variance components for the global trait factors are substantial, the variance 
explained in each construct by the same constructs in the immediately preceding 
wave is modest (MultR2 = .25, MSC; .08, tests .15 grades).

In support of REM hypotheses, all three models’ stability and cross-lag paths are 
significantly positive (MB1b, MB2b, and MB3b in Table 4). Although the paths in 
the MB3b based on all three constructs are somewhat smaller than the correspond-
ing paths in MB1b and MB2b, the differences are small. Thus, RI-CLPMs show 
modest reciprocal effects between MSC, math school grades, and math test scores in 
support of REM hypotheses.

Directional Ordering: Juxtaposing CLPMs and RI‑CLMPs

In Research Question 3, we noted no clear a priori basis for predicting differences 
in results based on latent CLPMs and RI-CLPMs, and few studies comparing them 
empirically. In this respect, juxtaposing CLPMs and RI-CLPMs is substantively 
important for ASC research and better understanding CLPMs and RI-CLPMs. Here we 
highlight several key findings from comparing results from CLPMs and RI-CLPMs.

Table 4   Relations between Math Self-concept, Standardized Achievement Test Scores (Tst), and School 
Grades Achievement (Grd) Over Time for Basic Cross-lag Panel Models (CLPMs) and Random Inter-
cept Cross-lag Panel Models (RI-CLPMs)

To(Predicted, lag-n)

From (Predictor, lag t-1)-t

Test
on

Test
SE

Test
on

MSC
SE

Test
on

Grade
Se

Grade
on

Grade
SE

Grade
on

Test
SE

Grade
on

MSC
SE

MSC
on

MSC
SE

MSC
on

Test
SE

MSC
on

Grade
SE

Cross-Lag Panel Models (CLPM) 
MB1a. Grade Only .584 .012 .127 .012 .703 .013 .108 .011
MB2a. Test Only .630 .010 .144 .007 .702 .012 .162 .012
MB3a. Grades and Tests .583 .011 .061 .008 .1189 .008 .450 .013 .278 .014 .070 .012 .675 .014 .136 .013 .067 .012

MB1b. Grade Only .283 .025 .137 .027 .435 .04 .12 .022
MB2b. Test Only .184 .02 .102 ,018 .501 .038 .129 .029
MB3b. Grades and Tests new .174 .019 .069 .018 .038 .012 .267 .024 .160 .026 .133 .027 .426 .039 .098 .027 .120 .022
MB3b. Grades and Tests .174 .019 .067 .018 .025 .012 .262 .024 .126 .026 .133 .027 .425 .04 .083 .027 .115 .022

CLPM with Random Intercept (RI-CLPM)

MSC = math self-concept. SE = standard error. Shown are the lag-1 path coefficients that are common 
to the CLPMs and RI-CLPMs (see Fig. 1). Stability paths link the same construct in adjacent waves: test 
on test; grade on grade, math self-concept (MSC) on MSC. Cross-paths link one construct to a different 
construct in adjacent waves. Shaded paths are cross-lag paths involving MSC that are the main focus of 
the study. For both for CLPMs and RI-CLPMs, we present results separately for models with achieve-
ment represented by only school grades (MB1), only test scores (MB2), or both test scores and school 
grades (MB3, see Fig. 1). All paths are statistically significant (p < .05) in relation to standard errors 
(SEs)
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Table 5   Variances and Covariances For Math Self-Concept (MSC), Tests, and Grades Based on the RI-
CLPM (MB3b Table 4)

For the RI-CLPM, variances and covariances are presented separately for the Global Trait (decomposed 
between-person) components and the within-wave residual components (within person variances and 
covariances). For the CLPM, the variance and covariances are the undecomposed between-person esti-
mates. Mult R2 terms are the amount of variance in MSC, tests scores, and school grades in waves 2 – 5 
that can be explained by the same constructs in the preceding wave (i.e., Wave 1 – 4)

Parameters CLPM RI-CLPM

Estimate SE Mult R2 Estimate SE Mult R2

Global Trait Variance Components
  MSC .47 .03
  TEST .38 .01
  Grades .47 .02

Global trait UNstandardized Covariances
  MSC & TESTs .27 .02
  MSC & Grades .31 .02
  Grades & TESTs .34 .01

Global trait standardized correlations
  MSC & TESTs .64 .02
  MSC & Grades .65 .02
  Grades & TESTs .80 .02

Mean Variance Components Across Waves
Residual Variance (Wave2-5)
  MSC .47 .01 .55 .43 .01 .25
  TEST .28 .01 .54 .20 .01 .08
  Grades .56 .01 .46 .49 .01 .15

Variance Component (Wave 1);
  MSC .79 .03 .38 .03
  TEST .96 .03 .35 .02
  Grades .71 .02 .46 .02

Mean Covariances Across Waves
UNstandardized Covariances (Wave 1 only); .09 .01
  MSC & TESTs .32 .02 .12 .02
  MSC & Grades .41 .02 .10 .01
  Grades & TESTs .45 .02

Standardized correlations (Wave 1 only) .22 .04
  MSC & TESTs .43 .02 .32 .05
  MSC & Grades .48 .02 .25 .03
  Grades & TESTs .55 .02

Standardized correlation (Waves 2- 5) .17 .02
  MSC & TESTs .22 .01 .48 .02
  MSC & Grades .23 .01 .09 .02
  Grades & TESTs .38 .03

Residual Covariances (Waves 2–5) .05 .01
  MSC & TESTs .10 .01 .22 .01
  MSC & Grades .13 .01 .03 .01
  Grades & TESTs .11 .01 .47 .03
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First, the fit indices are marginally better for RI-CLPMs than the CLPMs 
(Table 3). However, given that the CLPMs are nested under RI-CLPMs, this is not 
surprising. Indeed, it is surprising that the differences are not larger, given the sub-
stantial stability of the constructs.

Second, the major difference in the path coefficients (Table 4) is the substantially 
smaller stability coefficients for the RI-CLPMs. Again, this is consistent with the 
theoretical rationale and control for random intercepts in RI-CLPMs (see Fig. 1 and 
earlier discussion on the different conceptualization of between-person differences).

Third, the variance explained in each construct by the same constructs in the 
immediately preceding wave is substantially larger for CLPMs (MultR2 = .46 to .55) 
than for RI-CLPMs modest (MultR2 = .08 to .25). This is a natural consequence of 
the substantial global trait factors in the RI-CLPMs.

Most importantly, both CLPMs and RI-CLPMs support the REM hypotheses, 
particularly for paths relating the two achievement measures and MSC (Bxy, Byx, 
Bxz, Bzx—the paths are shaded in Table 4). Each of these cross-lag paths is modest 
(.061—.136 for CLPM MB3a; .067—0.133 for RI-CLPM MB3b), but highly sig-
nificant and consistent across CLPMs and RI-CLPMs. In summary, there is good 
support for REM hypotheses based on both CLPMs and RI-CLPMs.

Extended Models for CLPMs and RI‑CLPMs

In the next series of models, we extend the basic CLPMs and RI-CLPMs based on 
model MB3a (CLPM) and MB3b (RI-CLPM; Tables 3 and 4) in several respects. 
First (the "ML" models in Tables 5 and 6), we included lag-2 paths (see Research 
Question 4) between non-adjacent waves (e.g., paths relating factors in wave-1 to 
wave 3, wave 2 to wave 4, etc.). Second (the "MC" models in Tables 5 and 6), we 
added covariates to the basic models (see Research Question 5). Finally, we tested 
models with additional lag-2 paths and covariates (the "MLC" models in Tables 5 
and 6).
CLPMs: Lag‑2 Paths.  We note that the basic model with no lags (MB3a in Table 3) is 
nested under these ML models (ML1a and ML2a), and all these models are nested 
under the measurement model (MM7 in Table 1), providing appropriate bases for 
evaluating goodness-of-fit. Consistent with expectations, additional lag-2 paths 
noticeably improved the fit of the CLPMs (Table  6). Compared to the fit of the 
lag-1 CLPM (TLI = 0.955, MB3a in Table 3), the CLPM with lag-2 paths was better 
(TLI = .972, ML1a in Table 6). In Model ML2a, we showed that this improved fit 
was primarily a function of the stability paths when we eliminated the lag-2 cross-
lagged paths (TLI = .971, ML2a in Table 6). We also note that the fits of ML2a and 
ML2b (Table 6) were only marginally less than the fit of the corresponding meas-
urement model (TLI = .976, MM7 in Table 1). As noted earlier, this measurement 
model MM7 is fully saturated in relation to the structural model constraints imposed 
in the CLPMs. This comparison further supports these constraints and the need to 
extend to CLPM to include additional lagged effects (also see earlier discussion). 
Nevertheless, the critical issue is how the inclusion of the lag-2 stability path influ-
ences support for the REM (Research Hypotheses 1 and 2).
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Compared to the corresponding basic CLPM with no lag-2 paths (MB3a in 
Table 3), the stability and cross-lagged paths for models with additional lags (ML1a 
and ML2a, Table 7) are smaller. Not surprisingly, these differences were particularly 
evident for the stability coefficients (i.e., lag-1 effects were smaller when we added 
lag-2 paths). Thus, for example, the lag-1 stability paths in ML2a that also included 
lag-2 stability paths (.458, .401, .531; Table 7) were substantially smaller than the 
corresponding values in MB3a with only lag-1 paths (.583, .450, .675; Table  3). 
Although there were also differences in the cross-lagged paths relating achievement 
and MSC (.045, .060, .099 & .067 for ML1a vs. .061, .070, .136 & .067 for MB3a), 
these differences were much smaller. Critically, all the stability and cross-lagged 
paths were significantly positive in all CLPMs with and without lag-2 paths. Impor-
tantly, the four critical cross-lag paths that test REM (shaded in Tables 4 and 7) were 
all significantly positive, even though the values were slightly smaller for the CLPM 
that included lag-2 paths.

CLPMs: Covariates  Models with covariates are not nested under models considered 
thus far. Hence the fit indices are not directly comparable. To provide a basis of 
comparison, we fit a model in which we constrained all paths from the three covari-
ates (math and verbal achievement from primary school and gender) to MSC, 
grades, and test scores to be zero (MC3a in Table 6, TLI 0.932). The fit improved 
when these paths were freely estimated (MC1a in Table 6, TLI 0.957). These results 
indicate that the effects of these covariates were not substantial, even though the 
covariates correlated substantially with our outcome variables (Table 2). Hence, it 
is not surprising that the autoregressive stability and cross-lagged path coefficients 
were not substantially affected by including the covariates (Models MC1a & MC2a 
in Table 7 compared to model MB3a in Table 4). Indeed, the changes were small 
and not even consistent in direction for the four critical cross-lagged paths relating 
achievement and MSC (those shaded in Tables  4 and 6). Nevertheless, there was 
some evidence that these covariates had effects beyond the first wave of data, con-
sistent with our recommendation that paths from covariates to all data waves should 
be considered.

CLPM: Additional Lags and Covariates  Consistent with earlier discussion, the addi-
tion of both lag-2 paths and covariates (MLC models in Tables 6 and 7) led to a 
better fit (e.g., TLI = 0.957 for MC1a and TLI = 0.971 for MLC1a). Although com-
parisons with models in which covariate paths were constrained to be zero again 
showed that there were covariate effects, these effects were modest (e.g., TLI = 0.971 
for MLC1a vs. TLI = 0.949 for MLC3a). Unsurprisingly, lag-1 stability paths are 
smaller for these MLC models than the corresponding MB, ML, and MC models. 
However, the effects of these lag-1 stability coefficients for the MLC models are 
similar to the corresponding ML models, suggesting that the effects of lag-2 paths 
are greater than the effects of the covariates. This pattern of results suggests that 
the inclusion of lag-2 effects provides some control for unmeasured, time-invariant 
covariates.
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The critical parameters for testing the REM hypotheses are the cross-lag paths 
relating achievement and MSC (shaded in Tables  4 and 7). These four paths in 
MLC1a (Table 7) are all statistically positive and similar in size to the correspond-
ing paths in the basic CLPM: 0.060, 0.101, 0.086, 0.069 (MLC1a, Table  7) vs. 
0.059, 0.091, 0.085, 0.066 (MB3a, Table 4). In summary, the reciprocal effects that 
were hypothesized by the REM were robust against the inclusion of lag-2 paths and 
the effects of additional covariates.

Table 6   Relations between Math Self-concept, Standardized Achievement Test Scores, and School 
Grades over time. Goodness-of-fit for Extended Cross-lag Panel Models (CLPMs) and Random Intercept 
Cross-lag Panel Models (CLPMs)

RMSEA = root-mean-square error of approximation, CFI = confirmatory fit index, TLI = Tucker-Lewis 
index. CLPMs and RI-CLPMs presented here are extensions of the basic models (Tables  3 & 4; also 
see Fig. 1). lag-2 = models with paths from each wave to the next two waves (lag-2) in addition to lag 1 
paths.; covariates = gender and math and verbal achievement measures from year 4 (last year of primary 
school – see Fig. 1)

Chi-SQ Df RMSEA CFI TLI

Cross-Lag-Panel Models (CLPM)
Lag-2, No Covariates (ML)
  ML1a. lag-2:Cross- & Stability-paths 3337 2066 .023 .975 .972
  ML2a. lag-2: Stability paths only 3491 2120 .023 .973 .971

Covariates No lag-2 (MC)
  MC1a. Covariates: YR5 to YR9 4475 2375 .027 .961 .957
  MC2a. Covariates: YR5 only 5083 2477 .03 .951 .947
  MC3a. Covariates: Paths fixed to zero 5923 2513 .034 .937 .932

Lag-2 + Covariates (LC)
  MLC1a. lag-2 Covariates-YR5-Yr9 3629 2288 .022 .975 .971
  MLC2a. lag-2 Covariates-YR5 4071 2396 .020 .969 .965
  MLC3a. lag-2 Covariates-Fixed to 0 4885 2423 .029 .954 .949

Random Intercept CLPM (RI-CLPM)
Lag-2, No Covariates (ML)
ML1b. lag-2: Cross- & Stability-paths v2 3261 2050 .022 .976 .973
  ML2b. lag-2: Stability paths only 3335 2101 .022 .976 .973

Covariates No lag-2 (MC)
  MC1b. Covariates: Yr5 to YR9 3790 2365 .023 .973 .970
  MC2b. Covariates: Yr5 only 4920 2464 .029 .954 .949
  MC3b. Covariates: Paths fixed to zero 5074 2500 .03 .952 .948
  MC4b. Covariates to Global Trait 4055 2473 .023 .971 .968

Lags + Covariates (LC)
  MLC1b. lag-2 + Covariates-Yr5-Yr9 3548 2275 .022 .976 .972
  MLC2b lag-2 + Covariates-Yr5 only 4677 2383 .029 .957 .951
  MLC3b. lag-2 + Covariates-Fixed to 0 4828 2410 .029 .955 .949
  MLC4b. lag-2 + Covariates to Global Traits 3805 2387 .022 .974 .970
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Extended Models for RI‑CLPMs  Although we fit parallel models based on the RI-
CLPM structure, the interpretation of these models is fundamentally different. The 
global trait factors in RI-CLPMs are intended to absorb time-invariant (decomposed 
between-person) effects. Hence, based on the underlying rationale of the RI-CLPM, 
we did not expect that extending the models to include additional lags and covariates 
would have much effect on fit or the (within-person) stability or the cross-lagged 
paths that are of primary interest. Consistent with these expectations, the cross-lag 
and stability paths were largely unaffected by the inclusion of covariates and addi-
tional lagged effects. This finding demonstrates an important advantage of basic RI-
CLPMs compared to basic CLPMs—that do not include lag-2 effects and covari-
ates—concerning the robustness of the interpretations.

The additional lagged paths improved the fit only marginally (TLI = .971 for 
Model MB3b in Table 3 with no lagged effects vs. .973 for ML1b in Table 6 with 
lag-2). There were, however, effects of the covariates. This is evident in the differ-
ence in fit for MC3b that constrained these effects to be zero (TLI = .948 in Table 3) 
and MC1b where these effects were freely estimated (TLI = .970, Table  6). How-
ever, most of the effects of the covariates were explained in terms of the global trait 
factors (TLI = .968 in MC4b). This same pattern of results is evident for the corre-
sponding MLC models that include both lag-2 paths and covariates (Table 6). How-
ever, adding the lag-2 paths in the MLC models improved the fit only marginally 
compared to corresponding MC models with no lag-2 path.

The parameter estimates across the RI-CLPMs with additional lag-2 paths 
and covariates (Table  7) are also similar to those for the basic RI-CLPM MB2 
(Table 4) with none of these extensions. Of particular interest, the (within-person) 

Table 7   Relations between Math Self-concept, Standardized Achievement Test Scores (Tst) and School 
Grades Achievement (Grd) over time. Cross-lag Panel Models (CLPMs)

To(Predicted, lag n)

From (Predictor, lag n-1)

Test
on

Test
SE

Test
on

MSC
SE

Test
on

Grade
Se

Grade
on

Grade
SE

Grade
on

Test
SE

Grade
on

MSC
SE

MSC
on

MSC
SE

MSC
on

Test
SE

MSC
on

Grade
SE

CLPMs
Lag-2 Paths No Covariates (ML)

ML1a. lag-2 Cross & Stability paths .466 .013 .042 .013 .172 .034 .389 .015 .230 .021 .092 .020 .537 .021 .111 .02 .064 .016
ML2a. lag-2 Stability paths only .458 .012 .045 .009 .075 .009 .401 .015 .207 .017 .060 .014 .531 .019 .099 .016 .067 .013

Covariates No lag (MC)
MC1a. Covariates to Yr5-Yr9 .542 .012 .057 .009 .097 .008 .459 .014 .239 .017 .085 .013 .642 .015 .119 .014 .074 .013
MC2a. Covariates to Yr5 only .612 .012 .058 .009 .109 .009 .483 .015 .291 .021 .071 .014 .697 .015 .14 .016 .046 .013

Lags + Covariates (LC)
MLC1a. lag-2+Covariates to Yr5-Yr9 .446 .013 .06 .018 .058 .013 .368 .016 .181 .021 .101 .02 .524 .021 .086 .016 .069 .016
MLC2a lag-2+ Covariates to Yr5 only .458 .013 .058 .018 .065 .013 .386 .015 .187 .02 .093 .02 .528 .021 .083 .016 .069 .016
RI-CLPM
Lags, No Covariates (ML)

ML1b. lag-2 Cross & Stability paths v2 .319 .058 .064 .026 .012 .021 .264 .047 .147 .043 .160 .036 .447 .033 .103 .034 .102 .026
ML2b lag-2 Stability paths only .27 .057 .077 .018 .021 .016 .257 .037 .176 .033 .154 .031 .465 .031 .118 .029 .099 .022

Covariates No lag (MC)
MC1b. Covariates: Yr5 to YR9 .179 .02 .082 .017 .036 .013 .261 .024 .158 .025 .132 .027 .420 .037 .112 .027 .120 .022
MC2b Covariates: Yr5 only .180 .029 .101 .020 .036 .017 .260 .032 .213 .039 .163 .032 .487 .033 .163 .034 .103 .023
MC4b. Covariates to Global Trait .181 .02 .077 .018 .035 .013 .265 .023 .160 .025 .131 .026 .428 .037 .106 .027 .118 .022

Lags + Covariates (LC)
MLC1. lag-2 + Covariates-Yr5-Yr9 .214 .04 .068 .023 .029 .018 .279 .033 .211 .036 .136 .032 .439 .033 .138 .035 .096 .035
MLC3. lag-2 + Covariates-Yr5 only .36 .05 .057 .028 .047 .021 .313 .034 .238 .036 .12 .032 .46 .034 .133 .037 .0893 .024
MLC5. lag-2+ Covariates to Global 

Traits .334 .042 .056 .025 .032 .019 .277 .034 .21 .036 .137 .031 .447 .033 .124 .036 .094 .024

CLPMs and RI-CLPMs presented here are extensions of the basic models (Tables 3 & 4; also see Fig. 1). 
Cross-paths = autoregressive cross-path; Stability = autoregressivestability paths; covariates = gender 
and math and verbal achievement measures from year 4 (last year of primary school – see Fig. 1). lag-2 
= models with paths fromeach wave to the next two waves (lag-2) in addition to lag 1 paths. Global traits 
are the (between-person) trait factors for the RI-CLPM (see Fig.  1). Shaded paths are cross-lag paths 
involving MSC that are the main focus of the study
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cross-lagged paths relating achievement to MSC (shaded in Tables 4 and 7) were 
nearly unaffected. Thus, for RI-CLPM model MLC1b with both lag-2 effects and 
covariates, these paths (.068-.138, Table  7) are similar in size to the correspond-
ing paths for model MB3b (.067-.133. Table 4). In summary, the additional lagged 
effects and covariates had relatively little effect on parameter estimates or theoretical 
interpretations supporting REM hypotheses.

Discussion

In educational psychology, a substantial body of research demonstrates that ASC 
and achievement are reciprocally related based on CLPMs. However, recent research 
has challenged CLPMs’ appropriateness, arguing that RI-CLPMs provide a stronger 
(within-person) perspective and better control for unmeasured covariates. Never-
theless, few studies have actually compared results for the directional ordering of 
ASC and academic achievement based on CLPMs and RI-CLPMs. In this sense, our 
study is a substantive-methodological synergy; we apply and extend state-of-the-art 
quantitative research tools to address substantively important issues with implica-
tions for theory, methodology, and policy/practice. Whereas our substantive focus 
is central to educational psychology, we anticipate that methodological issues raised 
here—and some of the solutions offered to these issues—will have broad cross-dis-
ciplinary relevance.

Appropriate Interpretations of Within‑Person (RI‑CLPM) and Undecomposed 
Between‑Person (CLPM) Effects

The critical difference between CLPMs and RI-CLPMs is the (undecomposed) 
between-person (single-level) perspective in CLPMs and the within-person (multi-
level) perspective in RI-CLPMs. CLPMs are appropriate for comparisons between 
individuals. However, Hamaker et al., (2015; Mulder & Hamaker, 2021) and others 
express concerns that CLPMs confound within- and between-person effects in tests 
of directional ordering. The RI-CLPM evaluates the prospective temporary deviation 
from the trait level in one construct on change in the temporary deviation from the 
trait level in a second construct. The auto-regressive factors in the RI-CLPM (Axs, 
Ays, and Azs in Fig. 1) represent deviations from a student’s trait score rather than 
the individual differences that are the basis of the CLPM. Thus, the stability paths 
reflect the stability of rank-order differences in CLPMs. However, in RI-CLPMs, 
they reflect what Hamaker et al. (2015) refer to as within-person carry-over effects 
(or inertia), and what Kenny and Zautra (2001) refer to as slowly changing autore-
gressive factors. If these within-person stability paths are positive, elevated scores 
at one wave are likely to be associated with elevated scores in the next wave (i.e., to 
have a lasting effect on a later measurement wave beyond the stability captured by 
the RI component, the global trait factors). Likewise, the cross-lagged paths reflect 
undecomposed between-person processes in CLPMs, but within-person processes in 
RI-CLPMs. Hence, these two perspectives address fundamentally different questions 
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and often result in different conclusions, but are easily confounded. Hence, follow-
ing our earlier discussion and research questions (Orth et al., 2021), the appropriate 
interpretations of CLPM and RI-CLPM results in the present investigation are:

•	 CLPMs: When students have higher MSCs (compared to other students), they 
are likely to experience a subsequent rank-order increase in math achievement 
(compared to other students). Likewise, when students have higher math achieve-
ment (compared to other students), they are likely to experience a subsequent 
rank-order increase in MSC (compared to other students). Thus, undecomposed 
individual differences in MSC positively predict rank-order change in the rela-
tive position of math achievement, and undecomposed individual differences in 
math achievement positively predict rank-order change in the relative position 
of MSC. Moreover, these results are relatively unaffected by the introduction of 
lag-2 effects or covariates and generalize for achievement based on math school 
grades and test scores.

•	 RI-CLPMs: When students experience higher than their usual MSC (compared 
to their long-term average MSC over the duration of the study), they are likely to 
experience a subsequent increase in their levels of math achievement (compared 
to their long-term average math achievement over the duration of the study). 
Likewise, when students experience higher than their usual math achievement 
(compared to their long-term average math achievement), they are likely to expe-
rience a subsequent increase in their levels of MSC (compared to their long-term 
average MSC). Thus, decomposed within-person differences in MSC positively 
predict change in achievement, and decomposed within-person differences in 
math achievement positively change MSC. Moreover, these results are relatively 
unaffected by the introduction of lag-2 effects or covariates and generalize for 
achievement based on math school grades and test scores.

The Juxtaposition of Results Based On CLPMs and RI‑CLPMs

Recent educational psychology research suggests CLPMs and RI-CLPMs as antag-
onistic, even suggesting that RI-CLPM’s decomposed between- and within-person 
perspective is always more appropriate (but  see discussion by Orth et  al., 2021). 
However, both perspectives provide useful substantive information for under-
standing ASC and achievement relations over time. In this sense, we see the two 
approaches as complementary. Each has different strengths and weaknesses, provid-
ing different perspectives on longitudinal relations between ASC and achievement. 
Most educational and psychological research is cross-sectional, focusing on rela-
tions among variables across persons (an undecomposed between-person perspec-
tive). However, many research questions and interpretations of results are expressed 
implicitly (or even explicitly) as causal relations, even when the design or statisti-
cal analyses are not appropriate for these interpretations. The equivalence in inter-
individual and intraindividual effects is only likely under limited conditions (e.g., 
stationarity of parameter estimates over time and homogeneity of relations between 
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variables across individuals) that are unlikely to be met. Hence, following Voelkle 
et al. (2014), we argue that rather than seeing within- and between-person analyses 
as competing research paradigms, the focus should be on commonalities in conjunc-
tion with their differences.

In our study, the patterns of cross-lag paths critical to the interpretation of direc-
tional-ordering and support for REM hypotheses (Research Hypotheses 1 & 2) are 
remarkably consistent across variations and extensions of CLPMs and RI-CLPMs. 
Indeed, even the sizes of the reciprocal effects are similar across both CLPMs and 
RI-CLPMs. These results suggest that our conclusions are consistent for both unde-
composed between-person (CLPM) and within-person (RI-CLPM) perspectives. 
Importantly, the juxtaposition between results and the different issues faced by both 
models provides a stronger basis of interpretation of the results than considering 
either model in isolation.

Methodological Issues

Goodness‑of‑fit and the Measurement Model.  Goodness-of-fit should be an impor-
tant consideration in model evaluation, as exemplified in our study. Longitudinal 
studies should routinely begin with a systematic evaluation of the measurement 
model and its invariance over time. Application of both CLPMs or RI-CLPMs is 
problematic if there is not good support for at least configural invariance. Metric 
invariance underpins the routine constraint of critical stability and cross-lag paths 
over time. Metric invariance also underpins RI-CLPMs’ focus on temporal devia-
tion scores (i.e., the difference between the wave and the mean across all waves) 
for measures at each wave. We also note that manifest models are biased by the 
presence of measurement errors and correlated measurement errors (i.e., correlated 
uniquenesses demonstrated in the present investigation in Table 1). A lack of met-
ric invariance does not invalidate the application of CLPMs but compromises the 
rationale underpinning RI-CLPMs. However, even for CLPMs a lack of invariance 
complicates the interpretation of results, particularly when there are many waves of 
data. Hence, all CLPMs and RI-CLPMs should begin with a systematic evaluation 
of the underlying measurement model.

We also note that the final measurement model is saturated in terms of relations 
between constructs. Thus, CLPMs and RI-CLPMs used here (and many other theo-
retical models of longitudinal data) are nested under the corresponding measurement 
model (MM7 in Tables 1 and 2). Hence, the goodness-of-fit for this measurement 
model provides a basis of comparison for our subsequent CLPMs and RI-CLPMs 
independent of assumptions made by these models. If the fit of either the CLPM or 
the RI-CLPM is meaningfully worse than the measurement model, then research-
ers may need to explore further the basis of the misfit and whether it has substan-
tively important implications for interpretation of the results. Here we demonstrated 
that goodness-of-fit indices for the basic CLPMs (Models MB1a-MB3a in Table 3) 
were good relative to traditional guidelines but not compared to the corresponding 

2729Educational Psychology Review (2022) 34:2697–2744



1 3

measurement model (MM7 in Table 1). In contrast, the fit of the basic RI-CLPM 
approached that of the measurement model. We also note that an inspection of esti-
mates based on this preliminary measurement model provides potentially valuable 
insights into the data. Implicit in this recommendation is the importance of measur-
ing constructs with multiple indicators that allow researchers to test the measure-
ment model.

Goodness‑of‑fit and Choice of Models  Because basic CLPMs are nested under the 
corresponding RI-CLPMs, RI-CLPMs will necessarily provide a better fit for indi-
ces that do not correct for CLPMs’ greater parsimony. However, Orth et al., (2021; 
see also Asendorpf, 2021) argued that because CLPMs and RI-CLPMs address dif-
ferent research questions, the model choice should be based on the study’s aims 
and evaluation of parameter estimates in addition to relying solely on goodness-of-
fit. However, we would like to offer a caveat about goodness-of-fit. If RI-CLPMs 
and the corresponding measurement model fit better than CLPMs, then there is 
systematic variation or covariation unexplained by CLPMs. The difference in fit 
between basic CLPMs and RI-CLPMs suggests this is due to global trait factors in 
RI-CLPMs. Here, the fit of the CLPMs improved (and approximated the fit of the 
RI-CLPM) with the inclusion of lag-2 stability paths, as will often be the case for 
CLPMs. This issue is evident even in comparing the CLPM and the corresponding 
measurement model, even without considering the RI-CLPM. Consistent with our 
supposition following from Marsh, Pekrun, Murayama, et al. (2018; also see Lüdtke 
& Robitzsch, 2021), the goodness-of-fit for the extended CLPM that included lag-2 
effects fit was similar to that of the RI-CLPM. Because this will generally be the 
case, goodness-of-fit should no longer be such a critical issue in comparing the RI-
CLPM and CLPM with lag-2 effects or, more generally, all lag > 1 effects (e.g., full-
forward CLPMs).

Nevertheless, when additional lagged paths are tested (either a priori based on pre-
vious research or post hoc), it is important to evaluate support for a priori hypotheses 
and research questions across these extended models—a sensitivity test. Hence, even 
when CLPMs are more appropriate for a study’s research questions, it is appropriate 
to evaluate its fit compared to the corresponding measurement model. Of course, if 
research questions are more appropriate for RI-CLPMs, they would be more appro-
priate than CLPMs with additional cross-lag paths, even if the two models fit the data 
equally well. Nevertheless, to the extent that CLPMs with lag-2 paths fit the data as 
well as RI-CLPMs, then CLPMs become a viable alternative to RI-CLPMs even in 
relation to goodness-of-fit. More broadly, both perspectives provide potentially useful 
information for understanding substantive issues. Hence, we include detailed analy-
ses for both models and juxtapose interpretations based on each.

Potential Biases Associated with Covariates  Here we considered three covariates: 
gender and math and German school grades measured in primary school, prior to 
the start of secondary schooling. We note that these covariates are of interest (e.g., 
see results in Table 2) in their own right. Thus gender differences were consistent 
with previous research and gender stereotypes (girls had higher verbal achievement 
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but lower scores on the math constructs—particularly MSCs). Compared to Ger-
man primary school grades, math primary school grades are more highly correlated 
with secondary math grades (.26-.46 vs. .12-.29) and math test scores (.65-.70 vs. 
.47-.57). However, consistent with previous research, the differences in effects of 
primary school verbal and math achievement are starker for MSC (+ .18 to + .25 vs. 
-.08 to -.04), where even the direction of relations changes.

Interestingly, test scores collected in the five secondary school years were more 
highly correlated with primary school grades (0.52 to 0.70) than with school grades 
in secondary school (0.12 to 0.46). Furthermore, correlations between primary 
school grades and particularly test scores are reasonably consistent over the first five 
years of secondary school. Thus, for example, correlations with test scores in Year 
9 (0.55 for verbal, 0.69 for math) are only marginally higher than the correspond-
ing test scores in Year 5 (0.47 for verbal, 0.65 for math). These results suggest that 
school grades in the untracked primary schools are more like test scores, reflecting a 
more common underlying metric than grades in Years 5–9 in the tracked secondary 
schools. These findings also have potentially important implications for issues such 
as grading on a curve and the appropriate interpretations of achievement based on 
test scores and school grades.

For present purposes, our overriding interest in covariates is how their inclusion 
or omission affects the results for CLPMs and RI-CLPMs. We can think of these as 
omitted covariates in the basic models (Tables 3 and 4) that do not include them. 
Hence, the comparison with models that include covariates demonstrates how the 
results are affected by their omission. However, the pattern of results, particularly 
the critical cross-lagged paths used to determine directional-ordering and support 
for REM hypotheses, was little affected by the inclusion of these covariates in either 
CLPMs or RI-CLPMs. Thus, even though particularly the primary school grades are 
powerful covariates substantially related to our outcome variables, the interpreta-
tions of the CLPMs and RI-CLPMs were robust concerning their omission.

Potential Biases Associated with Unmeasured Covariates  In all studies with non-
experimental data, there will always be additional, unmeasured covariates (Reich-
ardt, 2019). These unmeasured covariates can be fixed covariates (measured at the 
first wave  and assumed to be constant across the different waves like our demo-
graphic variables) or time-varying covariates (assumed to take on different values at 
different waves). The effects of fixed covariates can be time-invariant (the same for 
each wave) or time-varying. Time-varying covariates could be specific to particular 
waves, or even be auto-regressive covariates that change gradually or systematically 
over time. However, the nature of such biases and when they are likely to occur has 
not been given sufficient attention in CLPM and RI-CLPM studies (Schuurman & 
Hamaker, 2019).

We believe that the main role of covariates is to control for confounding. There-
fore, we recommend including covariate effects on all REM variables (e.g., MSC 
and achievement) at each measurement point. For the CLPMs, fixed covariates that 
are truly time-invariant (i.e., their effects do not change over the time-frame being 
considered) are likely to have their greatest direct effect on the first data wave (Lag-1 
effects). Although these fixed covariates can continue to have substantial total effects 
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in subsequent waves, at least some of these total effects are likely to be mediated 
through time 1 constructs. This reasoning is sometimes used to justify models in 
which the effects of covariates are only considered for wave 1 outcomes (see discus-
sion by Little, 2013; Marsh, et al., 2018a, 2018b). However, even fixed covariates 
can have time-varying direct effects on subsequent waves beyond those in the first 
wave (e.g., sleeper effects). For example, gender might have stronger effects over 
time, implying that gender differences in math and verbal constructs become more 
differentiated over time (i.e., the gender differentiation hypothesis). Similarly, it is 
common for differences among young children to grow larger over time (i.e., Mat-
thew effects). Mund et al. (2021; see also Marsh, et al., 2018a, 2018b) make a simi-
lar point. They note that the effects of fixed covariates (e.g., gender, ethnicity) can 
vary across different waves. From this perspective, fixed covariates can have time-
varying or time-invariant effects at all waves. Whether the effects are time-varying 
or time-invariant is an empirical question that can only be addressed if the data are 
available and appropriate analyses are pursued. Hence it is always appropriate to test 
for the effects of fixed—as well as time-varying—covariates across all waves.

RI-CLPMs, due to the addition of global trait factors, provide better control for 
fixed covariates with time-invariant effects. In particular, the effects of time-invar-
iant covariates on stability and cross-lagged estimates are minimized, because the 
global trait factors absorb the effects of these covariates. Hence, for RI-CLPMs in 
the present investigation, neither the within-person stability nor the cross-lagged 
paths were much affected by the omission of covariates.

Compared to RI-CLPMs, CLPMs are more vulnerable to the effects of unmeas-
ured covariates, even those that are time-invariant. Following VanderWeele et  al., 
(2020; Marsh, et al., 2018a, 2018b), we introduced lag-2 paths as a strategy to con-
trol unmeasured covariates. In support of this strategy, we found that the effects of 
covariates were reduced when lag-2 paths were included in CLPMs (see Table 7). 
This is important in the comparison of RI-CLPMs and CLPMs with lag-2 effects. 
However, because the effects of covariates were not substantial (even though the 
covariates were substantially related to MSC and achievement, Table 2), our tests of 
this strategy were not strong.

The most severe limitation of both CLPMs and RI-CLPMs is their inability to 
control the effects of unmeasured time-varying confounders, including fixed covari-
ates whose effects vary over time. Following from Marsh et al. (2018a, 2018b; also 
see Lüdtke & Robitzsch, 2021), we suggested that extending the CLPM to include 
lag-2 effects provided a stronger control for covariates. Our rationale is that even if 
a confounder specific to Wave-T has an effect on REM variables at Wave-T + 1, it 
is less likely to have an effect on REM variables at Wave-T + 2 after controlling for 
the effects of REM variables from Wave-T and Wave-T + 1 (see VanderWeele et al., 
2020). Certainly, this extended model provides stronger controls for time-varying 
and time-invariant covariates than CLPM without lag-2 effects. However, further 
research is needed to determine how and under what circumstances this extended 
CLPM compares favorably to the RI-CLPM, particularly in relation to controlling 
for time-varying covariates (see Usami, Murayama, et al., 2019; Usami, Todo, et al., 
2019, 2021).
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How to Model Time‑varying Covariates that Are Measured  The best way to control 
confounders is to measure them and include them in the model. This is relatively 
straightforward for fixed covariates like demographic variables that causally pre-
cede measurement of the autoregressive factors. However, the appropriate modeling 
of time-varying autoregressive covariates measured in each  wave is more compli-
cated. Indeed, we did not specifically consider any time-varying covariates. Simi-
larly, recent extensions of basic RI-CLPMs to include covariates (e.g., Mulder & 
Hamaker, 2021) only considered fixed covariates (like the demographic variables in 
our study). However, our tripartite RI-CLPM is appropriate to evaluate time-vary-
ing covariates. Thus, for example, it would be possible to reconceptualize our study 
as a (bivariate) test of the directional ordering of MSC and math test scores, treat-
ing math school grades as a time-varying covariate, or a test of MSC and school 
grades with test scores as a time-varying covariate. Notably, the actual statistical 
model for this reconceptualization of our study would be the same as presented here 
(see Mplus syntax in Supplemental Materials)—although the presentation and inter-
pretation of results would differ. Thus, in Table 7, we showed that the introduction 
of math school grades (MB3 models) reduced the sizes of stability and cross-lag 
paths in the bivariate models based on MSC and test scores—for both CLPMs and 
RI-CLPMs. From this perspective, the models considered here demonstrate how 
to extend basic CLPMs and RI-CLPMs to include time-varying covariates as well 
as lag-2 effects, time-invariant covariates, and tests of invariance over time and 
multiple groups. Hence, we recommend considering our tripartite RI-CLPMs and 
CLPMs to researchers who want to evaluate the effects of time-varying, autoregres-
sive covariates. Nevertheless, we also caution that controlling time-varying covari-
ates with ambiguous directional ordering with the variables under consideration 
might be problematic—throwing the baby out with the bathwater. Here, for exam-
ple, it seems inappropriate to consider either test scores or achievement as a time-
varying autoregressive control variable—particularly when we also show that these 
variables are highly correlated and are reciprocally related.

Alternative Approaches to CLPM Data

In providing a balanced view of how best to test REM hypotheses, we note that sev-
eral extensions and modifications of basic CLPMs, RI-CLPMs, and alternative mod-
els have been discussed in the recent methodological literature (see Usami, Muray-
ama, et al., 2019; Usami, Todo, et al., 2019, for an overview). For example, it has 
been suggested to include additional (linear) change factors at the between-person 
level in RI-CLPM. In this latent curve model with structured residuals (LCM-SR; 
Curran et al., 2014), the observations are residualized for interindividual differences 
in linear change when estimating cross-lagged effects at the within-person level 
(Nunez-Regueiro et  al., 2021). Furthermore, it has also been proposed to directly 
include stable trait factors or change factors at the level of the undecomposed obser-
vations (Bollen & Curran, 2006; Zyphur et  al., 2020). Andersen (2021) compares 
these different modeling approaches and discusses conditions under which they pro-
vide similar results (see also Asparouhov & Muthén, 2021). Noting the importance 
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of considering confounding variables in causal interpretations based on CLPMs and 
RI-CLPMS, Hübner et  al., (2022) proposed using weighting strategies that facili-
tate controlling for a large number of fixed and time-varying covariates. Niepel et al. 
(2021) evaluated CLPM data based on intensive experience sampling of momentary 
state measures of ASC and achievement. Based on their review of research, includ-
ing CLPM and RI-CLPM studies, they argued (p. 2) that "due to the lack of inten-
sive longitudinal studies on the reciprocal relations between ASC and achievement, 
the momentary (state) intraindividual (within-person) dynamics between ASC and 
achievement remain a black box. The existing longitudinal research on their recipro-
cal relations does not allow inferences to be made about within-person dynamics 
(see Murayama et al., 2017)." Niepel et al. (2021) applied newly developed dynamic 
SEM models (Muthén & Muthén, 1998–2019) to show significant reciprocal effects 
between achievement and ASC on a lesson-to-lesson basis. Relatedly, Asparouhov 
and Muthén (2021) argued that evidence based on four or fewer time points should 
be regarded as mostly cross-sectional because there is an insufficient sampling of 
time points to warrant conclusions about how constructs evolve over time.

Overall, these approaches have in common that they try to account for the 
potentially biasing effects of confounding variables when estimating cross-lagged 
effects. It is important for future methodological research to further clarify whether 
these approaches allow for tests of the REM that are more robust to the presence 
of unmeasured confounders and the potential dangers of under- or over-adjusting 
for covariates. However, we also note that alternative approaches to testing REM 
hypotheses need to be evaluated in relation to testing REM hypotheses rather than 
additional features that they incorporate that are not specific to REM hypotheses. 
Indeed, simulation and real data comparisons based on some of these models note 
that more complex models typically have reduced power concerning specific param-
eter estimates and frequently have convergence issues (e.g., Orth et al., 2021; Usami, 
Murayama, et al., 2019; Usami, Todo, et al., 2019).

Tests of the REM hypothesis about the directional ordering are clearly causal 
in nature and rely on strong assumptions underpinning the model. Although our 
research extends REM research’s scope, threats to the validity of causal interpreta-
tions remain. Both the CLPM (with lag-2 effects and covariates) and the RI-CLPM 
have offsetting strengths and weaknesses. Although new approaches have been 
posited for CLPM more generally, these have not been widely applied to test the 
REM. However, an alternative direction for future REM research is to formulate ran-
dom control trial (RCT) interventions to more formally test implications claimed 
from non-experimental REM research (e.g., Bailey et  al., 2018). Thus, for exam-
ple, Haney and Durlak’s (1998)  meta-analysis of self-concept interventions con-
cluded—consistent with REM inferences—that interventions specifically designed 
to enhance self-concept not only had significant effects on self-concept, but also 
had positive effects on academic achievement. In this respect, there is experimental 
evidence that improving academic self-concept will improve subsequent academic 
performance—the key REM hypothesis. REM research suggests that simultane-
ously enhancing both ASC and achievement will be more beneficial than enhanc-
ing one to the exclusion of the other. Extending Haney and Durlak’s (1998) meta-
analysis and REM research more generally, this implication can be tested in a 2 
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(ASC intervention or not) × 2 (achievement intervention or not) RCT design. The 
REM would predict that the group receiving both ASC and achievement interven-
tions would show significant benefits compared to groups receiving only one of the 
two interventions. The effectiveness of each intervention in isolation could be evalu-
ated in relation to the no-treatment control group that received neither intervention. 
However, there are likely to be many complications in implementing this design that 
might compromise the interpretation of the results.

Strengths, Limitations, and Directions for Further Research

Our study is strong in terms of the size and representativeness of the sample of Ger-
man secondary students and annual waves over all five years of compulsory second-
ary schooling. However, there is also a need to test the generalizability of our results 
to other age groups, countries, and school settings.

Perhaps the most significant contribution of our research is the generalizability of 
support for the REM provided from different modeling approaches (CLPMs and RI-
CLPMs). Hamaker et al. (2015) and others have noted that there is no generalizable, 
a priori empirical basis predicting how results based on CLPMs and RI-CLPMs will 
differ. Of course, CLPMs and RI-CLPMs will provide similar results in the unlikely 
situation where the variance of the global trait factors in RI-CLPM is zero. How-
ever, this similarity occurs in our study even though the MSC and achievement were 
highly stable over time. Substantively, the results are important, showing that our 
support for REM hypotheses generalizes over the alternative interpretations based 
on CLPMs and RI-CLPMs. Of course, this will not always be the case, and there are 
examples of where CLPM and RI-CLPM tests of REM hypotheses result in different 
results (e.g., Ehm et al., 2019; but also see Ehm et al., 2021 and earlier discussion). 
However, even when there are differences, it is useful to evaluate why there are dif-
ferences and how these relate to support of the REM hypothesis.

Methodologically, we demonstrate a more robust methodological framework 
for evaluating directional ordering and extensions of existing research lacking 
in educational psychology. Nevertheless, our study also provides a challenge to 
more fully evaluate characteristics that lead to consistent and inconsistent results 
based on CLPMs and RI-CLPMs. RI-CLPM researchers often note that it is 
impossible to predict a priori how CLPM and RI-CLPM results will differ (Ham-
aker et  al., 2015; Murayama et  al., 2017). Although this might be true without 
knowing any characteristics of the variables, sample, and study, it is important to 
establish what constructs, theoretical models of their relations, and study charac-
teristics are associated with consistent and inconsistent results for the CLPMs and 
RI-CLPMs—particularly in relation to the critical cross-lag paths used to test for 
directional ordering.

We assessed MSC with self-report measures that might introduce method effects 
that distort relations. However, this is a complicated issue as students are best suited 
to judge their own MSCs. For RI-CLPMs, method effects that are stable over time 
are likely to be absorbed into the global (decomposed between-person) trait effects 
but have little influence on with-person stability and cross-lag paths (but also see 
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discussion of measurement error). For CLPMs, such method effects are likely to 
inflate MSC stability paths. However, we also note that our study is based on rela-
tions with MSC and two objective achievement measures. Hence self-report method 
effects are less worrisome than RI-CLPMs and CLPMs where all the constructs are 
based on self-reports (or even non-self-report measures likely to be contaminated by 
shared method effects). It would also be interesting to collect inferred MSC ratings 
by significant others (teachers, parents, peers) in future research. However, in the 
literature evaluating self-other agreement, inferred self-concepts are widely recog-
nized to represent a different construct (Marsh, 2006; Marsh & Craven, 2006; Marsh 
& Martin, 2011; Marsh, Hau, et al., 2005; Marsh, Trautwein, et al., 2005). Thus the 
addition of inferred self-concept ratings would raise new theoretical questions about 
the directional ordering of MSCs and inferred MSCs, and how each is related to 
achievement.

We note insufficient attention is given to the underlying measurement model, par-
ticularly RI-CLPMs based mainly on manifest variables. Unless the measurement 
model is well defined, the application of structural models is dubious. Neverthe-
less, this is rarely considered, particularly in manifest CLPMs and RI-CLPM. The 
fit of this measurement model also provides an important basis of comparison for 
subsequent CLPMs and RI-CLPMs and preliminary insights into the nature of the 
data (see Table 2). We evaluated the traditional set of factorial invariance constraints 
(configural, strong, and strict invariance over time) in our longitudinal measurement 
model. Support for at least metric invariance underpins the rationale for particularly 
RI-CLPMs, but also longitudinal structural invariance constraints imposed by sub-
sequent CLPMs and RI-CLPMs. For MSC, we had multiple indicators that allowed 
us to control for method effects idiosyncratic to specific items using the correlated 
uniqueness approach that are unlikely to be controlled with manifest models.

Nevertheless, like many previous studies, we relied on single measures of each of 
our achievement indicators. Although it would be possible to treat school grades and 
test scores as multiple indicators of a latent trait, previous theoretical and empirical 
research argues that it is important to consider these as separate constructs (Marsh, 
2006; Marsh & O’Mara, 2008; Marsh, et  al., 2018a, 2018b; Marsh, Hau, et  al., 
2005; Marsh, Trautwein, et al., 2005). It would also be possible to include estimates 
of measurement error in the measurement model, but challenging to incorporate the 
complex error structure typical in longitudinal data (i.e., the contrasting effects of 
measurement error and correlated uniquenesses) without multiple indicators. There 
are also conceptual complications in assessing achievement over multiple school 
years when instructional content changes each year. Although beyond the scope of 
the present investigation, these are important issues for further research.

We also note that although RI-CLPMs adapt a within-person perspective, they 
fall short of a fully idiographic approach that models the separate effects of each 
individual (e.g., Beltz et  al., 2016; Molenaar, 2004). Indeed, in RI-CLPMs, the 
within-person deviations in RI-CLPMs are modeled as typical between-person 
regressions (i.e., effects are constant across individuals). Thus, for example, RI-
CLPMs do not answer the idiographic question of what proportion of the students 
conforms to REM hypotheses. Hence, both CLPMs and RI-CLPMs fail to articu-
late within-person processes that underpin the dynamic relations between ASC and 
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achievement, which remain a black box (Niepel et  al., 2021; also see Murayama 
et al., 2017). A direction for further research is to evaluate the REM from a more 
idiographic approach such as group iterative multiple model estimation (Beltz et al., 
2016) that integrates nomothetic and idiographic approaches. In addition, more idi-
ographic research might better inform policy and practice designed to cater to the 
distinct needs of individual students.

Implications

Our substantive-methodological synergy has substantive, theoretical, policy/prac-
tice, and methodological implications. Substantively, our research shows that MSC 
and achievement are reciprocally for secondary school students. Furthermore, these 
findings have important policy implications, demonstrating from a within-person 
perspective that the enhancement of positive academic self-beliefs and academic 
achievement is mutually reinforcing.

Our research also has theoretical implications. In contrast to unidirectional (skill 
development and self-enhancement) models, we found good support for REM 
hypotheses. MSC and achievement are reciprocally related not only from a between-
person (interindividual differences) perspective but also from a within-person per-
spective. Thus, high MSC is likely to lead to high achievement, and high achieve-
ment is likely to lead to higher MSC. This is important for developing interventions 
that target both achievement and MSC are likely to be more effective than interven-
tions that focus on only one of these constructs.

REM studies of the directional ordering of ASC and achievement in educational 
psychology are mostly narrowly focused on ASC theory. However, Fredrickson’s 
(2001) broaden-and-build theory posits reciprocal effects between self-beliefs and 
outcomes that, if sufficiently large, might create positive gain spirals. More broadly, 
positive reciprocal effects and positive upward spirals are consistent with major 
psychological theories: social cognitive theory (Bandura, 1986); broaden-and-build 
theory (Fredrickson, 2001); reciprocal effects models of appraisals, emotions, and 
achievement (Pekrun, 1992, 2006; Pekrun et al., 2017); job-demand resources model 
(Bakker & Demerouti, 2014, 2017); and the conservation of resources model (Hob-
foll & Shirom, 2001). Thus, in future REM studies, ASC and educational-psychol-
ogy researchers should draw more broadly on the different theoretical frameworks.

Methodologically, we outline longitudinal design issues, juxtaposing and 
extending the major statistical models (CLPMs and RI-CLPMs) to test directional 
ordering. Based on this juxtaposition of the models and our results, we recom-
mend that applied researchers test both models and draw conclusions on compar-
ing results from different models relevant to their research questions. As shown 
here, CLPMs and RI-CLPMs are not antagonistic; each has counter-balancing 
strengths and weaknesses. Hence, their juxtaposition is substantively, theoreti-
cally, and methodologically informative. More specifically, if researchers want 
to investigate relations between variables from both undecomposed between-
person and within-person perspectives, and theorize that relations exist at both 
levels, then using both modeling approaches may be helpful. Although relevant to 

2737Educational Psychology Review (2022) 34:2697–2744



1 3

educational psychology, the theoretical, design, and statistical issues considered 
here have broad generalizability to other psychological disciplines and applied 
research more generally.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10648-​022-​09662-9.

Acknowledgements  We would like to acknowledge some of the many colleagues who have contributed 
to our thinking on issues addressed here, often agreeing with us but sometimes disagreeing in ways that 
changed our thinking. In no particular order, these include: David Kenny; Ellen Hamaker; Ulrich Orth; 
Philip D. Parker; Kou Murayama; Jiesi Guo; Geetanjali Basarkod; Theresa Dicke; James Nicholas Don-
ald; Alexandre J.S. Morin; Alexander Robitzsch.

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Andersen, H. K. (2021). Equivalent approaches to dealing with unobserved heterogeneity in cross-lagged 
panel models? Investigating the benefits and drawbacks of the latent curve model with structured 
residuals and the random intercept cross-lagged panel model. Psychological Methods. Advance 
online publication. https://​doi.​org/​10.​1037/​met00​00285

Arens, A. K., Marsh, H. W., Pekrun, R., Lichtenfeld, S., Murayama, K., & vom Hofe, R. (2017). Math 
self-concept, grades, and achievement test scores: Long-term reciprocal effects across five waves 
and three achievement tracks. Journal of Educational Psychology, 109(5), 621–634. https://​doi.​
org/​10.​1037/​edu00​00163

Asendorpf, J. B. (2021). Modeling developmental processes. In J. R. Rauthmann (Ed.), Handbook of 
personality dynamics and processes (pp. 815–835). London, UK. https://​doi.​org/​10.​1016/​B978-0-​
12-​813995-​0.​00031-5

Asparouhov, T. & Muthén, B. (2021). Residual structural equation models. Technical Report. Version 1. 
November 1, 2021.

Bailey, D. H., Duncan, G. J., Watts, T., Clements, D. H., & Sarama, J. (2018). Risky business: Corre-
lation and causation in longitudinal studies of skill development. American Psychologist, 73(1), 
81–94. https://​doi.​org/​10.​1037/​amp00​00146

Bailey, D. H., Oh, Y., Farkas, G., Morgan, P., & Hillemeier, M. (2020). Reciprocal effects of reading 
and mathematics? Beyond the cross-lagged panel model. Developmental Psychology, 56, 912–921. 
https://​doi.​org/​10.​1037/​dev00​00902

Bakker, A. B., & Demerouti, E. (2014). Job demands-resources theory. In C. L. Cooper (ed.), Wellbe-
ing: A complete reference guide (pp. 1–28). John Wiley & Sons, Ltd. https://​doi.​org/​10.​1002/​97811​
18539​415.​wbwel​l019

Bakker, A. B., & Demerouti, E. (2017). Job demands-resources theory: Taking stock and looking for-
ward. Journal of Occupational Health Psychology, 22(3), 273–285. https://​doi.​org/​10.​1037/​ocp00​
00056

2738 Educational Psychology Review (2022) 34:2697–2744

https://doi.org/10.1007/s10648-022-09662-9
https://doi.org/10.1007/s10648-022-09662-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1037/met0000285
https://doi.org/10.1037/edu0000163
https://doi.org/10.1037/edu0000163
https://doi.org/10.1016/B978-0-12-813995-0.00031-5
https://doi.org/10.1016/B978-0-12-813995-0.00031-5
https://doi.org/10.1037/amp0000146
https://doi.org/10.1037/dev0000902
https://doi.org/10.1002/9781118539415.wbwell019
https://doi.org/10.1002/9781118539415.wbwell019
https://doi.org/10.1037/ocp0000056
https://doi.org/10.1037/ocp0000056


1 3

Bandura, Albert. (1986). Social foundations of thought and action: A social cognitive theory. 
Prentice-Hall.

Basarkod, G., Marsh, H., Guo, J., Dicke, T., Xu, K. M., & Parker, P. (2020). The Big-Fish-Little-Pond 
Effect for reading self-beliefs: A cross-national exploration with PISA 2018. https://​doi.​org/​10.​
35542/​osf.​io/​7wbxj

Berry, D., & Willoughby, M. T. (2017). On the practical interpretability of cross-lagged panel models: 
Rethinking a developmental workhorse. Child Development, 88, 1186–1206. https://​doi.​org/​10.​
1111/​cdev.​12660

Beltz, A. M., Wright, A. G., Sprague, B. N., & Molenaar, P. C. (2016). Bridging the nomothetic and idi-
ographic approaches to the analysis of clinical data. Assessment, 23(4), 447–458. https://​doi.​org/​
10.​1177/​10731​91116​648209

Biaconcini, S., & Bollen, K. A. (2018). The latent variable-autoregressive latent trajectory model: A gen-
eral framework for longitudinal data analysis. Structural Equation Modeling, 25, 791–808.

Bollen, K. A., & Curran, P. J. (2006). Latent Curve Models: A Structural Equation Perspective. Wiley. 
https://​doi.​org/​10.​1002/​04717​46096

Burns, R. A., Crisp, D. A., & Burns, R. B. (2020). Re-examining the reciprocal effects model of self-
concept, self-efficacy, and academic achievement in a comparison of the Cross-Lagged Panel and 
Random-Intercept Cross-Lagged Panel frameworks. British Journal of Educational Psychology, 
90(1), 77–91.

Byrne, B. M. (1984). The general/academic self-concept nomological network: A review of construct val-
idation research. Review of Educational Research, 54(3), 427–456. https://​doi.​org/​10.​3102/​00346​
54305​40034​27

Calsyn, R. J., & Kenny, D. A. (1977). Self-concept of ability and perceived evaluation of others: Cause or 
effect of academic achievement? Journal of Educational Psychology, 69(2), 136–145. https://​doi.​
org/​10.​1037/​0022-​0663.​69.2.​136

Cattell, R. B. (1966). . Patterns of change: Measurement in relation to state dimension, trait change, labil-
ity, and process concepts. In R. B. Cattell (ed.), Handbook of multivariate experimental psychology 
(pp. 335–402).

Chen, X., Vallerand, R. J., & Padilla, A. M. (2021). On the role of passion in second language learning 
and flourishing. Journal of Happiness Studies, 1–19.‏

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement 
invariance. Structural Equation Modeling, 9(2), 233–255. https://​doi.​org/​10.​1207/​S1532​8007S​
EM0902_5

Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person effects 
in longitudinal models of change. Annual Review of Psychology, 62, 583–619. https://​doi.​org/​10.​
1146/​annur​ev.​psych.​093008.​100356

Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of 
between-person and within-person components of individual change over time: A latent curve 
model with structured residuals. Journal of Consulting and Clinical Psychology, 82, 879–894.

Ehm, J.-H., Hasselhorn, M., & Schmiedek, F. (2019). Analyzing the developmental relation of academic 
self-concept and achievement in elementary school children: Alternative models point to different 
results. Developmental Psychology, 55(11), 2336–2351. https://​doi.​org/​10.​1037/​dev00​00796

Ehm, J.-H., Hasselhorn, M., & Schmiedek, F. (2021). The developmental relation of academic self-con-
cept and achievement in elementary school children in the light of alternative models. Zeitschrift 
für Pädagogische Psychologie, 1–10. https://​doi.​org/​10.​1024/​1010-​0652/​a0003​03

Enders, C. K. (2010). Applied missing data analysis. books.google.com.
Fredrickson, B. L. (2001). The role of positive emotions in positive psychology. The broaden-and-build 

theory of positive emotions. The American Psychologist, 56(3), 218–226. https://​doi.​org/​10.​1037/​
0003-​066X.​56.3.​218

Frenzel, A. C., Pekrun, R., Dicke, A.-L., & Goetz, T. (2012). Beyond quantitative decline: Conceptual 
shifts in adolescents’ development of interest in mathematics. Developmental Psychology, 48(4), 
1069–1082. https://​doi.​org/​10.​1037/​a0026​895

Granger, C. W. J. (1969). Investigating causal relations by cconometric models and cross-spectral meth-
ods. Econometrica : Journal of the Econometric Society, 37(3), 424. https://​doi.​org/​10.​2307/​19127​
91

Guo, J., Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2015a). Directionality of the associa-
tions of high school expectancy-value, aspirations, and attainment: A longitudinal study. American 
Educational Research Journal, 52(2), 371–402. https://​doi.​org/​10.​3102/​00028​31214​565786

2739Educational Psychology Review (2022) 34:2697–2744

https://doi.org/10.35542/osf.io/7wbxj
https://doi.org/10.35542/osf.io/7wbxj
https://doi.org/10.1111/cdev.12660
https://doi.org/10.1111/cdev.12660
https://doi.org/10.1177/1073191116648209
https://doi.org/10.1177/1073191116648209
https://doi.org/10.1002/0471746096
https://doi.org/10.3102/00346543054003427
https://doi.org/10.3102/00346543054003427
https://doi.org/10.1037/0022-0663.69.2.136
https://doi.org/10.1037/0022-0663.69.2.136
https://doi.org/10.1207/S15328007SEM0902_5
https://doi.org/10.1207/S15328007SEM0902_5
https://doi.org/10.1146/annurev.psych.093008.100356
https://doi.org/10.1146/annurev.psych.093008.100356
https://doi.org/10.1037/dev0000796
https://doi.org/10.1024/1010-0652/a000303
https://doi.org/10.1037/0003-066X.56.3.218
https://doi.org/10.1037/0003-066X.56.3.218
https://doi.org/10.1037/a0026895
https://doi.org/10.2307/1912791
https://doi.org/10.2307/1912791
https://doi.org/10.3102/0002831214565786


1 3

Guo, J., Parker, P. D., Marsh, H. W., & Morin, A. J. S. (2015b). Achievement, motivation, and educa-
tional choices: A longitudinal study of expectancy and value using a multiplicative perspective. 
Developmental Psychology, 51(8), 1163–1176. https://​doi.​org/​10.​1037/​a0039​440

Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. 
Psychological Methods, 20(1), 102–116. https://​doi.​org/​10.​1037/​a0038​889

Hamaker, E. L., Mulder, J. D., & van IJzendoorn, M. H. (2020). Description, prediction and causation: 
Methodological challenges of studying child and adolescent development. Developmental Cogni-
tive Neuroscience, 46, 100867. https://​doi.​org/​10.​1016/j.​dcn.​2020.​100867

Hamaker, E. L., & Muthén, B. (2020). The fixed versus random effects debate and how it relates to cen-
tering in multilevel modeling. Psychological Methods, 25(3), 365–379. https://​doi.​org/​10.​1037/​
met00​00239

Haney, P., & Durlak, J. A. (1998). Changing selfesteem in children and adolescents: A metaanalytic 
review. Journal of Clinical Child Psychology, 27, 423–433.

Harter, S. (1998). The development of self-representations. In W. Damon (Ed.), S. Eisenberg (Vol. Ed), 
Handbook of child psychology (5th ed., pp. 553–617). New York USA: Wiley.

Hobfoll, S., & Shirom, A. (2001). Conservation of resources theory: Applications to stress and manage-
ment in the workplace. In R. T. Golembiewski (Ed.), Handbook of organizational behavior (pp. 
57–80). Marcel Dekker.

Huang, C. (2011). Self-concept and academic achievement: A meta-analysis of longitudinal relations. 
Journal of School Psychology, 49(5), 505–528. https://​doi.​org/​10.​1016/j.​jsp.​2011.​07.​001

Hübner, N., Wagner, W., Zitzmann, S., & Nagengast, B. (2022, January 14). How causal is a reciprocal 
effect? Contrasting traditional and new methods to investigate the reciprocal effects model of self-
concept and achievement. https://​doi.​org/​10.​31234/​osf.​io/​f3e8w

Imbens, G. W., & Rubin, D. B. (2015). Causal inference for statistics, social, and biomedical sciences. 
Cambridge University Press. https://​doi.​org/​10.​1017/​CBO97​81139​025751

Jelicić, H., Phelps, E., & Lerner, R. M. (2009). Use of missing data methods in longitudinal studies: 
the persistence of bad practices in developmental psychology. Developmental Psychology, 45(4), 
1195–1199. 1.1037/a0015665

Jöreskog, K. G. (1979). Statistical estimation of structural models in longitudinal investigations. (J. R. 
Nesselroade & B. Baltes, Eds.). Academic Press.

Kenny, David A., & Zautra, A. (2001). Trait–state models for longitudinal data. In L. M. Collins & A. 
G. Sayer (Eds.), New methods for the analysis of change. (pp. 243–263). American Psychological 
Association. https://​doi.​org/​10.​1037/​10409-​008

Little, T. D. (2013). Longitudinal structural equation modeling. Guilford Press.
Littlefield, A. K., King, K. M., Acuff, S. F., Foster, K. T., Murphy, J. G., & Witkiewitz, K. (2021). Limi-

tations of cross-lagged panel models in addiction research and alternative models: An empirical 
example using project MATCH. Psychology of Addictive Behaviors. Advance online publication. 
https://​doi.​org/​10.​1037/​adb00​00750

Lüdtke, O., & Robitzsch, A. (2021, July 29). A critique of the random intercept cross-lagged panel model. 
PsyArXiv. https://​doi.​org/​10.​31234/​osf.​io/​6f85c

Marsh, H. W. (1990). Causal ordering of academic self-concept and academic achievement: A multiwave, 
longitudinal panel analysis. Journal of Educational Psychology, 82(4), 646.

Marsh, H. W. (2006). Self-concept theory, measurement, and research into practice: The role of self-
concept in educational psychology. (p. 88). British Psychological Society Vernon-Wall Lecture.

Marsh, H. W., Balla, J. R., & Hau, K.-T. (1996). Assessing goodness of fit: Is parsimony always desir-
able? The Journal of Experimental Education, 64(4), 364–390. https://​doi.​org/​10.​1080/​00220​973.​
1996.​10806​604

Marsh, H. W., & Craven, R. G. (2006). Reciprocal effects of self-concept and performance from a multi-
dimensional perspective: Beyond seductive pleasure and unidimensional perspectives. Perspectives 
on Psychological Science, 1(2), 133–163. https://​doi.​org/​10.​1111/j.​1745-​6916.​2006.​00010.x

Marsh, H. W., Ellis, L., & Craven, R. G. (2002). How do preschool children feel about themselves? 
Unravelling measurement and multidimensional self-concept structure. Developmental Psychol-
ogy, 38, 376–393.

Marsh, H. W., & Grayson, D. (1994). Longitudinal stability of latent means and individual differences: A 
unified approach. Structural Equation Modeling, 1, 317–359.

Marsh, H. W., & Hau, K.-T. (1996). Assessing goodness of fit: Is parsimony always desirable? The Jour-
nal of Experimental Education, 64(4), 364–390.

2740 Educational Psychology Review (2022) 34:2697–2744

https://doi.org/10.1037/a0039440
https://doi.org/10.1037/a0038889
https://doi.org/10.1016/j.dcn.2020.100867
https://doi.org/10.1037/met0000239
https://doi.org/10.1037/met0000239
https://doi.org/10.1016/j.jsp.2011.07.001
https://doi.org/10.31234/osf.io/f3e8w
https://doi.org/10.1017/CBO9781139025751
https://doi.org/10.1037/10409-008
https://doi.org/10.1037/adb0000750
https://doi.org/10.31234/osf.io/6f85c
https://doi.org/10.1080/00220973.1996.10806604
https://doi.org/10.1080/00220973.1996.10806604
https://doi.org/10.1111/j.1745-6916.2006.00010.x


1 3

Marsh, H. W., & Hau, K.-T. (2007). Applications of latent-variable models in educational psychology: 
The need for methodological-substantive synergies. Contemporary Educational Psychology, 32, 
151–171. https://​doi.​org/​10.​1016/j.​cedps​ych.​2006.​10.​008

Marsh, H. W., Lüdtke, O., Nagengast, B., Morin, A. J. S., & Von Davier, M. (2013). Why item parcels are 
(almost) never appropriate: Two wrongs do not make a right—camouflaging misspecification with 
item parcels in CFA models. Psychological Methods, 18, 257–284. https://​doi.​org/​10.​1037/​a0032​
773

Marsh, H. W., & Hau, K.-T. (2003). Big-Fish–Little-Pond effect on academic self-concept: A cross-cul-
tural (26-country) test of the negative effects of academically selective schools. American Psychol-
ogist, 58(5), 364–376. https://​doi.​org/​10.​1037/​0003-​066X.​58.5.​364

Marsh, H. W., Hau, K.-T., & Grayson, D. (2005a). Goodness of fit evaluation in structural equation mod-
eling. In A. Maydeu-Olivares & J. McArdle (Eds.), Psychometrics: A festschrift to Roderick P. 
McDonald (pp. 275–340). Hillsdale, NJ: Erlbaum.

Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing 
approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s 
(1999) findings. Structural Equation Modeling: A Multidisciplinary Journal, 11(3), 320–341. 
https://​doi.​org/​10.​1207/​s1532​8007s​em1103_2

Marsh, H. W., Huppert, F. A., Donald, J. N., Horwood, M. S., & Sahdra, B. K. (2020). The well-being 
profile (WB-Pro): Creating a theoretically based multidimensional measure of well-being to 
advance theory, research, policy, and practice. Psychological Assessment, 32(3), 294–313. https://​
doi.​org/​10.​1037/​pas00​00787

Marsh, H. W., Kuyper, H., Morin, A. J. S., Parker, P. D., & Seaton, M. (2014a). Big-fish-little-pond 
social comparison and local dominance effects: Integrating new statistical models, methodology, 
design, theory and substantive implications. Learning and Instruction, 33, 50–66. https://​doi.​org/​
10.​1016/j.​learn​instr​uc.​2014.​04.​002

Marsh, H. W., Kuyper, H., Seaton, M., Parker, P. D., Morin, A. J. S., Möller, J., & Abduljabbar, A. S. 
(2014b). Dimensional comparison theory: An extension of the internal/external frame of reference 
effect on academic self-concept formation. Contemporary Educational Psychology, 39(4), 326–
341. https://​doi.​org/​10.​1016/j.​cedps​ych.​2014.​08.​003

Marsh, H. W., Lüdtke, O., Muthén, B., Asparouhov, T., Morin, A. J. S., Trautwein, U., & Nagengast, B. 
(2010). A new look at the big-five factor structure through exploratory structural equation mod-
eling. Psychological Assessment, 22, 471–491. https://​doi.​org/​10.​1037/​a0019​227

Marsh, H. W., & Martin, A. J. (2011). Academic self-concept and academic achievement: Relations and 
causal ordering. The British Journal of Educational Psychology, 81(Pt 1), 59–77. https://​doi.​org/​
10.​1348/​00070​9910X​503501

Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2014c). Exploratory structural equation 
modeling: An integration of the best features of exploratory and confirmatory factor analy-
sis. Annual Review of Clinical Psychology, 10, 85–110. https://​doi.​org/​10.​1146/​annur​ev-​clinp​
sy-​032813-​153700

Marsh, H. W., & O’Mara, A. (2008). Reciprocal effects between academic self-concept, self-esteem, 
achievement, and attainment over seven adolescent years: Unidimensional and multidimensional 
perspectives of self-concept. Personality and Social Psychology Bulletin, 34(4), 542–552. https://​
doi.​org/​10.​1177/​01461​67207​312313

Marsh, H. W., Parker, P. D., & Morin, A. J. S. (2016a). Invariance testing across samples and time: 
cohort-sequence analysis of perceived body composition. In N. Ntoumanis & N. Myers (eds.), 
Introduction to Intermediate and AdvancedStatistical Analyses for Sport and Exercise Scientists. 
Wiley-Blackwell Publishing, Inc.

Marsh, H. W., Pekrun, R., Lichtenfeld, S., Guo, J., Arens, A. K., & Murayama, K. (2016b). Breaking the 
double-edged sword of effort/trying hard: Developmental equilibrium and longitudinal relations 
among effort, achievement, and academic self-concept. Developmental Psychology, 52(8), 1273–
1290. https://​doi.​org/​10.​1037/​dev00​00146

Marsh, H. W., Pekrun, R., Murayama, K., Arens, A. K., Parker, P. D., Guo, J., & Dicke, T. (2018a). 
An integrated model of academic self-concept development: Academic self-concept, grades, test 
scores, and tracking over 6 years. Developmental Psychology, 54(2), 263–280. https://​doi.​org/​10.​
1037/​dev00​00393

Marsh, H. W., Pekrun, R., Parker, P. D., Murayama, K., Guo, J., Dicke, T., & Arens, A. K. (2018b). The 
murky distinction between self-concept and self-efficacy: Beware of lurking jingle-jangle fallacies. 
Journal of Educational Psychology, 111(2), 331–353. https://​doi.​org/​10.​1037/​edu00​00281

2741Educational Psychology Review (2022) 34:2697–2744

https://doi.org/10.1016/j.cedpsych.2006.10.008
https://doi.org/10.1037/a0032773
https://doi.org/10.1037/a0032773
https://doi.org/10.1037/0003-066X.58.5.364
https://doi.org/10.1207/s15328007sem1103_2
https://doi.org/10.1037/pas0000787
https://doi.org/10.1037/pas0000787
https://doi.org/10.1016/j.learninstruc.2014.04.002
https://doi.org/10.1016/j.learninstruc.2014.04.002
https://doi.org/10.1016/j.cedpsych.2014.08.003
https://doi.org/10.1037/a0019227
https://doi.org/10.1348/000709910X503501
https://doi.org/10.1348/000709910X503501
https://doi.org/10.1146/annurev-clinpsy-032813-153700
https://doi.org/10.1146/annurev-clinpsy-032813-153700
https://doi.org/10.1177/0146167207312313
https://doi.org/10.1177/0146167207312313
https://doi.org/10.1037/dev0000146
https://doi.org/10.1037/dev0000393
https://doi.org/10.1037/dev0000393
https://doi.org/10.1037/edu0000281


1 3

Marsh, H. W., Pekrun, R., Parker, P. D., Murayama, K., Guo, J., Dicke, T., & Lichtenfeld, S. (2017). 
Long-term positive effects of repeating a year in school: Six-year longitudinal study of self-beliefs, 
anxiety, social relations, school grades, and test scores. Journal of Educational Psychology, 109(3), 
425–438. https://​doi.​org/​10.​1037/​edu00​00144

Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005b). Academic self-concept, 
interest, grades, and standardized test scores: Reciprocal effects models of causal ordering. Child 
Development, 76(2), 397–416. https://​doi.​org/​10.​1111/j.​1467-​8624.​2005.​00853.x

Marsh, H. W., Van Zanden, B., Parker, P. D., Guo, J., Conigrave, J., & Seaton, M. (2019). Young women 
face disadvantage to enrollment in university STEM coursework regardless of prior achievement 
and attitudes. American Educational Research Journal, 56(5), 1629–1680.

Marsh, H. W., & Yeung, A. S. (1997). Coursework selection: Relations to academic self-concept and achievement. 
American Educational Research Journal, 34(4), 691–720. https://​doi.​org/​10.​3102/​00028​31203​40046​91

McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual 
Review of Psychology, 60, 577–605. https://​doi.​org/​10.​1146/​annur​ev.​psych.​60.​110707.​163612

Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58(4), 
525–543. https://​doi.​org/​10.​1007/​BF022​94825

Millsap, RE 2012 Statistical approaches to measurement invariance. Londn: Routledge. https://​doi.​org/​10.​
4324/​97802​03821​961

Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into 
scientific psychology, this time forever. Measurement, 2, 201–218.

Mulder, J. D., & Hamaker, E. L. (2021). Three extensions of the random intercept cross-lagged panel model. 
Struct. Equat. Model., 28, 638–648. https://​doi.​org/​10.​1080/​10705​511.​2020.​17847​38

Mund, M., Johnson, M. D., and Nestler, S. (2021). Changes in Size and Interpretation of Parameter Estimates 
in Within-Person Models in the Presence of Time-Invariant and Time-Varying Covariates. Frontiers in 
Psychology. https://​doi.​org/​10.​3389/​fpsyg.​2021.​666928 

Mund, M., & Nestler, S. (2019). Beyond the cross-lagged panel model: Next-generation statistical tools for 
analysing dependencies across the life course. Advances in Life Course Research, 41, 100249.

Murayama, K., Goetz, T., Malmberg, L. E., Pekrun, R., Tanaka, A., & Martin, A. J. (2017). Within-person 
analysis in educational psychology: Importance and illustrations. In P. D. W. & S. K. (eds.), Psy-
chological Aspects of Education – CurrentTrends: The Role of Competence Beliefs in Teaching and 
Learning (pp. 71–87). Wiley.

Murayama, Kou, Pekrun, Reinhard, Lichtenfeld, Stephanie, & vom Hofe, Rudolf. (2013). Predicting Long-
Term Growth in Students’ Mathematics Achievement: The Unique Contributions of Motivation and 
Cognitive Strategies. Child Development, 84(4), 1475–1490. https://​doi.​org/​10.​1111/​cdev.​12036.

Muthén, L. K., & Muthén, B. O. (2008–19). Mplus User’s Guide. (Version 8)
Nagengast, B., & Marsh, H. W. (2011). The negative effect of school-average ability on science self-concept 

in the UK, the UK countries and the world: The Big-Fish-Little-Pond-Effect for PISA 2006. Educa-
tional Psychology, 31(5), 629–656.

Newman, D. A. (2014). Missing data. Organizational Research Methods, 17(4), 372–411. https://​doi.​org/​10.​
1177/​10944​28114​548590

Niepel, C., Marsh, H. W., Guo, J., Pekrun, R., & Möller, J. (2021). Revealing dynamic relations between math-
ematics self-concept and perceived achievement from lesson to lesson: An experience-sampling study. 
Journal of Educational Psychology. Advance online publication. https://​doi.​org/​10.​1037/​edu00​00716

Núñez-Regueiro, F., Juhel, J., Bressoux, P., & Nurra, C. (2021). Identifying reciprocities in school motiva-
tion research: A review of issues and solutions associated with cross-lagged effects models. Journal of 
Educational Psychology. Advance online publication. https://​doi.​org/​10.​1037/​edu00​00700

Orth, U., Clark, D. A., Donnellan, M. B., & Robins, R. W. (2021). Testing prospective effects in longitudinal 
research: Comparing seven competing cross-lagged models. Journal of Personality and Social Psy-
chology, 120(4), 1013–1034. https://​doi.​org/​10.​1037/​pspp0​000358

Parker, P. D., Marsh, H. W., Ciarrochi, J., Marshall, S., & Abduljabbar, A. S. (2014). Juxtaposing math self-
efficacy and self-concept as predictors of long-term achievement outcomes. Educational Psychology, 
34(1), 29–48. https://​doi.​org/​10.​1080/​01443​410.​2013.​797339

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. John Wiley & Sons.
Pekrun, R. (1990). Social support, achievement evaluations, and self-concepts in adolescence. In L. Oppen-

heimer (Ed.), The self-concept (pp. 107-119). Springer. 
Pekrun, R. (1992). The impact of emotions on learning and achievement: Towards a theory of cognitive/

motivational mediators. Applied Psychology, 41(4), 359–376. https://​doi.​org/​10.​1111/j.​1464-​0597.​
1992.​tb007​12.x

2742 Educational Psychology Review (2022) 34:2697–2744

https://doi.org/10.1037/edu0000144
https://doi.org/10.1111/j.1467-8624.2005.00853.x
https://doi.org/10.3102/00028312034004691
https://doi.org/10.1146/annurev.psych.60.110707.163612
https://doi.org/10.1007/BF02294825
https://doi.org/10.4324/9780203821961
https://doi.org/10.4324/9780203821961
https://doi.org/10.1080/10705511.2020.1784738
https://doi.org/10.3389/fpsyg.2021.666928
https://doi.org/10.1111/cdev.12036
https://doi.org/10.1177/1094428114548590
https://doi.org/10.1177/1094428114548590
https://doi.org/10.1037/edu0000716
https://doi.org/10.1037/edu0000700
https://doi.org/10.1037/pspp0000358
https://doi.org/10.1080/01443410.2013.797339
https://doi.org/10.1111/j.1464-0597.1992.tb00712.x
https://doi.org/10.1111/j.1464-0597.1992.tb00712.x


1 3

Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and impli-
cations for educational research and practice. Educational Psychology Review, 18(4), 315–341. https://​
doi.​org/​10.​1007/​s10648-​006-​9029-9

Pekrun, R., Frenzel, A. C., Goetz, T., & Perry, R. P. (2007). The control-value theory of achievement emo-
tions. In P. Schutz & R. Pekrun (Eds.), Emotion in Education (pp. 13–36). Elsevier. https://​doi.​org/​10.​
1016/​B978-​01237​2545-5/​50003-4

Pekrun, R., Lichtenfeld, S., Marsh, H. W., Murayama, K., & Goetz, T. (2017). Achievement emotions and 
academic performance: Longitudinal models of reciprocal effects. Child Development, 88(5), 1653–
1670. https://​doi.​org/​10.​1111/​cdev.​12704

Pekrun, R., Murayama, K., Marsh, H. W., Goetz, T., & Frenzel, A. C. (2019). Happy fish in little ponds: Test-
ing a reference group model of achievement and emotion. Journal of Personality and Social Psychol-
ogy, 117(1), 166–185. https://​doi.​org/​10.​1037/​pspp0​000230

Piaget, J., & Inhelder, B. (1969). The psychology of the child. Basic Books.
Reichardt, C. S. (2019). Quasi-Experimentation: A guide to design and analysis. Guilford Press.
Ruble, D. (1983). The development of social comparison processes and their role in achievement-related 

self-socialization. In E. Higgins, D. Ruble, & W. Hartup (Eds.), Social cognition and social behavior: 
Developmental perspectives (pp. 134–157). Cambridge University Press.

Schuurman, N. K., & Hamaker, E. L. (2019). Measurement error and person-specific reliability in multilevel 
autoregressive modeling. Psychological Methods, 24(1), 70–91. https://​doi.​org/​10.​1037/​met00​00188

Seaton, M., Marsh, H. W., & Craven, R. G. (2009). Earning its place as a pan-human theory: Universality 
of the big-fish-little-pond effect across 41 culturally and economically diverse countries. Journal of 
Educational Psychology, 101(2), 403.

Steiner, P. M., Cook, T. D., Shadish, W. R., & Clark, M. H. (2010). The importance of covariate selection in 
controlling for selection bias in observational studies. Psychological Methods, 15(3), 250–267. https://​
doi.​org/​10.​1037/​a0018​719

Usami, S., Murayama, K., & Hamaker, E. L. (2019a). A unified framework of longitudinal models to exam-
ine reciprocal relations. Psychological Methods, 24(5), 637–657. https://​doi.​org/​10.​1037/​met00​00210

Usami, S., Todo, N., & Murayama, K. (2019b). Modeling reciprocal effects in medical research: Critical dis-
cussion on the current practices and potential alternative models. PLoS ONE, 14(9), e0209133. https://​
doi.​org/​10.​1371/​journ​al.​pone.​02091​33

Valentine, J. C., DuBois, D. L., & Cooper, H. (2004). The relation between self-beliefs and academic 
achievement: A meta-analytic review. Educational Psychologist, 39(2), 111–133. https://​doi.​org/​10.​
1207/​s1532​6985e​p3902_3

VanderWeele, T. J., Jackson, J. W., & Li, S. (2016). Causal inference and longitudinal data: A case study of 
religion and mental health. Social Psychiatry and Psychiatric Epidemiology, 51, 457–1466.

VanderWeele, T. J. (2019). Principles of confounder selection. European Journal of Epidemiology, 34(3), 
211–219. https://​doi.​org/​10.​1007/​s10654-​019-​00494-6

VanderWeele, T. J., Mathur, M. B., & Chen, Y. (2020). Outcome-wide longitudinal designs for causal infer-
ence: A new template for empirical studies. Statistical Science, 35(3), 437–466. https://​doi.​org/​10.​
1214/​19-​STS728

Van Lissa, C. J., Keizer, R., Van Lier, P. A. C., Meeus, W. H. J., & Branje, S. (2019). The role of fathers’ ver-
sus mothers’ parenting in emotion-regulation development from mid–late adolescence: Disentangling 
between-family differences from within-family effects. Developmental Psychology, 55(2), 377–389. 
https://​doi.​org/​10.​1037/​dev00​00612

Voelkle, M. C., Brose, A., Schmiedek, F., & Lindenberger, U. (2014). Toward a unified framework for the study 
of between-person and within-person structures: Building a bridge between two research paradigms. 
Multivariate Behavioral Research, 49(3), 193–213. https://​doi.​org/​10.​1080/​00273​171.​2014.​889593

Wu, C. H., & Griffin, M. A. (2012). Longitudinal relationships between core self-evaluations and job satis-
faction. Journal of Applied Psychology, 97(2), 331.

Wu, H., Guo, Y., Yang, Y., Zhao, L., & Guo, C. (2021). A Meta-analysis of the Longitudinal Relationship 
Between Academic Self-Concept and Academic Achievement. Educational Psychology Review, 1–30.

Zyphur, M. J., Allison, P. D., Tay, L., Voelkle, M. C., Preacher, K. J., Zhang, Z., Hamaker, E. L., Shamsol-
lahi, A., Pierides, D. C., Koval, P., & Diener, E. (2020). From data to causes I: Building a general 
cross-lagged panel model. Organizational Research Methods, 23, 651–687.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

2743Educational Psychology Review (2022) 34:2697–2744

https://doi.org/10.1007/s10648-006-9029-9
https://doi.org/10.1007/s10648-006-9029-9
https://doi.org/10.1016/B978-012372545-5/50003-4
https://doi.org/10.1016/B978-012372545-5/50003-4
https://doi.org/10.1111/cdev.12704
https://doi.org/10.1037/pspp0000230
https://doi.org/10.1037/met0000188
https://doi.org/10.1037/a0018719
https://doi.org/10.1037/a0018719
https://doi.org/10.1037/met0000210
https://doi.org/10.1371/journal.pone.0209133
https://doi.org/10.1371/journal.pone.0209133
https://doi.org/10.1207/s15326985ep3902_3
https://doi.org/10.1207/s15326985ep3902_3
https://doi.org/10.1007/s10654-019-00494-6
https://doi.org/10.1214/19-STS728
https://doi.org/10.1214/19-STS728
https://doi.org/10.1037/dev0000612
https://doi.org/10.1080/00273171.2014.889593


1 3

Authors and Affiliations

Herbert W. Marsh1,2 · Reinhard Pekrun1,3,4 · Oliver Lüdtke5,6

	 Reinhard Pekrun 
	 repekrun@acu.edu.au; pekrun@lmu.de

	 Oliver Lüdtke 
	 oluedtke@leibniz-ipn.de

1	 Institute for Positive Psychology and Education, Australian Catholic University, 
North Sydney 2060, Australia

2	 Oxford University, Oxford, England
3	 University of Essex, Colchester, England
4	 University of Munich, Munich, Germany
5	 Department of Educational Measurement, IPN – Leibniz Institute for Science and Mathematics 

Education, Olshausenstraße 62, 24118 Kiel, Germany
6	 Centre for International Student Assessment (ZIB), Kiel, Germany

2744 Educational Psychology Review (2022) 34:2697–2744


	Directional Ordering of Self-Concept, School Grades, and Standardized Tests Over Five Years: New Tripartite Models Juxtaposing Within- and Between-Person Perspectives
	Abstract
	Support for the Reciprocal Effects Model
	Methodological Focus: Models of Cross-lagged Panel Data and Reciprocal Effects
	Cross-Lagged Panel Data
	Distinguishing Between RI-CLPM (Within-Person) and CLPM (Between-Person) Perspectives
	Structural Characteristics
	RI-CLPMs and CLPMs Address Different Research Questions

	The Role of Covariates
	Juxtaposing CLPMs and RI-CLPMs

	The Present Investigation: Two A Priori Research Hypotheses and Three Research Questions
	Research Hypotheses
	Research Questions: Juxtaposition and Extensions of CLPMs and RI-CLPMs to Evaluate Sensitivity
	Method
	Sample

	Measures
	Statistical Analyses
	Invariance Constraints
	PreliminaryAnalyses
	Results
	Relations Among the Variables
	Directional Ordering

	Directional Ordering: Juxtaposing CLPMs and RI-CLMPs
	Extended Models for CLPMs and RI-CLPMs

	Discussion
	Appropriate Interpretations of Within-Person (RI-CLPM) and Undecomposed Between-Person (CLPM) Effects
	The Juxtaposition of Results Based On CLPMs and RI-CLPMs
	Methodological Issues

	Alternative Approaches to CLPM Data
	Strengths, Limitations, and Directions for Further Research
	Implications
	Acknowledgements 
	References




