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Abstract
Teachers must be able to monitor students’ behavior and identify valid cues in order to
draw conclusions about students’ actual engagement in learning activities. Teacher
training can support (inexperienced) teachers in developing these skills by using
videotaped teaching to highlight which indicators should be considered. However, this
supposes that (a) valid indicators of students’ engagement in learning are known and (b)
work with videos is designed as effectively as possible to reduce the effort involved in
manual coding procedures and in examining videos. One avenue for addressing these
issues is to utilize the technological advances made in recent years in fields such as
machine learning to improve the analysis of classroom videos. Assessing students’
attention-related processes through visible indicators of (dis)engagement in learning
might become more effective if automated analyses can be employed. Thus, in the present
study, we validated a new manual rating approach and provided a proof of concept for a
machine vision-based approach evaluated on pilot classroom recordings of three lessons
with university students. The manual rating system was significantly correlated with self-
reported cognitive engagement, involvement, and situational interest and predicted per-
formance on a subsequent knowledge test. The machine vision-based approach, which
was based on gaze, head pose, and facial expressions, provided good estimations of the
manual ratings. Adding a synchrony feature to the automated analysis improved corre-
lations with the manual ratings as well as the prediction of posttest variables. The
discussion focuses on challenges and important next steps in bringing the automated
analysis of engagement to the classroom.
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Cognitive activation, classroom management, and teacher support are the three central tenants
of teaching quality (Klieme et al. 2006; Praetorius et al. 2018). The level of students’
(dis)engagement in learning activities can be considered a major indicator of both cognitive
activation and classroom management because it signals students’ engagement in the deep
processing of learning content and reveals the time on task (Carroll 1963) provided by the
teachers for students’ learning. To this end, teachers are required to take note of their students’
attentional focus and make sure the students are engaging in the desired learning activities.
Thus, the ability to monitor students’ attention and to keep it at a high level is part of the
competencies that novice teachers need to acquire. However, research has indicated that
teachers might not always be aware of their students’ attentional focus, and this may be
particularly true for novice teachers.

In general, beginning teachers have troublemonitoring all students in the classroom evenly and
noticing events that are relevant for student learning (Berliner 2001; Cortina et al. 2015; Star and
Strickland 2008; Stürmer et al. 2017). Therefore, teacher training needs to support future teachers
in developing the necessary knowledge structures that underlie these abilities (e.g., Lachner et al.
2016). Consequently, providing an improved measurement approach for student attention will be
beneficial for research and can potentially contribute to teacher training. Research has already
demonstrated that both inexperienced and experienced teachers’ ability to notice relevant cues in
the classroom benefits from observing and reflecting on their own videotaped teaching
(Kleinknecht and Gröschner 2016; Sherin and van Es 2009). Until now, however, instructors
have typically had to watch hours of video material to select the most crucial phases of lessons.
Similarly, when it comes to research on teaching effectiveness and the development of teachers’
ability to notice relevant cues in classroom instruction (i.e., professional vision skills), researchers
typically have to invest considerable resources, especially coding resources, to examine the
association between teacher behavior and classroom processes (Erickson 2007). The required
effort further increases when investigating students’ attention across an entire lesson and analyz-
ing attention at the group level instead of among individuals. In this vein, attention- and
engagement-related behavior during classroom instruction has rarely been studied due to the
difficulty of data collection and labeling. However, learners might behave differently in natural-
istic settings and show versatile behavior that cannot be found in a lab.

One potentially valuable avenue for addressing these issues is to utilize the technological
advances made in recent years in fields such as computer vision and machine learning.
Therefore, in an ongoing research project (Trautwein et al. 2017), we have been investigating
whether and how the automated assessment of students’ attention levels can be used as an
indicator of their active engagement in learning. This automated assessment can in turn be
used to report relevant cues back to the teacher, either simultaneously or by identifying and
discussing the most relevant classroom situations (e.g., a situation where students’ attention
increases or decreases significantly) after a lesson.

In the present study, we present a proof of concept for such a machine vision-based
approach by using manual ratings of visible indicators of students’ (dis)engagement in learning
as a basis for the automated analysis of pilot classroom recordings of three lessons with
university students. More specifically, by combining multiple indicators from previous re-
search (i.e., Chi and Wylie 2014; Helmke and Renkl 1992; Hommel 2012), we developed a
manual rating instrument to continuously measure students’ observable behavior. In addition,
we performed an automated analysis of the video recordings to extract features of the students’
head pose, gaze direction, and facial expressions using modern computer vision techniques.
Using these automatically extracted features, we aimed to estimate manually annotated
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attention levels for each student. Because we had continuous labeling, this could be done by
training a regressor between the visible features and the manual labels. We investigated the
predictive power of both the manual and automatic analyses for learning (i.e., performance on
a subsequent knowledge test). To account for complexity within classrooms and enrich the
automated analysis, we also considered synchronous behavior among neighboring students. In
the present article, we report initial empirical evidence on the reliability and validity of our
automated assessments and their association with student performance.

Attention in Classroom Instruction

Student attention is a key construct in research on both teaching and learning. However,
definitions vary widely and are discussed from multiple perspectives. Here, we focus on
describing three lines of research that inspired our research program: cognitive psychology
models that describe attention as part of information processing, engagement models in which
attention makes up part of a behavioral component, and teaching quality models in which
student attention is a crucial factor.

In current models in the psychology of learning, attention denotes a filtering mechanism
that determines the kind and amount of information that enters working memory (Driver
2001). This mechanism is crucial for preventing working memory overload and allows the
learner to focus on the right kind of information. Only sensory information that enters working
memory is encoded, organized, and linked to already existing knowledge. Thus, attention
serves as a selection process for all incoming sensory information as it dictates which pieces of
information will be processed further and will get the chance to be learned. Thus, attention
determines the success of knowledge construction (Brünken and Seufert 2006). Engle (2002)
further proposed that executive attention, which actively maintains or suppresses current
representations in working memory, is part of working memory. Certain instructional situations
strongly depend on executive processes such as shifting, inhibition, or updating (Miyake et al.
2000) and thus necessitate top-down attentional control. Although information processing
occurs in a covert manner, some aspects of attentional processes are likely to be observed from
the outside: for example, visually orienting toward a certain stimulus, which improves
processing efficiency (Posner 1988).

Attention is often mistaken for engagement, even though it constitutes only part of it.
Engagement is defined as a multidimensional meta-construct and represents one of the key
elements for learning and academic success (Fredricks et al. 2004). It includes observable
behaviors, internal cognitions, and emotions. Covert processes such as investment in learning,
the effort expended to comprehend complex information, and information processing form
part of cognitive engagement (Fredricks et al. 2004; Pintrich and De Groot 1990). Emotional
engagement in the classroom includes affective reactions such as excitement, boredom,
curiosity, and anger (Connell 1990; Fredricks et al. 2004). Attention is considered a component
of behavioral engagement alongside overt participation, positive conduct, and persistence
(Connell 1990; Fredricks et al. 2004). Per definition, cognitive engagement refers to internal
processes, whereas only the emotional and behavioral components are manifested in visible
cues. Nevertheless, all engagement elements are highly interrelated and do not occur in
isolation (Fredricks et al. 2004). Thus, attention plays a crucial role because it may signal
certain learning-related processes that should become salient in students’ behavior to some
extent.
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Learners’ attention also plays a crucial role in research on teaching. Teachers must
determine whether their students are attentive by considering visible cues, continually moni-
toring the course of events in order to manage the classroom successfully (Wolff et al. 2016)
and providing ambitious learning opportunities. A student’s attention or lack thereof (e.g.,
when distracted or engaging in mind wandering) can signal whether she or he is on-task or off-
task. This in turn can provide hints about instructional quality and the teacher’s ability to
engage his or her students in the required learning activities. Thus, it is important to help
teachers develop the skills needed to monitor and support student attention and engagement
and adapt their teaching methods. Consequently, accounting for student attention and more
broadly student engagement in teaching is considered crucial for ensuring teaching quality,
including classroom management, cognitive activation, and instructional support (Klieme et al.
2001; Pianta and Hamre 2009).

In sum, the definitions, theoretical backgrounds, and terminology used in various lines of
research to describe observable aspects of students’ cognitive, affective, or behavioral
attention/engagement in learning are diverse, but experts agree on their importance and key
role in learning. As teachers must rely on visible cues to judge their students’ current attention
levels (Büttner and Schmidt-Atzert 2004; Yamamoto and Imai-Matsumura 2012), we focused
on observable aspects of attention and inferences that were based on visible indicators. In the
remainder of the article, we use the term visible indicators of (dis)engagement in learning to
describe these aspects. These visible indicators are highly likely to be associated with learning,
but this assumption needs to be validated.

Previous Approaches for Measuring Visible Indicators of Engagement
in Learning

The difficulty in assessing students’ engagement-related processes in real-world classroom
settings consists of externalizing learners’ internal (covert) states through visible overt aspects
to the greatest extent possible. In psychology, affective states and cognitive processes such as
attentional control are usually determined from physiological signals, such as heart rate,
electrodermal activity, eye tracking, or electroencephalography (e.g., Gerjets et al. 2014;
Krumpe et al. 2018; Poh et al. 2010; Yoshida et al. 2014). Using this kind of psychologically
sound measurements makes it possible to detect covert aspects of learning-related processes;
however, these measures are hardly feasible in classroom instruction, especially when teachers
must be equipped with knowledge about what indicators to look for in students. Furthermore,
these approaches are useful for answering very specific research questions. However, they are
not sufficient for determining whether students’ ongoing processes are actually the most
appropriate for the situation. By contrast, overt behavior can provide visible indicators of
appropriate learning-related processes in students.

Overt classroom behavior is an important determinant of academic achievement (Lahaderne
1968; McKinney et al. 1975). Although overt behavior does not always represent a reliable
indicator of covert mental processes, previous findings have demonstrated a link between
cognitive activity and behavioral activity (Mayer 2004). Previous studies have analyzed students’
behavior and have determined its relation to achievement (Helmke and Renkl 1992; Hommel
2012; Karweit and Slavin 1981; Stipek 2002). Furthermore, in research on engagement, correla-
tions between student engagement and academic achievement have been found (Lei et al. 2018).
Other studies have found opposing results (e.g., Pauli and Lipowsky 2007); however, these
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studies either relied on self-reports as opposed to observer ratings or only focused on certain facets
of engagement-related behavior (e.g., only active on-task behavior).

There have been various attempts to systematically assess visible indicators of engagement
in classroom learning, for example, Helmke and Renkl (1992) based their research on an idea
by Ehrhardt et al. (1981) and related observable student behavior to internal processes using
time-on-task as an indicator of whether a student was paying attention to classroom-related
content. Assessing observable content-related behavior is essential to this operationalization of
higher order attention. Hommel (2012) modified this approach and applied it to the video-
based analysis of instructional situations. Rating behavior as either on- or off-task with varying
subcategories demonstrated the interrelation between visual cues and achievement or reduced
learning (Baker et al. 2004; Helmke and Renkl 1992).

However, learners can differ in their learning activities but still be engaged in a certain task.
The ICAP framework proposed by Chi and Wylie (2014) distinguishes between passive,
active, constructive, and interactive overt behavior, which differ across various cognitive
engagement activities. This framework focuses on the amount of cognitive engagement, which
can be detected from the way students engage with learning materials and tasks (Chi andWylie
2014). This theoretical model provides a promising approach for further expanding the
different types of on-task behavior so that variations in student behavior can be accounted for.

In sum, considering learning content has been shown to be useful; however, there is a lack of
research involving the continuous analysis of attention or engagement over the course of one or
more lessons. A unique feature of the present study is that we aimed to acquire a continuous
assessment (i.e., a score for every student in the classroom for every second of instruction time) of
students’ visible indicators of (dis)engagement in learning. This temporal resolution was crucial in
our approach because we aimed to provide comparable data that could be used to train a machine-
learning algorithm. To reach this high level of temporal resolution, we decided to annotate
learners’ behavior continuously. The free software CARMA (Girard 2014) enables the continuous
interpersonal behavior annotation by using joysticks (see Lizdek et al. 2012). However, this new
approach limited us in terms of using already existing rating instruments because existing
instruments do not allow for a high enough level of temporal resolution. Furthermore, the
CARMA software requires annotations on a scale rather than rating the behavior in terms of
categories as already existing instruments do. When developing the new instrument, we mainly
oriented on the MAI (Helmke and Renkl 1992; Hommel 2012). However, we needed to define
more fine-grained indicators of student behavior to make annotations along a continuous scale
possible. Therefore, we added indicators from various established instruments to extend our rating
scale. We assumed that the manual observer annotations would serve only as approximations of
the actual cognitive states of the students and that the averaged (i.e., intersubjective) manual
annotations would reflect the “true score” of the visible indicators of (dis)engagement in learning
better than a single rater could. Subsequent to the ratings, we thus calculated themean of the raters
for every second. The mean values for each second and student were used as the ground truth to
train a machine-learning approach.

Using Machine Learning to Assess Visible Indicators of (Dis)Engagement
in Learning

Machine learning and computer vision methods have made tremendous progress over the past
decade and have been successfully employed in various applications. In the context of
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teaching, these methods might offer an efficient way to measure student engagement, thereby
decreasing the need for human rating efforts. However, any machine-learning method that is
aimed at estimating covert engagement-related processes in learning needs to depend on
visible indicators such as head pose, gaze direction, facial action unit intensity, or body pose
and gestures. State-of-the-art methodologies for the automated assessment of engagement can
be divided into two categories: single-person- and classroom-based analyses.

In a single-person analysis, facial expressions can provide hints about ongoing cognitive
processes and can be analyzed by considering action unit (AU) features. Related studies by
Grafsgaard et al. (2013) and Bosch et al. (2016a, b) investigated the relations between AU
features and several response items and affective states. Even though these studies found that
several facial AUs were associated with engagement, they were limited to affective features
and did not consider head pose or gaze direction.

In another work, Whitehill et al. (2014) introduced a facial analysis approach to estimating
the level of engagement on the basis of manually rated engagement levels. Although their
facial analysis approach was able to predict learning just as accurately as participants’ pretest
scores could, the correlation between engagement and learning was moderate due to the
limited amount of data and the short-term nature of the situations.

In a classroom-based analysis, the focus shifts away from single individuals onto shared
features and interactions among participants. In this context, a number of notable contributions
(e.g., Raca 2015; Raca and Dillenbourg 2013) have utilized various sources of information to
understand features of audience behavior, such as the amount of estimated movement and
synchronized motions among neighboring students. They found that immediate neighbors had
a significant influence on a student’s attention, whereas students’ motion was not directly
connected with reported attention levels (Raca and Dillenbourg 2013; Raca et al. 2013).
Furthermore, Raca et al. (2014) analyzed students’ reaction time upon presentation of relevant
information (sleeper’s lag). In addition to estimating head pose, they considered the class
period, student’s row, how often faces were automatically detected (as a precursor to eye
contact), head movement, and the amount of still time (i.e., 5-s periods without head
movement) because these features had previously been shown to be good predictors of
engagement in learning (Raca et al. 2015). Although these results were promising, they were
limited to correlational studies of reported attention levels; predictive approaches were not
used due to limits in the performance of computer vision methodology.

A recent study estimated human-annotated attention levels by using 3D vision cameras to
identify individuals using face and motion recognition without any physical connection to
people and solely on the basis of visual features (Zaletelj 2017; Zaletelj and Košir 2017). Due
to technological limitations associated with 3D vision cameras, the analysis was based on a
single row of students rather than the entire classroom. Fujii et al. (2018) used head-up and
head-down states and classroom synchronization in terms of head pose as informative tools
that could provide feedback to teachers. However, they did not validate their system using
educational measures (pretests, posttests, or observations) and only reported user experiences
with three teachers.

In sum, few previous studies have investigated classroom-based attention and engagement
beyond the single-person context due to the poor performance of computer vision approaches
for face and body pose recognition in unconstrained settings (e.g., varying illumination,
occlusion, motion, challenging poses, low resolution, and long distance). However, recent
advances in deep learning technology have resulted in the availability of new methods for the
robust extraction of such features from videos. By employing such technology in this study, we
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aim to bring a fine-scaled analysis of visible indicators to classroom studies and augment
individual engagement analysis with another useful feature: classroom synchronization.

Research Questions

The present study is part of an ongoing research project in which researchers from education
science, psychology, and computer science are working to create an automatic assessment of
students’ engagement that could one day be implemented in an interface that can be used for
research as well as teacher training purposes. The present study lays the basis for achieving
these goals by developing and testing an automated approach to assessing visible indicators of
students’ (dis)engagement in learning. Such a remote approach requires comparable data
(generated by human raters) that can be used as the ground truth in order to train a classifier.
However, existing instruments (Helmke and Renkl 1992; Hommel 2012) for measuring
engagement-related processes in learning (a) require human observers to make a huge number
of inferences and (b) require data to be collected in 30-s or 5-min intervals. This is problematic
for our context because an automated analysis can only rely on visible indicators, does not
consider content-specific information at all, and operates at a more fine-grained temporal
resolution. Therefore, we developed a new instrument to annotate student behavior manually
by applying a rating method with visible indicators over time. This manual rating served as the
starting point from which to train an algorithm by applying methods from machine learning
and computer vision.

The present study addressed the following research questions:

1) Is the new manual annotation of visible indicators of (dis)engagement in learning related
to students’ learning processes and outcomes? To validate our instrument, we examined
how the manual ratings were correlated with students’ self-reported cognitive engage-
ment, involvement, and situational interest. We expected these self-reported learning
activities to cover different facets of (dis)engagement in learning, and when combined,
we expected them to account for cognitive parts of the construct. Furthermore, we tested
whether the scores resulting from the manual annotation would predict students’ perfor-
mance on a knowledge test at the end of an instructional session.

2) Is it possible to adequately replicate the relation to students’ learning processes and
outcomes by using visible indicators of (dis)engagement in learning based on the
machine-learning techniques that estimated the manual ratings? We used gaze, head
posture, and facial expressions to estimate the manual ratings. To test the quality of our
machine vision-based approach, we examined the associations between the scores gener-
ated from the automated approach and the manual ratings and students’ self-report data
regarding their learning processes, and we used the machine-learning scores to predict
achievement on the knowledge test.

3) How do adding synchrony aspects of student behavior affect the automated estimations of
the manual ratings? The results of previous studies have indicated that immediate
neighbors have a significant influence on a student’s engagement (Raca and
Dillenbourg 2013; Raca et al. 2013). As a first step toward including indicators of
synchrony in our project, we added students’ synchrony with the person sitting next to
them as an additional variable to our prediction models, which were based on the
automated assessment of student engagement.
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Method

The ethics committee from the Leibniz-Institut für Wissensmedien in Tübingen approved our
study procedures (approval #2018-017), and all participants gave written consent to be
videotaped.

Sample and Procedure

We decided to conduct a study involving university students in order to validate our
approach before administering it in school classrooms. A total of N = 52 university
students (89.5% women, 8.8% men, mean age = 22.33, SD = 3.66) at a German univer-
sity volunteered to take part in the study. The study was conducted during regular
university seminar sessions on quantitative data analysis (90 min). A total of three
different seminar groups were assessed. The topics of the sessions were either t tests
for independent samples (sessions 1 and 2) or regressions (session 3) and ranged from 30
to 45 min. The sessions were videotaped with three cameras (one teacher camera, two
cameras filming the students). If students refused to be videotaped, they were either
seated outside the scope of the cameras or switched to a parallel seminar. Participants
were informed in advance of the study’s purpose, procedure, and ethical considerations
such as data protection and anonymization. To avoid confounding effects of the teacher,
the same person taught all sessions in a teacher-centered manner. Before the session
started, students filled out a questionnaire on background variables (age, gender, final
high school examination [Abitur] grade, school type) and individual learning prerequi-
sites. After the session, participants completed a knowledge test on the specific topic of
the session and completed another questionnaire about learning activities during the
seminar.

Instruments

Individual Learning Prerequisites We used established questionnaire measures to assess
three individual learning prerequisites: Dispositional interest in the session’s topic was
captured with four items (α = .93) adapted from Gaspard et al. (2017). Self-concept in
quantitative data analysis was assessed with five items (α = .80; adapted from Marsh
et al. 2006), and 13 items were used to test for self-control capacity (α = .83; Bertrams
and Dickhäuser 2009). Moreover, we administered the short version of the quantitative
subscale (Q3) of the cognitive abilities test (Heller and Perleth 2000). Measuring these
learning prerequisites allowed us to control for potential confounding variables in the
analyses.

Learning Outcomes The knowledge test consisted of 12 and 11 items that referred to
participants’ declarative and conceptual knowledge of the session topic, respectively. We z-
standardized the knowledge test scores within each group for subsequent analysis.

Self-Reported Learning Activities After the session, we assessed students’ involvement (four
items, α = .61; Frank 2014), cognitive engagement (six items, α = .79; Rimm-Kaufman et al.
2015), and situational interest (six items, α = .89; Knogler et al. 2015) during the seminar
session (see Table 1).
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Analysis

Continuous Manual Annotation To develop a continuous manual annotation that includ-
ed potential valid indicators of students’ visible (dis)engagement in learning, we used the
instruments developed by Helmke and Renkl (1992) and Hommel (2012) as a basis.
However, these instruments label behavior in categories and thus cannot be used as a
continuous scale. Therefore, we combined the idea of on-/off-task behavior and active/
passive subcategories with existing scales from the engagement literature. Furthermore,
we used the theoretical assumptions about students’ learning processes and related
activities in classrooms pointed out by the ICAP framework (Chi and Wylie 2014) as
an inspiration to define more fine-grained differentiations within the possible behavioral
spectrum. The distinction into passive, active, constructive, and interactive behavior
allowed us to make subtler distinctions between the different modes of on-task behavior,
and this concept could be transferred to off-task behavior (i.e., passive, active, decon-
structive, and interactive) as well. By combining different approaches, we could define
visible indicators of (dis)engagement in learning on a continuous scale. The resulting
scale ranged from − 2, indicating interruptive and disturbing off-task behavior, to +2,
indicating highly engaged on-task behavior where, for example, learners ask questions
and try to explain the content to fellow learners (see Fig. 1). When a person could not be
seen or was not present in the classroom, the respective time points were coded as
missing values in subsequent analyses.

The behavior of each observed person throughout the instructional session was
coded in 1-s steps using the CARMA software (Girard 2014) and a joystick. A total
of six raters annotated the videotaped seminar sessions, and each session was anno-
tated by a total of three raters. The raters consisted of student assistants and one
researcher, all of whom were trained carefully before annotating the videos. First,
raters were introduced to the conceptual idea of the rating and the rating manual.

Table 1 Item wording for learning activities

Construct Items

Cognitive engagement I exerted myself as much as possible during the session.
I thought about different things during the session.
I only paid attention when it was interesting during the session.
It was important for me to really understand things during the session.
I tried to learn as much as possible during the session.
I pondered a lot during the session.

Involvement During the session…
… I strongly concentrated on the situation.
… I occasionally forgot that I was taking part in a study.
… I was mentally immersed in the situation.
… I was fully engaged with the content.

Situational interest When you think about today’s session…
… the seminar session aroused your curiosity.
… the seminar session attracted your attention.
… you were completely concentrated on the seminar session.
… the seminar session was entertaining for you.
… the seminar session was fun for you.
… the seminar session was exciting for you.

Items have been translated
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They were told to concentrate on observable behavior to avoid making inferences and
considering information from previous ratings. The raters focused on one student at a
time in a random order. Every rater had to code one of two specific sections of the
video for training, and the raters had to annotate special students who showed
different types of behavior. To ensure that we could use all the video material for
our analysis, raters who used video section A for training annotated video section B
later and vice versa. The respective video sections used for training purposes were not
included in the analysis. Only after their annotations reached an interrater reliability
with an expert rating of at least ICC(2,1) = .60 were raters allowed to annotate the
study material. We report the ICC(2,1) here as an indicator of interrater reliability
because our data were coded on a metric scale level, and we had more than two raters
per participant. We calculated the ICC(2,1) for every student, indicating the interrater
reliability averaged across all time points, whereby values between .60 and .74
indicated good interrater reliability (Hallgren 2012); the ICC(2,1) for each student
was .65 on average (absolute agreement). When the annotations between the raters
deviated strongly, critical situations were discussed among the raters and recoded
following consensus. The raters were not informed about the students’ individual
prerequisites, their learning outcomes, or their self-reported learning activities.

Machine-Learning Approach In addition to the manual ratings (see previous section),
we employed a machine vision-based approach to estimate (dis)engagement in learning
using visible indicators and analyzed the same videos with this approach. More
specifically, we first detected the faces in the video (Zhang et al. 2017) and automat-
ically connected the faces detected in the video stream to each student so that we could
track their behavior. Faces were aligned, and their representative features extracted
automatically based on the OpenFace library (Baltrušaitis et al. 2018). However, this

Fig. 1 Scale with exemplary behavioral indicators
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procedure was not applicable to all students and all frames due to occlusions by peers,
laptops, or water bottles. The subsequent analyses were therefore based on a subsample
of N = 30 students.

In contrast to typical facial analysis tasks such as face recognition, the number of
participants in classrooms is limited. We used the following three modalities as feature
representations: head pose, gaze direction, and facial expressions (represented by facial
action units). The head pose features consist of the head’s location with respect to the
camera and the rotation in radians around three axes. Gaze is represented by unit gaze
vectors for both eyes and gaze direction in radians in world coordinates. Facial action
units (AU) were estimated according to the Facial Action Coding System (FACS; Ekman
and Friesen 1978), for which each AU can be expressed at five intensity levels. More
specifically, to estimate the occurrence and intensity of FACS AUs, we used the
following 17 AUs: upper face AUs are AU1 (inner brow raiser), AU2 (outer brow
raiser), AU4 (brow lowerer), AU5 (upper lid raiser), AU6 (cheek raiser), and AU7 (lid
tightener); the lower face AUs are AU9 (nose wrinkler), AU10 (upper lip raiser), AU12
(lip corner puller), AU14 (dimpler), AU15 (lip corner depressor), AU17 (chin raiser),
AU20 (lip stretcher), AU23 (lip tightener), AU25 (lips part), AU26 (jaw drops), and
AU45 (blink). Given that our videos were recorded at 24 frames per second, and the
manual annotations were conducted each second, we used the mean values of these
features for time sequences of 24 frames to predict engagement intensities. More
specifically, we regressed the engagement intensities using linear Support Vector Re-
gression (Fan et al. 2008) in a subject-independent manner. Excluding the subject whose
engagement intensity was to be predicted, individual regression models were trained
using all other student features and labels. Subsequently, the test subject’s engagement
during each 1-s period was predicted. Finally, the average estimated engagement inten-
sity during the instructional session was taken as the final descriptor for each participant.

The label space for students’ manually annotated engagement was between − 2 and
+ 2; however, the distribution of the data was highly imbalanced. Nearly 80% of all of
the annotated data ranged from 0.2 to 0.8. Therefore, we had to clip the label values to
fit the range of − 0.5 and 1.5 and then rescale them to 0 and 1 in our regression
models.

In summary, the visible indicators we used could be differentiated into two categories:
engagement-related features (i.e., head pose and gaze direction) and emotion-related
features (AU intensities). In order to compare their contributions with visible indicators
of (dis)engagement in learning, we used them both separately and in combination.

In order to go beyond a single-person analysis, we further integrated an indicator of
synchrony. Because simultaneous (i.e., synchronous) behavior in a group of students or
an entire classroom can have an impact on individual students, in this first step toward an
automated approach, we considered the behavior of neighboring students sharing the
same desk. First, we measured the cosine similarities between neighboring students’
manual ratings (N = 52, 26 pairs). Second, we calculated the relation between neighbors’
synchrony (cosine similarities) and their mean engagement levels during instruction.
Because synchronization is a precursor to engagement, we expected the neighbors to
provide valuable information for estimating (dis)engagement in learning. Therefore, in
the final step of our analysis, we concatenated the feature vector of each student and his
or her neighbor into a single vector and trained the same regression models as for the
estimation of each individual student’s engagement.
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Results

Relation Between Continuous Manual Annotation and Student Learning

We tested the validity of our manual rating instrument in two steps. First, we investigated
construct validity by correlating the manual ratings with the self-reported learning activities.
The manual annotations were significantly correlated with students’ self-reported cognitive
engagement, situational interest, and involvement (.49 ≤ r < .62; Table 2).

Additionally, we calculated a multiple linear regression with the three self-reported learning
activities as regressors. Together, they explained 42.9% of the variance in the manual ratings.
This corresponds to a multiple correlation of r = .66. Second, we examined the predictive
validity of our new instrument. We inspected the intercorrelations between all variables with
the knowledge test (Table 2). The knowledge test scores (the dependent variable in this study)
were significantly correlated with the manual ratings, cognitive abilities, and situational
interest (.30 ≤ r < .42). To test for effects of possible confounding variables, we calculated
two additional linear regression models in which we added background variables (model 2)
and learning prerequisites (model 3) into the regression and compared them with the prediction
that involved only manual ratings (Table 3). The effect of the manual ratings remained robust
and still explained a significant proportion of the variance in the knowledge test results.

Reanalysis with Machine-Learning Approach

We applied our trained regression to test subjects at 1-s intervals and applied mean pooling to
create a final estimation that summarized participants’ engagement. Table 4 shows the
performance of different modalities for estimating (dis)engagement in learning. The perfor-
mance measures were mean squared errors in the regression and the Pearson correlation
coefficient between the manual annotations’ mean level and our models’ prediction during
the instructional session.

As shown in Table 4, the head pose modality exhibited a lower correlation with the manual
ratings (r = .29) than the other features. By contrast, gaze information and facial expressions
(AU intensities) were more strongly correlated with the manual annotations (r = .44). Com-
bining head pose and gaze (r = .61) or all three modalities (r = .61) also led to substantial
correlations with the manual annotations.

In addition, we tested the correlations between the posttest variables (i.e., the knowledge
test and self-reported learning activities) and the different models for estimating the manual
ratings (Table 5). According to these results, regression models, which perform better with
respect to MSE and lead to higher correlations with the manual ratings, seem to contain more
information that is relevant for the posttest variables, particularly with respect to involvement
and cognitive engagement.

Addition of Synchrony to the Machine-Learning Approach

The cosine similarities of the manual annotations between neighboring students were strongly
correlated with each neighbor’s mean engagement level throughout the recording (r = .78).
More specifically, taking the synchronization into consideration improved the correlation with
the manual ratings by 9%, thus showing that synchronization information is helpful for
understanding (dis)engagement in learning.
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The correlations between the different models for estimating the manual ratings and
students’ self-reported learning activities and outcomes revealed that the best models
were those in which head pose and gaze features were combined with neighbor
synchrony (r = .08, .43, .39, and .26 for the knowledge test, involvement, cognitive
engagement, and situational interest, respectively; Table 5). We calculated the mean
correlation (based on Fisher’s z-transformed correlations) of the three manual annota-
tions (average r = .74) and the mean correlation of each rater and the scores from a
model combining head pose, gaze features, and neighbor synchrony (average r = .64)
for the subsample.

Because the model in which head pose and gaze were combined with neighbor’s
synchrony had the highest correlation with the manual rating, we calculated a linear
regression to predict the posttest variables (Table 6). In order to understand the
contribution of neighbor’s synchrony, we trained our regression models using the
same features with and without synchronization information. Adding neighbor’s syn-
chrony improved the prediction of all posttest variables and explained at least 2%
more variance. However, the manual rating remained superior.

Table 3 Prediction of knowledge test results (N = 52)

Model 1 Model 2 Model 3

b SE p b SE p b SE p

Manual rating 1.08 0.49 .032 0.92 0.49 .067 1.00 0.48 .042
Abitur grade − 0.60 0.29 .043 − 0.50 0.30 .099
School type − 0.40 0.28 .159 − 0.47 0.27 .087
Cognitive abilities 0.08 0.04 .068
Dispositional interest 0.43 0.23 .066
Self-concept 0.38 0.26 .160
Self-control capacity − 0.28 0.21 .189
R2 .092 .184 .342
F 4.88* 3.46* 3.12**

Abitur grade: lower values indicate better results according to the German grading system

*p < .05; **p < .01; ***p < .001

Table 4 Performance of different modalities in engagement in learning estimation depicted as mean squared
error (MSE) for regression and Pearson correlations between manual ratings and our models’ estimation (N = 30)

Modalities MSE r p

Single students
Head pose 0.057 .29 .126
Gaze 0.055 .44 .015
Facial expressions 0.056 .44 .014
Head pose + gaze 0.052 .61 .000
3-Combined 0.051 .61 .000

Single students + cosine similarity
Head pose + gaze (sync) 0.029 .71 .000
3-Combined (sync) 0.050 .70 .000
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Discussion

The present study reported key initial results from the development of a machine vision-based
approach for assessing (dis)engagement in the classroom. We were able to find empirical
support for the validity of our newly developed manual rating instrument. Furthermore, the
machine-learning approach proved to be effective, as shown by its correlation with the manual
annotations as well as its ability to predict self-reported learning activities. Finally, as expected,
including an indicator of synchrony in the automated analyses further improved its predictive
power. Next, we discuss our main results in more detail before turning to the limitations of the
present study and the crucial next steps.

Empirical Support for the Newly Developed Approach

The manual rating of visible indicators for (dis)engagement in learning predicted achievement
on a knowledge test following a university seminar session. This prediction was robust when
we controlled for individual characteristics (research question 1). In terms of validity, self-
reported cognitive engagement, involvement, and situational interest were strongly correlated
with the manual rating. As these self-reported learning activities reflect students’ cognitive
processes during the seminar session, we concluded that our manual ratings capture visible
indicators that are actually related to (dis)engagement in learning. Therefore, we inferred that it
is reasonable to use these manual ratings as a ground truth for our machine vision-based
approach.

In the automated analyses of engagement, we used several visible features (head pose, gaze,
facial expressions). More specifically, we compared their contribution with visible indicators
of (dis)engagement in learning separately and in combination. Our results showed that facial
expressions were more strongly correlated with the manual rating than head pose or gaze
alone; however, combining the engagement-related features and combining all three visible
indicators improved the correlation with the manual annotations substantially, thus emphasiz-
ing the complexity of human rating processes. However, we were not able to replicate the
prediction of the knowledge test scores by considering these visible features alone (research
question 2).

Table 5 Pearson correlations of different modalities in engagement in learning estimations with post-test
variables (N = 30)

Modalities Knowledge
test

Involvement Cognitive
engagement

Situational
interest

r p r p r p r p

Single students
Manual ratings .14 .468 .64 .000 .62 .001 .53 .003
Head pose − .17 .392 .05 .799 .02 .914 − .02 .913
Gaze .11 .582 .19 .335 .16 .414 .23 .236
Facial expressions − .09 .667 .37 .053 .23 .249 .30 .116
Head pose + gaze − .03 .867 .41 .029 .37 .053 .21 .286
3-Combined − .04 .827 .43 .023 .37 .055 .21 .277

Single students + similarity
Head pose + gaze (sync) .08 .704 .43 .023 .39 .040 .26 .175
3-Combined (sync) − .01 .968 .45 .016 .38 .043 .26 .189
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We expected that additional information concerning interaction with peers and similar
behavioral aspects would improve the estimated model. Indeed, adding synchrony by consid-
ering the engagement patterns of students’ neighbors improved the correlations with the
manual rating as well as the prediction of the posttest variables (research question 3). In line
with Raca et al.’s (2013) correlative results, our findings indicated that considering neighbor
synchrony leads to a better understanding of engagement in predictive models. However, the
manual ratings were still better at predicting the knowledge test results as well as self-reported
cognitive engagement, involvement, and situational interest. Yet, the similarity between the
three different manual raters (r = .74) differed from the similarity between the manual anno-
tations and the machine-learning approach (r = .64). This difference obviously leaves some
room for improvement; however, the approximation that was based on visual parameters and
the synchrony with a neighbor’s behavior appears to provide reliable results. This raises the
question of whether human annotators should also include more than just a single person in
their ratings and (unconsciously) consider additional information.

Possible Contributions of an Automated Approach for Assessing Engagement

Our machine-learning approach provides a promising starting point for reducing the effort
involved in manual video inspection and annotation, which in turn would facilitate the analysis
of larger numbers of individuals and longer videotaped lessons. In addition, such approaches
enable the consideration of more complex information on synchronization across students in a
way that goes beyond the ability of human observers. This approach is potentially fruitful for
both research and practice.

Information from automated analyses of engagement can be used to provide feedback
to teachers and improve their skills in monitoring and identifying relevant cues for
students’ attention in complex classroom interactions. When teachers can notice and
identify a lack of engagement, they have the opportunity to adapt their teaching method
accordingly and to encourage the students to deal with the learning content actively.
Furthermore, by noticing and identifying distracting behavior, teachers get the chance to
react to disruptions and ensure the effective use of instruction time. An automated
analysis of videos can support novice teachers in developing professional vision skills,
and it can provide feedback to teachers in general about the deep structure of their
teaching. By making work with videos less effortful, this method could allow videos to
be implemented in teacher training more systematically.

Moreover, the annotation of (dis)engagement in learning over time opens up new
opportunities for further investigations of classroom instruction by adding a temporal
component. This method allows for the detection of crucial events that accompany
similar engagement-related behavior across students and provides deeper insights into
different effect mechanisms during instruction. Furthermore, this approach can be com-
bined with additional measures. For example, tracking human raters’ eye movements can
provide insights into where they retrieve their information and what kinds of visible
indicators they actually consider. This knowledge can further improve machine vision-
based approaches by including the corresponding features. In addition, combining valid
visible indicators of students’ (dis)engagement in learning with eye-tracking data for the
teacher, for example, makes it possible to analyze in more detail what kind of visible
indicators attract novice teachers’ attention (e.g., Sümer et al. 2018). This information
can then be reported back in teacher training to support professional vision skills.
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Challenges and Limitations

Our study has several notable limitations that need to be addressed in future research. First,
face recognition was not possible for all students due to the occlusion of their faces some or
most of the time. For this reason, we had to reduce the sample size for the automated analysis,
which in turn reduced the statistical power. Limited data was also an issue in the study by
Whitehill et al. (2014), who only found moderate correlations between engagement and
learning for this reason. It can thus be assumed that increasing the number of participants
recognized by face detection would further improve the linear regression models used to
predict self-reported learning activities and learning outcomes. The use of mobile eye trackers
for each student is an example of one solution that can provide data for individual students.
However, the use of eye trackers is expensive, and when used with children who might touch
the glasses too often, it deteriorates the gaze calibration and results in an erroneous analysis of
attention. Besides, mobile eye trackers can affect the natural behavior of students, whereas
field cameras are pervasive and do not create a significant intervention. To overcome the issue
of students being occluded, different camera angles could be helpful in future studies.

Second, a challenging aspect of engagement estimation in our setting was the highly
imbalanced nature of our data. Engagement levels on both outer ends of our rating scale were
underrepresented. As a direct consequence of the learning setting (a teacher-focused session on
statistics), few participants displayed active on-task behavior (e.g., explaining content to
others); even less data were collected for visible indicators of disengagement in learning
indicating active off-task behavior (e.g., walking around with the intention to interrupt). This
imbalance has negative implications for the training of algorithms because greater variability in
behavior typically leads to more accurate automated analyses. Whereas human raters are
familiar with high levels of variance in an audience’s on-task and off-task behavior and use
this implicit knowledge in their annotation, the algorithms were trained using only the
available data from our three sessions. However, this limitation can be overcome by recording
real classroom situations, which will be part of our future work. Although it is not possible to
control the intensity of students’ (dis)engagement in learning in natural classroom settings,
completing more recording sessions and including more participants will eventually lead to a
wider distribution of characteristics.

Third, additional research is necessary to validate our approach in schools due to the
different target population. This is particularly important because high school students might
exhibit a more diverse set of visible indicators of (dis)engagement in learning.

Conclusion

Remote approaches from the field of computer vision have the potential to support research
and teacher training. For this to be achieved, valid visible indicators of students’
(dis)engagement in learning are needed. The present study provides a promising contribution
in this direction and offers a valid starting point for further research in this area.
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