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Abstract
Old lead–zinc (Pb–Zn) mining sites in Greenland have increased the environmental concentration of Pb in local marine
organisms, including the shorthorn sculpin. Organ metal concentrations and histopathology have been used in environmental
monitoring programs to evaluate metal exposure and subsequent effects in shorthorn sculpins. So far, no study has reported
the impact of heavy metals on gene expression involved in metal-related stress and immune responses in sculpins. The aim
of this study was to investigate the effect of exposure to environmentally relevant waterborne Pb (0.73 ± 0.35 μg/L) on
hepatic gene expression of metallothionein (mt), immunoglobulin M (igm), and microRNAs (miRNAs; mir132 and mir155)
associated with immune responses in the shorthorn sculpin compared to a control group. The mt and igm expression were
upregulated in the Pb-exposed group compared to the control group. The transcripts of mir132 and mir155 were not different
in sculpins between the Pb-exposed and control group; however, miRNA levels were significantly correlated with Pb liver
concentrations. Furthermore, there was a positive correlation between liver Pb concentrations and igm, and a positive
relationship between igm and mir155. The results indicate that exposure to Pb similar to those concentrations reported in in
marine waters around Greenland Pb–Zn mine sites influences the mt and immune responses in shorthorn sculpins. This is the
first study to identify candidate molecular markers in the shorthorn sculpins exposed to waterborne environmentally relevant
Pb suggesting mt and igm as potential molecular markers of exposure to be applied in future assessments of the marine
environment near Arctic mining sites.
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Highlights
● mt and igm were upregulated in Pb exposed fish compared to the control group.
● Significant positive correlation was found between Pb concentrations in liver and igm.
● Expression of igm was positively correlated to mir155 expression.
● mir155 expression was positively correlated with severity scores of hepatic lesions.
● Pb levels in the liver were significantly correlated with miRNAs expression.

Introduction

Heavy metal pollution from industrial, mining, and agricultural
sources in aquatic ecosystems has been of concern across the
world, including the Arctic (Dietz et al. 1998; Evans et al.
2000; Voigt 2003; Chua et al. 2018). Lead (Pb) is a non-
essential and toxic heavy metal that is widespread in aquatic
environments (Scheuhammer et al. 2008). Exposure to Pb
even at low concentrations impairs biological functions, such
as reproduction, development, behavior, learning, immune
response, and metabolism (Eisler 1988). Pb is particularly
harmful to aquatic organisms, including fish, as it bioaccu-
mulates through uptake via gills, dietary consumption, and
contaminated sediments (Eisler 1988; Scheuhammer et al.
2008; Mager 2011). In fish, Pb accumulates in liver, spleen,
and kidney, as well as the digestive system and gills (Jezierska
and Witeska 2006). A wide range of Pb concentrations (1 to
5.15mg/L) have been demonstrated to activate oxidative stress
and cause inflammation in different fish species (Lee et al.
2019; Jing et al. 2020).

Metallothioneins (Mt) are low molecular weight metal
binding proteins involved in homeostatic regulation and
transportation of essential metals, such as copper (Cu) and zinc
(Zn) (Hogstrand and Haux 1990; Coyle et al. 2002; Baird et al.
2006). Mt proteins are also involved in detoxification of non-
essential metals, including Pb, to protect tissues from oxidative
stress (Hogstrand and Haux 1990; Dallinger et al. 1997;
Monteiro et al. 2011). Production of Mt is induced by expo-
sure to heavy metals and Mt is measured to estimate the stress
responses to heavy metal exposure, such as Pb, across fish
species (Schmitt et al. 2007; Huang et al. 2014; Yin et al.
2018b). Following exposure to varying Pb concentrations
(0.07 to 1.16mg/L), the expression of mt increased and was
suggested as biomarker of exposure to Pb (Huang et al. 2014).
Expression of mt has been applied as a sensitive biomarker of
metal exposure in fish in metal-contaminated environments
(Cheung et al. 2004). For example, Wang et al. (2014) showed
that expression of mt in the rare minnow (Gobiocypris rarus)
was upregulated possibly as a result of heavy metal exposure
and oxidative stress.

Heat shock proteins (Hsp), also known as “stress proteins”,
are involved in a variety of physiological activities, including
protein chaperoning, apoptosis protection, steroidogenesis, and
stress resistance (Mahmood et al. 2014). Exposure to heavy
metals leads to numerous cellular heat-shock responses,

including induction of Hsp to protect cellular functions (San-
ders 1993). Hsp, such as Hsp70, are highly conserved proteins
in fish and are applied as a potential biomarker to assess cel-
lular stress responses in fish exposed to heavy metals,
including Pb (Basu et al. 2002; Kim and Kang 2016). In
addition, the expression of hsp can be influenced by a number
of factors, including heat and cold shock, xenobiotics, and
pathogens (Iwama et al. 1998; Lewis et al. 1999; Basu et al.
2002). Previous studies have shown that the expression of
hsp70 in fish was elevated following exposure to heavy
metals, including various Pb concentrations (0.05–800mg/L
waterborne Pb) (Yin et al. 2018b; Zhao et al. 2020).

Exposure to Pb alters immune response and induces
immunomodulation in fish (Zelikoff 1993; Zelikoff et al.
1995; Luebke et al. 1997; Bols et al. 2001; Qian et al.
2020). Immunoglobulin M (IgM) is the most highly con-
served and abundant immunoglobulin isotype in teleosts
and is one of the most essential components of the immune
system as it mediates humoral adaptive immunity in fish to
eliminate invading pathogens (Salinas et al. 2011; Zwollo
2018; Smith et al. 2019). IgM has been used as an indicator
of immune response in teleosts (Wester et al. 1994; Lee
et al. 2014). Previous studies of rockfish (Sebastes schle-
gelii) demonstrated that dietary exposure to Pb activated an
immune response, increasing plasma IgM concentration
(Kim and Kang 2016). In contrast, Zhao et al. (2020)
showed that waterborne Pb exposure decreased serum IgM
concentration in the northern snakehead (Channa argus).
MicroRNAs (miRNAs) are important regulators of the
immune response and expression of immune associated
miRNAs can be modulated in many different species by
exposure to environmental pollutants (O’Connell et al.
2007; Mehta and Baltimore 2016; Andreassen and Høyheim
2017; Li et al. 2019; Badry et al. 2020; Sun et al. 2021).
Recent research found that miRNAs, such as mir132 and
mir155, play critical roles in regulating inflammation, sug-
gesting they are crucial regulators of immune responses
(Rodriguez et al. 2007; Roy and Sen 2010; He et al. 2014;
Ma et al. 2018; Zhao et al. 2022). There is some evidence
that the alteration of mir155 expression could be a novel
biomarker of exposure to pollution (Huang et al. 2016;
Badry et al. 2020). For example, mir155 was downregulated
in adult zebrafish (Danio rerio) after exposure to an
insecticide fipronil (Huang et al. 2016). In addition, miR-
NAs, including mir132, have been identified as important
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miRNAs associated with responses to exposure to metals
(Pellegrini et al. 2016).

Although previous studies have proposed molecular
markers for assessing the effects of exposure to metals on
stress and immune responses in many fish species, the study
of molecular endpoints to identify candidate molecular
markers remains a knowledge gap in benthic species,
including the sculpins.

Previous field studies on the impact of metal pollution at
historic Pb–Zn mining sites in Greenland used shorthorn
sculpins (Myoxocephalus scorpius) as a sentinel species to
assess aqueous exposure and effects of toxic elements,
including Pb, on bioaccumulation (e.g., resulting in Pb
residues of 0.01–0.94 μg/g in liver and 0.01–0.69 μg/g in
muscle) and histology (Sonne et al. 2014; Dang et al.
2017, 2019; Nørregaard et al. 2018; Hansson et al. 2020).
M. scorpius is a relatively sedentary and benthic marine fish
species that lives in the North Atlantic coast and the Arctic
Ocean (Luksenburg and Pedersen 2002; Thorsteinson and
Love 2016). In Greenland, M. scorpius is abundant at both
western and eastern Greenland mine sites, and easy to catch
by angling near mine sites (Søndergaard and Mosbech
2022). Recently, the effects of Pb exposure on shorthorn
sculpin, under controlled laboratory conditions, have cor-
roborated field observations, including bioaccumulation in
organs and blood, and histopathology of liver and gills
(Jantawongsri et al. 2021). However, there has been no
research on the effects of exposure to Pb on stress and
immune responses in shorthorn sculpin, or any other species
in this genus. Thus, our aim was to investigate the expres-
sion of stress-related and immune-related genes in shorthorn
sculpins exposed to Pb concentrations that are relevant for
the marine environment adjacent to Greenland Pb–Zn
mines. Following a controlled laboratory experiment,
hepatic expression of mt, igm, hsp70, and miRNAs were
investigated in control and Pb-exposed fish. The aim was to
assess the potential of these stress and immune-related
genes as molecular markers of Pb exposure in sculpins
around Pb–Zn mines in the Arctic, including Greenland.

Methods

Experimental design

For a detailed description of the experiment, see Jantawongsri
et al. (2021). Briefly, wild-caught sculpins (15 fish in each of
two Pb-exposed tanks and 15 fish in each of two control tanks)
were exposed to an environmentally-relevant concentration of
dissolved Pb (0.73 ± 0.35 μg/L (mean ± standard deviation,
SD)) consistent with a previous report on seawater near the
former Black Angel Pb–Zn mine in Maarmorilik, West
Greenland (0.46 μg/L of dissolved Pb; Søndergaard et al.

2011). At the end of the experiment, a liver sample was col-
lected from each fish and fixed in RNAlater (Ambion, Austin,
TX, USA), incubated at 4 °C overnight and then stored at
−20 °C. As there were no significant variations in biometrics,
age, or residues of other elements (excluding Pb concentra-
tions) between control and exposed sculpins caught in the
same area, it was assumed there was no background difference
between the fish before the experiment (Jantawongsri et al.
2021). After 28 days of exposure, liver residues of Pb were
significantly higher in Pb-exposed sculpins (0.50 ± 0.23 μg/g
dry weight) than in control fish (0.13 ± 0.10 μg/g dry weight)
(p < 0.001; Jantawongsri et al. 2021).

RNA isolation and cDNA synthesis

RNA extraction and cDNA synthesis were performed on 22
control sculpins and 20 Pb-exposed sculpins following the
method of Castaño-Ortiz et al. (2019). RNA was extracted
from the liver samples (approx. 50 mg) using the miRNeasy
Mini Kit (Qiagen, Oslo, Norway) following the manu-
facturer’s protocol and stored at −20 °C. RNA concentra-
tion was then determined using a NanoDrop® ND-
2000cUV-visible Spectrophotometer (NanoDrop Technol-
ogies, Wilmington, USA). cDNA synthesis was performed
using 500 ng of RNA and the miRCURY LNA™ RT Kit
(Qiagen, Oslo, Norway) as per manufacturer’s instructions.

Partial isolation of candidate genes and qPCR
primer design

Target genes in this study represented (1) metal-ion binding
protein (mt), (2) immune-related (igm), (3) heat shock protein
(hsp70), and (4-5) miRNAs associated with immune response
(mir132 and mir155) (Table 1). To amplify fragments of mt,
igm, and hsp70 gene fromM. scorpius, the mRNA nucleotide
sequences from shorthorn sculpin-related species retrieved
from GenBank® database (NCBI) were aligned using the
Clustal Omega multiple sequence alignment tool
(https://www.ebi.ac.uk/Tools/msa/clustalo/) and degenerate
oligonucleotide primers were designed from the conserved
regions (Pankhurst et al. 2011) (Table S1). mir132 and
mir155 primers were commercially designed by miRCURY
LNA™ miRNA PCR Assays (Qiagen, Oslo, Norway).

PCR amplification for mt, igm, and hsp70 was carried out
using Taq PCR Core Kit (Qiagen, VIC, Australia) accord-
ing to the manufacturer’s specifications with 10 μM of each
primer. Amplification was performed on Bio-Rad C1000™
thermal cycler using the following cycling conditions: 3 min
at 94 °C, then 40 cycles of 94 °C for 30 s, 56 °C (mt) or
57 °C (igm) or 52 °C (hsp70) for 30 s and 72 °C for 30 s,
followed by a final extension at 72 °C for 10 min.

PCR products were separated via gel electrophoresis in
2% agarose gel and purified from the gel by using
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ISOLATE II PCR and Gel Kit (Bioline, NSW, Australia).
Purified PCR products were quantified using Qubit® dsDNA
BR Assay Kits (Thermo Fisher Scientific, VIC, Australia)
then sent to Griffith University DNA Sequencing Facility
(GUDSF; Griffith University, Nathan, QLD, Australia) for
Sanger sequencing. Sequencing data was assessed using
Chromas Version 2.6.6 (Technelysium, QLD, Australia)
and sequences were submitted to GenBank. These sequen-
ces were used to design qPCR primers (Primer-BLAST,
https://www.ncbi.nlm.nih.gov/tools/primer-blast/) to have a
melting temperature between 63–67 °C and produce an
amplicon between 100–200 bp (Table 1).

qPCR procedure

Each qPCR reaction for mt, igm, and hsp70 contained: 5 μL
SsoAdvanced™ Universal SYBR® Green Supermix (Bio-
Rad, NSW, Australia), 100 nM each primer, 4 ng of cDNA
template, and water to a final volume of 10 μL. Each mir132
and mir155 reaction contained: 5 μL miRCURY LNA™
SYBR® Green PCR Kits (Qiagen, Oslo, Norway), 10 μM
each primer, 2.5 ng of cDNA template, and water to a final
volume of 10 μL. All qPCRs were performed in duplicate.

qPCRs for mt, igm, and hsp70 were performed on
CFX96™ real-time PCR detection system (Bio-Rad, NSW,
Australia). A touch-down qPCR protocol was used according
to the guidelines of Zhang et al. (2015) as follows: one cycle
95 °C for 3min and four cycles 95 °C for 20 s, 66 °C for 10 s
by decreasing 3 °C per cycle, followed by 40 cycles of 95 °C
for 15 s, 58–60 °C for 15 s. All primers were evaluated for
specificity at the end of cycle 40 using melt curve analysis,
which comprised of a 1 °C per 5 s temperature gradient from
60–94 °C. qPCRs for mir132 and mir155 were conducted on
Roche LightCycler® 96 (Roche Diagnostics, Basel, Switzer-
land) with the following running conditions: 2 min at 95 °C,
two steps cycling at 10 s at 95 °C and 60 s at 56 °C for 40
cycles followed by a melt curve (as per Table S2). Duplicate

no template controls (NTCs) were used in each qPCR plate
and no contamination was detected.

The efficiency of each individual sample was calculated
from the slopes of amplification curves and averaged for
each gene using a window-of-linearity approach in Lin-
RegPCR software (version 2020.2) (Ramakers et al. 2003;
Ruijter et al. 2009). qPCR primers were considered accep-
table based on the following criteria: (1) the estimated
efficiency was between 1.7 and 2.0 (Wilkerson et al. 2013;
Kim et al. 2017b), (2) the melting curve presented one
single peak, and (3) no primer-dimers formed in reactions
containing template (Rodríguez et al. 2015).

Data analysis

A Bayesian Markov Chain Monte Carlo (MCMC) chain
algorithm was conducted to evaluate the response of target
mRNA/miRNA to experimental factors. The unit of biolo-
gical replication used was an individual fish, so the repli-
cation level was n= 9–11 per tank and n= 20–22 per
treatment. Hepatic gene expression levels were determined
using a reference gene-free approach and the MCMC.qpcr
package, implemented in R Version 3.6.1 (R Core Team
2021) following the procedures proposed by Matz et al.
(2013). In MCMC, a two-way design “naïve” model was
fitted to estimate the expression of target genes in response
to fixed effects of “treatment” (control and Pb exposure) and
“tank” (2 control and 2 Pb exposure tanks), and random
effect (sample) as follows:

ln rateð Þ � geneþ gene : Treatment

þgene : Tank : Treatmentþ sample½ �

Gene expression data were reported as log2 transcript
abundances in posterior mean (model estimates) with 95%
credible intervals (CIs). The credible intervals are the Bayesian
analog of confidence intervals. The statistical significance of

Table 1 qPCR primers

Gene Primer sequence (5’→ 3’) Amplicon size (bp) Tm (°C) NCBI/miRBase accession number E

hsp70 F: GGT GTC CAA CGC AGT CAT C 119 64.4 OK668366 1.86

R: CCG TCG GCT CGT TGA TGA T 65.1

igm F: TAT TTC GTG GGA GAA CCA GG 178 63.7 OK668365 1.92

R: GGG TGT CTT AAG TGG TAC CAT CC 64.3

mt F: GAG GAT CCT GCA CCT GCA A 124 66.6 OK668364 1.95

R: GTG TCG CAC GTC TTC CCT TT 65.4

mir132 ola-miR-132 (5’ UAA CAG UCU ACA GCC AUG G) amplified by miRCURY
LNA™ miRNA PCR Assays, catalog number: YP02103600 (Qiagen, Oslo, Norway)

MIMAT0022617
(Li et al. 2010)

1.92

mir155 dre-miR-155 (5’ UUA AUG CUA AUC GUG AUA GGG G) amplified by
miRCURY LNA™ miRNA PCR Assays, catalog number: YP02102917 (Qiagen,
Oslo, Norway)

MIMAT0001851
(Chen et al. 2005)

1.72

bp base pairs, Tm melting temperature, E efficiency
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changes in expression were evaluated using MCMC, with a
significance threshold of p < 0.05 (Matz et al. 2013).

Transcript abundances (normalized data) from indivi-
dual sculpin for all target genes were used to analyze the
relationship between gene expression (this study) and data
previously reported by Jantawongsri et al. (2021); i.e.,
body mass, length, liver mass, condition factor, hepato-
somatic index (HSI), age, histology (including severity
score of lesions in liver and gills, number of digeneans
parasites in gills, number of mucous cells/interlamellar
unit (ILU) in gills), and concentrations of Pb in liver, gills,
muscle, and blood. For a detailed description of the his-
tology and metal analyses, see Jantawongsri et al. (2021).
Spearman’s rank correlation was then analyzed using the
Hmisc package (Harrell 2015) and stats package in R (R
Core Team 2021), and correlation coefficients (rs) with
p < 0.05 were considered significant.

Results

Hepatic gene expression

Hepatic expression levels of mt mRNA were significantly
greater in the Pb-exposed sculpins compared to those con-
trol sculpins (1.24-fold change, p= 0.030; Fig. 1 and Table
S3). Similarly, igm mRNA levels were significantly higher
in Pb-exposed fish than in control fish (1.53-fold change,
p= 0.028; Fig. 1 and Table S3). In contrast, hsp70 mRNA
levels and the transcripts of mir132 and mir155 did not
differ significantly between the Pb-exposed and control
sculpins (p > 0.05; Fig. 1 and Table S3). The replicate tanks
were pooled to compare Pb-exposed and control sculpin as
no significant differences were observed in hepatic mRNA
levels of mt, igm, and hsp70, and transcripts levels of
mir132 and mir155 in the sculpins among the tanks
(p > 0.25; Table S3).

Relationships between gene expression and other
parameters

Transcript levels of hsp70 of all sculpins were positively
correlated with body mass (rs= 0.58, p= 0.019, n= 23;
Fig. 2) and age (rs= 0.61, p= 0.004, n= 21; Fig. 2). A
significant positive correlation was observed between igm
and mir155 expression in all sculpins (rs= 0.66, p= 0.001,
n= 39; Fig. 2). Expressions of igm (rs= 0.54, p= 0.038,
n= 20; Fig. 2) and mir155 (rs= 0.82, p= 0.008, n= 22;
Fig. 2) were positively correlated with hepatic Pb con-
centrations of all sculpins. There were statistically sig-
nificant positive correlations between expression of mt and
number of mucous cells/ILU in the gills (rs= 0.43,
p= 0.036, n= 42; Fig. 2) and severity score of gill lesions,
including: hyperplasia (rs= 0.66, p= 0.012, n= 42; Fig. 2)
and complete lamellar fusion (rs= 0.57, p= 0.014, n= 42;
Fig. 2). Moreover, transcript of mir155 of all fish was
positively correlated with severity scores of hepatic lesions,
including megalocytic hepatosis (rs= 0.67, p= 0.002,
n= 42; Fig. 2), necrosis (rs= 0.53, p < 0.001, n= 42; Fig.
2), granuloma (rs= 0.42, p= 0.007, n= 42; Fig. 2) and
hepatic neoplasm (rs= 0.87, p= 0.001, n= 42; Fig. 2), but
negatively corelated with condition factor (rs=−0.8738,
p= 0.02, n= 41; Fig. 2). There was significant negative
correlation between expression of mir132 and Pb con-
centrations in liver (rs=−0.75, p= 0.008, n= 22; Fig. 2).

Discussion

In teleosts, Mt induction, and hence increased expression of
mt, could occur in response to oxidative stress caused by
exposure to heavy metals such as Cu, cadmium (Cd),
mercury (Hg), nickel (Ni), Pb, and Zn (Schlenk et al. 1999;
Cheung et al. 2004; Tom et al. 2004; Schmitt et al. 2007). In
the present study, significant up-regulation of hepatic mt

Fig. 1 Hepatic gene expression
(model-derived log2 transcript
abundance) for hsp70, igm,
mir132, mir155 and mt in
control and Pb-exposed sculpins
(M. scorpius). Data represent
mean ± 95% CIs of the posterior
distribution (n= 22 for control
and n= 20 for Pb exposure).
Asterisk (*) indicates
statistically significant
difference between experimental
groups for each gene (p < 0.05)
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was observed in the liver of shorthorn sculpins exposed to
Pb for 28 days compared to the unexposed control sculpins.
This finding is consistent with results from other species
(Man and Woo 2008; Rhee et al. 2009). An induction of mt
mRNA was observed in the liver of tilapia following 10 mg/
kg of Pb intraperitoneal injection (Cheung et al. 2004).
Dietary Pb exposure resulted in a significant increase in
hepatic mt expression in juvenile Korean rockfish, S.
schlegelii (Kim et al. 2017a). In our study, mt transcripts
correlated significantly with the number of mucous cells/
ILU in the gills and the severity score of gill lesions,
including hyperplasia and complete lamellar fusion. Col-
lectively, this suggests that exposure to Pb, incorporates a
variety of responses, including increase in the number of
mucous cells, histological alterations, and metal-related
stress gene transcription (Hansen et al. 2007; Fu et al. 2017;
Abril et al. 2018).

Exposure to heavy metals, such as Cd, Hg, and Pb, can
affect the fish immune response (Zelikoff 1993; Zelikoff
et al. 1995; Yu et al. 2020). A previous study on liver tran-
scriptome of juvenile largemouth bass (Micropterus sal-
moides) revealed that acute exposure (96 h) to Pb (0, 10,
17.8, 31.6, 56.2, and 100mg/L) activated various pathways
related to the immune response, including complement
pathway, coagulation cascades, antigen processing and pre-
sentation, and natural killer cell-mediated cytotoxicity (Qian
et al. 2020). Yin et al. (2018b) reported an increase in igm
mRNA expression in gibel carp (Carassius auratus gibelio)
exposed to Pb. Likewise, our study showed that hepatic igm
expression was significantly upregulated in the Pb-exposed
shorthorn sculpins compared to the control sculpins. Fur-
thermore, when pooling both control fish and exposed fish,
the expression of the igm was positively correlated with liver
Pb. This suggests that the upregulated hepatic igm transcripts
in sculpins were associated with exposure to environmentally
relevant Pb concentrations, which may result in functional
alterations of humoral mechanisms (e.g., antibody produc-
tion) of the immune response.

Hsp, such as Hsp70, are involved in a variety of phy-
siological processes and play a vital role in homeostasis of
proteins and cellular stress responses in fish (Sanders 1993;
Iwama et al. 1999; Basu et al. 2003; Yin et al. 2018a). In
teleosts, hsp genes have been differentially expressed due to
different stressors, such as, dose-dependent synergistic
effects of toxicants and other environmental factors (Basu
et al. 2002; Eichler et al. 2005; Tine et al. 2010; Mahmood
et al. 2014). For example, the expression of hsp70 in liver
and gill of C. argus increased after waterborne Pb exposure
(50, 200, and 800 mg/L Pb) for 14 and 28 days (Zhao et al.
2020). Following exposure to Pb (0.05, 0.5, and 1 mg/L) for
60 days hsp70 was upregulated in the spleen of C. gibelio
(Yin et al. 2018b). In this study, however, hepatic hsp70 of
shorthorn sculpins was not significantly different between
the control and Pb exposed sculpins. The lack of induction
of hsp70 of the sculpins may be due to the exposure time
and the lower Pb concentration relative to other studies
(Ribecco et al. 2011; Yin et al. 2018b; Zhao et al. 2020).

Changes in the expression of miRNAs are known to be
involved in the regulation of genes related to metabolism,
apoptosis, and immune-related signaling pathways in fish
following toxicant exposure, stressors, or diseased states
(Chen 2010; Kure et al. 2013; Gao et al. 2014; Ahkin Chin
Tai and Freeman 2020; Balasubramanian et al. 2020).
Previous studies have shown that mir155 plays an important
function in inflammation (Badry et al. 2020; Jing et al.
2020). For example, Ma et al. (2019) reported that exposure
to 1-methyl-3-octylimidazolium bromide ([C8mim]Br)
upregulated mir155 on silver carp (Hypophthalmichthys
molitrix), suggesting that this miRNA may be involved in
the inflammatory response in fish. In this study, transcripts
of mir155 were positively correlated with igm transcripts as
well as hepatic Pb concentrations, severity scores of hepatic
lesions (i.e., megalocytic hepatosis, necrosis, granuloma,
and hepatic neoplasm). The expression of mir155 was
positively correlated with the mRNA levels of proin-
flammatory cytokines, including tumor necrosis factor alpha

Fig. 2 Spearman’s rank correlation coefficients, rs (−1 ≥ rs ≥+1),
between gene expressions (current study) and data published in Jan-
tawongsri et al. (2021), i.e., biometrics, Pb concentrations in organs
and blood, and histology (severity of lesion in organs, gill mucous

cells, and parasites) of the shorthorn sculpins exposed to Pb for
28 days, with ‘*’ indicating statistically significant correlations at
p < 0.05 and ‘**’ at p < 0.01
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(TNF-α) in head kidney of Asian carp (Jing et al. 2020).
Expression of mir132 was also found to be negatively
associated with liver Pb levels in this study. However, there
are few reports on how mir132 regulates fish immune
responses. A previous study on miiuy croaker (Miichthys
miiuy) showed that mir132 is a negative regulator of fish
inflammatory cytokine production implicated in the immune
response induced by lipopolysaccharides (LPS) (Dong et al.
2021). Further research to determine the specific target
genes of miRNAs and their function related to the immune
response particularly in sculpin with regards to heavy
metals exposure is necessary to understand the underlying
regulatory processes of miRNA expression.

Conclusions

In conclusion, the present study evaluated the potential toxicity
of Pb exposure on gene expression associated with stress (mt
and hsp70) and immune response (igm, mir132, and mir155)
in the shorthorn sculpin,M. scorpius. The results demonstrated
that exposure of shorthorn sculpin to environmentally relevant
dissolved Pb concentration induced an increase in hepatic mt
and igm expression. Expression of igm was positively corre-
lated to Pb concentration in the liver. There were positive
correlations between mir155 and igm and hepatic Pb con-
centration in liver, while mir132 was negatively correlated
with Pb. Prior to this study, there was no information on effect
of metal exposure on gene expression in marine sculpin. This
study was the first to report that Pb exposure can affect
expressions of hepatic metal homeostasis and immune
response-related genes in the shorthorn sculpin. Overall, our
results suggest that up-regulation of hepatic mt and igm has a
potential as a biomarker of exposure to Pb which could
improve the assessment of impacts of mining in the Arctic,
including Greenland. However, further research is needed to
evaluate their applications.
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