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Abstract
Bisphenol S (BP-S) is one of the most important substitutes of bisphenol A (BP-A), and its environmental occurrence is
predicted to intensify in the future. Both BP-A and BP-S were tested for adverse effects on early life stages of Arbacia lixula
sea urchins at 0.1 up to 100 µM test concentrations, by evaluating cytogenetic and developmental toxicity endpoints.
Embryonic malformations and/or mortality were scored to determine embryotoxicity (72 h post-fertilization). It has been
reported in academic dataset that bisphenols concentration reached μg/L in aquatic environment of heavily polluted areas.
We have chosen concentrations ranging from 0.1–100 μM in order to highlight, in particular, BP-S effects. Attention should
be paid to this range of concentrations in the context of the evaluation of the toxicity and the ecological risk of BP-S as
emerging pollutant. Cytogenetic toxicity was measured, using mitotic activity and chromosome aberrations score in embryos
(6 h post-fertilization). Both BP-A and BP-S exposures induced embryotoxic effects from 2.5 to 100 µM test concentrations
as compared to controls. Malformed embryo percentages following BP-A exposure were significantly higher than in BP-S-
exposed embryos from 0.25 to 100 µM (with a ~5-fold difference). BP-A, not BP-S exhibited cytogenetic toxicity at 25 and
100 µM. Our results indicate an embryotoxic potential of bisphenols during critical periods of development with a potent
rank order to BP-A vs. BP-S. Thus, we show that BP-A alternative induce similar toxic effects to BP-A with lower severity.
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Introduction

Bisphenol-A (BP-A) is an industrial chemical that has been
used extensively to produce certain plastics and resins (Cor-
rales et al. 2015). Current literature has raised concern about
BP-A’s implications in several human chronic diseases (Rezg
et al. 2014) and/or ecotoxicological complications (Corrales
et al. 2015). These toxicologic impacts prompted different
authorities to interdict this plasticizer from different industrial
applications. Several countries have substituted the parental

analog with bisphenol S (BP-S) under the “BP-A-free” label to
indicate the safety of new products and reassure the consumer.
However, the recent literature raised some doubts about the
safety of “BPA-free” plastic products and has raised concern
about their possible physiological disruptor properties and/or
ecotoxicological effects (Mornagui et al. 2019; 2022; Qiu et al.
2019; Rezg et al. 2018; 2019; Wu et al. 2018; Wan et al. 2018;
Zhou et al. 2019). BP-S is used in consumer products present
in daily life such as food containers, canned foods, personal
care products, paper products, manufactured plastics, and in
many other industrial applications (Liao et al. 2012; Liao and
Kannan 2014). Although the impact of microplastics and BP-
A on marine wildlife is reported (Shahul Hamid et al. 2018;
Xu et al. 2020), the adverse effects of BP-A alternatives as
emergent pollutants are less well understood.

Bisphenols pass in aquatic environments through efflu-
ents discharged from wastewater treatment (when they are
not completely removed before discharge), as well as
directly from manufacturing industries, leachate discharges,
and degradation of plastic litter (Corrales et al. 2015; Ying
et al. 2009). Recently, BP-A and BP-S were detected as the
predominant molecules in effluents of wastewater treatment
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plants in the US (Xue and Kannan 2019). Furthermore, BP-
S has been detected in aquatic organisms and surface water
samples from major rivers in many countries reaching, e.g.,
7.2 μg/L in Adar, India (Yamazaki et al. 2015). As the usage
of BP-A is predicted to decline further, environmental
emissions of BP-S are likely to intensify in the future (Liu
et al. 2021; Yu et al. 2015).

Sea urchins are an ecologically relevant animal group,
and a valuable model frequently used for toxicity bioassays
(Goldstone et al. 2006; Oral et al. 2017; Pagano et al. 2017).
To the best of our knowledge, no data in the literature
describes the toxicity of BP-S on sea urchins embryos.
Thus, the aim of this study was to evaluate embryotoxicity
and cytogenetic toxicity for both BP-A and BP-S in sea
urchin embryos.

Materials and methods

Chemicals

Bisphenol A (BP-A; 4,4′-Isopropylidenediphenol; CAS 80-
05-7, Purity 99%) and Bisphenol S (BP-S; 4,4′-Sulfo-
nyldiphenol; CAS 80-09-1, Purity 98%) were obtained from
Sigma-Aldrich Co.

Sea urchins

A. lixula, which is distributed in shallow rocky reefs all
along the Mediterranean coasts and are important grazers in
sublittoral benthic communities, was used as test organism
(Guidetti and Mori 2005). Specimens were collected by
hand from the coastal side in Seferihisar, Izmir, Turkey
(38.152331, 26.823245). Twenty liters of seawater were
bottled from the sea urchin habitat. Specimens and water
samples were transferred to the laboratory in icebox, then
water samples were filtered with a 0.45 µm filter. Cytoge-
netic and developmental toxicity assays were carried out as
described previously (Oral et al. 2017; Pagano et al. 2017).
Cytogenetic toxicity tests were completed in polystyrene
test beakers and contained 3 replicates whereas embry-
otoxicity tests were carried out in 6 replicates.

The choice of test concentrations was made according to
Bošnjak et al. (2014) and based on the prediction that
environmental emissions of BP-S are likely to intensify in
the future (Liu et al. 2021; Yu et al. 2015). For this purpose,
we selected concentrations ranging from 0.1 to 100 μM.
Thus, the test concentrations of both chemicals were 0.1,
0.25, 1, 2.5, 10, 25, and 100 µM for both developmental and
cytogenetic toxicity experiments.

Developmental and cytogenetic toxicity control groups
consisted of untreated and healthy embryos (30 embryos/
ml) in 10 ml of filtered seawater. Test chemicals were

dissolved in dimethyl sulfoxide (DMSO), therefore a
DMSO (0.1% v:v) control group for each test was applied
as well.

Embryological analysis

For embryotoxicity tests, BP-A or BP-S were placed at the
bottom of each culture plate well [Falcon™ Tissue Culture
Plates (6 wells, 10ml/well)], and then suspended in 9ml FSW.
Thereafter, 1 ml of zygotes (10min post-fertilization, p-f) was
added to BP-A or BP-S and incubated at 18 °C in the dark for
72 h. After a 72-h incubation, 10−4 M chromium sulfate was
added to the culture wells and the larvae were scored on an
inverted microscope (100×) (Pagano et al. 2017). Embryonic/
larval developmental defects were scored blind by trained
readers in 100 random embryos of each test group to deter-
mine the embryotoxic effects of the test chemicals, as classi-
fied in Fig. 1: N: Normally developed plutei; P1: Malformed
pluteus (skeletal and/or gastrointestinal malformations); P2:
Developmental arrest at abnormal blastula/gastrula stage (pre-
pluteus stage blockage). Developmental defects were calcu-
lated (%DD)= (P1+ P2). Another scored endpoint consists of
the observation of dead plutei and dead pre-larval (or pre-
hatching) embryos (D: early embryonic death). Thus, devel-
opmental defects and mortality were determined referring to
the sum P1+ P2+D.

Cytogenetic analysis

Cytogenetic tests were carried out 6 h p-f and the embryos
were fixed in Carnoy’s solution (ethanol, chloroform, acetic
acid; 6:3:1 V:V:V). Fixative was replaced with absolute
ethanol right after fixation. 24 h after fixation, absolute
ethanol was renewed and the samples were ready to be
observed under a light microscope (1000×) with oil
immersion. Mitotic activity (numbers of metaphase and
anaphase) and chromosome aberrations (chromosome
bridges, lagging chromosomes, multipolar spindles, free
chromosome sets, fragmented chromosomes) as shown in
Fig. 2, were scored in each embryo, thus allowing to assess
both quantitative endpoints and mitotic anomalies.

Statistical analysis

All datasets gathered from the bioassays were statistically
analyzed in IBM SPSS v20. Results of bioassays are given
as mean ± standard error in the charts. Homogeneity of
variances was checked by Levene’s test. Differences
between each concentration group and the controls were
determined by two-tailed Independent Samples t-test. A
normality test was performed and the significance of the
difference among the groups was evaluated by One-way
Analysis of Variance (ANOVA) with Tukey’s HSD and
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Tamhane’s T2 post-hoc tests. Kruskal-Wallis and Mann-
Whitney U Tests were applied where ANOVA assumptions
were not fulfilled. Differences were considered significant
when p < 0.05.

Results

Embryotoxicity

BP-A started to induce embryotoxic effects with 29% of
malformed embryos at 1 µM concentration, as shown in
Fig. 3. Compared to the control groups, malformed embryo
percentages significantly differed at 2.5 µM (p < 0.01,
Tamhane’s). 10, 25, and 100 µM concentrations of BP-A
affected all embryos in the test groups (p < 0.001, Tam-
hane’s). Malformed embryo rates in embryos exposed to
BP-S showed significant differences at 2.5 µM compared to
the control groups (p < 0.05, Tukey’s). 10 and 25 µM con-
centrations were at a close embryotoxic level (20.5 to 21%)
and differed from the controls (p < 0.01, Tukey’s). Mal-
formed embryo rates raised to 23% at 100 µM concentration
(p < 0001, Tukey’s). Malformed embryo percentages in BP-
A vs. BP-S significantly differed at 0.25 µM (p < 0.01),
1 µM (p < 0.05), 2.5 µM (p < 0.01), 10 µM (p < 0.001),
25 µM (p < 0.001) and 100 µM (p < 0.001) (Student’s t
tests). EC50 was calculated based on the nominal con-
centrations and it was found as 3.48 µM (95% Confidence
Interval: 1.84 to 6.53 µM) for BP-A and not calculated for
BP-S (because with tested concentrations, data do not reach
a maximal effect). Altogether, developmental toxicity of
BP-S was significantly lower than BP-A-induced develop-
mental toxicity.

Cytogenetic toxicity

The cytogenetic results for BP-A plasticizer and its sub-
stitute BP-S are shown in Fig. 4. Mitotic activity in the
embryos exposed to BP-A was inhibited at 25 (p < 0.05,
Student’s t) and 50 µM (p < 0.01, Student’s t) concentra-
tions. At the concentrations of 25 and 50 µM, mitotic
activity significantly differed for BP-A and BP-S (p < 0.05,
Student’s t) (Fig. 4a). Also the data in Fig. 4b showed that
the number of embryos lacking mitotic figures (% Inter-
phase Embryos, IE) differed at 25 to 50 µM BP-A vs.
Control, and significantly above the corresponding IE
values induced by BP-S (p < 0.05, Student’s t). As shown in
Fig. 4d, a significant difference was observed in average
total mitotic aberrations in embryos exposed to 25 to 50 µM

Fig. 1 Embryonic malformations N: Normal pluteus, P1: pluteus with
skeletal malformations, P2: blockage at pre-pluteus stages. D: early
embryonic death

N

P1

P1

P2

P2

D
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Fig. 2 Mitotic aberrations A chromosome bridge, B lagging chromosome, C scattered, D fractured, E multipolar spindle. F normal mitosis
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BP-A compared to controls (p < 0.05, Mann-Whitney U
test), and compared to embryos exposed to BP-S (p < 0.05,
Mann-Whitney U test).

Discussion

Several studies have reported on pleiotropic toxic effects of
BP-A in aquatic vertebrates and invertebrates at environ-
mental doses (Canesi and Fabbri 2015; Crain et al. 2007;
Kang et al. 2007). BP-A-induced embryotoxicity was noted
previously, in sea urchins (Cakal Arslan and Parlak 2008),
in zebrafish (Tse et al. 2013), in Xenopus (Gibert et al.
2011), and rodents (Chen et al. 2013).

It has been reported that BP-A can alter echinoderm
physiology, reproduction, and development at environ-
mental concentrations (Bošnjak et al. 2014; Roepke et al.
2005), which can reach 17.2 μg/L (Crain et al. 2007). BP-
A can induce aberrant karyokinesis (division of the cell
nucleus), leading to defective embryo development
through the first cell division and retardation, along with
general errors in cytoskeletal functioning in mitosis
(Bošnjak et al. 2014).

The present report confirms BP-A-induced develop-
mental and cytogenetic toxicity, while the replacement
chemical (BP-S) failed to alter A. lixula early life stages.
BP-A is more potent than BP-S in particular, at 10, 25, and
100 μM (~5 fold), indicating the sensitivity of A. lixula
embryos to these specific bisphenols during a critical

developmental period. Analogous effects were also noted
within Daphnia magna and in Zebrafish embryos and larvae
(Liu et al. 2021). Thus, we suggest that BP-S raises fewer, if
any, environmental problems with its growing use in
replacing BP-A.

The toxicity order for different bisphenols reflects that
they may operate via distinct mechanisms.

It has been reported in academic dataset that bisphenols
concentration reached μg/L in aquatic environment of
heavily polluted areas (Liu et al. 2021). For example, levels
of BP-S detected in surface waters of the Adyar River and
Buckingham Canal in India have been found to reach to
range from non-detectable to 7.20 μg/L and 0.058 to 2.1 μg/
L respectively. For BP-A it can reach 17.2 μg/L (Crain
et al. 2007). It has been also cited that bisphenol envir-
onmentally relevant concentrations are from 0.1 to
1000 μg/L (Qiu et al. 2018). Before 2013, BP-S had been
detected in freshwater and sewage sludge, but rarely found
in marine surface sediment. However, recent literature
showed that BP-S concentration in aquatic environments
started to increase progressively (Wu et al. 2018). This
observation may indicate that BP-S compounds begin to be
extensively used all over the world at different degrees with
countries (Liu et al. 2021).

In addition, attention should be paid to the range of
concentrations from 0.1–100 µM to develop environmental
predictions and risk management because it has been
reported that the usage of BP-A is predicted to decline
further, and environmental emissions of BP-S are likely to
increase in the future (Liu et al. 2021; Yu et al. 2015).
Besides, BP-S is less biodegradable than BP-A in aquatic
environments, which may lead to its accumulation in the
biota (Danzl et al. 2009; Herrero et al. 2018). Thus, in this
experimental protocol, we have chosen concentrations
ranging from 0.1–100 μM in order to highlight, in parti-
cular, BP-S effects. It could be important in the context of
evaluation of toxicity and ecological risk of BP-S as
emerging pollutant.

Data indicate that BP-S did not exert cytogenetic toxicity
at all test concentrations as compared to controls, whereas
BP-A can induce cytogenetic anomalies in particular at high
concentrations, 25 and 50 μM. In accordance with our data,
several studies have reported that BP-A can induce DNA
damage as well as structural and numerical chromosomal
aberrations in vitro (Santovito et al. 2018; Xin et al. 2015)
and in vivo (Izzotti et al. 2009). A recent study describes no
cytogenetic effects for both BP-A and BP-S in human
HepG2 cells (Hercog et al. 2020). Also, it has been reported
that BP-S, compared to BPA, has a lower acute toxicity,
similar or less endocrine disruption, similar neurotoxicity,
and immunotoxicity, and lower reproductive and develop-
mental toxicity (Qiu et al. 2018). On the other hand, to date
there is a lack of information on the effects of BP-S on
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invertebrates cytogenetic, just Herrero et al. (2018) reported
negative effects of BP-S on the transcriptional rate of genes
in the model species Chironomus riparius on the whole.

Potential mechanisms for toxicity during larval
development

It has been found a relationship between species relatedness
and the estrogen agonist mode of action in BP-A-induced

developmental alterations. Thus, a cross-species mode of a
action via estrogen signaling have been shown leading to
physiological changes in vertebrates (fish and mammals) and
invertebrates (U.S. EPA 2005). Although research on endo-
crine disruptors and echinoderm has not been abundant, the
existence of species-specific sensitivity in urchin species
against BP-A and several other endocrine-disrupting com-
pounds, on larval stage development was reported (Roepke
et al. 2005). The authors concluded that EDCs could act with
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different mode of action (other than estrogen signaling),
leading to differential response and sensitivity in embryos of
each species of sea urchin. Thus, yet the molecular
mechanisms or modes of action underlying bisphenols-
induced developmental and cytogenetic toxicity is poorly
understood in invertebrates due to the pleiotropic effects. It is
instructive to offer some plausible mechanistic hypotheses:

Endocrine disruption: While current knowledge of echino-
derm endocrinology is still limited and not well understood,
early evidence has reported that echinoderms physiology
acts via vertebrate-like hormones (such as steroids) (Sugni
et al. 2007) and it has been reported that thyroid hormones
are implicated in Echinoderm metamorphosis process
(Heyland et al. 2005). Also, a genomic analysis of sea
urchin nervous system has been elucidated at least 37
putative G-protein-coupled peptide receptors and peptide
hormones (Burke et al. 2006). Thus, in sea urchin embryos,
hormones may be acts on specific targets larval develop-
ment and any disruption could induce negative impact.
Changes in the expression of a whole host of genes/gene
networks, which may impact successful early develop-
mental organisation and growth of larvae (Bošnjak et al.
2014).
Lipid peroxidation and oxidative stress to DNA resulting
in developmental impacts and toxic effects of both BP-A
and BP-S as proved with transcriptome approach in
zebrafish model (Yang et al. 2021).
Epigenetic changes such as alterations in DNA methyla-
tion (Qin et al. 2021).

Conclusions

This study evaluated the effects of BPA and BPS on sea
urchin embryos providing some data support for their
potential ecological risks. Taken together, our results indi-
cate an embryotoxic potential of both BP-A and its substitute
BP-S during critical periods of sea urchin development with
a potent rank order to BP-A vs. BP-S. We thus show that
BP-A alternative, BP-S induces lower toxic effects than BP-
A with significantly lower severity, though suggesting pos-
sibly concerns regarding the use of this BP-A alternative.
Ultimately, several studies have shed light on embryotoxic
potential of BP-A in humans, vertebrates, and invertebrates
and reveal concern about the Safety of BP-A substitutes.
Since the use of BPA alternative compounds is increasing,
further monitoring data of the water environment and
chronic toxicity in various aquatic organisms appears to be
necessary.
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