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Abstract
Mercury (Hg) is an environmental contaminant that can negatively impact human and wildlife health. For songbirds, Hg risk
may be elevated near riparian habitats due to the transfer of methylmercury (MeHg) from aquatic to terrestrial food webs.
We measured Hg levels in tail feathers sampled across the breeding range of the Yellow-breasted Chat (Icteria virens), a
riparian songbird species of conservation concern. We assessed the risk of Hg toxicity based on published benchmarks.
Simultaneously, we measured corticosterone, a hormone implicated in the stress response system, released via the
hypothalamus-pituitary-adrenal axis. To better understand range-wide trends in Hg and corticosterone, we examined whether
age, sex, subspecies, or range position were important predictors. Lastly, we examined whether Hg and corticosterone were
correlated. Hg levels in chats were relatively low: 0.30 ± 0.02 µg/g dry weight. 148 out of 150 (98.6%) had Hg levels
considered background, and 2 (1.6%) had levels considered low toxicity risk. Hg levels were similar between sexes and
subspecies. Younger chats (<1 year) had higher Hg levels than older chats (>1 year). Hg levels were lowest in the northern
and central portion of the eastern subspecies’ range. Corticosterone concentrations in feathers averaged 3.68 ± 0.23 pg/mm.
Corticosterone levels were similar between ages and sexes. Western chats had higher levels of corticosterone than eastern
chats. Hg and corticosterone were not correlated, suggesting these low Hg burdens did not affect the activity of the
hypothalamus-pituitary-adrenal axis. Altogether, the chat has low Hg toxicity risk across its breeding range, despite living in
riparian habitats.
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Introduction

Mercury (Hg) is an environmental contaminant of concern
to wildlife and humans because it can negatively affect
reproduction, neurology, immunology, and behaviour

(Wolfe et al. 1998; Scheuhammer et al. 2007; Seewagen
2010; Fuchsman et al. 2017). Hg from anthropogenic
sources (e.g. chlor-alkali plants, coal burning, waste incin-
eration, gold-mining) and naturally occurring sources (e.g.
volcanic activity, forest fires) can travel vast distances in the
atmosphere before settling in soil and waterways (Driscoll
et al. 2007, 2013; AMAP/UN Environment 2019). There,
under anoxic conditions, inorganic Hg is transformed by
mostly methylating bacteria into its most biohazardous
form, methylmercury (MeHg), and readily moves through
food webs (Driscoll et al. 2007, 2013; Cristol et al. 2008).

In birds, ingested Hg enters the bloodstream and
becomes stored in tissues and organs, primarily the liver,
kidneys, brain, and muscles (Braune and Gaskin 1987;
Whitney and Cristol 2017a). During the period of feather
growth, Hg in blood becomes encapsulated into the feathers
and remains inert thereafter (Furness et al. 1986). Hg con-
tent in the blood includes a combination of recent dietary
exposure and body burden accumulated since the last moult
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cycle (Honda et al. 1986; Braune and Gaskin 1987;
Thompson et al. 1991; Monteiro and Furness 2001; Bottini
et al. 2021). Feathers are the main pathway for birds to rid
their body of Hg; 70–93% of the body burden gets incor-
porated into feathers (Honda et al. 1986; Braune and Gaskin
1987; Agusa et al. 2005; Whitney and Cristol 2017a; Albert
et al. 2019). Females also depurate Hg through egg-laying
(Scheuhammer 1987; Rimmer et al. 2005; Robinson et al.
2012). Therefore, mercury encapsulated in feathers repre-
sents the accumuation of Hg between moulting cycles and
can provide insight into Hg exposure across the full-annual
cycle (Albert et al. 2019).

Recent evidence suggests that songbirds, especially those
that use riparian, aquatic, and wetland habitats, may be at
risk of Hg exposure through the consumption of carnivor-
ous and aquatic invertebrates (Rimmer et al. 2005; Brasso
and Cristol 2008; Edmonds et al. 2010; Evers et al. 2012;
Jackson et al. 2015; Ackerman et al. 2016; Pacyna et al.
2017 but see Brasso et al. 2020). Because Hg biomagnifies,
songbirds that consume arthropods at higher trophic levels,
including spiders, can accumulate elevated levels of Hg
(Rimmer et al. 2005; Cristol et al. 2008; Keller et al. 2014;
Li et al. 2021).

The identification of songbird populations at risk of Hg
toxicity is important because multiple sublethal effects may
affect the persistence of a population. Hg reduces body
condition and negatively affects the immune function in
birds, therefore, individuals may be less equipped to fend
off diseases and parasites (Whitney and Cristol 2017b;
Ackerman et al. 2019). Hg exposure can negatively affect
reproduction through altered nest-building (Chin et al.
2017), reduced courtship behaviour (Heddle et al. 2020),
smaller egg size, smaller clutches (Brasso and Cristol 2008,
but see Heddle et al. 2020), and lowered nest success
through hatchling mortality (Scheuhammer 1987; Custer
et al. 2007; Jackson et al. 2011; Heddle et al. 2020). Early
developmental exposure to Hg can affect survival, repro-
duction, behaviour, and neuroanatomical development (Yu
et al. 2017; Paris et al. 2018; Heddle et al. 2020). Moreover,
Hg may negatively affect migration and overwinter survi-
val, further contributing to the decline of migratory song-
birds (Ma et al. 2018; Seewagen 2020).

Of additional concern, Hg can act as a stressor disrupting
the normal functioning of the stress response system (Wada
et al. 2009; Franceschini et al. 2009; Herring et al. 2012;
Moore et al. 2014 but see Tartu et al. 2015a, b; Maddux
et al. 2015). The stress response involves the release of
glucocorticoids into the bloodstream via adrenal glands
through the hypothalamus-pituitary axis (Siegel 1980;
Wingfield 2013). In birds, the main glucocorticoid is cor-
ticosterone (Siegel 1980; Romero 2004). A wide range of
negative effects, including weakened immune systems,

hypertension, neuronal cell death, memory loss, and nega-
tive fitness consequences are attributed to chronic stress,
which can present itself as increased or decreased levels of
corticosterone (Busch and Hayward 2009; Kleist et al.
2018).

Like Hg, corticosterone circulating in the blood is
deposited into feathers during the period of feather growth
and remains inert thereafter (Jenni-Eiermann et al. 2015). In
contrast to Hg, corticosterone is a short-lived hormone and
feather concentrations represent integrated levels in the
blood during the period of growth over the span of several
weeks (Bortolotti et al. 2008; Lattin et al. 2011). Measuring
Hg and corticosterone in feathers is a non-invasive techni-
que that can be used to address concerns about conservation
physiology (Jenni-Eiermann et al. 2015). This is especially
advantageous for species or populations that may be at risk
and where more invasive methods might not be advised
(Bortolotti et al. 2008).

Here, we examine trends in Hg and corticosterone across
the breeding range of the Yellow-breasted Chat (Icteria
virens, hereafter chat). The geographic scope of our study
combining Hg and corticosterone in chats is unprece-
dented. The chat is a neotropical migrant songbird whose
habitat consists of dense, shrubby thickets in or near
riparian habitats – a habitat zone generally believed to be a
hotspot for Hg (Jackson et al. 2015; Eckerle and Thompson
2020). Additionally, given that Hg can transcend aquatic-
terrestrial interfaces via invertebrate vectors, the Yellow-
breasted Chat may be exposed to Hg through the con-
sumption of invertebrates in these riparian habitats. The
diet of the Yellow-breasted Chat consists of terrestrial
invertebrates (ants, wasps, spiders, beetles, leafhoppers)
and also plant matter (Yard et al. 2004; McKibbin and
Bishop 2008; Eckerle and Thompson 2020). Probing dee-
per into the conservation physiology for this species may
prove valuable for conservation efforts, as several popu-
lations are of conservation concern in Canada and the
United States (British Columbia, Ontario, Environment and
Climate Change Canada 2016, 2019; California, Shuford
and Gardali 2008; Connecticut, State of Connecticut 2015;
New York, New York State 2019). In our study, we mea-
sured Hg and corticosterone concentrations in feathers
across the breeding range of the chat. Secondly, we con-
verted feather Hg levels to equivalent blood Hg con-
centrations to assess Hg toxicity risk based on published
benchmarks. Thirdly, we explored whether range-wide
patterns of Hg and corticosterone could be explained by
age, sex, range position, or subspecies. Lastly, we exam-
ined the relationship between Hg and corticosterone to see
if there was evidence of Hg accumlated since the last moult
cycle affecting the function of the hypothalamus-pituitary-
adrenal axis.
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Methods

Study areas

We sampled chats in seven study areas. Four areas were
known breeding locations in British Columbia, Canada, and
California and Oregon, USA (Table 1, Fig. 1). The
remaining three study areas were in Mexico in Nayarit,
Chiapas, and Veracruz, where chats were sampled during
migration and the non-breeding period. Breeding location
was inferred from Mexico sites using hydrogen stable iso-
tope analyses and genetics (Mancuso 2020).

All breeding sites were in riparian areas. The British
Columbia study area was along the channelized South
Okanagan River (McKibbin and Bishop 2010). Three Kla-
math Bird Monitoring Network (Alexander et al. 2004;
Alexander 2011) areas included one along the Trinity River
in California (Rockwell and Stephens 2018) and two Oregon
study areas, WIIM along the Rogue River and TOPS along
the Klamath River (Rockwell et al. 2017). The Nayarit study
area consisted of openings and edges of semi-deciduous
tropical forests. The Chiapas study site was located within the
La Encrujijada Biosphere Reserve near the Pacific Ocean
within a large open wetland surrounded by small patches of
trees and tall grasses. The Veracruz, Mexico study site was
adjacent to a wetland area and surrounded by shrubs and
short trees (Gahbauer et al. 2016).

Bird handling and feather collection

In British Columbia and California, chats were captured and
sampled during the breeding season between May and
August of 2017 and 2018. In Oregon, chats were captured

and sampled in 2018 between May and July but two birds
were sampled in September. In Veracruz, chats were sam-
pled in March, May, August to November 2014, and March
2015, and we assumed that these were migrating chats. In
Chiapas, chats were sampled in September and October of
2018; we assumed these were migrating chats. In Nayarit,

Table 1 Yellow-breasted Chat
(Icteria virens) study site
locations where feather samples
were collected for corticosterone
(Cort), mercury (Hg), and
hydrogen stable isotope analyses
(δ2Hf)

Site Latitude Longitude Elevation
(m)

Years N (individuals
sampled)

Cort Hg δ2Hf

Breeding

South Okanagan Valley, British
Columbia, CA

49.094 −119.537 300 2017, 2018 20 20 15a

Trinity River, California, US 40.695 −122.854 500 2017, 2018 16 20 15a

WIIM, Oregon I, US 42.490 −123.480 251 2018 8 13 7a

TOPS, Oregon II, US 42.019 −122.140 905 2018 3 5 2a

Migration

Santa Alejandrina Bird Observatory,
Veracruz, MX

18.002 −94.588 4 2014, 2015 100 36 36

La Encrucijada Biosphere Reserve,
Chiapas, MX

15.552 −93.206 3 2018 30 36 36

Overwinter

San Pancho Bird Observatory, Nayarit, MX 20.905 −105.398 33 2018, 2019 19 20 20

Total 196 150 92

The breeding location of chats sampled during migration and overwintering was inferred using stable
hydrogen isotopes
aThese samples were collected only to calibrate the precipitation isoscape and are not included in the total

Fig. 1 Study areas for Yellow-breasted Chats (Icteria virens). The
breeding ranges of the eastern (I.v. virens) and western (I.v. auricollis)
subspecies are shown. Star symbols represent birds sampled from
study areas in the breeding season, the square represents birds sampled
from a study area in the overwintering season, and triangles represent
birds sampled from study areas during migration. Map made in Arc-
Map 10.7.1 (ESRI 2019) using a WGS 1984 Web Mercator projection
and coordinate system
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chats were sampled in January and February 2018 and
2019, and we assume these were overwintering chats.

Chats were caught in mist nets often with the aid of call-
playback and taxidermied or wooden painted decoys. Birds
were removed from nets, sexed according to (Pyle 1997),
placed into age categories defined by Wolfe et al. (2010),
and banded. Birds that could not clearly be distinguished as
male or female were classified as unknown sex. The right
outer rectrix feather was collected for corticosterone ana-
lyses. The left outer rectrix feather was collected for Hg
analyses. One secondary feather (S1–S6) was collected for
hydrogen stable isotope analysis. Birds were processed as
quickly as possible (a few minutes) and released at the
capture site.

Moult and its interpretation of Hg and
corticosterone

Chats have a complex-basic moult strategy. They undergo
an incomplete preformative moult during their first annual
cycle and a complete definitive prebasic moult during
subsequent annual cycles (Pyle 1997; Wolfe et al. 2010).
Chats likely complete preformative and definitive prebasic
moults on their natal/breeding grounds prior to fall migra-
tion (Pyle 1997; pers. obs). The preformative moult in chats
includes the outer primaries, inner secondaries, tertials,
greater coverts, and up to two inner tail feathers (Pyle
1997). In our western study areas, some chats replace these
inner tail feathers during their preformative moult, however,
many do not (pers. comm from Matthias Bieber; Pyle
1997). In contrast, Grosselet et al. (2014) found that most
eastern chats captured in Veracruz, Mexico had replaced all
of their tail feathers during their preformative moults.
Therefore, in our study the first cycle outer tail feathers
collected for western chats were likely grown in the nest,
whereas the first cycle outer tail feathers collected for
eastern chats were likely grown on the natal grounds during
their preformative moult.

Knowing when and where a chat feather was grown has
important implications for our interpretation of Hg and
corticosterone. Tail feathers from chats in their first moult
cycle encapsulate Hg exposure since hatching (i.e.
~ 10 days for western chats, and up to several months for
eastern chats). Feathers from birds in their definitive moult
cycle encapsulate Hg exposure over ~1 year since their last
moult, including breeding, migration, and the non-breeding
season (Evers et al. 2005; Warner et al. 2012; Jackson et al.
2015).

Corticosterone does not accumulate in the body and,
therefore, represents the hormonal profile on the breeding
grounds during the period of feather growth only
(~1–2 weeks), either during the nestling period (e.g. first
moult cycle of western chats) or before fall migration (e.g.

first moult cycle of eastern chats and all chats in their
definitive moult cycle (Bortolotti et al. 2008).

Breeding assignment of overwintering birds

To determine the breeding origin of chats sampled in
Mexico, we measured hydrogen stable isotope ratios in
feathers (Mancuso 2020). Hydrogen stable isotope values in
precipitation vary latitudinally across the landscape and this
chemical signature becomes incorporated into animal tis-
sues (Hobson and Wassenaar 2008). Therefore, by exam-
ining the hydrogen stable isotope contents of animal tissue
(feathers in this case), one can infer where the tissue was
grown (Hobson and Wassenaar 1997).

In brief, feathers were washed in a solvent to remove any
impurities, air dried, and cut into small pieces. Feathers
were sent to the Laboratory of Stable Isotope Science at the
University of Western Ontario, London, Ontario, Canada
for analyses. Stable hydrogen isotope composition was
determined using an elemental analyzer where samples
undergo pyrolysis by heating to 1120 °C. Samples were
calibrated using the most recent values for Caribou Hoof
Standard and Kudu Horn Standard (Soto et al. 2017).
Samples of standard powered keratin (Spectrum-1) were
measured intermittently to assess and correct for drift.
Random feather samples were run in duplicate for further
quality assurance/quality control and were averaged during
reporting. The standard notation of stable hydrogen isotopes
(δ2H) is parts per thousand (‰) relative to Vienna Standard
Mean Ocean Water. A subscript F is included when refer-
ring to feathers, or P when referring to precipitation
hydrogen isotope ratio values.

A precipitation isoscape for North America was created
using publicly available δ2Hp values in rainwater from the
Global Network of Isotopes in Precipitation (IAEA/WMO
2019). The package IsoriX (v0.8.2; Courtiol et al. 2019) in
R (v3.5.1.; R Core Team 2018) was used to create the
precipitation isoscape and then calibrated using Yellow-
breasted Chat feather samples of known breeding origin
(Mancuso 2020).

To estimate the breeding origin of chats, δ2Hf values
were placed into 10‰ bins and a group location was esti-
mated using the isofind function of IsoriX. Group location
estimates were exported as a raster file to create maps in
ArcMap 10.7.1 (ESRI 2019). Location estimates were
constrained to breeding ranges based on subspecies identi-
fication previously determined using genetics (Mancuso
2020). The western subspecies (I.v. auricollis) breeds in the
western United States, southwestern Canada, and north-
western Mexico (Fig. 1, IUCN 2016; Eckerle and Thomp-
son 2020). The eastern subspecies (I.v. virens) breeds in the
eastern United States and the very southern tip of Ontario,
Canada (Fig. 1, IUCN 2016; Eckerle and Thompson 2020).
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We showed genetically that chats in Chiapas and Veracruz
were of the eastern subspecies while chats from Nayarit
were of the western subspecies (Mancuso 2020). In order to
visualize the geographic assignment locations from the
10‰ hydrogen isotopic bins, a single representative point
was used (Appendix I, Fig. 2).

Hg analyses

We measured total Hg concentration in 150 chat feathers
(Table 1). Samples were analyzed by the National Wildlife
Research Centre in Ottawa, Ontario, Canada. Feathers were
washed with acetone, then a solution of 0.25% Triton X-
100, then twice in ultrapure water before being air-dried for
≥48 h. Cleaned samples were freeze-dried and ground into a
homogenous powder. Samples were placed into the auto-
sampler on nickel boats, then decomposed under a con-
tinuous flow of ultra-pure oxygen within a quartz catalytic
tube. The products of combustion were oxidized and carried
to a gold amalgamator that targets Hg. Hg is released by
heating and carried through absorbance cells within an
atomic absorption spectrophotometer. The absorbance was
measured at 253.7 nm. Sample values for Hg are reported in
µg/g dry weight (dw). As most of the Hg present in feathers
is MeHg, total Hg content represents MeHg concentration
(Kim et al. 1996; Bond and Diamond 2009; Souza et al.
2020), which is the organic and biohazardous form of Hg.

Accuracy was evaluated at the start of each day with a
minimum of four standard reference materials. To maintain
accuracy, standard reference materials were analyzed at
regular intervals and at the end of each day. The standard
reference materials included mussel tissue, lobster hepato-
pancreas, tuna fish, fish flesh and, human hair (spiked). The
average recovery (±SE) of Hg from standard reference
materials was 99.3 ± 0.51% across 8 days and 55 tests. The
method detection limit was determined using 10 con-
secutive analyses of a standard reference material contain-
ing a low concentration of Hg. The method detection limit
as determined on August 12, 2019, based on five mg of
SRM Oyster Tissue 1566b was 0.024 ng. Reported method
detection limits were adjusted for each sample based on
mass and varied between 0.003–0.018 µg/g dw.

Corticosterone extraction and assay

We followed standard feather corticosterone extraction
methods for 197 chat feathers (Bortolotti et al. 2008; Fair-
hurst et al. 2015; Harris et al. 2016). Each feather was
washed with ~1% dilute soap to remove any surface con-
taminants and then rinsed with ultrapure water. The feathers
were air-dried overnight. The calamus was discarded and
the length of the feather was measured to the nearest mil-
limetre. The feather was cut into small pieces using fine
scissors within a glass test tube and 10 ml of 99.9% HPLC
grade methanol was added. Test tubes were covered and
sonicated in a water bath at room temperature for
30 minutes and then placed in a heated shaking water bath
at 50 °C overnight. The feather pieces were separated from
the methanol solution via vacuum filtration into a new glass
test tube. A glass funnel plugged with marine PolyWoolTM

as a filter was fit snug to the filtration funnel using a rubber
sleeve. The test tube, feather remnants, and filter were
washed twice with 2.5 ml of methanol to capture any
remaining corticosterone. The methanol solution was eva-
porated in a fume hood under air and the extract residues
were reconstituted with 300 µl of assay buffer and vortexed
3 times at room temperature. The samples were placed in
1.5 ml centrifuge tubes and centrifuged for ~5 minutes to
pelletize any remaining debris or larger molecules. A
volume of 100 µl of the supernatant was pipetted into an
Enzyme-Linked Immunosorbent Assay plate for each
sample.

Corticosterone was assayed using Enzo Life Sciences
Enzyme-Linked Immunosorbent Assay kit no. ADI-900-
097. This is a competitive binding immunoassay kit specific
to the hormone corticosterone that uses a polyclonal sheep
corticosterone antibody and a 96 well plate coated with
donkey anti-sheep immunoglobulin G. The reported cross-
reactivity of these kits include 28.6% deoxycorticosterone,
1.7% progesterone, 0.13% testosterone, 0.28%

Fig. 2 Average mercury concentrations in Yellow-breasted Chats
(Icteria virens) in their breeding range. Pentagons are sites where chats
were sampled during the breeding season. Circles are breeding sites
inferred from stable hydrogen isotope analyses; a single point was
used to map these inferred groups that span larger areas based on
assignment probabilities. Sample sizes are indicated beside each point.
The breeding range of the Yellow-breasted Chat is shown in stippled
grey in the background (IUCN 2016). Map made in ArcMap 10.7.1
(ESRI 2019) using a WGS 1984 Web Mercator projection and coor-
dinate system. Note that while higher mercury concentrations are
shown as darker shades of red, all levels are still considered low risk of
mercury toxicity
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tetrahydrocorticosterone, 0.18% aldosterone, 0.046% corti-
sol, <0.03% pregnenolone, <0.03% β-estradiol, <0.03%
cortisone, and <0.03% 11-dehydrocorticosterone acetate
(Enzo Life Sciences Inc. 2018). The reported sensitivity of
the kit is 26.99 pg/mL based on two standard deviations
from the blank reading using 16 replicates (Enzo Life Sci-
ences Inc. 2018). We followed the kit instructions to
determine corticosterone concentrations, culminating in
reading the optical density using a microplate reader set to
405 nm (Enzo Life Sciences Inc. 2018). Samples were run
in duplicate and averaged during reporting. Three samples
of approximately 50% binding with a concentration of
600 pg/mL were added randomly to each plate to assess
inter-assay variability. The inter-assay coefficient of varia-
tion was calculated as the standard deviation of the plate
means divided by the mean of the means for the 8 plates.
The intra-assay coefficient of variation was calculated as the
overall average of the standard deviation divided by the
mean for each duplicate sample for all samples for 8 plates.

To determine the corticosterone concentration of samples
in the plate, the average optical density for the blank cells
was subtracted from the optical density for all samples. A
4-parameter logistic model was used to create a standard
curve with known corticosterone concentrations of 20,000,
4000, 800, 132, and 32 pg/mL. The drc package (v. 3.2.1;
Ritz et al. 2015) in programme R was used to create the
standard curve, and the unknowns were interpolated along
the standard curve using the ED function (Online Resource
1). The concentration of corticosterone within each feather
was standardized to feather length and reported in values
of pg/mm.

Hg risk

To examine the risk of Hg toxicity to chats, we compared
our Hg values to known blood toxicity benchmarks pro-
vided by Ackerman et al. (2016) based on multiple bird
species: <0.2 µg/g wet weight (ww) background levels;
0.2–1.0 µg/g ww low risk; 1.0 – 3.0 µg/g ww moderate risk;
3.0 – 4.0 µg/g higher risk; >4.0 µg/g ww severe risk.
However, as Ackerman et al. (2016) rankings are based on
blood Hg levels, we transformed our dw feather Hg con-
centrations to equivalent ww blood Hg concentrations.

We used two separate transfer equations from different
studies to provide a more comprehensive analysis of our
data. Therefore, we had two sets of blood ww Hg equiva-
lents in which to assess against published Hg toxicity
benchmarks. The first transfer equation was from Eagles-
Smith et al. (2008), who reviewed Hg levels across many
tissue types for 4 waterbird species in San Francisco Bay,
California. This equation was appealing because it was
based on a large number of individuals and several species,
however, the species were not landbirds. We used the

transfer function reported for breast feathers because this
equation was used to adjust between feathers and blood in
Ackerman et al. (2016). The equation was: ln(blood Hg) =
ln(feather Hg)*0.673 – 1.673.

The second transfer function was from Jackson et al.
(2011) for Carolina Wrens (Thyrothorus ludovicianus). This
equation was appealing because the study was on an
insectivorous landbird and outer tail feathers were used,
however, it was based on a single species and in a con-
taminated site (Jackson et al. 2011). The re-arranged
equation for blood was: blood Hg= (tail feather Hg -
0.64)/3.38. Using the results from these two transfer func-
tions separately, we calculated the percent of total samples
that fell within each risk category.

Statistical analysis

To determine which factors influence Hg and corticosterone
levels in chats, we used an information-theoretic approach
comparing the fit of multiple models using Akaike’s
Information Criterion adjusted for small sample sizes (AICc,
Burnham and Anderson 2002). All values are reported as
mean ± standard error unless otherwise noted. Both Hg and
corticosterone were transformed before analyses to improve
normality and model fit as both variables were highly
positively skewed. Hg was loge transformed. Corticosterone
was transformed to the power of −0.7 based on a Tukey’s
Ladder of Powers transformation to produce a more normal
distribution. Transformed variables were assessed with a
Shapiro–Wilk’s test to verify normality.

For Hg samples (n= 150), we tested 12 models con-
taining different combinations of the parameters: age, sex,
subspecies, and range location (Table 2). Age included two
categories: first cycle and definitive cycle. Two chats in
unknown plumage were lumped into the definite cycle age
group. Age relates to the accumulation of Hg since the
previous moult. First cycle western chats presumably
represent natal Hg exposure as a nestling (~1–2 weeks).
First cycle eastern chats presumably represent Hg exposure
on the natal grounds after leaving the nest (~weeks to
months). Definitive cycle chats represent accumulation over
the full annual cycle, including breeding, migration, and
overwintering (~1 year).

Sex included male, female, and unknown and was
included to assess potential differences in diet and the
effects of Hg depuration through egg-laying (Scheuhammer
1987; Robinson et al. 2012; Tartu et al. 2015a).

Subspecies was used as a way to compare exposure
levels between eastern and western North America as well
as examine any differences between subspecies. Note that
the eastern subspecies occurs generally in part of the
American midwest, the Great Lakes region and southward
towards Texas, while the western subspecies includes
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central and the western United States and western Mexico
(Fig. 1).

Range location was included to examine if differences in
Hg exposure occurred in different geographic areas on a
smaller scale than subspecies. The range classes were
chosen to reflect the broad geographic assignments from
isotopes while maintaining adequate sample sizes for each
category for statistical analyses. Range location included six
categories based on subspecies and general position within
the breeding range. The western north range included
samples from British Columbia, and δ2Hf values ≤−80‰
for the western subspecies (Appendix 1). The western
central range location included samples from California,
Oregon, and δ2Hf values from −50 >−80‰ for the western
subspecies. The western southern range location included
δ2Hf values −10 >−50‰ for the western subspecies. The
eastern north range included δ2Hf values ≤−50‰ for the
eastern subspecies. The eastern central range included δ2Hf

values −40 >−50‰ for the eastern subspecies. The eastern
southern range included δ2Hf values −20 >−40‰ for the
eastern subspecies.

An interaction between subspecies and age was included
to account for the potential difference in preformative moult
between subspecies as described earlier. All factors were
fixed factors because we were specifically interested in
examining the effects of each factor level of each predictor
on Hg levels in feathers.

For corticosterone samples (n= 196), models were
conducted in the same way as for Hg. Minor differences for
the age category for corticosterone samples was that the first
cycle category contained one western chat in juvenal plu-
mage and one western chat moulting into its formative
plumage. Two chats in unknown plumage were lumped into
the definitive cycle age category. Age, sex, subspecies,
range location, and the interaction between age and sub-
species were included as model parameters. We tested
twelve exploratory models with different combinations of
these predictors (Table 3).

Linear models were created using the lme4 package
(v.1.1.21; Bates et al. 2015) in R. We inspected plots of the
model residuals versus fitted values for the full model and
for the top models to verify that the assumptions of linear
models were met. The fit of each model was compared
using the MuMIn package (v1.43.15; Barton 2019). We
report ΔAIC values and relative weights for each model
(Burnham and Anderson 2002). Conditional plots of the top
model were implemented using the visreg package (v2.6.0;
Breheny and Burchett 2017). If the top model had a weight
of less than 0.90, suggesting model uncertainty, then para-
meter estimates were calculated using a model averaging
approach (Burnham and Anderson 2002). We computed the
average model parameter estimates and 95% confidence
intervals by factoring in the relative weight of the models

Table 2 Models compared to predict mercury in Yellow-breasted Chat
(Icteria virens) feathers

Model K Log-
Likelihood

AICc Δ AICc Weight

Age + Range
position

8 −137.00 291.03 0.000 0.754

Age + Sex + Range
Position

10 −136.45 294.49 3.458 0.134

Age + Subspecies 4 −144.14 296.55 5.518 0.048

Subspecies × Age 5 −143.60 297.61 6.584 0.028

Age 3 −145.91 297.98 6.953 0.023

Age + Sex +
Subspecies

6 −143.91 300.40 9.372 0.007

Sex + Age 5 −145.69 301.80 10.773 0.003

Intercept-only model 2 −150.27 304.62 13.587 0.001

Range position 7 −145.11 305.00 13.970 0.001

Subspecies 3 −149.57 305.31 14.284 0.001

Sex 4 −149.95 308.18 17.154 0.000

Sex + Range
position

9 −144.47 308.23 17.199 0.000

Sex + Subspecies 5 −149.24 308.90 17.874 0.000

K is the number of parameters. AICc is Akaike’s Information Criterion
adjusted small sample sites. The total sample size is 150. The response
variable, mercury (μg/g) in Yellow-breasted Chat feathers, was loge
transformed to improve model fit

Table 3 Comparing models to explain corticosterone in Yellow-
breasted Chat (Icteria virens) feathers

Model K Log-
Likelihood

AICc Δ AICc Weight

Subspecies 3 115.69 −225.26 0.000 0.455

Age + Subspecies 4 116.95 −223.58 1.672 0.197

Age × Subspecies 5 115.84 −223.48 1.782 0.187

Sex + Subspecies 5 116.02 −221.72 3.539 0.078

Age + Sex +
Subspecies

6 116.19 −219.94 5.320 0.032

Range position 7 117.26 −219.92 5.335 0.032

Age + Range
position

8 117.41 −218.05 7.208 0.012

Sex + Range
position

9 117.61 −216.26 8.995 0.005

Age + Sex +
Range position

10 117.77 −214.34 10.91 0.002

Intercept-
only model

2 104.48 −204.9 20.36 0.000

Age 3 105.10 −204.08 21.18 0.000

Sex 4 105.49 −202.77 22.49 0.000

Sex + Age 5 105.85 −201.38 23.88 0.000

K is the number of parameters. AICc is Akaike’s Information Criterion
adjusted small sample sites. The total sample size is 196. Note that the
response variable is corticosterone (pg/mm) in Yellow-breasted Chat
feathers was transformed to the power of −0.7 to improve model fit
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using the model.avg function in MuMln. Parameter esti-
mates shown are from the subset method, where only those
models containing the parameters are used in estimation
(Barton 2019). We also estimated parameters using the full
method, where all models are used in estimation, and the
results were similar and, therefore, are not reported. While
our statistical approach used transformed values of corti-
costerone and Hg as indicated to meet model assumptions,
we also present original values for visualization.

To examine whether there was a relationship between Hg
and corticosterone (n= 127 birds where both were sam-
pled), we ran a correlation analysis using the mosaic
package (v.1.5.0; Pruim et al. 2017) in R for all birds, plus
separately for birds in different age classes. To meet the
assumption of bivariate normality, Hg values were loge
transformed and corticosterone values were inversely
transformed before analyses. Shapiro–Wilk’s tests were
conducted on the transformed variables to confirm
normality.

Results

Stable hydrogen isotope values spanned between −17.85‰
and −90.38‰ (Appendix 1). The most depleted bins
represent samples originating from the northern part of the
chat’s breeding range, and the least depleted bins represent
samples originating from the southern part of their breeding
range (Appendix 1).

Hg

The average Hg levels in feathers across all chats were
0.30 ± 0.02 µg/g dw. All samples were greater than the
method limit of detection.The conversion of our feather Hg
values to equivalent blood values using the equation from
Jackson et al. 2011 resulted in 139 out of 150 (92.7%)
samples with negative values which were nonsensical. All
values from Eagles-Smith et al. (2008) were above 0.
Regardless, the two transfer functions converting feather Hg
to the equivalent blood levels resulted in the same number
of chats falling within each Hg risk category. Almost all
(98.6%) chats had blood equivalent Hg levels considered
background (<0.2 μg/g ww blood equivalent). Only two
chats (1.3%) were in the low Hg toxicity risk category of
0.2–1 μg/g (ww blood equivalent), one of which originated
from the Oregon I study area, and the other in the south-
western region (δ2Hf: −30 <−40‰, Appendix 1). No
samples fell within the moderate, high, or severe risk
categories for blood equivalent Hg toxicity.

Our isotopic assignments from overwintering sites
combined with known breeding sites provided wide cov-
erage of the chat breeding range (Fig. 2, Appendix 1).

However, geographic assignments from stable hydrogen
isotopes are broad geographic areas and therefore, we
cannot say with high precision where exact breeding
occurred or Hg exposure. The two breeding sites with chats
having the highest average Hg concentrations occurred in
the southwest (Fig. 2). The sample size varied widely
between breeding sites, with several sites represented by
only 1 sample and so average values representing an entire
area should be interpreted with caution.

Hg levels in chat feathers were best explained by a top
model that included age and range position as predictors
(Table 4, Online Resource 2). This model explained little
variance in Hg levels in chats as the adjusted R2 value for
this model was 0.13. The weight of the top model was
75.4% suggesting that there is some uncertainty about
model selection, therefore, all models were factored in for
parameter estimation. Hg levels were lowest for chats in
their definitive moult cycle (parameter estimate: −0.44 ± 12
relative to first cycle moult; 95% CI −0.67 to −0.21, Table
4, Fig. 3). Hg levels were lowest in the eastern subspecies’
northern (parameter estimate: −0.43 ± 0.22; 95% CI −0.86
- −0.01) and central range locations (parameter estimate:
−0.46 ± 0.19; 95% CI −0.82 to −0.09, Table 4, Fig. 3). No
statistical differences were found between sexes or sub-
species as these parameter estimates included 0 (Table 4,
Fig. 3).

Table 4 Weighted parameter estimates for mercury concentrations in
Yellow-breasted Chats (Icteria virens) based on all models using the
subset method

Estimate Std. error CI lower CI upper

(Intercept)a −1.21 0.16 −1.52 −0.91

Age—definitive cycle −0.44 0.12 −0.67 −0.21

Range position—West
Central

−0.03 0.17 −0.35 0.30

Range position—
West South

0.11 0.21 −0.30 0.53

Range position—East
North

−0.43 0.22 −0.86 −0.01

Range position—East
Central

−0.46 0.19 −0.82 −0.09

Range position—
East South

0.11 0.18 −0.24 0.45

Sex—male 0.10 0.13 −0.14 0.35

Sex—unknown 0.16 0.18 −0.20 0.51

Subspecies—Eastern −0.20 0.12 −0.41 0.01

Subspecies Eastern ×
Age—definitive

0.23 0.23 −0.22 0.68

The 95% confidence intervals that do not include 0 are in bold
aThe default values for categorical parameters are: Age = first cycle,
Subspecies = western, Sex = female, Range position = Western –

North. All parameter estimates are relative to the intercept
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Corticosterone

Corticosterone concentrations in feathers were on average
3.68 ± 0.23 pg/mm. One sample was slightly outside the
range of the standard curve (i.e. >20,000 pg/ml maximum)
and therefore, the corticosterone concentration could not be
calculated with confidence. Field notes show this bird had
an unusual dark grey skin tone and may have had an
underlying health issue; we omitted this sample, and our
final sample size was 196. The inter-assay coefficient of
variation was 11.3% and the intra-assay coefficient of var-
iation was 3.2%. No samples fell below the level of
sensitivity.

The top model for corticosterone included subspecies as
a predictor with a weight of 46.8% (Table 3, Online
Resource 2). The adjusted R2 value of 0.091 indicates this
model explained very little of the variance in feather cor-
ticosterone. Two other models were within 2 ΔAICc units
of the top model and included age + subspecies, and the
interaction between age and subspecies as predictors and
had model weights of 19.8% and 18.7%, respectively
(Table 3). Regardless, the low weight of the top model
indicates there is some degree of model uncertainty, and
therefore, we factored in all models for parameter esti-
mates. Corticosterone levels were lowest for the eastern
subspecies (parameter estimate: −0.09 ± 0.02 relative to
the wastern subspecies; 95% CI: −0.14 - −0.05) and
accordingly, all range positions for the eastern subspecies
(Table 5, Fig. 4). Despite age being a parameter in the 2nd

and 3rd top models, differences in corticosterone levels
between the different age classes of chats were not statis-
tically meaningful as the 95% confidence interval estimates
included 0. No differences were detected in corticosterone
levels between sexes (Fig. 4).

Hg and corticosterone combined

We had 127 feather samples where both Hg and corticos-
terone were measured on the same individual. There was no
correlation between Hg and corticosterone in chat feather
samples (Fig. 5, r=−0.054, df = 125, 95% CI: −0.223,
0.121, P-value = 0.54). When the correlation analysis was
repeated separately for birds in different age classes, still no

Fig. 3 Mercury concentrations in Yellow-breasted Chat (Icteria virens) feathers. Untransformed data and means are shown. The right outer tail
feather was used. Range position is divided by subspecies (Western, W and Eastern E) and position within range (North, N; Central, C; and
Southern, S). Sample sizes are W.N= 22, W.C= 42, W.S= 14, E.N= 15, E.C= 26, E.S= 31. Age includes the first moult cycle (n= 97) and the
definitive moult cycle (n= 53). Sexes are female (F, n= 38), male (M, n= 94), and unknown (U, n= 18). The total sample size is 150. Parameters
identified the top model are denoted with asterisks

Table 5 Weighted parameter estimates for corticosterone
concentrations in Yellow-breasted Chats (Icteria virens) based on all
models using the subset method

Estimate Std. error CI lower CI upper

(Intercept)a −0.41 0.02 −0.45 −0.37

Subspecies—Eastern −0.09 0.02 −0.14 −0.05

Age—definitive 0.00 0.03 −0.06 0.07

Subspecies—Eastern ×
Age—Definitive

−0.07 0.05 −0.16 0.02

Sex—male 0.01 0.02 −0.04 0.05

Sex—unknown −0.03 0.04 −0.11 0.05

Range position—West
Central

−0.02 0.04 −0.10 0.05

Range position -
West South

0.05 0.05 −0.04 0.15

Range position—East
North

−0.09 0.04 −0.18 −0.02

Range position—East
Central

−0.09 0.03 −0.17 −0.03

Range position—East
South

−0.11 0.04 −0.18 −0.04

The 95% confidence intervals that do not include 0 are in bold
aThe default values for categorical parameters are: Age = first cycle,
Subspecies = western, Sex = female, Range = West North. All
parameter estimates are reported relative to the intercept
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correlation was detected (first cycle birds: r=−0.103, df =
82, 95% CI: −0.310, 0.114, P-value = 0.35; definitive cycle
birds: r=−0.037, df = 41, 95% CI: −0.333, 0.267,
P-value = 0.82).

Discussion

We examined Hg concentrations in chats across their
breeding range and found no evidence that this species is at
risk of Hg toxicity despite their affinity for riparian habitats.
Across all sites, Hg concentrations in chat feathers were
within the range of equivalent blood Hg levels considered to
be background, except for 2 out of 150 which were low risk
of Hg toxicity (Ackerman et al. 2016). Age and range
position were predictors for Hg in chats on a range-wide
scale. Hg levels were greater in younger birds in their first
moult cycle compared to older birds in their definitive moult

cycle. Hg levels were lowest in eastern chats that had bred
in the north and central portion of their range. Subspecies
was an important predictor for corticosterone in chats on
range-wide scale. Corticosterone levels were greater in
eastern chats than western chats. Hg and corticosterone
levels were not correlated, suggesting no evidence of Hg
affecting the normal function of the hypothalamus-pituitary-
adrenal axis.

Hg toxicity risk

Hg levels in chat feathers were relatively low, 0.30 ±
0.02 μg/g dw. The average level of Hg in tail feathers for
chats in our study is slightly lower than the 0.4 – 0.7 μg/g
dw averages reported for other songbirds in terrestrial
habitats without a known point source of contamination
(Óvári et al. 2018; Ma et al. 2018; Stenhouse et al. 2020).
The two chats that fell within the low-risk category for
blood equivalent levels (0.2–1.0 μg/g ww) were at the low
end of this range with equivalent blood Hg levels of less
than 0.3 μg/g ww. These two chats are at minimal risk
because most published effects within this category occur
at blood Hg levels of 0.3 μg/g ww or greater (Ackerman
et al. 2016). The only indication of a harmful effect of Hg
at that level was reported in Lesser Scaup (Aythya affinis)
experiencing some degree of oxidative stress at blood
levels equivalent to 0.2 μg/g ww (Custer et al. 2000;
Ackerman et al. 2016). Likewise, all values we converted
to blood equivents were lower than the reproductive effect
thresholds in for small birds of 2.1–4.2 μg/g ww summar-
ized from a meta-analysis by Fuchsman et al. (2017), fur-
ther suggesting that chats are at little to no risk of mercury
toxicity effects. Additionally, Jackson et al. (2015) had two
blood samples from chats in contaminated sites in the
Appalachian forests with a mean of 0.099 μg/g ww sug-
gesting that even in contaminated sites, Hg toxicity risk is
low for chats.

Fig. 4 Corticosterone concentrations in Yellow-breasted Chat (Icteria
virens) feathers. Untransformed data and means are shown. The right
outer tail feather was used. Range position is divided by subspecies
(Western, W and Eastern E) and position within range (North, N;
Central, C; and Southern, S). Sample sizes are W.N= 23, W.C.= 31,

W.S.= 12, E.N.= 21, E.C= 64, E.S.= 45. Age includes the first
moult cycle (n= 148) and the definitive moult cycle (n= 48). The
total sample size is 196. Note that one outlier with corticosterone
concentration of 35.53 pg/mm is not visible. The parameter identified
in the top model is denoted with an asterisk

Fig. 5 Correlation between mercury and corticosterone in Yellow-
breasted Chat (Icteria virens) feathers. Feathers represent breeding
sites throughout North America (N= 127). Both variables were
transformed to meet assumptions of normality. Pearson r=−0.054, df
= 125, p= 0.54
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We found no evidence of chats being at risk of Hg
toxicity, despite living in riparian habitats, where Hg
exposure can be greater as a result of feeding on aquatic
insects from contaminated sediments or through aquatic-
terrestrial food web chains involving predatory inverte-
brates (Brasso and Cristol 2008; Cristol et al. 2008). The
association with riparian or wetland habitats alone does not
necessarily always indicate high Hg risk (Brasso et al.
2020). Brasso et al. (2020) advised caution on the gen-
eralization that songbirds in wetland habitats are at greater
risk of Hg bioaccumulation after conducting a literature
review. While chats consume both invertebrates and plants,
it is likely that most invertebrates were of low trophic status
or not linked to aquatic food webs. One study found that
less than 2% of the chat diet was aquatic insects (Yard et al.
2004).

Range-wide Hg predictors

Females had slightly lower levels of Hg than males,
although not statistically so, and this likely is a function of
adult females depurating a relatively small amount of Hg
(compared to feathers) into eggs (Honda et al. 1986;
Rumbold et al. 2001; Agusa et al. 2005). Dietary intake of
Hg is likely similar between sexes and this is not unex-
pected as we have not observed any sex-based differences
in foraging habits and no studies on diet have indicated any
sex-based differences (McKibbin and Bishop 2008; Eckerle
and Thompson 2020). Other studies on songbirds have also
found no difference in Hg levels between sexes (Warner
et al. 2012; Keller et al. 2014).

It was unexpected that younger chats (in their first moult
cycle) had higher levels of Hg than older chats (in their
definitive moult cycle). Because Hg accumulates in the
body between moulting periods (Evers 2018; Albert et al.
2019), we expected older birds to have the highest levels of
Hg but our results do not support this idea. This trend has
been reported elsewhere for other songbirds (Keller et al.
2014; Ma et al. 2018). One purported explanation for this
phenomenon is that nestling birds have high energetic
demands, especially for protein-rich foods, and, therefore,
may be consuming higher volumes of insects and spiders,
compared to older birds who may be eating proportionally
more plant-based foods (Warner et al. 2012; Ma et al.
2018). This is likely true for chats because nestling chats are
fed predominantly adult and larval insects (Schadd and
Ritchison 1998) and occasionally berries (McKibbin and
Bishop 2008) while adult chats consume roughly equal
proportions of invertebrates and fruit (Howell 1932; Eckerle
and Thompson 2020).

While our geographic assignments from hydrogen stable
isotopes preclude precise estimates chat breeding location,
the highest levels in our study generally occurred in western

chats that had bred in the southwest. Hg hotspots have been
identified in this area (Ackerman et al. 2016). Hg levels
across the United States between 2013–2017 were highest
in the central and western regions (National Atmospheric
Deposition Program 2020). Hotspots of Hg exist in Nevada
and California due to the gold rush and Hg mining (Com-
mission for Environmental Cooperation 1997; Rytuba 2000;
Alpers et al. 2005) and elevated Hg levels have been
observed in birds in these regions (Henny et al. 2002;
Hothem et al. 2008). Likewise, agricultural wetlands in the
Central Valley of California, notably for rice production,
use hydrological regimes that further promote MeHg pro-
duction, more so than in naturally occurring wetlands
(Windham-Myers et al. 2014). As Hg levels for adult chats
in our study represent levels accumulated across the full
annual cycle, western chats were likely exposed to these
areas during migration and during breeding for some
populations (Mancuso 2020). Chats may have also been
exposed to higher levels of Hg during the non-breeding
season in Mexico or Central America, as has been docu-
mented for the Bicknell’s Thrush (Rimmer et al. 2005) from
past and ongoing use of Hg in gold mining in the region
(Canham et al. 2021). Additional studies at different parts of
the annual cycle (e.g. using blood samples) would further
elucidate where exposure is greatest as in our current study
we cannot pinpoint where exposure occurred. Levels of Hg
in chats were lowest in the eastern chat range, which was
unexpected given that point sources of emissions for
anthropogenic sources of Hg are greater in the eastern
United States compared to the western United States
(Eagles-Smith et al. 2016; AMAP/UN Environment 2019;
Steenhuisen and Wilson 2019). It is also possible that Hg
levels varied due to geographic differences in diet or trophic
level (Keller et al. 2014; Ackerman et al. 2019; Li et al.
2021), but this would also require more in-depth study.
Regardless, overall Hg levels in chats in our study were of
low concern for toxicity, despite small-scale differences in
Hg levels in breeding birds in various locations across
their range.

We acknowledge that there have been mixed recom-
mendations on using feathers, especially flight feathers, to
draw conclusions about Hg exposure in birds (Bond and
Diamond 2008; Peterson et al. 2019; Low et al. 2020). Hg
levels in feathers generally correspond with the order of
moult, with the first-moulted feathers containing the highest
Hg levels (Furness et al. 1986; Bottini et al. 2021; Gatt et al.
2021). Most passerines replace their tail feathers about
halfway through their moult beginning with the innermost
tail feathers (Pyle 1997). Therefore, using tail feathers likely
underestimates the true body burden of chat Hg con-
centrations accumulated since the last moult, but these are
common feathers used in analyses and therefore are suitable
for comparison (Warner et al. 2012; Pacyna et al. 2017;
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Óvári et al. 2018). We believe that the strength of our study
is that the same methods were employed across all indivi-
duals in their range, allowing for suitable relative compar-
isons of Hg exposure between individuals and populations
(Bortolotti 2010).

Range-wide corticosterone predictors

We found no differences in corticosterone levels in Yellow-
breasted Chats of different ages or sexes but we did find
differences between the eastern and western subspecies.
Causes for these differences require further study, but
possibilities include differences in life history and beha-
viour, which were suspected for differences in corticoster-
one for subspecies of Swamp Sparrows (Melospiza
georgiana, Angelier et al. 2011). While statistically we
found a difference in corticosterone levels between sub-
species, the magnitude of the differences between the
eastern and western are slight and therefore are unlikely to
be meaningful in a biologically relevant context. Further
investigation such as body condition or reproductive suc-
cess would help to better contextualize potential differences
between subspecies in relation to conservation physiology
(Rich and Romero 2005; Dickens and Romero 2013; Boves
et al. 2016).

The difficulty in predicting corticosterone is demon-
strated by the top model having a very low R2 value,
explaining very little of the variation in corticosterone in
chats. Since the chats in our study were free-living wild
birds, a multitude of other factors may influence corticos-
terone concentrations that we could not control, such as
inclement weather (Wingfield et al. 1983; Ouyang et al.
2012), the presence of predators (Romero and Wingfield
2015), food abundance (Busch and Hayward 2009), injury
(Sapolsky et al. 2000), human disturbance (Strasser and
Heath 2013), immune status (Busch and Hayward 2009),
and habitat quality (Marra and Holberton 1998), all of
which vary in time and space. Quantifying such factors
would be virtually impossible over such a large
geographic area.

There is controversy on the usefulness of this hormone
for conservation physiology, in particular, as an indication
of stress in an organism (Romero 2004; Dickens and
Romero 2013; Harris et al. 2017; MacDougall-Shackleton
et al. 2019). As the main function of glucocorticoids relates
to energy mobilization, levels of these hormones are not
synonymous with stress (Busch and Hayward 2009;
MacDougall-Shackleton et al. 2019). Additionally, levels of
corticosterone vary drastically from species to species, and
therefore, direct comparison of chats to other songbirds is
not meaningful (Romero 2004), and therefore we did not
compare our values to other species. Measures of body
condition are often useful as a covariate in studies

examining stress, as a decrease in mass has been the only
consistent finding associated with chronic stress (Rich and
Romero 2005; Dickens and Romero 2013). In our study,
incorporating body condition was not possible because
relevant body condition would have needed to be assessed
the year prior during moult when corticosterone was
incorporated into the feathers we collected. Regardless, our
study provides range-wide baseline data on the functioning
of the hypothamalus-pituitary-adrenal axis on the natal and
breeding grounds for this species.

Relationship between Hg and corticosterone

We did not find any evidence of a correlative relationship
between Hg and corticosterone in chats. Studies on Turkey
Vultures (Cathartes aura) and Zebra Finches have also
failed to find an increase in corticosterone with increasing
Hg levels (Moore et al. 2014; Maddux et al. 2015; Herring
et al. 2018). In contrast, a negative correlative relationship
between corticosterone and Hg was detected in Forster’s
Terns (Sterna forsteri, Herring et al. 2012) and Tree
Swallows (Franceschini et al. 2009), where high Hg levels
correlated with low baseline corticosterone levels. The true
association between these chemicals is unclear as results are
inconsistent between studies (Whitney and Cristol 2017b)
and may also be related to additional environmental con-
taminants, such as lead (Herring et al. 2018).

We acknowledge that a limitation in our study of using
feathers to compare corticosterone and Hg is the different
time frames these two signatures represent. Hg in feathers is
accumulated since the last moult (up to a year for birds in
their definitive moult cycle), while corticosterone is an
integrated level over the period of feather growth (~weeks).
Despite the mismatch in the timeframe for adult birds, Hg
accumulates in the body and is highest at the time of moult
(Albert et al. 2019), and as such we would expect the
potential negative effects of Hg on the hypothalamus-
pituitary-adrenal axis and subsequent release of corticos-
terone to be most prominent during that time. The utility of
correlations for physiological measures has also been dis-
puted (Bortolotti 2010) but may be important starting points
for future investigations when significant trends are detec-
ted. The geographic scale at which we compare corticos-
terone and Hg in the same individuals is unprecedented and
allows for a broader understanding of these two biochem-
icals across various populations.

Conclusions

In conclusion, our study was the first range-wide study to
examine both Hg and corticosterone in a free-living ter-
restrial songbird. While it is generally thought that
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organisms associated with wetland or riparian habitat are at
higher risk of Hg exposure, we found that in the absence of
a point source of contamination, chats are at low risk of Hg
toxicity across their breeding range. Additionally, we found
no evidence of Hg disrupting the normal function of the
hypothalamus-pituitary-adrenal axis. Given that several
populations of chats are of conservation concern, our results
are reassuring that Hg and corticosterone are unlikely to be
factors impeding their recovery.

Data availability

The datasets supporting the conclusions of this article will
be available in the Open Science Framework repository.
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