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Abstract
Municipal wastewater treatment plants (mWWTPs), considered reservoirs of antibiotic resistance genes (ARGs), are selected
to compare the contributions of technology and process to ARG removal. Fifteen ARGs (tetA, tetB, tetC, tetE, tetG, tetL,
tetM, tetO, tetQ, tetS, tetX, MOX, CIT, EBC, and FOX) and two integron genes (intI1, intI2) were tracked and detected in
wastewater samples from a large-scale mWWTP with four parallel processes, including three biological technologies of
AAO (anaerobic-anoxic-oxic), AB (adsorption-biodegradation), and UNITANK, two different disinfection technologies, and
two primary sedimentation steps. The results showed that ARGs were widely detected, among which tetA and tetM had the
highest detection rate at 100%. AAO was the most effective process in removing ARGs, followed by the AB and UNITANK
processes, where the separation step was critical: 37.5% AmpC β-lactamase genes were reduced by the secondary clarifier.
UV disinfection was more efficient than chlorination disinfection by 47.0% in ARG removal. Both disinfection and primary
sedimentation processes could effectively remove integrons, and the swirling flow grit chamber was a more effective primary
settling facility in total ARG removal than the aerated grit chamber. The tet genes and AmpC β-lactamase genes were
significantly correlated with the water quality indexes of BOD5, CODCr, SS, TP, TOC, pH and NH4

+-N (p < 0.05). In
addition, the correlation between efflux pump genes and AmpC β-lactamase genes was strongly significant (r2= 0.717, p <
0.01). This study provides a more powerful guide for selecting and designing treatment processes in mWWTPs with
additional consideration of ARG removal.
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Introduction

Tetracycline and β-lactam are two types of antibiotics pre-
dominately used in human welfare and livestock as pro-
phylaxis and therapy, with residual antibiotics
contaminating soil and water (Widyasari-Mehta et al. 2016;
Zhang et al. 2015). Due to repeated exposure to antibiotics,

environmental microorganisms develop resistance against
antibiotics and survive, which exacerbates the problem of
the emergence of antibiotic-resistant bacteria (ARB) and
ARGs (Kim et al. 2018). To date, at least forty different
tetracycline resistance genes have been detected in various
environments, such as aquatic environments (Li et al. 2020),
wetlands (Li et al. 2019), mangrove ecosystems (Liu et al.
2020), WWTPs (Chen, Zhang 2013a; b), hospital waste-
waters (He et al. 2020), and livestock farms (Duan et al.
2019). Six urban lakes in Wuhan detected antibiotic efflux
pumps and ribosomal protection protein genes (tetA, tetB,
tetC, tetG and tetM, tetQ) (Yang et al. 2017). Microorgan-
isms may use these pollutants in ecosystems to assimilate
and transform (Gu. 2019). Different types of AmpC β-lac-
tamase genes have also been found in many gram-negative
bacteria, including Acinetobacter (Wang et al. 2008),
Aeromonas caviae (Ye et al. 2010), Proteus mirabilis

* Yanbin Xu
hopeybxu@163.com

1 School of Environmental Science and Engineering, Guangdong
University of Technology, Guangzhou 510006, China

Supplementary information The online version of this article (https://
doi.org/10.1007/s10646-020-02306-0) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-020-02306-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-020-02306-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-020-02306-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-020-02306-0&domain=pdf
http://orcid.org/0000-0002-8874-069X
http://orcid.org/0000-0002-8874-069X
http://orcid.org/0000-0002-8874-069X
http://orcid.org/0000-0002-8874-069X
http://orcid.org/0000-0002-8874-069X
mailto:hopeybxu@163.com
https://doi.org/10.1007/s10646-020-02306-0
https://doi.org/10.1007/s10646-020-02306-0


(Ibrahimagić et al. 2015), Providencia spp. (Mahrouki et al.
2015), Escherichia coli (Bajaj et al. 2015), and Klebsiella
pneumoniae (Venieri et al. 2017). ARGs can disseminate
within or among species via heredity and horizontal gene
transfer (HGT), which means that ARGs can be transferred
from one bacterial strain to another (Zhang et al. 2018). The
frequency and rapid spread of acquired plasmid-mediated
AmpC β-lactamases are increasing among Enterobacter-
iaceae worldwide, and infections caused by resistant
Enterobacteriaceae due to AmpC have increased the mor-
bidity and mortality rate compared with those caused by
susceptible Enterobacteriaceae (Etemadi et al. 2020).
Higher concentrations of ARGs are easy to transfer to the
human body, especially the human intestinal tract. In
addition, mobile genetic elements such as conjugative
plasmids frequently carry genes other than ARGs that
contribute to microbial fitness (McInnes et al. 2020). When
these pollutants are bio-enriched to a certain concentration,
they will have a toxic effect on the entire ecology and affect
the balance of the ecosystem. The induced ARGs, as
emerging environmental contaminants, cause global threats
to human society (Organization 2014).

Untreated wastewater usually contains a large number of
pathogens. Souissi et al. (2018) isolated and identified
Leuconostoc spp., Chryseomona luteola, and Staphylo-
coccus xylosus from WWTP wastewater. Medema et al.
(2020) reported that SARS-CoV-2 viral RNA was first
detected in the influent of WWTPs in the Netherlands.
Fecal streptococci and pathogen Staphylococci groups
contained serious β-lactams or aminoglycosides and
acquired resistance (Souissi et al. 2018). New research has
shown that the quantity of ARGs in effluents is related to
the size of WWTPs, and the abundance of ARGs is highest
in small WWTPs (Harnisz et al. 2020). Conventional
WWTPs generally fail to effectively reduce ARGs, espe-
cially extracellular ARGs (Li et al. 2019). The AAO pro-
cess, as a widespread biological nutrient removal
configuration, can achieve simultaneous removal of organ-
ics (Huang et al. 2020). However, it was further revealed
that tetA, tetB, tetC, tetE, tetM, tetO, tetS, and tetX were
common and abundant in all reactors of the improved AAO
in WWTPs (Huang et al. 2015). The AB process, also called
the two-stage activated sludge process, has a high removal
rate of organic substrates. The UNITANK process is an
improvement of the sequencing batch reactor (SBR), in
which wastewater is added to a single batch reactor and
returning sludge is eliminated (Bashiri et al. 2018). How-
ever, it is prone to sludge deposition (Liu et al. 2018), which
easily causes ARGs from wastewater to be transferred into
sludge in both the AB and UNITANK processes. Higher
amounts of some ARGs were detected during the pretreat-
ment process, including influent and primary sedimentation
in AAO, but decreased gradually via sequential treatment

processes (Lee et al. 2017). Although both UV and chlor-
ination disinfection could affect the reduction of ARGs,
chlorination might augment the risk of ARG transfer in
wastewater containing NH3-N (Sharma et al. 2016). The
disadvantage of the AB process is that the A stage is prone
to produce more sludge. The genes tetA, tetM, tetW, and
tetX were a large proportion of the sludge samples. (Xu
et al. 2020; Zhou et al. 2019; Zhang et al. 2019). However,
in the presence of trace tetracycline, the relative abundances
of efflux pumps, such as tetA and tetG, tended to remark-
ably increase in the UNITANK process (Liu et al. 2019).
Overall, the conventional and advanced processes resulted
in 0.03–2.40 log reductions for most ARG subtypes, such as
intI1, qepA, strA, and strB, but neither treatment method
affected the reduction of tetM (Hu et al. 2019). Tradition-
ally, a combination of physical, chemical, and biological
processes has been widely used in wastewater treatment
plants to remove pollutants (Li et al. 2017), such as BOD5,
CODCr, SS, TP, TN, etc. and ensure that the residual pol-
lutants in the effluent conform to the legal requirements
(Everage et al. 2014; Jaranowska et al. 2013), so the
reduction of ARGs was not considered during the treatment
process (De Sotto et al. 2016). WWTPs have been con-
sidered a reservoir of ARGs because a high abundance and
diversity of ARGs were detected in WWTPs, such as qui-
nolone resistance genes qnrS, qnrB, and acc(6’)-Ib-cr,
AmpC genes, integrons intI1 and intI2 (Su et al. 2014;
Kumar et al. 2020), tet genes tetM tetC tetK and tetA/P
(Laht et al. 2014; Zhang, Zhang 2011), which might be
released into the drinking water from the effluent and pose a
potential risk to human health. Excessive residues of ARGs
have caused serious threats to human and animal
health due to the spread of antibiotics. To make the dis-
tribution of ARGs clear and raise the management level of
ARGs, it is important to study the relationship between the
present wastewater treatment process and the removal
of ARGs.

In this study, a large-scale mWWTP in Guangzhou,
which contains four different treatment processes, was
selected to investigate the relationship between the treat-
ment process and elimination of ARGs. Eleven tetracycline
resistance genes (six efflux pump genes: tetA, tetB, tetC,
tetE, tetG, tetL, four ribosomal protection genes: tetM, tetO,
tetQ, tetS, one enzymatic modification gene: tetX), four
family-specific AmpC β-lactamase genes (MOX, CIT, EBC,
FOX), and two integron genes (intI1, intI2) were detected
by using polymerase chain reaction (PCR) and real-time
qualitative polymerase chain reaction (qPCR). According to
the same properties of the influent and the same operation
level in the plant, the results provide strong evidence for
selecting the key process step and disinfection method to
control ARG discharge, which will benefit the reduction of
health and ecosystem risk.

Comparison of the elimination effectiveness of tetracycline and AmpC β-lactamase resistance. . . 1587



Materials and methods

Municipal wastewater treatment plants

A specialized large-scale municipal wastewater treatment
plant in Guangzhou was selected to collect samples. This
plant treats the wastewater for an equivalent population of
2.96 million and has a maximum capacity of 560,000 m3/d,
occupying an area of 390,000 m2 and receiving the waste-
water from the central city area of 228 km2 belonging to the
North Waterway of the Pearl River. It is constructed in four
phases, and the basic information is shown in Table S1. The
wastewater from the same conditioner with the same
properties is pumped into four phases of proceedings,
and effluent treated by different processes and disinfection
methods is discharged through the same draining exit.

Sample collection and pretreatment

Twenty-one samples of water were collected from the
influent, effluent, and each treatment unit of the mWWTP,
as shown in Fig. 1. At each sampling location, a 2000 mL
water sample was transferred to two sterile 1000 mL bottles
and stored at 4 °C before pretreatment within 24 h. Che-
mical parameters of influent and effluent samples from four
phases were detected and recorded (Table S2).

DNA extraction

One thousand milliliters of water samples were filtered
through 50 mm cellulose ester membranes with pore sizes
of 0.22 μm. The filters were stored at −20 °C to protect
DNA before extraction. Total DNA was extracted using the
E.Z.N.A. TM Water DNA Kit (Omerga Bio-tek, USA)
according to the manufacturer’s protocol. The quality and
concentration of the purified DNA were determined by
spectrophotometer analysis (NanoDrop 1000, Thermo Sci-
entific, USA) (He et al. 2017) and quantified by 1.5%
agarose gel electrophoresis. The total DNA samples were
stored at −20 °C pending further analysis.

Qualitative PCR

Fifteen ARGs (tetA, tetB, tetC, tetE, tetG, tetL, tetM, tetO,
tetQ, tetS, tetX, MOX, CIT, EBC, FOX) and two integron
genes (intI1, intI2) in all water samples were investigated by
using conventional PCR with the primers listed in Table S3.
The reaction volume of PCR was 25 μL consisting of 2.5 μL
of 10 × PCR Buffer (Mg2+ Plus, TaKaRa, Japan), 2.0 μL of
dNTP Mixture (each 2.5 mM, TaKaRa, Japan), 1.0 μL of
each forward and reverse primer (10 μM), 0.125 μL of Taq
polymerase (5 U/μL, TaKaRa, Japan), and 1 μL of DNA
template, and 17.375 μL of ddH2O. The PCR program was

Fig. 1 Treatment process flow charts and sampling locations of the
four phases with different process. A The influent of the grid screen as
the influent of the main process. (B1-2) Two different primary sedi-
mentation tanks, Phase I(AB process) and Phase II(UNITANK pro-
cess) share a swirling flow frit chamber, and Phase III(Modified AAO
process) and Phase IV(Modified AAO process) share an aerated grit
chamber. Phase I: (C1) the mixture in the stage B aerobic tank, (C2)
the effluent of the stage B clarifier. Phase II: (D1) the mixture in the A

tank, (D2) the mixture in the B tank, (D3) the effluent of the UNI-
TANK. Phase I-II, (R1) the disinfection effluent of Phase I and II.
Phase III: (E1) the mixture in the pre-anoxic tank, (E2) the mixture in
the anaerobic tank, (E3) the mixture in the anoxic tank, (E4) the
mixture in the aerobic tank, (E5) the secondary clarifier effluent, and
(E6) the disinfection by chlorination. Phase IV (Modified AAO pro-
cess): (F1-5) same as Phase III and (F6) the disinfection by UV
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performed on a thermal cycler (Eppendorf, Germany) as
follows: initial denaturation at 94 °C for 5 min, followed by
30 cycles of 94 °C for 30 s, annealing at 55 °C for 30 s,
72 °C for 60 s, and a final extension of 72 °C for 7 min. PCR
products were analyzed by electrophoresis on a 1.5% (w/v)
agarose gel with ethidium bromide in 0.5× TBE buffer at
100 V for 40 min and visualized under UV transillumina-
tion. Ultrapure water was used as the negative control.

ARG quantitative analysis

The quantities of target ARGs, integrons, and 16S rRNA
were detected by qPCR using the SYBR® Green approach
and specific primers. The 20 μL qPCR reaction mixtures
consisted of 7 μL of ddH2O, 10 μL of 2 × iTaqTM universal
SYBR® Green supermix (Bio-Rad, USA), 2 μL of forward
and reverse primers (10 μM of each type), and 1 μL of
template DNA (Table S4). Amplification was conducted
with CFX (Bio-Rad, USA) as follows: initial denaturation at
95 °C for 3 min, 40 cycles at 95 °C for 10 s, and 30 s with
the plate read at the annealing temperature of 58 °C.
Immediately after the qPCR assay, melting curve analyses
were performed by increasing the temperature from 65 °C to
95 °C (0.5 °C/5 s) with continuous fluorescence recording
according to Huang et al. (2017). Sterile ultrapure water was
used as the negative control, and 16S rRNA was determined
for each sample as the reference gene. Three independent

samples were analyzed at each site, and each sample was
quantified in triplicate to ensure reproducibility. The qPCR
efficiency of each gene ranged from 90 to 110%, with
R2 values greater than 0.990 for all calibration curves.

Statistical analysis

Basic calculations were performed using Microsoft Excel
2016. Correlations between tet genes and AmpC β-lacta-
mase genes were analyzed by SPSS 24.0 statistical soft-
ware. A variable was considered statistically significant if
p < 0.05 or p < 0.01. Data features were analyzed by Origin
Pro 8.1 (OriginLab Co., MA, USA).

Results and discussion

Occurrence of ARGs in mWWTP from influent to
effluent

For the occurrence of the target ARGs, the detection fre-
quency was 100% in the influent. The genes tetA, tetC, tetM
and tetO showed strong persistence throughout the waste-
water treatment plant, tetA and tetM were detected in all
treatment units (100%), and the detection rate of tetO and
tetC in water samples was 90.47% (19/21) (Table 1).
However, the gene diversity in the samples was reduced

Table 1 Occurrence of tet ARGs and AmpC β-Lactamase genes in the municipal WWTP with four different treatment phases

Sample sites Tetracycline resistance genes AmpC β-lactamase genes Sum

tetA tetB tetC tetE tetG tetL tetM tetO tetS tetX MOX CIT EBC FOX

IN1-2-3-4 + + + + + + + + + + + + + + 14

AP1-2 + + + + + + + + + + + – + + 13

AE1 + – + – – + + + + + + – – – 8

CL1 + – + – – + + + + – + – – – 7

AN2 + – + + + + + + + + + + + + 13

AE2 + – + – – + + + + + + – + + 10

CL2 + – + + – + + + – + + – + + 10

EF1-2 + – + + – + + + + – + – + – 9

AP3-4 + + + + + + + + + + + + + + 14

PAN3 + + + + + + + + + + + + + + 14

ANA3 + – + + + + + + + + + – + + 12

AN3 + – + + + + + + + + + + + + 13

AE3 + – + + + – + + + + + – + – 10

SE3 + – + + – – + + + + + – – – 8

EF3 + – – + – – + + + – – – – – 5

PAN4 + – + + + + + + – + – – + + 10

ANA4 + – + + – + + + + – + + + + 11

AN4 + – + – – + + + + + + – + + 10

AE4 + – + – – + + + – + – – + – 7

SE4 ++ – – – + – + – + + + – + – 7

EF4 + – – – – – + – + – – – – – 3

Frequency index 21/21 4/21 18/21 14/21 10/21 16/21 21/21 19/21 18/21 16/21 17/21 6/21 16/21 11/21

+: Positive; −: Negative

Comparison of the elimination effectiveness of tetracycline and AmpC β-lactamase resistance. . . 1589



during the treatment process. The quantity of gene types
identified in the effluent of phase I-II, phase III, and phase
IV were 9, 5, and 3, respectively. A total of 78.57% of the
detected ARG types disappeared with the treatment of the
whole process used in phase IV, which was the most effi-
cient process for ARG type removal among the four parallel
processes used in the mWWTP. Similar results were found
that the detection frequencies of tetA, tetM, and tetO were
higher than those of other tet genes in WWTPs (Storteboom
et al. 2007), and the detection frequency of tetM was 100%
(Zhang et al. 2017). The efflux genes (tetA, tetB, tetC, and
tetE) and ribosomal protection protein genes (tetM and tetO)
are frequently found in various environmental matrices,
such as livestock farms (Duan et al. 2019), WWTPs (Xu
et al. 2017) and ground water (Wu et al. 2020). The tetra-
cycline resistance genes tetA, tetB, tetC, tetE, tetM, and tetO
have a broad host range and are carried by several envir-
onmental matrices. Therefore, the strong persistence of
these ARGs was due to their broad host range. The ARGs in
wastewater were reduced, primarily based on the decrease
in total biomass and selective removal of ARGs from bac-
terial cells (Bengtsson-Palme et al. 2016). Most of the
available studies have concluded that WWTPs reduce the
absolute numbers of both ARGs and total bacteria in was-
tewater (Pallares-Vega et al. 2019).

Abundance of ARGs in mWWTP

PCR-detectable tet genes and AmpC β-lactamase genes in
each sample were normalized to the 16S rRNA as the
relative abundance of genes. The results are shown in
Fig. S1. The proportional results indicated that most relative
abundances of tet genes were higher than AmpC β-lacta-
mase genes, except for tetB and tetL. In all influent samples,
the relative abundance of all resistance genes ranged from
10−3 to 10−5, in which tetX was the highest. However, the
residual ARGs were different depending on the process.

In Phase I-II, tetB, tetG, tetX, CIT, and FOX were unde-
tected in the effluent, showing that these ARGs can be
completely eliminated by the AAO process. For the Phase
III effluent, most ARGs could be completely removed
except tetA, tetE, tetM, tetO and tetS, while only tetA, tetM
and tetS were detected in the effluent from Phase IV.
Moreover, the average abundance of ribosomal protection
protein genes was higher than that of both efflux pump
genes and enzyme-modified genes, which was similar to
Cheng et al. (2013). According to published studies, tetra-
cycline resistance genes were found to be more prevalent in
bacterial populations than AmpC β-lactamase genes
because tetracycline resistance genes could be detected in
both gram-positive and gram-negative bacteria (Chopra,
Roberts 2001), while AmpC β-lactamase genes were only
found in gram-negative bacteria (Jacoby. 2009). Moreover,
tetracycline resistance genes could be found on bacterial
chromosomes (e.g., tetQ), plasmids (e.g., tetC, tetE, tetK),
and transposones (e.g., tetB, tetC, tetE, tetK) (Pazda et al.
2019). These tet genes with high abundance were always
carried by mobile elements and could be transferred
between bacteria in the environment (Agerso et al. 2007;
Huang et al. 2015; Ding et al. 2020).

Comparison of ARG elimination efficiency by
processes among AB, UNITANK, and Improved AAO

By comparing phase I-II and phase III with different treatment
processes (AB process, UNITANK process, improved AAO
process), the gene removal efficiency was higher in phase III
than in phase I-II (Fig. 2), e.g., the removal efficiency of tetO
in phase I-II and phase III was 19.52% and 72.24%, respec-
tively. However, it was intriguing that the relative abundance
of genes in the clarifier of phase II was higher than that in the
influent, such as tetA, which increased from 7.32 × 10−3 to
1.23 × 10−2, with a growth rate of 68.17%. This result was
similar to the findings that the reduction magnitudes of tetO,
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tetW, and tetQ in AAO were 2.31 log, 2.13 log, and 2.50 log,
respectively (Cheng et al. 2013). The removal rate observed
for the tetM gene was an average log reduction of 2.53 ± 0.68
(Pallares-Vega et al. 2019). The tet genes include three types
of resistance mechanisms: efflux pump mechanisms (genes
encoding energy-dependent efflux proteins), target modifica-
tion mechanisms (genes encoding ribosomal protection pro-
teins, RPPs), and inactivating enzymes (Chen, Zhang 2013a; b;
Huang et al. 2015; Pazda et al. 2019). According to the
above results, the efflux pump genes of tetA and tetC and
the ribosomal protection protein genes of tetM and tetO
were difficult to remove, which may be due to the resistance
mechanism (efflux pump mechanism and target modifica-
tion mechanism). Zhang et al. (2018) also proved that the
AAO process could reduce ARGs regardless of the relative
abundance or absolute gene copies. This might be due to
the proliferation of ARGs after conventional biological
treatment processes, which had an influence on microbial
growth (Wang et al. 2015). In addition, the plant containing
individual process for sludge discharge such as AAO may
tolerate to the complicated wastewater. The highest bac-
terial diversity was achieved in modified AAO process (Yan
et al. 2019), which may imply the advantage in ARG
removal. The tetracycline resistant bacteria (TRB) declined
in the final effluent samples compared to the influent sam-
ples (Huang et al. 2015), which may be one of the reasons
for the removal of ARGs. The results indicated that the
removal efficiency of ARGs in the superior treatment pro-
cess was better than that in the conventional treatment pro-
cess, while the effect of the process was improved in the
pattern of AAO process > AB process > UNITANK process.

AAO treatment also played an important role in redu-
cing the relative abundance of resistance genes. As shown
in Fig. 3, in the aerobic phase, the relative abundance of
the four ARGs was effectively reduced, where the
removal rates of the efflux pump of resistance genes,
ribosome protection genes, enzyme modification genes,
and AmpC β-lactamase genes were 29.61%, 63.66%,
67.46%, and 49.1%, respectively. In the anaerobic stage,
the removal rate of the ARGs was also high, and the

removal rate of tetX was as high as 73.07%. In the pre-
anoxic phase, most ARGs showed growth, in which the
AmpC β-lactamase genes were increased by 1.23 times
and the efflux pump genes were increased by 32.71%. In
the anoxic phase, almost all types of ARGs had increased,
with tetX increasing the most, reaching 22.74%, which
meant that different ARGs may be attributed to dissolved
oxygen or other nutrients. The removal of ARGs may also
have a certain relationship with the difference of bacterial
species because the oxygen content of each tanks is dif-
ferent. Therefore, in the AAO process stage, the ARG
removal capability followed the order aerobic > anaerobic
> preanoxic > anoxic.

In addition, the removal of the ARGs in the secondary
clarifier also played a crucial role, in which the removal rate
of tetX could be as high as 100%, and the removal rate of
AmpC β-lactamase genes was also 37.5%. It was found that
the removal of the tetracycline resistance gene was more
advantageous under aerobic conditions (Su et al. 2019). The
ARGs were lower in aerobic tanks and higher in anaerobic
tanks (Tao et al. 2014). The results shown in Fig. 3 suggest
that biological treatments could more effectively reduce the
abundance of tet genes and AmpC β-lactamase genes,
which might be related to the high efficiency of WWTPs in
reducing the bacterial population (Su et al. 2014). AmpC β-
lactamase plays an important role in hydrolyzing all β-lac-
tam antibiotics and contains two types of resistance
mechanisms, i.e., chromosomal mediated and plasmid
mediated (Mohamudha et al. 2012; Korzeniewska, Harnisz
2013), except cefepime and carbapenems (Maravić et al.
2013; Ebomah and Okoh. 2020). The genes encoding
plasmid-mediated AmpC β-lactamase are harbored by
mobile elements that could confer transmissible resistance
to environmental bacteria and pathogens, which may
accelerate cephalosporin resistance dissemination in the
environment (Liu et al. 2015; Pazda et al. 2019). Therefore,
the detection rates of MOX and EBC were very high
(85.71%). In this study, tet genes and AmpC β-lactamase
genes were widely found in mWWTP, which indicates a
potential health risk in urban areas.

Fig. 3 Removal rate of antibiotic resistance genes in each step of modified AAO process. The number was the value of removal rate, which
displayed by red or blue bar
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Comparison of ARG elimination efficiency by UV and
chlorination disinfection

The relative abundances of ARGs in the effluent in phase III
(improved AAO with sodium hypochlorite) and phase IV
(improved AAO with ultraviolet disinfection) with the same
superior treatment process were different because of dif-
ferent disinfection methods. The removal efficiency for each
gene was determined by comparisons of relative abundance
between them, which showed that UV disinfection was
better than chlorination (Fig. 4). After two different disin-
fection, the AmpC β-lactamase resistance genes and inhi-
bitory enzyme activity genes were completely removed.
However, UV disinfection had removal rates of 99.99% and
97.23% for intI1 and intI2, respectively, and removal rates
for intI2 and intI1 for chlorination were only 85.62% and
51.61%, respectively. Among them, UV had a removal rate
of 100% for tetG, tetX, MOX, and EBC. Zhou et al. (2020)
also found that UV radiation showed significant removal
efficiency on ARGs. In phase III, the detection rate of the
effluent resistance genes was 43.75% (7/16), while the
detection rate of the effluent resistance genes in UV disin-
fection was 31.25% (5/16). The disinfection may adjust the
relative abundance of the microbial genus to the ARGs, but
low doses of chlorine stimulated HGT (Wang et al. 2020).
UV disinfection may cause damage to ARGs due to direct
absorption of ultraviolet light by DNA. UV disinfection can
destroy the resistance genes in microorganisms, greatly
reducing the spread of genes during horizontal transfor-
mation. Mckinney and Pruden (2012) indicated that UV
disinfection had the potential to impact ARG damage
because DNA absorbs ultraviolet radiation directly. Guo
et al. (2014) found that UV could reduce erythromycin
resistance gene and tetracycline resistance gene concentra-
tions. In addition, UV intensity and species also had a close
relationship with UV disinfection efficiency (Qin et al.

2020). However, Zhang et al. (2015) suggested that the
removal efficiency of ARGs by chlorination was better than
that with UV. This suggested that sodium hypochlorite
might be used for a few stress-tolerant bacteria. A previous
study supported this hypothesis that chlorination enriched
ARGs and changed the microbial community structure (Shi
et al. 2013).

Comparison of ARG removal by different primary
sedimentation processes

The primary sedimentation tank is an important treatment
for mWWTPs, which mainly removes suspended solids
from wastewater. The AB process and UNITANK process
share the swirling flow grit chamber, while another two
different improved AAO processes share the aerated grit
chamber. According to Fig. 4, the proportion of intI1 in the
influent reached 54.4%, which was reported to be associated
with multiantibiotic resistance (MAR) in various environ-
ments (Brooks et al. 2014). Integrons (intI1, intI2) are very
important to the migration of ARGs (Zhou et al. 2020);
therefore, the removal of integrons is beneficial to reduce
the spread of ARGs in the environment. The aerated grit
chamber could remove almost all intI1 of the influent,
which was obviously more effective than that of the swir-
ling flow grit chamber. However, for intI2, the removal rate
by the swirling flow grit chamber was 69.99%, but intI2 in
the effluent from the aerated grit chamber was 3 times
higher than that in the influent. Jang et al. (2020) also
indicated that most target ARGs (tetG, tetH, tetM, tetQ,
tetX) showed a significant positive correlation with intI1.
From the analysis of the quantity of ARGs and the total
abundance, the swirling flow grit chamber was more
advantageous than the aerated sand because the CIT was
completely removed, and the removal rate of the ribosome
protection genes reached 73.88%, which was 54.0% higher
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than that of the aerated grit chamber. In addition, the gene
removal rates of inhibitory enzyme activity, AmpC β-lac-
tamase, and integron reached 67.26%, 72.48%, and 83.29%,
respectively. Total microorganisms, integrons, and organic
matter removed in wastewater are conducive to the reduc-
tion of ARGs (Riquelme Breazeal et al. 2013). The swirling
flow grit chamber could remove the ARGs more effectively
than the aerated grit chamber, which might be due to the
advantages of the low change in the flow rate and high
efficiency of the kinetic energy. However, it is still unclear
how the abundance and diversity of ARGs are affected by
common wastewater treatment processes, especially in
mWWTPs, so further investigations should be performed to
better address this question.

Correlation of ARGs in mWWTP

The tet genes and the AmpC β-lactamase genes were sig-
nificantly correlated with BOD5, CODCr, SS, TP, TOC, pH
and NH4

+-N (p < 0.05), of which tetO and all water quality
parameters except pH were significantly correlated (p <
0.01) (Table 2). However, the efflux pump genes tetA, tetB,
tetE, and tetL, ribosome protection gene tetS, and AmpC β-
lactamase genes MOX and EBC were not significantly
correlated with all water quality parameters (p > 0.05). This
indicated that some kinds of ARGs in the wastewater were
significantly correlated with some physical parameters.
Yuan et al. (2018) also proved that most ARGs, including
intI1 and tetA, positively correlated with wastewater nutri-
ent (COD, NH3-N, TN and TP) concentrations, and the
relative abundance of some ARGs decreased as the quality
of wastewater improved. Therefore, for mWWTPs, the
removal rate of pollutants in sewage was an important factor
affecting the change rate of ARGs.

There was a significant correlation between tet genes and
AmpC β-lactamase genes (p < 0.05), in which tetC, tetE,
tetM, tetO, tetX, tetO, and CIT were strongly and sig-
nificantly correlated with FOX (p < 0.01), and tetE, tetL,
tetM, and CIT had significant correlations with each other
(p < 0.01) (Table 2), which was due to the large number of
multidrug resistant bacteria carrying multiple resistance
genes in mWWTP. Similarly, Huang et al. (2015) also
found a strong significant correlation between tetM and
tetO, as well as tetE and tetX (p < 0.01), in an improved
AAO process. The total quantities of efflux pump genes,
ribosomal protection protein genes, enzymatic modification
genes, and AmpC β-actamase genes were significantly
correlated, as shown in Table S5. The correlation between
the quantity of efflux pump genes was found to be strongly
significant with AmpC β-lactamase genes (r2= 0.717, p <
0.01) and enzyme-modified genes (r2= 0.523, p < 0.01). It
was reported that there was a strong correlation among
the total quantity of tet genes (Huang et al. 2015).

The correlation between ARGs was affected by not only
their relative antibiotics (Cheng et al. 2013; Huang et al.
2015) but also the function of co-selection and cross-
selection on resistance from antibiotics and heavy metals
(Mckinney et al. 2010; He et al. 2017). Furthermore, water
parameters, such as COD, DO, pH, and temperature, have
been found to be related to ARGs, and correlations between
the removal efficiency of ARGs and the removal efficiency
of CODCr, BOD5, nitrogen, and biomass were observed
(Nõlvak et al. 2013; Yuan et al. 2016).

Conclusions

Overall treatment processes were carried out in four dif-
ferent phases to evaluate the tet genes and AmpC β-lacta-
mase genes, especially in the effluent, which presented a
lower abundance of ARGs. By comparing different pro-
cesses, the removal efficiency of genes was most sig-
nificantly improved by the AAO process, followed by the
AB process and UNITANK process, while the aerobic tank
played an important role in modifying the AAO of ARG
reduction. The swirling flow grit chamber was more sig-
nificant in ARG removal. In addition, ultraviolet disinfec-
tion was better than chlorination. The quantity between
efflux pump genes and AmpC β-lactamase genes showed a
strongly significant correlation (r2= 0.717, p < 0.01).
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