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Fungicide application increased copper-bioavailability and impaired
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Abstract
Copper-based fungicides have been used for a long time in viticulture and have accumulated in many vineyard soils. In this
study, incrementing Cu(OH)2-based fungicide application from 0.05 to 5 g Cu kg−1 on two agricultural soils (an acidic sandy
loam (L, pH 4.95) and an alkaline silt loam (D, pH 7.45)) resulted in 5 times more mobile Cu in the acidic soil. The most
sensitive parameters of alfalfa (Medicago sativa) growing in these soils were the root nodule number, decreasing to 34% and
15% of the control at 0.1 g Cu kg−1 in soil L and at 1.5 g Cu kg−1 in soil D, respectively, as well as the nodule biomass,
decreasing to 25% and 27% at 0.5 g Cu kg−1 in soil L and at 1.5 g Cu kg−1 in soil D, respectively. However, the enzymatic
N2-fixation was not directly affected by Cu in spite of the presence of Cu in the meristem and the zone of effective N2-
fixation, as illustrated by chemical imaging. The strongly different responses observed in the two tested soils reflect the
higher buffering capacity of the alkaline silt loam and showed that Cu mitigation and remediation strategies should
especially target vineyards with acidic, sandy soils.
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Introduction

Salts of Cu are used in agriculture since more than 120 years.
Either CuSO4 or more recently also Cu(OH)2 show superior
fungicidal properties and a lack of resistances of fungi,
compared to synthetic fungicides (Kühne et al. 2009). Their
preventive applications mitigate losses in photosynthetically
active leaf area in vineyards, mainly caused by the infection
with downy mildew (Plasmopara viticola). Current max-
imum application rates of 3 kg Cu ha−1 on conventionally
grown grapevine in Austria, or 6 kg Cu ha−1 according to
EU-legislation (EC 2008) are not supposed to cause
remarkable increases in soil Cu contents, compared to inputs
through sewage sludge or manure. The majority of con-
taminations on agricultural soil was caused by application
rates of 30 and even up to 80 kg Cu ha−1 before 1970 (Kühne
et al. 2009). Nevertheless, soils may show Cu accumulation
due to low harvest withdrawals of 3–30mg kg−1 plant dry
weight (dw) (Amelung et al. 2018) and because of long-
term use of Cu-based fungicides, which is nowadays,
especially in organic farming systems, still inevitable.

Especially former vineyards report total soil Cu concentra-
tions of about 1030mg kg−1 in France (Bravin et al. 2010;
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Michaud et al. 2007), 888 mg kg−1 in Austria (Berger et al.
2012), 493 mg kg−1 in Brazil (Girotto et al. 2014), 249 mg
kg−1 in Australia (Pietrzak and McPhail 2004) and 200 mg
kg−1 in Serbia (Ninkov et al. 2014). However, the probable
no-effect levels calculated for soils range only from 55 to
155 mg total Cu kg−1 in Austria (Berger et al. 2012),
whereas the German precautionary values only range from
20 to 60 mg total Cu kg−1 in sand or clay, respectively
(BBodSchV 1999).

Besides the soil organic matter (SOM) content, repre-
senting the major sorption pool for Cu, the sorption of Cu is
governed by soil pH, with stronger adsorption at pH > 4.5
(Lair et al. 2007; Lair et al. 2006) and higher mobility at pH
< 4.5 (Amelung et al. 2018; Cornu et al. 2007). Therefore,
the main proportions of Cu are retained in the uppermost
soil layer in association with SOM and thus do not cause
detrimental effects on deep rooting perennial crops. How-
ever, Cu toxicity can be observed for annual intercrops, or
when replacing the perennial crops by annual ones
(Michaud et al. 2007).

Cu is a redox-active essential core element in various
enzymes and cofactors. It is necessary for the electron
transfer in photosynthesis as well as for the final reduction
of O2 in the respiration chain via cytochrome-cbb3-oxi-
dase (Brennicke and Schopfer 2010; White 2012). Toxi-
city mainly occurs by proliferation of cell membranes and
the subsequent catalytic production of reactive oxygen
species (ROS) via the Fenton- /Haber-Weiss-reaction
(Dıáz et al. 2001; Halliwell and Gutteridge 1984; Mostofa
and Fujita 2013).

Due to restrictions in the use of synthetic fungicides and
mineral fertilizers, organic viticulture depends on Cu as well
as on co-cropping with legumes. Since Fabaceae are Cu-
sensitive (Dahlin et al. 1997), there is a trade-off between
effective plant protection and efficient N2-fixation.

Medicago sativa (lucerne or alfalfa) is a perennial plant
and N2-fixing via endosymbiotic rhizobia, which support
growth, nutrient uptake and resilience (Ashrafi et al. 2014).
Rhizobium meliloti colonize fine roots and form root
nodules. Every known rhizobium utilizes enzymes for the
reduction of N2 into ammonia, i.e. mainly the Mo/Fe-
nitrogenase. Some strains are also capable to use V or only
Fe as cofactors, if the availability of Mo is insufficient
(Bellenger et al. 2014; Brennicke and Schopfer 2010; White
2012). To prevent the nitrogenases from inactivation trough
free O2, the root nodules of legumes contain leghemoglobin
to maintain microaerob conditions (Bellenger et al. 2014;
Brennicke and Schopfer 2010).

It is known that Cu elevates N2-fixation up to 10 mg Cu
kg−1 soil dw (Snowball et al. 1980). However, Baijukya and
Semu (1998) showed decreasing biomass of Phaseolus
vulgaris and plant-related number and biomass of nodules
at application rates of 2.2 mg Cu kg−1 soil dw. The potential

N2-fixation of alfalfa in perlite with nutrient solution at pH 6
was reduced by 97% at 10 mg Cu L−1 as CuSO4, with visual
symptoms of plant toxicity at 100 mg L−1 (Porter and
Sheridan 1981). Ippolito et al. (2011) observed no alfalfa
growth at 500 mg Cu kg−1 (CuSO4) applied after 5 weeks of
growth. In a CuSO4-ammended natural forest soil with pH
5.9, Caetano et al. (2016) obtained effective concentrations
with 50% decrease in harvest at 93 to 291 mg Cu kg−1 soil
dw for Lactuca sativa and for Avena sativa, respectively.
The assumption of root proliferation (Voigt et al. 2006)
being the main mechanism of Cu-toxicity is validated by
(Chen et al. 2013) with Cu-concentrations presenting the
first significant increase in the same CuSO4-treatments as
the decreases in root elongation.

In spite of numerous studies about Cu affecting plant
growth, data about effects of Cu(OH)2 on N2-fixation is still
scarce. Therefore, the objective of this study was to identify
thresholds for significant impacts of Cu(OH)2-application
on different plant compartments and N2-fixation of alfalfa, a
typical cover crop in vineyards. This was tested after
application on a wide range of soil Cu concentrations in two
soils with contrasting properties. We hypothesized that the
bioavailability of added copper is higher in the acidic soil,
therefore resulting in lower toxicity thresholds compared to
the calcareous soil. In particular, it was further hypothe-
sized, that increasing Cu levels beyond the thresholds result
in (a) decreased biomass production of different plant
compartments (shoot, root, nodule), (b) elevated plant tissue
Cu concentrations and (c) depressed nitrogenase activity.

Materials and methods

Soil properties and experimental design

We used an acidic sandy loam from Lasberg (L), Upper
Austria, with a pH of 4.95 (1:12.5, w/v, soil/0.01 M CaCl2)
as well as an alkaline silt loam from Deutsch Jahrndorf (D),
Burgenland, with a pH of 7.45 (Table 1).

Topsoils were sampled in March 2015 and sieved to ≤1 cm.
The unfertilized soils were filled into 4.8 L polypropylene (PP)
pots (Ø 20 cm) at a bulk density of 1.2 g cm−3. The pots were
equipped with a polyethylene fleece at the bottom, to pre-
vent particle movement while flushing, and with 6 mm glass
fiber wicks for passive watering. The wicks reached up to
50% of the pots height and down to the bottom of a black
5 L PP bucket, installed beneath the pots (Supp. Fig. 1). The
buckets were filled with artificial rain water, i.e. desalinated
water with 3 mg Ca L−1 (50% CaCl2 and 50% CaSO4). The
greenhouse experiment was placed in a completely rando-
mized design (Supp. Tab. 1) at temperatures from 7.7 to
37.2 °C (mean: 20.4 °C) and a relative humidity of 16.9 to
83.1% (mean: 57.4%).
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Since the presence of nitrate may decrease root nodula-
tion and might have accumulated through excess miner-
alization during pot preparation (Broos et al. 2004), nitrate
was leached with water by flushing the pots two times (one
week in between) with an amount equivalent to 200% of the
maximum water holding capacity (WHC).

Two weeks after leaching, a commonly used fungicide
(Funguran Progress®, Spiess-Urania, Hamburg, Germany),
containing 53.7% Cu(OH)2, was applied as a suspension in
water onto the topsoil (Supp. Fig. 2) to reach 90% WHC in
concentrations of 0, 0.05, 0.1, 0.2, 0.5, 1.5 and 5 g Cu kg−1

soil dw with five replicates per concentration. One week
after spiking, topsoils were scarified and inoculated with
various rhizobial strains (Feldsaaten Freudenberger, Kre-
feld, Germany). On the 8th of May, two weeks after
application of the fungicide, ten seeds of M. sativa cultivar.
Plato (Feldsaaten Freudenberger) were sown per pot after
inoculating the seeds with rhizobia to ensure nodulation.
The plant number was reduced when the first four plants
reached a height of 15 to 20 cm.

Soil analyses

Pots were sampled over the whole height on the 14th and on
the 92nd DAS with a 1-cm stainless steel auger (Supp. Fig.
3) and sieved to ≤2 mm immediately for microbial analyses
(Keiblinger et al. 2018). Table 1 shows the basic topsoil
properties according to Austrian standards (OENorm-
L1061-2 2002; OENorm-L1079 1999; OENorm-L1085
2009; OENorm-L1095 2002) prior to sampling them in
the field. The soil pH (OENorm-L1083 2006) was measured
with 2 g of air-dried soil in 25 mL 0.01M CaCl2 using a pH
meter (pH 537, WTW GmbH Weilheim, Germany). Briefly,
the organic carbon and total nitrogen according to (Brand-
stätter et al. 2013) was determined using a TOC/TN ana-
lyser (TOC-V CPHE200V, Shimadzu Corporation, Kyoto,
Japan). Plant available phosphorus and potassium (OENorm-
L1087 2004) were extracted with calcium acetate lactate.
Potassium was determined in an atomic absorption spectro-
meter (AAS, Perkin Elmer 2100, MA, US) and phosphorus

was measured spectro-photometrically using the molybdate
blue staining method (Schinner et al. 1996).

Air-dried soil samples were used for Cu analyses in
ethylenediaminetetraacetic acid- (EDTA) and CaCl2-extracts
for both samplings, while Cu in diffusive gradients in thin
films (DGT) was performed only for the second sampling.

Copper analyses in soil extracts

Samples of 5 g air-dried soil were extracted with 50mL 0.05M
Na-EDTA, shaken for 2 h and filtered (Munktell 14/N).
Solutes were measured in flame-AAS (AAnalyst 400, Per-
kin Elmer) and correspond to the organically complexable
amount of Cu (OENorm-L1089 2005).

Neutral salt Cu extracts were prepared with 2.5 g air-
dried soil and 50 mL 0.01M CaCl2, corresponding to the
easily soluble amount of Cu (Houba et al. 2000). The soil
was equilibrated in solution overnight and shaken on the
following day for 3 h, prior to filtration and measurement
with flame-AAS (PineAAcle 900T, Perkin Elmer).

Copper quantification with the diffusive gradients in thin
films technique (DGT)

DGT is an infinite sink approach, interpreting the con-
centration CDGT as the time-averaged concentration of Cu at
the interface of soil solution and DGT device. Free Cu ions
are supplied by desorption from the soil solid phase and by
mass flow or diffusion as well as dissociation of labile
complexes in soil solution and within the diffusive gel of
the DGT piston (Degryse et al. 2009; Harper et al. 1998).

Following Zhang (2005), the DGT sampling pistons
consisted of 25-mm plastic sockets covered by a 400-µm
thin Chelex 100 (sodium form, Sigma Aldrich) resin gel
disc, an 800-µm thick polyacrylamide diffusive gel disc,
covered by a 150-µm polyether sulfone membrane with
0.45 µm mesh (Sartorius). A cap with a soil contact window
of Ø 20 mm kept these layer in place.

Soil samples were wetted to 60% WHC and incubated
air tight for 24 h at 20 °C. Afterwards, the water content

Table 1 Basic properties of the
studied soils

Soil pHa Clay Sand Silt OC Nt
b Pc Kc Fed Mnd Cue

----------/ % ------------ --/ g kg−1-- ---------------/ mg kg−1--------------------

L 4.95 7.8 66.4 25.8 16.4 1.66 87 129 279 64 5.2

D 7.45 16.8 28.6 54.6 17.6 1.79 122 402 185 413 18.6

aIn 0.01M CaCl2
bTotal nitrogen
cIn CAL—calcium acetate lactate
dIn EDTA—ethylenediaminetetraacetic acid
eIn AR—aqua regia

Fungicide application increased copper-bioavailability and impaired nitrogen fixation through reduced. . . 601



was raised to 90% WHC and DGT were deployed for
24 h. The resin gels were eluted in 1 M HNO3 and ana-
lyzed by ICP-MS (ELAN DRL-e SIEX, Perkin Elmer)
with 115In as internal standard and 103 to 104% element
recovery for Cu.

The concentration CDGT (nmol cm−3) was calculated by
the mass of metal M (nmol) bound by the resin gel and the
diffusion layer thickness Δg (0.095 cm), related to the dif-
fusion coefficient Dw of Cu in water (5.29 × 10−6 cm2 s−1)
and the deployment time t (s) as well as the exposing area of
the DGT device A (cm2).

CDGT ¼ M � Δg
Dw � t � A

ð1Þ

Whereas the mass of metal M was calculated from the
concentration determined in the eluate (µg cm−3) and the
volume of the eluate Veluate as well as of the resin disc Vdisc

(cm3), with further correction for elution efficiency using a
recovery factor frecovery of 0.82.

M ¼ celuate � ðVeluate þ VdiscÞ
frecovery

ð2Þ

Plant analyses

Measurements of shoot height (cm), chlorophyll density
(SPAD-502PLUS, Konica Minolta Optics Inc., Osaka,
Japan) and counting of internodial distances, ramification
and flowering were conducted between the 81st and the 84th

day after sowing (DAS), while plants were harvested at the
101st and 102nd DAS.

Samples of shoots, roots and nodules were dried at 70 °C
to constant weight and ground. Roots and nodules were
washed carefully before drying.

An amount of 0.2 g oven dried roots, shoots or nodules
was digested with 10 mL of 65% nitric- and 70% perchloric
acid in a ratio of 6:1 (v/v), filtered (Whatman 589/2) and Cu
was analyzed in a graphite furnace (HGA 900, Perkin
Elmer) AAS (AAS, AAnalyst 400).

Nitrogenase activity

The potential nitrogenase activity was assessed using
acetylene reduction assays (ARA) by sampling ten
nodules of each pot at plant harvest. According to Quil-
liam et al. (2013) and Zechmeister-Boltenstern (1993),
20-mL headspace vials were filled with 2 cm3 washed and
calcined fine granular sea sand and 1.55 mL of isotonic
Ringer solution, containing, 2.25 mM Ca2+,155.7 mM
Cl−, 4 mMK+ and 147.2 mM Na+ for preventing an
osmotic shock, as well as 4 g glucose L−1 to avert substrate
limitations (Supp. Fig. 4–5).

Acetylene replaced 10% of the headspace volume and
after 24 h incubation at 20 °C, gas samples were analyzed in
a gas chromatograph (Hewlett Packard 5890 Series II with
Hewlett Packard 7694 Headspace Sampler, Wilmington,
NC, USA) equipped with an Alumnia column (Agilent,
Santa Clara, CA, USA) and a flame ionization detector
(Hewlett Packard 6890). An external standard with 10 ppm
ethylene was used. The amount of produced ethylene was
related to the nodule number and the nodule volume,
measured with a microscope (Olympus SZX, 10UC 30
camera, 72 dpi, Olympus Corporation, Tokyo, Japan).

Root nodule imaging

A second experiment followed the toxicity experiment with
a mixed soil sample of all five replicates from the previously
contaminated silt loam (0.5 g Cu kg−1). The soil was filled
into rhizotrons (Supp. Fig. 6) at 1.4 g cm−3 dry density and
wetted to 100% WHC once. Rhizotrons were inclined to
10° and equipped with 6-mm glass fiber wicks for passive
watering. Six seedlings of M. sativa were pre-germinated
for three days before transferring into the rhizotrons. Root
nodules were harvested after ten weeks of growth and
washed in Millipore water with 20 s ultrasound treatment at
10% energy-output on continuous mode (HD2200 with
200W, Bandelin electronics, Berlin, Germany). Nodules
were frozen onto the cutting socket of a cryostat (CM3050,
Leica, Bensheim, Germany) with liquid nitrogen and cut
into 50-µm longitudinal and radial sections The nodule
sections were air dried onto object slides and measured out
with a microscope (Olympus SZX, 10UC 30).

The spatial distribution of 13C, 63Cu, 57Fe, 97Mo, 55Mn,
32S, and 51V within the sections was sampled by laser
ablation (LA), using a neodymium doped yttrium aluminum
garnet laser (NWR 193, New Wave Research, Fremont,
CA, US) with a laser energy of 3.6 mJ cm−2 connected to an
inductively coupled plasma - mass spectrometer (ICP-MS,
ELEMENT XR, Thermo Scientific, Bremen, Germany)
with Ar and He as carrier gasses. Root nodule images were
generated by ablating parallel lines from the nodule surface.
The resolution of 9.95 × 21.14 µm for the longitudinal sec-
tion and 9.95 × 25.49 µm for the radial section was deter-
mined by the spot size of 10 µm, the scan speed of 5 µm s−1

and the dwell time of 1.99 s. Therefore, the counts of each
data point of the scanned line consisted of 40 laser shots.

Data evaluation

Data processing and LA-ICP-MS image generation was
performed in R (R-Development-Core-Team 2015). The
Tukey’s HSD (Honestly Significant Difference) test was
used for identifying differences at p < 0.05 between treat-
ments and for determining the concentration with the first
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significant response, i.e. the lowest observed adverse effect
level (LOAEL). The Welch test was used for differences
between sampling times. Freundlich coefficients and the
effective concentration for harvest losses of 50% (EC50)
were calculated by regressions performed with mean values,
with the root mean square error (RMSE) describing the
goodness of fit. The RMSE was normalized on the value
range into the normalized root mean square error (NRMSE)
for comparing models with different variables.

y ¼ KF � x
1
n ð3Þ

The Freundlich equation estimates the resupply of Cu in
x (mg L−1) from a solid or adsorbed pool, i.e. from soil and
labile complexes y (mg kg−1). The parameter n shapes the
isotherm and KF (L kg−1) is a constant for the adsorbed
amount at a mobile fraction of 1 mg kg−1 (Freundlich
1909). The isotherms in our study are not identical to iso-
therms of adsorption experiments as we used CDGT-Cu
instead of the solution concentration and EDTA-extractable
Cu as the adsorbed fraction.

Results

Availability of copper by diffusive gradients in thin
films and soil extracts

Both soils showed strong increases in CDGT-Cu, CaCl2-
extractable Cu and EDTA-extractable Cu with increasing
fungicide application (Supp. Tab. 2). The EDTA-Cu and
CDGT-Cu concentrations were consistently increasing along
application rates with the first significant increase at 1.5 g kg−1.
The ratio of the Freundlich coefficients KF (Fig. 1, Supp.
Fig. 7) indicated 5.09 to 5.34 (mean: 5.21) more bioavail-
able Cu present in the acidic soil. In another way, ratios
(data not shown) of EDTA-Cu and CDGT-Cu indicated 4.6
to 5.6 (mean: 5.1) times more diffusive resupply and hence,
higher plant-availability in soil L.

The EDTA- and CaCl2-extractable Cu did not differ
between soils, whereas the CaCl2-Cu showed a more
dynamic pattern as it increased steadily with application
rates only in soil L at the first sampling. At the second
sampling, the 0.05 and 0.1 g kg−1 treatments showed mar-
ginally lower concentrations than the control. The same was
the case for the alkaline soil D for both samplings in the
0.05, 0.1 and 0.2 g kg−1 treatments.

Soil pH

The soil pH (Table 2) of the first sampling consistently
increased with Cu application, while the control showed
slightly higher pH than the lower three treatments of soil L

and the lower four treatments of soil D. However, the first
significant increase was at 1.5 g kg−1 in soil L and at 5 g kg−1

in soil D, while the pH correlated positively with soil and
plant Cu concentrations (p < 0.05; Supp. Tab. 3). Comparing

Fig. 1 Relationship of 0.05M EDTA-extractable Cu and Cu in dif-
fusive gradients in thin films on the 92nd day after sowing, according to
Freundlich isotherms. The R2 was above 0.999 with p < 0.001 for both
soils. The error bars represent standard errors (n= 5). The normalized
root mean square error was 2.8% for soil L and 1.6% for soil D

Table 2 Soil pH (0.01M CaCl2) at the first and second sampling on
the 14th and 92nd day after sowing, respectively, and the decrease in
proton concentration from the first to the second sampling

soil Cu
spiked g
kg−1

1. pH ± SEM 2. pH ± SEM [H+] decrease nM ±
SEM

L 0.00 4.82 ± 0.03c 5.04 ± 0.19b 2.74 ± 4.20

0.05 4.75 ± 0.01c 5.40 ± 0.10ab 13.5 ± 1.55**

0.10 4.79 ± 0.01c 5.52 ± 0.12ab 12.6 ± 0.88*

0.20 4.81 ± 0.02c 5.30 ± 0.08b 10.1 ± 1.41**

0.50 4.85 ± 0.03c 5.48 ± 0.09ab 10.6 ± 1.21***

1.50 5.07 ± 0.04b 5.52 ± 0.11ab 5.12 ± 1.16

5.00 5.54 ± 0.07a 5.90 ± 0.07a 1.72 ± 0.57*

D 0.00 7.46 ± 0.09bc 7.10 ± 0.04c −0.043 ± 0.009*

0.05 7.29 ± 0.01c 7.22 ± 0.02bc −0.010 ± 0.003

0.10 7.30 ± 0.01c 7.21 ± 0.02bc −0.011 ± 0.002

0.20 7.34 ± 0.01c 7.19 ± 0.02bc −0.018 ± 0.003*

0.50 7.43 ± 0.01bc 7.32 ± 0.02b −0.010 ± 0.003

1.50 7.59 ± 0.03ab 7.76 ± 0.02a 0.008 ± 0.002**

5.00 7.68 ± 0.02a 7.64 ± 0.05a −0.002 ± 0.002

Different lower case letters following standard errors (SEM, n= 5)
indicate significant differences between treatments within each soil and
asterisks indicate significant differences between the two
sampling times

*Significant with p < 0.05

**Significant with p < 0.01

***Significant with p < 0.001

Fungicide application increased copper-bioavailability and impaired nitrogen fixation through reduced. . . 603



between the two samplings, the pH in soil L increased in all
treatments, but most strongly in the treatments with plant
growth and in the highest treatment. The decline of protons in
the 0.05–0.5 g kg−1 treatments of soil L was 2-fold to 7-fold
compared with the highest two treatments, revealing that
plants alkalinized the soil. Nevertheless, the difference
between the sampling times was not significant at 1.5 g kg−1.
In soil D, a slight acidification took place in every treatment,
except at 1.5 g kg−1, where plant growth was strongly
diminished and the pH significantly increased from the first to
the second sampling.

Biomass production of Medicago sativa

At 101 to 102 DAS, biomass production was generally
higher in the alkaline soil (Fig. 2). But the biomass was in
contrast to soil Cu and pH data more variable along the
treatments and not constantly decreasing. The root and
shoot biomass of soil L increased slightly in the 0.05 g kg−1

treatment to further decline. In soil D, however, the biomass
production decreased in the first treatment to increase fur-
ther up to the 0.5 g kg−1 treatment. The LOAEL of shoot
and root biomass was 0.5 and 0.1 g Cu kg−1 soil in soil L
and 1.5 g kg−1 in soil D, with shoot biomass decreasing to
approximately 10% and 36%, respectively, and root bio-
mass to 40% and 26%, respectively, relative to the control.
But, related to the highest yield, the shoot biomass in soil L
decreased already in the 0.1 g kg−1 treatment.

Fitting root and shoot biomass (Supp. Fig. 8) to extrac-
table Cu presented CDGT-Cu being superior in soil D, but
CaCl2-Cu fitted better in soil L. Regressions with EDTA-Cu
showed the smallest error (i.e. 10 to 20%) for root nodule
biomass in both soils.

The LOAEL for root nodule biomass was at 0.5 g Cu kg−1

in soil L and at 1.5 g Cu kg−1 in soil D, with biomass
decreasing to 25% and 27%, respectively, relative to the
control. For the nodule number (Supp. Tab. 4), the LOAEL
was at 0.1 g Cu kg−1 in soil L and at 1.5 g Cu kg−1 in soil D,
with decreases to 34% and 15%, respectively. In both soils,
the nodule number and biomass were positively correlated
with shoot and root biomass and with the growth parameters
and negatively with CaCl2-Cu at the first sampling, while
correlating negatively with all soil Cu analyses in soil D.
Interestingly, both nodule parameters decreased more strongly
than the below- or above ground biomass production.

The growth parameters (Supp. Fig. 9) were different
between the soils, but seemed to be less affected by Cu.
Shoot height, internodial distances and ramification showed
the LOAEL at 0.5 g kg−1 in soil L and at 5 g kg−1 in soil D.
Also the flowering was affected in this treatment in soil D.
The chlorophyll density was responsive at 1.5 g kg−1 in soil
L and at 5 g kg−1 in soil D. All these parameters were
positively correlated with each other and with plant biomass

in both soils (p < 0.05). Also all Cu measurements in both
soils, except CDGT-Cu in soil L correlated with the growth
factors. The shoot height and SPAD values of soil L were
correlated with CaCl2-Cu at the first sampling only.

Accumulation and translocation of copper in
Medicago sativa

The shoot and root Cu concentrations (Supp. Fig. 10) of the
1.5 and 5 g kg−1 treatments needed to be analyzed as pooled
samples of the whole treatment, since plant growth strongly
diminished. In both soils, we observed slightly decreasing
shoot Cu compared to the control up to 0.1 g kg−1 in soil L
and until 0.2 g kg−1 in soil D, but not significantly. Shoot
Cu increased at 0.5 g kg−1 in soil L and at 1.5 g kg−1 in soil
D. The root Cu concentrations were continuously increasing
with application rate and higher in the acidic soil L, but they
were statistically similar in both soils. Both, shoot and root
Cu concentrations were correlated with soil Cu, while
CaCl2-Cu at the second sampling showed the highest cor-
relation coefficient in soil D. In soil L, shoot Cu was
stronger correlated with CDGT-Cu and root Cu with EDTA-
Cu at the second sampling. In regressions of both soils
(Supp. Tab. 5), CDGT-Cu presented the smallest error
(NRMSE: 4.3%) for shoot Cu and the CaCl2-Cu con-
centrations at the second sampling seemed to result in non-
linear regressions superior for root and nodule Cu.

The ratio of Cu in shoots and roots (Supp. Tab. 4) was
similar in both soils and highest in the control, resulting in
ratios of 0.77 in soil L and 1.08 in soil D, with mostly
higher ratios in soil D. The Cu withdrawal (Supp. Tab 6)
by below- and above ground biomass was overall higher in
soil D, except for roots at 0.05 g kg−1. Taking both aspects
together presented a stronger translocation of Cu into the
shoots of plants from soil D, which increased up to 0.5 g
kg−1 as the biomass.

Assuming the CaCl2-Cu to be the relevant fraction for
plant uptake, the root uptake based on 4.8 kg soil dw
accounted for 102% and 18% in the 0.05 and 0.1 g kg−1

treatment of soil L, respectively, of the decrease in CaCl2-
Cu (−31 µg kg−1 in both treatments) compared to the con-
trol (Supp. Tab. 6). Since the shoot withdrawal decreased in
response to Cu exposure, the whole plant uptake only
accounted for 68% in the 0.05 g kg−1 treatment. In the
alkaline soil, higher plant growth increased Cu withdrawals,
while root uptake in the 0.05, 0.1 and 0.2 g kg−1 treatments
accounted for 33, 80 and 98%, respectively, of the
decreases in CaCl2-Cu (−48, −48 and −34 µg kg−1), shoot
uptake for 6% in the 0.2 g kg−1 treatment, and the whole
plant uptake for 74 and 105% in the 0.1 and 0.2 g kg−1

treatment, respectively. On the other hand, the increases of
CaCl2-Cu in the following two treatments (+117 and
+444 µg kg−1) were compensated through root uptake by
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32% and 10% and through plant uptake by nearly 50% and
9%, respectively. In the acidic soil, root compensation was
less than 5% of the increase in CaCl2-Cu.

The contribution of root nodules to the changes in CaCl2-
Cu were neglectable, caused by their low weight, as the
uptake of roots and shoots exceeded nodule uptake by mean

42–45 fold in soil L and 30–34 fold in soil D. The nodule
Cu concentrations of pooled samples per treatment
increased according to Cu application and were correlated
with soil Cu and root Cu. Interestingly, the nodules
obtained in average 42% higher Cu concentrations than
roots from soil L and 137% in soil D, respectively.

Fig. 2 Biomass dry weights (dw) of shoot (top left), root (middle left)
and root nodules (bottom left) per pot and Cu concentrations of shoot
(top right), root (middle right) and root nodules (bottom right) after
101/102 days after sowing. Root Cu concentrations did not differ
between soils. Root nodule Cu concentrations are single values of

pooled samples within each treatment. Different letters above standard
errors (n= 5) indicate significant differences between treatments
within each soil, except for root Cu concentrations as soils were not
significantly different
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Nitrogen fixation and element distribution in root
nodules

The ARA reached from 0 to 5.33 (mean: 1.05) µL ethylene
mm−3 nodule−1 (Fig. 3) and was different between soils,
whereas increased ethylene production was observed in the
acidic soil L, compared with the alkaline soil D. However, if
the highest ethylene production result in the 1.5 g Cu kg−1

treatment of soil L was excluded, because only one mea-
surement of a cluster-like nodule was available, the ethylene
production was not correlated with soil Cu. Whereas inlusion
of this measurement caused a positive correlation with nodule
Cu in both soils and with soil Cu and root Cu in soil L.

Related to the nodule number, the ethylene production
ranged from 0 to 12.8 (mean: 3.43) µL ethylene nodule−1

and was neither different between soils, nor between treat-
ments and showed no systematic correlations. These results
under consideration of the morphology of the nodules from
the 1.5 g Cu kg−1 treatment in soil L justified the exclusion

of the highest ethylene production result and the conclusion
of no relation of the ARA with soil Cu.

Chemical imaging of the radial nodule section (Fig. 4)
yielded 32S mostly below detection limit. However, the
absence of 32S or 13C was not caused by a lack of matrix, as
absolute counts of 97Mo showed a fairly consistent dis-
tribution across the nodule. We mainly found 63Cu and
55Mn in the cortex, whereas 57Fe and 51V occurred in very
low amounts.

The longitudinal section of the nodule also contained
55Mn mostly in the cortex. The meristem contained most of
the 63Cu and 97Mo, related to 32S, while 57Fe, e.g. in
nitrogenase, was homogenously distributed from the post-
meristem, i.e. the infection zone, towards the root, while
97Mo declined. Small amounts of 51V were found in the
meristem and the 32S-poor zone, which also contains
leghemoglobin (Brennicke and Schopfer 2010). In the lat-
ter, the highest abundances of 57Fe, 51V, 63Cu and 55Mn
were found. Comparable results were achieved by single
linescans from longitudinal section of other nodules (Supp.
Fig. 11–12).

Absolute counts of the longitudinal section gave the
same information, whereas higher intensities of 63Cu and
97Mo were found in the zone of N2-fixation, which con-
tained the highest density of 32S and 57Fe.

Discussion

The behavior of copper in soil

The relation of EDTA-Cu to CDGT-Cu showed more bioa-
vailable Cu present in the acidic soil (Fig. 1). This indicates
lower sorption capacity (Lair et al. 2006) for the fungicide
in the acidic sandy soil L and stronger adsorption in the
finer textured alkaline soil D. The pH, clay and silt contents
of soil D could explain its stronger Cu sorption (Elbana and
Selim 2011; Kabata-Pendias 2004; Lair et al. 2007; Lair
et al. 2006; Lindsay 1979). In acidic soils, less pH-
dependent binding sites are available for adsorption onto
SOM, which governs Cu mobility to a large extend. Espe-
cially in alkaline environments, the precipitation as
Cu–carbonates, -oxides and -hydroxides as well as cupric
ferrite strongly reduces [Cu2+] activity (Lindsay 1979),
while also the sorption onto mineral surfaces, e.g. Fe-, Al-,
Mn-oxides and –hydroxides decreases Cu availability
(Amelung et al. 2018; Lair et al. 2007; Lair et al. 2006;
Wenzel et al. 2011).

Plant responses affecting copper availability

Plants prevent metal uptake from soil by immobilization
through organic ligands or by influencing the pH-dependent

Fig. 3 Ethylene production through acetylene reduction by root
nodules related to nodule size (top) and nodule number (bottom) 101/
102 days after sowing. Different letters above standard errors (n= 5,
see Supp. Tab. 4) indicate significant differences between treatments
within each soil. Ethylene production related to the nodule number
was not significantly different between soils or treatments
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mobility by releasing protons or anions. The latter causes
surface deprotonation of soil particles with variable
charges, which decreases Cu mobility and therefore toxicity
(Bravin et al. 2009; Cornu et al. 2007; Wenzel et al. 2011;
White 2012).

The pH increased in the current study between the two
samplings in the acidic soil (Table 2) indicating these rhi-
zosphere processes. Wherease the increase in pH was
observed for the whole pots and not only in the rhizosphere,
where pH effects might have been much more pronounced,
at least in the acidic soil (Michaud et al. 2007). Bravin et al.
(2009) described for durum wheat increasing pH from 4.6
to 7.4 in a vineyard soil with 184 mg total Cu kg−1, reaching
more than 6 mm into the rhizosphere. Increases of soil pH
by 0.09–0.27 units were observed by Cornu et al. (2007)
with tomato on contaminated acidic vineyard soils with pH
4.3 and 43–47 mg Cu kg−1 in EDTA. On calcareous soil
(pH 8.1–8.7 and 51–176 mg Cu kg−1), they observed pH
decreases by 0.08–0.1 units, while Tao et al. (2004) men-
tioned that a change by less than 0.5 units at a soil pH of
8.12 and 126 mg total Cu kg−1 does not affect Cu fractio-
nation. However, decreasing the proton concentration in

soil solution decreases [Cu2+] activity and triggers seques-
tration and precipation as Cu minerals (Lindsay 1979)
triggered by plants.

In the alkaline soil D, the pH also increased with
increasing Cu application, but was mostly lower at the
second sampling indicating a slight acidification during
plant growth. As the pH contrary increased with time at
1.5 g Cu kg−1, but not at the highest application rate, it can
be concluded that plants facing Cu toxicity utilize rhizo-
sphere alkalization even in alkaline environments.

Root copper sorption capacity, translocation and
physiological consequences

Plant growth was more sensitive in soil L, which revealed
higher activity of Cu in acidic environments, whereas the
growth factors representing stunted growth as indication of
Cu toxicity (Dıáz et al. 2001; Zorn et al. 2013) were less
sensitive than the diminishing plant biomass.

The LOAEL for shoot biomass, i.e. 0.5 and 0.1 g Cu kg−1

soil in soil L and 1.5 g kg−1 in soil D, was identical with the
increase of shoot Cu in both soils, indicating root membrane

Fig. 4 Images of elemental
distributions in root nodules of
Medicago sativa as measured by
LA-ICP-MS with abundances
based on 32S distribution (top),
absolute counts of elements in
the longitudinal section (middle)
and absolute counts in the radial
section (bottom). Results are
scaled on the maximum
measured counts or 32S-based
ratio of each image for reasons
of comparability. Labels in the
micrograph indicate the cortex
(I), meristem (II), infection zone
(III), N2-fixing zone (IV) and the
senescing zone (V) followed by
the root. The empty line in the
longitudinal section resulted
from a test run. The radial
section was taken from another
nodule and shows the cortex and
cells. Blank cells correspond to
values below the detection limit.
The black bar corresponds to
160 µm
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damage and subsequent higher symplastic uptake (Cestone
et al. 2012) followed by oxidative stress (Dıáz et al. 2001;
Halliwell and Gutteridge 1984). A comparable pattern was
observed by Chen et al. (2013) for the relative root elon-
gation of grapevine exposed to 1–25 µM [Cu2+]. The order
of sensitivity according to EC50, i.e. the effective con-
centration for harvest losses of 50%, (Supp. Fig. 8) followed
nodule > root > shoot biomass in soil D and the opposite in
soil L. The corresponding EC50-concentrations are listed in
Supp. Tab. 7. and in general, they exceeded the EC50 of
Caetano et al. (2016).

In this context, the use of artificial rainwater might have
influenced the uptake and overestimated the observed
toxicity thresholds, since (i) Ca2+ is competing with Cu for
sorption sites at the roots, causing less Cu uptake and
toxicity alleviation (Degryse et al. 2009; Wenzel et al. 2011;
Wu and Hendershot 2010) and (ii) besides HPO4

2-, SO4
2-

and Cl- are preferentially taken up by metal-exposed alfalfa
plants for complexing free Cu ions (Peralta-Videa et al.
2002). Also, the fact that roots in compacted, potted soil
grew preferentially at the pot-sided soil surfaces, might have
lowered the observed thresholds.

Our data suggest the CaCl2-Cu concentrations to be
directly affected by plants throught root uptake and trans-
location into above ground biomass(Supp. Tab. 6). Phy-
siological consequences of root Cu sorption were similar in
both soils, indicated by the ratios of shoot to root biomass
and tissue Cu concentrations (Supp. Tab. 4). However, the
capacity of the plant for Cu uptake without facing toxicity,
represented by the plant withdrawal (Supp. Tab. 6), was
higher in the alkaline soil D, except at 0.05 g kg−1. Inter-
estingly, more Cu was retained in roots under acidic growth
condition, while plants from the alkaline soil translocated
Cu to a larger extend into the shoot. Also the slight decrease
in shoot Cu with increasing root Cu in response to appli-
cation rates of up to 0.1 g kg−1 in soil L and up to 0.2 g kg−1

soil D indicates effective attenuation of Cu translocation
into aerial parts (Michaud et al. 2007).

Adsorption to the root by influencing variable charges
remains small compared to the absorbed amount (Degryse
et al. 2012). However, root cell wall binding of up to
1 g kg−1 (Bravin et al. 2010) mainly controls Cu mobility in
plants growing in contaminated media (Cestone et al. 2012;
Michaud et al. 2007; Wenzel et al. 2011).

Especially in calcareous soil, root adsorption might be
higher due to less proton competition for surface charges,
with subsequent lower toxicity thresholds (Degryse et al.
2009; Michaud et al. 2007; Peralta-Videa et al. 2002).
Tissue concentrations of Cu (Supp. Fig. 10) in this study
were in the range of durum wheat (Bravin et al. 2010).
Related to CaCl2-Cu, tissue Cu in the alkaline soil was
higher than in the acidic soil, as observed by Michaud et al.
(2007). At the LOAEL for biomass yields, root and nodule

Cu concentrations were higher in the alkaline soil, while
shoot Cu was lower than in the acidic soil. However, related
on treatments or EDTA-extractable Cu, all tissues from
plants growing in the acidic soil contained more Cu, as
observed by Cornu et al. (2007).

Copper influencing the nitrogen fixation

The N2-fixation by root nodules was strongly diminished
indirectly through their declining biomass and the root
nodule number. As a consequence of impaired root devel-
opment they appeared as the most responsive parameters to
Cu in our study. They were remarkably reduced at CDGT-Cu
higher than 1.6 mg L−1 in this study, which is lower than the
10 mg Cu L−1 solution concentration resulting in 97%
inhibition of ARA, reported by Porter and Sheridan (1981).

However, ethylene production was not related to any soil
extractable Cu fraction. The potential nitrogenase activity
measured via ARA in this study (Fig. 3) was higher in the
acidic soil. This is (i) pH dependent, as Porter and Sheridan
(1981) reported highest values for ARA at pH 3 and (ii)
caused by higher Fe availability for N2-fixation (Bellenger
et al. 2014; Brennicke and Schopfer 2010; White 2012).

Broos et al. (2004), who used 15N with clover, did
observe metal toxicity on N2-fixation in a sewage sludge
amended soil, whereas no differentiation could be made
between direct detrimental effects of Cu, Zn, Cd and excess
of mineral-N or co-contaminants. In metal salt amended
soil, they showed depressed N2-fixation, if the host plant
was not able to survive. Comparable results were obtained
by Chaudri et al. (2008) for the population size of R.
leguminosarum with sludge cake and metal salt spiked
sewage sludge. Dahlin et al. (1997) showed decreases in
auto- and heterotrophic N2-fixation in a long-term experi-
ment free of crops with soils treated with metal con-
taminated sewage sludge and metal salts. Commonly, these
authors reported Cu with the highest relative increase,
compared to other metals, with negative correlation to the
potential N2-fixation. However, no distinction between pH-
effect, soil N-increase and specific heavy metal response
could be made. Contrary, population sizes of R. legumino-
sarum were not correlated with Cu and slightly increasing
with higher metal salt addition (Dahlin et al. 1997).

In our study, the root nodules showed higher Cu uptake
than roots, except for the 0.05 g kg−1 treatment in soil L,
without affecting nitrogenase activity. Higher internaliza-
tion into nodules was also shown by Snowball et al. (1980)
for up to 10 mg Cu kg−1 in soil, and is caused by high-
affinity metal chelating proteins, making nodules an
important metal sink (González-Guerrero et al. 2016).

Our nodule images by LA-ICP-MS (Fig. 4) were in good
agreement to Rodríguez-Haas et al. (2013). They also showed
sporadic Fe, and therefore nitrogenase in the infection zone
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and declining Fe concentrations in the senescence zone, with
no Fe in the meristem and the epidermal layer.

High abundances of 63Cu and 97Mo in the meristem
might be related to their involvement as cofactors in a
number of enzymatic processes. These are condensed in
regions of high metabolic activity (Arora et al. 2010; Hille
et al. 1998; Preisig et al. 1996). The declining 97Mo/32S
ratios towards the root might indicate the preferential use of
Mo/Fe-nitrogenase by younger symbiosomes, while older
ones tend to use the alternative Fe/Fe- or V/Fe-nitrogenase.

Likely due to high contents of leghemoglobin, the region
close to the root seemed to buffer high levels of 63Cu, 55Mn,
57Fe and 51V compared to the whole nodule. Despite the
possibility of inducing ROS, 63Cu was present in the zone
of N2-fixation. Therein, rhizobia metabolize NO3

−, which is
further reduced by the Fe- or Mo-containing NO3

−-reduc-
tase to NO2

− (Arora et al. 2010; Hille et al. 1998). Since
NO2

− is toxic to the nitrogenase, it must be reduced by
NO2

−-reductase, which contains Cu as core element. The
supply of Cu could therefore elevate nitrogenase activity,
which is supported by increasing activity of NO3

−- and
NO2

−-reductase, uptake hydrogenase and acetylene reduc-
tion by a free living Sinorhizobium meliloti in yeast extract
mannitol agar containing 6.35 g L−1 Cu (Arora et al. 2010).
These findings and considerations by chemical imaging
illustrate the strong involvement of Cu during N2-fixation.

Summary and conclusions

This work reported plant responses in soil after application
of a Cu-based fungicide at moderate to very high con-
centrations, with the highest treatment being more strongly
contaminated than former vineyards (Bravin et al. 2010;
Michaud et al. 2007). We found more mobile Cu in an
acidic sandy loam compared to an alkaline fine-textured silt
loam. Depending on soil properties, notably pH and texture,
the toxicity thresholds for alfalfa growth were much lower
in the acidic soil and were in line with increases in plant
tissue Cu concentrations. Our results also revealed the
involvement of plant physiological responses affecting the
mobility of Cu in these contaminated soils.

While this study could not achieve a positive or negative
evaluation regarding effect of Cu on the enzymatic N2-
fixation, it was thoroughly shown, that the nodule number
and biomass was reduced, most likely as a consequence of
impaired root development, at 0.1 g Cu kg−1 in the acidic
soil and at 1.5 g kg−1 in the alkaline soil. The formation of
root nodules consequently represented the most sensitive
parameter to Cu in this work.

With respect to a sustainable soil use, the observed
responses emphasize a careful and advised soil Cu man-
agement, especially in the more sensitive acidic, sandy

soils, on which mitigation and remediation strategies should
to focus. Assuming the current annual Cu application limits
of 6 kg Cu ha−1 (EC 2008) and expecting plant withdrawals
of 2–3 kg ha−1 the mentioned toxicity thresholds would be
reached after 38–51 years in the acidic soil and after
573–764 years in the alkaline soil.
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