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Abstract
We study medical progress within a two-sector economy of overlapping generations 
subject to endogenous mortality. Individuals demand health care with a view to low-
ering mortality over their life-cycle. We characterise the individual optimum and the 
general equilibrium, and study the impact of a major medical innovation leading to 
an improvement in the effectiveness of health care. We find that general equilibrium 
effects dampen strongly the increase in health care usage following medical innova-
tion. Moreover, an increase in savings offsets the negative impact on GDP per capita 
of a decline in the support ratio. Finally, we show that the reallocation of resources 
between the final goods and health care sector, following the innovation, plays a cru-
cial role in shaping the general equilibrium impact.
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1  Introduction

A consensus has emerged that medical progress is driving both the increase in health 
care spending and the increase in longevity (e.g. Cutler 2004; Chandra and Skin-
ner 2012; Chernew and Newhouse 2012).1 Recent analysis by Fonseca et al. (2013) 
shows that about 30% of health care spending growth in the US over the period 
1965–2005 can be explained by medical progress, with improved health insurance 
coverage explaining 6% and income growth explaining 4%.2 ,3 At the same time, 
medical progress explains most of the increase in life expectancy over the period of 
observation, which in welfare terms more than offsets the greater spending. These 
findings echo, at aggregate level, earlier results by Cutler and Huckman (2003) and 
Cutler (2007) who find that the technological improvements in the treatment of heart 
disease over the 1980s and 1990s were generating benefits from increased survival, 
the value of which was more than compensating the boost to health care costs.4

The current line of inquiry remains to a large extent silent about the general equi-
librium effects of medical progress. Indeed, there is strong evidence that medical 
innovations tend to boost the utilisation of health care (e.g. Baker et al. 2003; Cutler 
and Huckman 2003; Wong et  al. 2012; Roham et  al. 2014). Given that the main 
concern about the expanding health share in the economy lies with its absorption of 
resources that may be employed more productively in other sectors of the economy 
(Pauly and Saxena 2012; Kuhn and Prettner 2016) it is then surprising that the role 
of medical progress in this has not yet received more attention. An examination of 
this concern warrants a general equilibrium analysis that keeps track of the way in 
which medical progress drives sectoral change in the economy and of the way in 
which the induced price responses feed back into the pattern of demand.

While a number of recent articles have investigated the role of medical progress 
in various settings (for a detailed discussion see below), these works abstract from 
pathways of medical progress that are crucial for understanding the macroeconomic 
impact or remain intransparent about the underlying transmission mechanisms at 
both the individual and the macroeconomic level. In this paper, we seek to open 
the “black box” and study in detail these channels analytically and numerically. So 
doing enables us to identify a number of features relating to the economic impact of 
medical innovations that are crucial from both a modelling and a policy perspective.

Specifically, we examine the impact of a medical innovation on individual life-
cycle outcomes and on economic performance by analysing an OLG model in which 
individuals demand health care in order to increase longevity. Health care is sup-
plied within a medical sector, competing for capital and labour with a final goods 

1  Other important drivers include income (Hall and Jones 2007) and social security (Zhao 2014).
2  The analysis also reveals an important complementarity between medical progress and income, which 
explains 57% of the increase in spending.
3  According to an earlier finding by Suen (2009) the compound effect of medical progress and income 
growth explains all of the expenditure increase 1950–2001.
4  Skinner et al. (2006) and Chandra and Skinner (2012) take a more nuanced view, showing that whether 
or not welfare gains arise from the adoption of new medical technologies depends both on the nature of 
technology as well as on the organisation of the health care system into which it is adopted.
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production sector. We characterise the optimal life-cycle allocation in terms of 
consumption and health care and show how it evolves with age, depending on the 
various prices and on the state of medical technology. We characterise the value of 
life, i.e. the monetary value individuals attach to their survival, as a key determinant 
of the demand for health care. The value of life will prove to be an important link 
between macroeconomic changes and their impact on individual choices. Solving 
the profit maximisation problem of perfectly competitive providers within the final 
goods and health care sectors, we can characterise the optimal structure of supply 
and factor demand as well as the aggregate dynamics. Medical progress is modelled 
as an increase in the effectiveness of health care in lowering mortality. It thus has 
the character of a product innovation rather than a process innovation, which would 
entail an increase in total factor productivity in the health care sector.5

We employ our model to analyse numerically the impact of medical progress on 
the provision of health care. Based on a steady-state benchmark scenario that is cali-
brated to represent the US economy in the year 2003, we study the impact of a styl-
ised and major medical innovation that raises life expectancy by a little more than 
one year, this being broadly consistent with the increase in life expectancy brought 
about by the US cardiac revolution during the 80s and 90s (Cutler 2007). We adopt 
such a quasi-experimental approach to trace out the micro- and macroeconomic 
adjustment processes that take the economy into a new steady state. The deliber-
ate abstraction from interfering macroeconomic time trends, such as conventional 
productivity growth, allows a clean analytical and numerical identification of the 
impact of medical innovation.

Our key results include the following. At the individual level, we find that while 
medical innovation boosts the demand for health care in partial equilibrium, this 
effect is more than halved once price responses are accounted for. This illustrates 
the relevance of general equilibrium effects in OLG settings, similar to a finding by 
Heijdra and Mierau (2012) in the context of annuity moral hazard. At the macro-
economic level, we find that medical progress tends to increase health care spend-
ing predominantly through a boost in utilisation. Although this leads to a sizeable 
increase in the health expenditure share in GDP, reflecting the sectoral realloca-
tion from final goods production to health care, the overall level of GDP per capita 
remains unaffected. This is because the drop in the employment rate that comes with 
a disproportionate increase in survival amongst the retired population is neutralised 
by an increase in labour productivity that is brought about by capital deepening, 
similar to the unbalanced growth mechanism in Acemoglu and Guerrieri (2008). 
In our model, the accumulation of additional capital is induced by the increase in 
longevity and the prospect for individuals to purchase more effective health care in 

5  Indeed, Faere et  al. (1997) and Spitalnic et  al. (2016) identify very low productivity growth in the 
health care sector, suggesting that medical progress is predominantly due to product innovation rather 
than process innovation. When surveying the role of medical progress for health care expenditure 
growth, Chandra and Skinner (2012) come to a similar conclusion of medical innovations being strongly 
biased to being product rather than process innovations.
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their old age.6 Moreover, our model is able to explain medical price inflation as a 
general equilibrium outcome.7 Indeed, medical price inflation is consistent with our 
assumption that medical progress predominantly comes in the form of product inno-
vations (i.e. more effective medical care) rather than in the form of process innova-
tion (i.e. more efficient production of health care) which should have led to a decline 
in medical prices. Finally, we find that survival enhancing medical innovations tend 
to depress the value of survival over large parts of the life-course. On the one hand, 
this reflects a reduction in consumption levels; on the other hand, it implies that the 
price of medical care per life-year gained has fallen in spite of an increase in the 
nominal price of health care, a result that is in line with empirical evidence (Cutler 
et al. 1998; Lucarelli and Nicholson 2009; Dunn 2012; Lakdawalla et al. 2015; Hult 
et al. 2018).

Our work ties in with an emergent literature on the macroeconomic impact of 
medical progress. Similar to our approach, Suen (2009) considers the impact of life-
saving health care, the productivity of which is raised by medical change. While his 
quantitative findings about the increase in life expectancy and health care expendi-
ture are plausible, his modelling differs in important respects: Suen (2009) considers 
a single sector economy with health care spending being deducted from consump-
tion. Partly for this reason, he does not model an endogenous price for health care 
but rather imposes an exogenous price trajectory. Medical progress, understood as 
productivity growth in the health care sector, is captured by a  declining price of 
medical care, boosting the demand for it. However, both the fall in the price for 
medical care and the assertion of sizeable productivity growth in the health care 
sector run counter to the evidence compiled in footnote 5. In contrast, our two sec-
tor setting with medical progress modelled as product innovation is fully consistent 
with the price trends. Fonseca et al. (2013) simulate a rich life-cycle model and pro-
vide quantitatively plausible trends for the impact of medical progress and income 
growth on health care expenditure. However, as they consider a partial equilibrium 
setting, their model remains uninformative about the macroeconomic pathways of 
medical progress. Kelly (2017) studies the response of a neoclassical economy with 
a medical sector to changes in total factor productivity and in the productivity of 
health care. In contrast to our approach, the health care sector modelled in Kelly 
(2017) is not employing domestic production factors. With medical progress thus 
being unrelated to factor prices and final goods production, no insights can be gained 
on the sectoral dynamics. Koijen et al. (2016) study the interaction between financial 
and real health care markets and find that the premium associated with regulatory 
risk for e.g. pharmaceutical companies lowers research and development (R&D) 
investments and thereby contains growth of health care expenditure. Schneider and 
Winkler (2016) study an endogenous growth economy in which overlapping cohorts 
of individuals invest in health care in order to lower mortality. Comparing the bal-
anced growth paths associated with different states of medical technology, they find 
that the technology leading to a higher life expectancy imposes a drag on economic 

6  This is consistent with empirical evidence provided by Bloom et al. (2007) and De Nardi et al. (2010).
7  The Bureau of Economic Analysis (BEA) reports that over the time span 1980–2000 medical prices 
have risen 1.3-times faster than the consumption price index.
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growth but leads to a welfare gain. By its more realistic modelling of the individual 
life-cycle the present work differs from Koijen et al. (2016) and Kelly (2017) who 
consider an infinitely lived representative individual, as well as from Schneider and 
Winkler (2016) who consider a Blanchard-Yaari model with endogenous but age-
unspecific mortality and perfect annuitisation. Realistic demographic modelling is 
important in as far as the economic impact of medical progress hinges on the way it 
shifts the age distribution of the population.8 ,9 Studying (1) the role of health insur-
ance expansion as a driver of medical progress and (2) medical progress as a driver 
of the longevity gap in the US, Frankovic and Kuhn (2018, 2019) consider a model 
that is similar to the one presented here, but calibrate it to reflect the dynamics of 
longevity and health care expenditure growth.10 This requires the additional con-
sideration of productivity growth, health insurance expansion and social security 
expansion as competing drivers of health care spending, which in turn obfuscates 
the analysis of the transmission of medical progress per se. By isolating the mechan-
ics of medical progress as a crucial driver in itself, the present work contributes an 
important backdrop to the more quantitative modelling.

Overall, the modelling in Frankovic and Kuhn (2018, 2019) shows that a full gen-
eral equilibrium analysis is warranted in particular to capture (1) an increase in the 
price of health care, as driven by Baumol (1967)-style effects that arise from pro-
ductivity growth in the production sector but also by medical progress, which in 
turn much dampens the demand increase for health care; (2) the macroeconomic 
impacts of the increase in the economy-wide capital intensity that is driven by a 
savings response to greater longevity and enhanced medical treatment options in old 
age; and (3) the offsetting impact of an increase in old-age dependency if medical 
progress allows for lives to be saved predominantly after retirement. While the find-
ings in Frankovic and Kuhn (2018, 2019) are fully in line with the channels identi-
fied in the present paper, they also reveal the importance of two additional channels 
that have been (deliberately) shut down in the present paper: First, the concomitant 
presence of productivity growth, as induced by conventional technological pro-
gress, complements medical progress in the demand for health care in as far as it 
defuses the trade-off with consumption. By boosting the value of survival income 
and consumption growth induce an ongoing increase in the demand for health care 
and, implicitly, in the demand for medical innovations. Second, Frankovic and Kuhn 
(2019) show that medical progress tends to increase the socio-economic gradient in 
longevity not the least because of the complementarity between income and medical 
progress as drivers of the demand for health care.

8  In particular, models that assume infinitely-lived agents are abstracting altogether from a saving 
response to health-induced changes in longevity. As e.g. Bloom et al. (2007) and De Nardi et al. (2010) 
show, however, such a response is empirically relevant.
9  OLG models with realistic demography have been applied other contexts (see e.g. Boucekkine et al. 
2002; D’Albis 2007; Heijdra and Romp 2008, 2009a, b; Heijdra and Mierau 2012; Mierau and Turnovsky 
2014). These models do not involve endogenous health and survival.
10  Similar to Frankovic and Kuhn (2018) and Boehm et al. (2018) also study R&D driven medical pro-
gress. Jones (2016) studies the interaction of conventional and life-saving R&D but does so within a 
social planner context.
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The remainder of the paper is structured as follows: The following section is 
devoted to a presentation of the model; Sects.  3 and 4 characterise the individual 
life-cycle allocation and the general equilibrium of the economy, respectively; 
Sect. 5 provides an analytical assessment of the impact of medical progress; Sect. 6 
presents the numerical analysis before Sect. 7 wraps up. Some of the proofs have 
been relegated to an “Appendix”.

2 � The Model

We consider an OLG economy in which individuals choose consumption and health 
care over their life-course. Individuals are assumed to be representative within each 
cohort and are indexed by their age a at time t, with t0 = t − a denoting the birth year 
of an individual aged a at time t. At each age, the representative individual is subject 
to a mortality risk, where S(a, t) = exp

[
− ∫ a

0
�(â, h(â, t − a + â),M (t − a + â))dâ

]
 is 

the survival function at (a, t),  with �(a, h(a, t),M(t)) denoting the force of mortality. 
Following Kuhn et al. (2010, 2011, 2015) we assume that mortality can be lowered 
by the consumption of a quantity h(a, t) of health care. In addition, we assume that 
mortality depends on the state of the medical technology M(t) at time t. More spe-
cifically, we assume that the mortality rate �(a, h(a, t),M(t)) satisfies

where 𝜇̃(a, t) = 𝜇(a, 0,M(t)) is the “ natural ” mortality rate for an individual aged a 
at time t when no health care is consumed. By purchasing health care, the represent-
ative individual can lower the instantaneous mortality rate, and can thereby improve 
survival prospects, but can only do so with diminishing returns.11

In regard to medical technology, we assume the following properties

Hence, medical technology contributes towards reductions in mortality ( 𝜇M(⋅) < 0 ) 
with (weakly) decreasing returns. We leave it open, however, whether for any 
given positive level of health care, h(a, t) > 0 , medical technology is complement-
ing the consumption of health care ( �hM(a, h(a, t),M(t)) ≤ 0 ) or substituting it 
( 𝜇hM(a, h(a, t),M(t)) > 0).

Individuals enjoy period utility u(c(a, t) − c0) from consumption c(a,  t),   where 
c0 ≥ 0 denotes a level of subsistence consumption. Period utility is increas-
ing and concave: uc(⋅) > 0 , ucc(⋅) ≤ 0 . In addition, we assume the Inada condition 

𝜇(a, h(a, t),M(t)) ∈ (0, 𝜇̃(a, t)] ∀(a, t);

𝜇h(⋅) < 0, 𝜇hh(⋅) > 0;

𝜇h(a, 0,M(t)) = −∞, 𝜇h(a,∞,M(t)) = 0 ∀(a, t);

𝜇M(⋅) < 0, 𝜇MM(⋅) ≥ 0, 𝜇hM(⋅) ⪌ 0 ∀(a, t).

11  Zweifel et  al. (2005) provide empirical evidence of decreasing returns to health expenditure in the 
reduction of mortality. The decreasing returns assumption is also reflected in other empirical work on the 
relationship between health care and mortality (e.g. Lichtenberg 2004; Hall and Jones 2007).
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uc(0) = +∞ . Individuals maximise the present value of their expected life-cycle 
utility

by choosing a stream of consumption and health care on the interval [0,�], with � 
denoting the maximal possible age, with � ≥ 0 denoting the rate of time preference, 
and with S(a, t),  defined above, denoting the survival function.

The individual faces as constraints the dynamics of survival S(a, t) and individual 
assets k(a, t).12 The survival dynamics are described by

Here, (2) describes the reduction of survival according to the force of mortality. 
While for the sake of simplification we are subsequently referring to S(a, t) as sur-
vival, the function may be interpreted as a more general measure of health that is 
subject to depreciation over the life-course (Chandra and Skinner 2012, Kuhn et al. 
2015). Indeed, (2) not only describes the mortality process, but also proxies for 
the gradual decline in health over the life-course, as is documented by the gradual 
accumulation of health deficits (e.g. Rockwood and Mitnitski 2007; Abeliansky and 
Strulik 2018). With our focus being on an individual representing a whole cohort, it 
is plausible to assume that the consumption of health care slows down the decline in 
health but cannot reverse it.13 Furthermore, assuming that utility from consumption 
and utility from good health are multiplicatively separable, one can easily generalise 
the interpretation of (1) to include not only health-dependent duration of life but also 
health-dependent quality of life. We assume that the survival function is bounded 
between 1 at birth and 0 at the maximum feasible age � , implying the boundary 
conditions

The asset dynamics are described by

(1)max
c(a,t),h(a,t)∫

�

0

e−�au(c(a, t) − c0)S(a, t)da

(2)
⋅

S(a, t) = −�(a, h(a, t),M(t))S(a, t).

(3)S(0, t0) = 1, S(�, t0 + �) = 0.

(4)
k̇(a, t) = r(t)k(a, t) + l(a)w(t) − c(a, t)

− 𝜙(a, t)pH(t)h(a, t) − 𝜏(a, t) + 𝜋(a, t) + s(t).

12  Here, we define 
⋅

X(a, t) ∶=
dX(a+s,t+s)

ds
 to be the derivative of the state X = k, S with respect to both age 

and time along the 45-degree line in the Lexis-diagram.
13  It might be argued that health status should show up in the mortality function. The key difference this 
would make in terms of the mechanics of the model is that through its impact on health status the stream 
of past health care h(â) with â in [0;  a) would also have an impact on mortality at age a besides the 
level of current (acute) health care h(a). This would add a motive for the individual to invest in preven-
tive health care. Given that preventive care, even when defined broadly, accounts only for around 9% of 
health care expenditure (Miller et al. 2008), we believe these effects to be of second order and, therefore, 
omit them for the sake of a leaner analysis.
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According to (4) an individual’s stock of assets k(a, t) (1) increases with the return 
on the current stock, where r(t) denotes the interest rate at time t; (2) increases with 
earnings l(a)w(t),  where w(t) denotes the wage rate at time t, and where l(a) denotes 
an individual’s age-dependent effective labour supply; (3) decreases with con-
sumption, the price of consumption goods being normalised to one; (4) decreases 
with private health expenditure, �(a, t)pH(t)h(a, t), where pH(t) denotes the price 
for health care, and where �(a, t) denotes an (a, t)-specific rate of coinsurance; (5) 
decreases with an (a, t)-specific tax, �(a, t); (6) increases with (a, t)-specific benefits 
�(a, t); and (7) increases with a transfer s(t) by which the government redistributes 
accidental bequests in a lump-sum fashion. Here, we follow Suen (2009), Ludwig 
et al. (2012) and Zhao (2014) by considering a setting without an annuity market. 
We assume that individuals enter and leave the life-cycle without assets, implying 
the boundary conditions

While the setting without annuity market is well in line with evidence that few 
individuals annuitise their wealth (e.g. Warshawsky 1988; Reichling and Smetters 
2015), we have also considered a specification with imperfect annuities yielding a 
return r(t) + ��(a, t), where � ∈ [0, 1] and where �(a, t) = �(a, h∗(a, t),M(t)) is the 
expected mortality, given the equilibrium level of health care h∗(a, t). Following 
Heijdra and Mierau (2012) in considering a scenario with � = 0.7 , we obtain quali-
tatively similar results to those reported in this paper.

Denoting by B(t − a) the size of the birth cohort at t0 = t − a , the cohort aged a at 
time t has the size

By aggregating over the age-groups who are alive at time t we obtain the follow-
ing expressions for the population size,14 aggregate capital stock, aggregate effective 
labour supply, aggregate consumption, and aggregate demand for health care, each 
at time t:

(5)k(0, t0) = k(�, t0 + �) = 0.

N(a, t) = S(a, t)B(t − a).

(6)

N(t) = ∫
�

0

N(a, t)da,

K(t) = ∫
�

0

k(a, t)N(a, t)da,

L(t) = ∫
�

0

l(a)N(a, t)da,

C(t) = ∫
�

0

c(a, t)N(a, t)da,

14  In a slight abuse of notation, N(t) denotes the population size at time t , whereas N(a, t) represents the 
size of the cohort aged a at time t.
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The economy consists of a manufacturing sector and a health care sector. In the 
manufacturing sector a final good is produced by employment of capital KY (t) and 
labour LY (t) according to a neoclassical production function Y(KY (t),A(t)LY (t)), with 
A(t) measuring the state of labour augmenting technology. A manufacturer’s profit 
can then be written as

where � denotes the depreciation rate of capital.
Health care goods and services are produced by employment of labour 

LH(t), and capital KH(t) according to the neoclassical production function 
F(KH(t), LH(t)). Recalling the price for health care pH(t), the profit of a health care 
provider is then given by

where we assume that capital depreciates at the same rate across both sectors. Note 
that the presence of perfect competition together with a neoclassical production 
function in the two sectors implies VY (t) = VH(t) = 0 in equilibrium.

The government and/or a third-party payer (e.g. a health insurer) raise taxes 
(or contribution rates, e.g. insurance premiums) for the purpose of co-financing 
health care at the rate 1 − �(a, t) and of paying out transfer payments �(a, t) . More 
specifically, we let �(a, t) refer to pension benefits, implying that

with � a uniform pension benefit and aR the retirement age. In such a setting we also 
have

implying that individuals supply a certain age-specific amount of labour l̂(a) up to 
their (mandatory) retirement at age aR , from which point onwards earnings, w(t)̂l(a) , 
are replaced by retirement benefits, �.

Likewise, �(a, t) are age-specific taxes. We could distinguish these into taxes 
used to finance health care payments (or health insurance premiums), �H(a, t), and 
social security contributions, �Π(a, t), where �(a, t) = �H(a, t) + �Π(a, t). Further-
more, we could, in principle distinguish between lump-sum and labour income 
taxes, �j(a, t) = �̂j(a, t)l(a)w(t) , with j = H,Π. As long as we assume a unified gov-
ernment budget and an exogenous labour supply, it is sufficient to consider �(a, t).

Assuming that the government budget must be balanced within each period t 
we obtain the constraint

(7)H(t) = ∫
�

0

h(a, t)N(a, t)da.

(8)VY (t) = Y(KY (t),A(t)LY (t)) − w(t)LY (t) − [� + r(t)]KY (t),

(9)VH(t) = pH(t)F(KH(t), LH(t)) − w(t)LH(t) − [� + r(t)]KH(t),

𝜋(a, t) =

{
0 ⇔ a < aR
𝜋 ≥ 0 ⇔ a ≥ aR,

l(a) =

{
�l(a) ≥ 0 ⇔ a < aR
0 ⇔ a ≥ aR,
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Finally, we assume that total accidental bequests are redistributed in a lump-sum 
way according to15

3 � Life‑Cycle Optimum

In “Appendix 1” we show that the solution to the individual life-cycle problem is 
described by the following two sets of conditions16

describing the optimal pattern of consumption c(a, t) and the demand for health care 
h(a, t) , respectively, of an individual aged a at time t. Condition (12) is the well-
known Euler equation, requiring that the marginal rate of intertemporal substitution 
between consumption at any two ages/years (a, t) and 

(
â, t + â − a

)
 equals the com-

pound interest.17 In the absence of annuity markets, the uninsured mortality risk can 
be interpreted as an additional factor of discounting, implying an effective discount 
rate � + �(a, t) at any (a, t).

Condition (13) requires that at each (a, t) the marginal value of health care, 
−�h(a, t)�(a, t), equals its effective price, �(a, t)pH(t). The marginal value of health 
care is given by the marginal effect of health care on mortality, −�h(a, t) , weighted 
with the private value of life (VOL). The private VOL is defined by

(10)∫
�

0

{
[1 − �(a, t)]pH(t)h(a, t) + �(a, t)

−�(a, t)}S(a, t)B(t − a)da = 0.

(11)s(t) =
1

N(t) ∫
�

0

�(a, t)k(a, t)N(a, t)da.

(12)

uc(a, t)

exp
{
− ∫ â

a

[
� + �

(
̂̂a, t + ̂̂a − a

)]
d̂̂a

}
uc
(
â, t + â − a

)

= exp

[
�

â

a

r
(
t + ̂̂a − a

)
d̂̂a

]
,

(13)− �h(a, t)�(a, t) = �(a, t)pH(t) ∀(a, t),

(14)�(a, t) ∶= ∫
�

a

v
(
â, t + â − a

)
R
(
â, a

)
dâ,

15  In order to ease on notation, we will subsequently refer to the shortcut �(a, t) for �(a, h(a, t),M(t)).
16  In order to ease on notation, we will subsequently refer to the shortcuts u(a, t) for u(c(a, t) − c0) and 
uc(a, t) for uc(c(a, t) − c0).

17  Here and in the following, â refers to an age that is distinct from age a, whereas ̂̂a is employed to 
count age/time within an integral.
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with

and

and amounts to the discounted stream of annual consumer surplus, v
(
â, t + â − a

)
 

taken over the expected remaining life-course [a,�].18 It measures an individual’s 
willingness to pay for surviving through (a, t).

For a given set of prices, the evolution of consumption with age is described by 
(for a derivation see “Appendix 1”)

Noting that ucc < 0, it is readily seen that consumption tends to increase over the 
life-cycle if and only if r − 𝜌 > 𝜇. In the absence of an annuity market, the unin-
sured mortality risk imposes a downward drag on consumption over the life-cycle 
and implies that consumption will eventually decrease with age when mortality � 
grows sufficiently high.

For a given set of prices and a given state of the medical technology, the demand 
for health care evolves with age as described by (for a derivation see “Appendix 1”)

Noting that 𝜇hh > 0, the impact of age on the consumption of health care involves 
three forces: (1) the changing effectiveness of health care with age �ha , a stronger 
(weaker) effectiveness with age, 𝜇ha < 0 ( > 0 ), implying an increase (decrease) in 
health care;  (2) the rate at which the VOL changes with age, a decrease implying a 
reduction in health care; and (3) changes with age in the co-insurance rate, � , as e.g. 
during a transition from private to public health insurance at the onset of retirement.

Differentiating (14) with respect to age, we obtain the dynamics of the private 
VOL as

(15)v(a, t) ∶=
u(a, t)

uc(a, t)
,

(16)R
(
â, a

)
∶= exp

[
−∫

â

a

r
(
t + ̂̂a − a

)
d̂̂a

]
,

(17)
⋅

c =
uc

ucc
(� − r + �).

(18)
⋅

h =
−1

�hh

⎡⎢⎢⎣
�ha + �h

⎛⎜⎜⎝

⋅

�

�
−

⋅

�

�

⎞⎟⎟⎠

⎤⎥⎥⎦
.

18  The VOL as we calculate it here differs from the typical representation of the value of a statistical life 
as e.g. in Shepard and Zeckhauser (1984), Rosen (1988), Johansson (2002), or Murphy and Topel (2006) 
in as far as (1) the discount factor does not include the mortality rate; and (2) the VOL does not include 
the current change to the individual’s wealth, lw − c − h − � + � + s. Both of these features are due to the 
absence of an annuity market.
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Thus, the private VOL increases with the interest rate and declines over time as the 
consumer surplus from a succession of life-years lived is written off.

4 � General Equilibrium

Perfectly competitive firms in the production sector choose labour LY (t) and capital 
KY (t) so as to maximise period profit (8). The first-order conditions imply

i.e. the factor prices are equalised with their respective marginal products.
Likewise, perfectly competitive providers of health care choose labour LH(t) and 

capital KH(t) so as to maximise period profit (9). From the first-order condition we 
obtain

Combining these conditions with (20) and (21) we obtain

implying that capital and labour inputs are distributed across the production 
and health care sector in a way that equalises the marginal rate of transforma-
tion (i.e. the relative output gain in production as compared to the output loss in 
health care from re-allocating one factor unit from health care into production) 
with the price for health care. The higher the latter, the greater the marginal rate 
of transformation, implying that more workers will be allocated to the health 
care sector. With appropriate Inada conditions, YLY (KY , 0) = YKY

(0,ALY ) = ∞ 
and FLH

(K, 0) = FKH
(0, LH) = ∞ we always have an interior allocation with 

LH(t) = L(t) − LY (t) ∈ (0, L(t)) and KH(t) = K(t) − KY (t) ∈ (0,K(t)).

Our setting involves four markets: two input markets for capital and labour, respec-
tively; and two output markets for health care and for final goods, respectively. From 
the four market clearing conditions

(19)
⋅

�(a, t) = r(t)�(a, t) − v(a, t).

(20)r(t) = YKY
(t) − �

(21)w(t) = YLY (t),

(22)r(t) = pH(t)FKH
(t) − �

(23)w(t) = pH(t)FLH
(t).

(24)pH(t) =
YLY (t)

FLH
(t)

=
YKY

(t)

FKH
(t)

,
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we obtain a set of equilibrium prices 
{
r∗(t),w∗(t), p∗

H
(t)
}
 as well as the level of net 

capital accumulation 
⋅

K(t). We provide a more detailed description of the general 
equilibrium structure in “Appendix 2”.

5 � Impact of Medical Progress

5.1 � Demand for Health Care and Value of Life (VOL)

In “Appendix 4” we show that the impact of medical progress, as measured by 
an increase in the level of medical technology, dM > 0, on the demand for health 
care at (a, t) is described by

Term (i) represents the effect of medical technology on the demand for health care 
through changes in the effectiveness of care. If technology raises the marginal effec-
tiveness of health care ( 𝜇hM < 0 ), term (i) is positive and more health care will be 
consumed at (a, t) in response to medical progress. Note, however, that some tech-
nologies, described by �hM ≥ 0 may effectively replace intensive health care and, 
thus, lead to the opposite impact on the demand for healt care. Term (ii) implies that 
the demand for health care tends to fall if medical progress raises its price. Finally, 
the demand for health care changes in line with the impact of medical progress on 
the VOL [term (iii)].

The impact of medical progress on the VOL can be written as

where v
(
â, t + â − a

)
 and R(â, a) are given by (15) and (16), respectively, and where

KY (t) + KH(t) = K(t),

LY (t) + LH(t) = L(t)

F(t) = H(t),

Y(t) = C(t) +
⋅

K(t) + �K(t),

(25)

dh(a, t)

dM
=

−𝜇hM

𝜇hh
���

(i)

+
𝜇h(a, t)

𝜇hh
���

<0

(
1

pH(t)

dpH(t)

dM
���

(ii)

−
1

𝜓(a, t)

d𝜓(a, t)

dM
�����

(iii)

)
.

(26)

d𝜓(a, t)

dM

= ∫
𝜔

a

R(�a, a)

(
− v

(
�a, t + �a − a

)
∫

�a

a

dr
(
t + ̂̂a − a

)

dM
d ̂̂a

���������������������������
(iii.i)

+
dv
(
�a, t + �a − a

)
dM

�������������������
(iii.ii)

)
d�a
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Thus, technology bears on the VOL through two channels: through changes in the 
interest rate at which the monetary value of each remaining life year is discounted 
[term (iii.i)], and through changes in age-specific consumption over the remaining 
life-course [term (iii.ii) and (27)]. According to (iii.i), the VOL increases whenever 
improvements in medical technology reduce the interest rate, an effect that arises 
only in general equilibrium. Noting that 1 − uucc

u2
c

> 0 (see “Appendix 4”), term (iii.ii) 
implies that a positive effect of medical technology on future consumption translates 
into an increase in the demand for health care.

Generally, we can write c
(
�a, t + �a − a

)
= c(a, t) exp

[∫ �a

a
gc(

̂̂a, t + ̂̂a − a)d ̂̂a
]
 , 

where c(a, t) is the initial consumption level at birth, and where

is the rate of consumption growth at ( ̂̂a, t + ̂̂a − a) as given by the dynamic Euler 
equation (17). Thus, we have

according to which the impact of medical progress on consumption at 
(
â, t + â − a

)
 

is governed by two possibly offsetting effects: the impact on initial consumption 
c(a, t) , which is implicitly determined through the life-cycle budget constraint, and 
the impact on the growth rate of consumption over the life-cycle, the latter of which 
depends in particular on changes in the interest rate and the mortality rate. More 
specifically, medical change tends to increase the growth rate of consumption at 
( ̂̂a, t + ̂̂a − a) to the extent that it increases the spread between interest rate and mor-
tality rate r(t + ̂̂a − a) − 𝜇( ̂̂a, t + ̂̂a − a), e.g. by lowering mortality.

Given the offsetting effects in (25)–(28) it is difficult to arrive at a general 
statement about the impact of medical technology on the VOL and on the 
demand for health care without placing undue restrictions on the model. At this 
point, we therefore content ourselves with having identified the various channels 
through which medical progress impacts consumption and the demand for health 
care and defer a quantitative assessment of the various offsetting effects to our 
numerical analysis in Sect. 6.3.

(27)
dv
(
â, t + â − a

)
dM

=

(
1 −

uucc

u2
c

)
dc
(
â, t + â − a

)
dM

.

gc

(
̂̂a, t + ̂̂a − a

)
∶=

uc

uccc
(
̂̂a, t + ̂̂a − a

)
[
𝜌 − r

(
t + ̂̂a − a

)
+ 𝜇

(
̂̂a, t + ̂̂a − a

)]

(28)

dc
(
�a, t + �a − a

)
dM

= c
(
�a, t + �a − a

){ 1

c(a, t)

dc(a, t)

dM
+ ∫

�a

a

dgc(
̂̂a, t + ̂̂a − a)

dM
d ̂̂a

}
,
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5.2 � Prices

In the following, we assume that the production in the final goods and health care 
sector, respectively, is described by the set of Cobb–Douglas production functions

with �, � ∈ [0, 1] . Noting from “Appendix 3” that all prices in the economy can be 
calculated as a function of the interest rate, we show in “Appendix 4” that

The general equilibrium impact of medical progress on the wage rate as well as on 
the price for health care is thus determined by its effect on the market interest rate. 
Most importantly, the impact of medical change on the wage rate is always opposite 
to its impact on the interest rate. This is because a reduction (increase) in the market 
interest rate leads to an increase (reduction) of capital employed in production which 
translates into an increase (decrease) in the marginal productivity of labour. The 
effect of medical progress on the price of health care is ambiguous. As Eq. (32) indi-
cates, we have sgndpH (t)

dM
= −sgn

dr(t)

dM
 if and only if 𝛽 < 𝛼 , i.e. if and only if the capital 

elasticity is lower in the health care sector as compared to the remaining industry. 
In Sect. 6.1 we will provide empirical evidence to the effect that this is, indeed, the 
case. Whenever medical change induces a reduction in the interest rate, the corre-
sponding boost to the wage rate drives up the price for health care, the latter being 
produced in a relatively labour intensive way.

While we are unable to present a closed theoretical expression for the effect of 
medical progress on the interest rate, dr(t)

dM
 , we can draw on the mechanics of the capi-

tal market to derive some insight into the matter. Denote by Kd
Y
(t, r) and Kd

H
(t, r) 

the capital demand functions in the final goods and health care sector, respec-
tively. From (20) and (22) it is readily checked that, ceteris paribus, capital demand 
decreases in the interest rate, r, and does not directly depend on the state of medi-
cine, M. In contrast, the supply of capital Ks(t, r,M) can be shown to increase, cet-
eris paribus, with both r and M. Denote by r(t) the interest rate that equilibrates 
the capital market such that Kd

Y
(t, r(t)) + Kd

H
(t, r(t)) = Ks(t, r(t),M) in period t and 

consider now an improvement in medical technology, dM > 0. While it is dif-
ficult to assess the general equilibrium impact, it is easy to see that the instanta-
neous impact involves an outward shift of the capital supply function and, thus, 
Kd
Y
(t, r(t)) + Kd

H
(t, r(t)) < Ks(t, r(t),M + dM) . The excess supply of capital then 

implies a downward pressure on the interest rate, dr(t)
dM

< 0, and a boost to earnings 

(29)Y(t) = KY (t)
�
[
A(t)LY (t)

]1−�

(30)F(t) = KH(t)
�
[
LH(t)

]1−�
,

(31)
dw(t)

dM
= −

�
1 − �

w(t)

r(t) + �

dr(t)

dM
,

(32)
dpH(t)

dM
=

pH(t)

r(t) + �

� − �

1 − �

dr(t)

dM
,
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and the price of health care, dw(t)
dM

> 0 and dpH (t)
dM

> 0. This intuition is, indeed, con-
firmed by the numerical analysis in Sect. 6.3.

5.3 � Economic Performance (GDP)

Finally, consider the impact of medical progress on the GDP per capita as a measure 
of economic performance. Note that in our framework GDP is defined as the sum 
of output in the final goods and health care sector, as measured in units of the final 
good, GDP(t) = Y(t) + pH(t)F(t). Expressing GDP per capita

as the product of the employment rate L(t)
N(t)

 and the GDP per worker GDP(t)
L(t)

 , it is easy 
to see that the impact of medical progress on economic performance comes (1) 
through a change in the employment rate; and (2) through a change in the GDP per 
worker. The impact of medical innovation on the employment rate strongly depends 
on the age-profile of mortality rates and their dependency on medical progress. 
While the dependency is generally ambiguous, we would conjecture that in devel-
oped economies in which technology-related gains in survival are concentrated 
amongst the older population, the likely impact of medical progress on the employ-
ment rate is negative, and this is, indeed, confirmed by our numerical simulation 
calibrated to a US setting.

In “Appendix 4” we show that for the Cobb–Douglas functions in (29) and (30) 
we can write the equilibrium level of GDP per worker as a function of the employ-
ment share �(t) ∶= LY (t)∕L(t) and the aggregate capital intensity K(t)∕L(t)

Taking the total differential of this expression with respect to M we can then show 
that (see “Appendix 4”)

GDP(t)

N(t)
=

L(t)

N(t)

GDP(t)

L(t)

(33)

GDP(t)

L(t)

=
Y(t) + pH(t)F(t)

L(t)
=

[
1 +

pH(t)F(t)

Y(t)

]
Y(t)

L(t)

=
1 − � + (� − �)�(t)

1 − �
A(t)1−�

[
�(1 − �)

�(1 − �) + (� − �)�(t)

]�(
K(t)

L(t)

)�

.

(34)

d

dM

(
GDP(t)

L(t)

)

=
−(1 − �)(� − �)2[1 − �(t)]

[1 − � + (� − �)�(t)][�(1 − �) + (� − �)�(t)]

GDP(t)

L(t)

d�(t)

dM

+ �
GDP(t)

K(t)

d

dM

(
K(t)

L(t)

)
.
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It is readily verified that d

dM

(
GDP(t)

L(t)

)
> 0 holds if d�(t)

dM
≤ 0 and d

dM

(
K(t)

L(t)

) ≥ 0. Thus, 
medical progress tends to raise GDP per worker (1) if, for a given structure of the 
economy as described by the employment share �(t), it leads to capital deepening, 
i.e. to an increase in the economy-wide capital intensity K(t)

L(t)
; and (2) if it induces a 

shift in resources to the more labour intensive health care sector, as measured by a 
decline in the employment share of final goods production �(t).19 Our numerical 
analysis in Sect. 6.3 shows that, indeed, medical innovation triggers both an increase 
in the aggregate capital stock per worker and a reduction in final goods employment. 
Thus, its impact on the GDP per worker is unambiguously positive. Whether or not 
this induces an increase in GDP per capita then depends on the extent to which the 
employment rate L(t)∕N(t) is curbed by medical progress. For the US health care 
context studied in Sect. 6.3, we find the increase in the GDP per worker to be the 
(weakly) dominating effect.

6 � Numerical Analysis

To gain a more quantitative understanding of the channels through which medical pro-
gress bears on the economy we now resort to a numerical analysis. For this purpose we 
calibrate the benchmark steady state of the model to reflect the US economy in the year 
2003. We then study in a quasi experimental way the impact of an (unanticipated) med-
ical innovation that increases the effectiveness of health care in lowering mortality.20

6.1 � Specification of the Numerical Analysis

The main components of our numerical model are specified as follows.

6.1.1 � Demography

With model time progressing in single years, individuals enter the model economy 
at age 20 and can live up to a maximum age 100.21 In our model, a “birth” at age 20 
implies that � = 80 . Population growth is partly endogenous due to endogenous 
mortality and partly exogenous due to a fixed growth rate of the number of births 
log(

Bt

Bt−1

) = � = 0.013 , which is calibrated to match the elderly share of the adult (20 
years and older) US population, equalling 17.6% according to the decennial census 
in the US in the year 2000.22 Due to the exogenous path of births, our results are not 
confounded by a variation in birth numbers across the scenarios.

20  See Frankovic et al. (2017) for the analysis of a second experiment where the medical innovation is 
anticipated.
21  We follow the bulk of the literature and neglect life-cycle decisions during childhood.
22  For the stable population within a steady state the rate � should equal the rate of population growth. 
According to the World Bank Development Indicators, the latter stood at 1.11% in the year 2000, making 
this a good match.

19  It is easy to verify that a decline in the employment share �(t) will in optimum be accompanied by a 
decline in KY (t)∕K(t).
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6.1.2 � Mortality

The force of mortality, � , is endogenously determined in the model, depending on 
health care, h, as a decision variable; an exogenous level of medical technology, M; 
and an exogenous age-dependent base mortality, �̃(a) . As not all reductions in mor-
tality can be attributed to health expenses or technological progress (see e.g. Hall 
and Jones 2007), we introduce an exogenous factor I(a) that captures changes in age-
dependent mortality rates due to exogenous circumstances. Generalising Kuhn et al. 
(2011, 2015) we formulate

where �(a) is a parametric function reflecting decreasing efficiency of health care 
with age, and where �(a) reflects the age-specific elasticity of mortality with respect 
to health care as reported in Hall and Jones (2007). For the base mortality �̃(a) we 
employ age-specific mortality rates for the year 1950 in the US, as reported in the 
Human Mortality Database (HMD) (see Fig.  1a). The age-dependent parametric 
functions �(a) and I(a) are then chosen to approximate age-specific health expen-
ditures and mortality �(a, t) in the year 2003.23 We normalise the state of medical 
technology to the year 2003 and, thus, set M(t) ≡ 1 in the benchmark case.

6.1.3 � Utility

We assume instantaneous utility to be given by

where c0 = $11,000 is an exogenous minimal consumption level.24 ,25 We choose the 
inverse of the elasticity of intertemporal substitution to be � = 1.75 which is within 
the range of empirically consistent values, as suggested by Chetty (2006). Setting 
b = 8 then guarantees that u(a, t) ≥ 0 throughout. The associated VOL lies within 
the range of plausible estimates, as suggested in Viscusi and Aldy (2003). Finally, 
we assume a rate of time preference � = 0.02.

�(a, t) = �̃(a) ⋅
(
I(a) − �(a)[h(a, t) ⋅M(t)]�(a)

)
,

u(a, t) = b +

(
c(a, t) − c0

)1−�
1 − �

,

23  Note that I(a) only influences mortality (because �h is independent of I), whereas �(a) also influences 
the demand for health care. The 2003 mortality rates are again taken from HMD. Due to limited data 
availability, we use health expenditure data for the year 2000, as provided in Meara et al. (2004).
24  Dollar values are to be interpreted as year 2003 Dollars throughout.
25  We introduce the minimum consumption to improve the fit of the consumption profile. While the min-
imum level is never hit in optimum, it helps to avoid an unrealistically sharp drop in consumption and 
consequently debt repayment during the oldest ages. The level of the minimum consumption profile is set 
such that assets of the elderly never fall below zero.
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6.1.4 � Effective Labour Supply and Income

We construct the effective supply of labour l̂(a) , as depicted in Fig. 1b, from age-
specific earnings data for the year 2003 that is provided by the Bureau of Labor 
Statistics (BLS) in their Current Population Survey (CPS). We rescale the earnings 
schedule such that the employment-population ratio L(t)/N(t) matches the empirical 
value of 62% for the US in 2003, as reported by the BLS. Individuals aged 65 or 
older are assumed to have no income from labour but receive a fixed social security 
pension for the remainder of their lifetime, as detailed further on below.

6.1.5 � Production

Production of the final good is described by Eq. (29), where labour productivity, 
A(t), is calibrated so that l̂(50)w(t) matches the average earnings of a 50-year old in 
2003; and where the elasticity of capital � is chosen to be 1/3.

The health care sector produces medical goods and services that individuals pur-
chase with a view to lowering their mortality. The production function is given by 
Eq. (30). For the production elasticity of capital in the health care sector we take an 
estimate from Acemoglu and Guerrieri (2008) and set � = 1∕5 . Finally, we assume a 
rate of capital depreciation equal to � = 0.05.

6.1.6 � Health Insurance, Medicare and Social Security

Health expenditures are subsidised through two different channels: (a) private health 
insurance with coinsurance rate �P and (b) Medicare for the elderly (available 
after retirement) with coinsurance rate �MC . Private health insurance is financed 
through a “risk-adequate” premium equal to the expected health expenditure cov-
ered by the insurance for an individual at a given time and age. It is thus given by 
�P =

[
1 − �P(a, t)

]
pH(t)h

∗(a, t) , where h∗(a, t) denotes the equilibrium demand for 
health care at (a,  t). Following Zhao (2014) we assume that 70% of the US work-
force is health insured, with 70% of expenses being covered (in 2000). Thus, we 
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Fig. 1   Mortality and labour employment age-profiles. (Color figure online)
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assume that 51% of health expenditures are paid out-of-pocket on average among 
the working population. Zhao (2014) states that 35% of the elderly have health 
insurance with a coverage of 30%, leading to average health insurance subsidies of 
10.5%. We assume that Medicare covers 38 % of the health expenses of the elderly.26 
This results in 51.5% out-of-pocket expenditures for the elderly. In total, the out-of-
pocket share of health expenses paid by the individual is

where aR = 65 is the mandatory age of retirement. Medicare is financed through a 
payroll tax, with the rate 𝜏MC being endogenously determined such that the Medicare 
budget constraint

holds.
Social security, received by retirees, is financed through a payroll tax which is deter-

mined endogenously from the social security budget constraint

where �(a, t) is the social security pension and 𝜏Π the payroll tax devoted to social 
security. We assume social security benefits to be exogenous and use the CPS 
Annual Social and Economic Supplement data for the year 2003 which quotes a 
mean social security income of approximately $10,300 for individuals aged 65 years 
or older. Thus, we set �(a, t) = $10,300 for a ≥ 65 and to zero otherwise.

Altogether, individuals face the following taxes (including the premium for the pri-
vate health insurance):

6.1.7 � Overview of Functional Forms and Parameters

Table 1 summarises the functional forms and parameters we are employing. Table 2 
shows further parameters and functional forms that are used in the calibration to 
match various empirical moments. The ≡ symbol denotes that the function is 
assumed to be constant in all arguments.

𝜙(a, t) =

{
0.51 if a < aR
0.515 if a ≥ aR,

∫
𝜔

aR

[
1 − 𝜙MC(a, t)

]
pH(t)h

∗(a, t)N(a, t)da = 𝜏MC(t)w(t)L(t),

∫
𝜔

aR

𝜋(a, t)N(a, t)da = 𝜏Π(t)w(t)L(t),

𝜏(a, t) = 𝜏Π(t)l(a)w(t)
�����������

=𝜏Π(a,t)

+ 𝜏MC(t)l(a)w(t)
���������������

=𝜏MC(a,t)

+
[
1 − 𝜙P(a, t)

]
pH(t)h

∗(a, t)
�����������������������������������

𝜏P(a,t)

�����������������������������������������������������������������
=𝜏H (a,t)

.

26  This value was calculated based on the following data of the US economy in 2003: Share of the 
elderly in total health spending =  40% (NHEA); health share in the GDP =  15% (NHEA); Medicare 
share in the GDP = 2.3% (Zhao 2014).
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A detailed description of the solution of the numerical problem is provided in 
“Appendix 5”.

6.2 � Benchmark

In order to economise on space we illustrate the benchmark allocation in the same 
graphs as our experiment (see Figs. 2, 3, 4). The benchmark allocation is depicted 
by blue, solid plots throughout, whereas the experiment is depicted by green, dashed 
plots. Figure 2 also contains red, dotted plots, which refer to a partial equilibrium 
allocation.

At the level of the individual life-cycle, the salient features of the benchmark 
allocation can be summarised as follows. Consumption is hump-shaped (see Fig. 2, 
upper left panel). The fact that the interest rate (approx. 4.3%) lies above the rate 
of time preference (2%) implies a rising consumption until around age 70. Due to 
missing annuity markets, consumption falls, however, at higher ages as implied by 
the individual Euler equation (17).27 Individual health expenditures follow a hump-
shaped pattern (Fig. 2, upper right panel). While the demand for care grows very 
moderately up to age 40, it exhibits from then on a strong increase up to age 80 
before dropping again for the highest ages. Note that such a pattern is consistent 
with recent evidence in Martini et al. (2007) and De Nardi et al. (2016).28 In order to 
finance the significant co-payments involved with the high levels of health expendi-
ture in old age, the individual accumulates a considerable stock of assets (Fig.  2, 
lower left panel).29

The value of life (VOL) peaks at approx. age 50 (Fig. 2, lower right panel), which 
is consistent with empirical evidence on the value of a statistical life in Aldy and 
Viscusi (2008). In our model, the hump-shaped age-profile of the VOL follows the 
equally hump-shaped age profile of individual consumption. In line with (19), the 
VOL increases during early life where consumption levels are low such that the 
value of life years written off falls short of a high return on the VOL. This relation-
ship reverses in old age. The remaining life expectancy at age 20 is 58.0 years in 
the benchmark case and, thus, matches the empirical value for the US in 2003 (58.1 
years, HMD) very well.

GDP per capital amounts to $39,700 [$39,700 according to Table  1.5.5 of the 
revised National Income and Product Accounts of the Bureau of Economic Analysis 
(BEA), 2003], and health expenditures per capita amount to $5720 [$5750 according 

27  The right-skewed hump in consumption with a relatively strong decline for ages above 70 is well in 
line with the profile for private consumption (net of health care and education expenditures) calculated 
from the US National Transfer Accounts for the year 2003 (see Tung 2011; Figure 6.13).
28  Also note that a hump-shaped pattern is not inconsistent with the finding that health care utilisation/
expenditure increases with the closeness to death (e.g. Zweifel et al. 1999). This is because the “cost of 
dying” itself is declining with age for the highest ages (e.g. Cutler 2007).
29  A close glance reveals a very small amount of debt during young ages, which, strictly speaking, is 
not fully consistent with the absence of an annuity market. However, we consider the level of debt to be 
negligible for all practical purposes. This is both for its magnitude and for the fact that it is incurred for 
an age interval with negligible mortality.
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to NHEA, 2003]. The health share (in GDP) in the benchmark case is 14.4% and 
matches the data from the National Health Expenditure Accounts provided by 
CMS.30 Furthermore, the benchmark model features a Medicare share of 2.3% 
[2.3% according to Zhao (2014)]. Finally, while our calibration strategy involves the 
matching of the population share 65 years and older and the employment-population 
ratio as key demographic indicators, we note the good incidental fit with the capital-
output ratio, the interest rate, the wage rate and the Medicare tax as key economic 
indicators. Table 3 summarises how the benchmark model fits the data.

A clarifying remark is warranted on the purpose and design of our numerical 
analysis. The main objective lies in an analytical and quantitative understanding of 
the mechanisms which are underlying the macroeconomic transmission of medi-
cal change. In order to avoid that these are confounded by other sources of change, 
we have structured our numerical analysis in a way that the economy is “quasi-sta-
tionary” in the years surrounding a medical technology shock. This is why we are 
abstracting from time-trends in the states of technology, A(t) and M(t) , in the growth 
rate of the nuber of births, �, and in the policy variables, �(a, t) and �(a, t).31 Never-
theless, we have calibrated the model to the US economy in the year 2003 in order to 
provide a realistic static backdrop for our numerical experiment.

6.3 � Impact of Medical Progress

Considering the model time frame from t = 100 to t = 300 , we study the impact of 
an unanticipated increase in the state of the medical technology from M(t) = 1 for 

Table 1   Parameters and functional forms

Parameter and functional forms Description

� = 80 Life span
� = 0.02 Pure rate of time preference
� = 1.75 Inverse elasticity of intertemporal substitution
c0 = $11,000 Subsistence minimum
a
R
= 65 Mandatory retirement age

� = 0.05 Depreciation rate
� = 1∕3 Elasticity of capital in Y
� = 1∕5 Elasticity of capital in F

u(a, t) = b +
(c(a,t)−c0)

(1−�)

1−�
Instantaneous utility function

B(t) = B0 exp[�t] Number of births

s(t) =
1

N(t)
∫ �

0
�(a, t)k(a, t)N(a, t)da Transfer from accidental bequests

Y(t) = K
Y
(t)�(A(t)L

Y
(t))(1−�) Production in manufacturing sector

F(t) = K
H
(t)� (L

H
(t))1−� Production in health sector

�(a, t) = �̃(a)
(
I(a) − �(a)[h(a, t)M(t)]�(a)

) Mortality rate

𝜙(a, t) = {0.51 if a < 65, 0.515 if a ≥ 65} Total coinsurance

30  The health share is calculated as pH (t)H(t)

GDP(t)
=

pH (t)H(t)

pH (t)H(t)+Y(t)
.

31  See Frankovic and Kuhn (2018, 2019) for a calibration of the dynamics of the US economy.
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Fig. 2   Consumption, health expenditure, asset and value of life profiles for the benchmark (blue, solid 
line), for the medical advance in general equilibrium (green, dashed line), and for the medical advance in 
partial equilibrium (red, dotted line). (Color figure online)
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Fig. 3   Health expenditure share of GDP (left panel) and health expenditure per capita (right panel) for 
the benchmark (blue, solid line) and for the unanticipated increase in M in general equilibrium (green, 
dashed line). The cyan, dashed-dotted line indicates the pure shift in individual demand, h(a, t), holding 
the population shares, N(a, t)∕N(t), and the price of medical care, pH(t), constant. The red, dotted line 
denotes the effect holding only pH(t) constant. (Color figure online)
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t ≤ 150 to M(t) = 2 for t > 150.32 The advance of medical technology renders health 
care more effective in lowering mortality.33

Based on a comparison of steady-state values, we find that the innovation raises 
the remaining life-expectancy of a 50 year old by some 1.1 years and induces addi-
tional (discounted) expenditures of about $18,500 over the remaining life-course. 
These magnitudes are broadly in line with evidence provided by Cutler (2007) 
on the impact of revascularisation, as was introduced into the US during the late 
1980s. Cutler finds that for a patient with myocardial infarction, revascularisation 
would raise life-expectancy by about 1 year and induce about $40,000 in additional 
expenditure. While the impact of innovation in our model is, thus, comparable in the 
order of magnitude, it should be borne in mind that the figures are not directly com-
parable, as in Cutler (2007) the values apply (ex-post) to individuals who have had 
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Fig. 4   Market prices, employment share and taxes. (Color figure online)

32  We allow the first 100 periods for the economy to reach the initial benchmark steady-state.
33  To see this note that

𝜇h(a, t) = −�𝜇(a)𝜂(a)𝜖(a)M(t)𝜖(a)h(a, t)𝜖(a)−1 < 0,

𝜇M(a, t) = −�𝜇(a)𝜂(a)𝜖(a)M(t)𝜖(a)−1h(a, t)𝜖(a) < 0,

𝜇hM(a, t) = −�𝜇(a)𝜂(a)(𝜖(a))2[M(t)h(a, t)]𝜖(a)−1 < 0.
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a heart attack, whereas in our model they apply (ex-ante) to the representative agent 
on whom we are building our macroeconomic analysis.

When considering the life-cycle outcomes for a representative individual born 
into a steady-state economy with the more effective medical technology, we find 
the following effects: As Fig.  2 (upper panels) illustrates, the innovation induces 
individuals to reallocate expenditure from consumption to health care. Indeed, the 
drop in consumption is persistent over the life-cycle but the highest ages, where the 
lower mortality risk induces individuals to raise consumption. When it comes to the 
impact of the innovation on the demand for health care (as measured by individual 
health expenditure), a more ambiguous picture emerges: For a given set of prices, 
the expenses for medical care would increase for all age groups by a substantive 
amount (see the red, dotted plot). However, such a partial equilibrium take is inap-
propriate, as the general equilibrium impact of the innovation on the underlying 
demand and supply system needs to be taken into account. Once we do this, much 
of the demand expansion vanishes (see green, dashed plot). This notwithstand-
ing, the medical innovation raises remaining life-expectancy at age 20 from 58.0 
to 59.5 years. Notably, the strong increase in demand for a constant set of prices 
would induce an additional gain of only 0.35 life years. The finding that gains to 
life-expectancy arise from medical progress itself rather than from the ensuing boost 
in health care utilisation is consistent with recent empirical evidence from Skinner 
and Staiger (2015) who show that the marginal returns to medical spending are very 
low once the state of medicine is controlled for.

Table 3   Fit of the benchmark model (data provided for the year 2003) and outcomes for an unanticipated 
medical advance

aThe population share of individuals aged 65 or older as well as the employment-population ratio refers 
to the total population aged 20 or older
bThe capital-output ratio was calculated as the ratio of the capital stock and the gross domestic product 
as provided in the National Income and Production Accounts of the Bureau of Economic Analysis (BEA) 
in 2003. In the model it is calculated as K(t)/GDP(t)
cAverage of the monthly prime loan rates for the year 2003 as reported by the Federal Reserve Bank of 
St Louis (https​://fred.stlou​isfed​.org/serie​s/MPRIM​E)
dAverage annual full-time earnings for the year 2003 as reported in the OECD employment statistics 
(https​://stats​.oecd.org/Index​.aspx?DataS​etCod​e=AV_AN_WAGE)

Name Data Benchmark Medical advance

GDP per capita $39,700 $39,700 $40,000
Health spending per capita $5750 $5720 $6420
Health spending (% of GDP) 14.4% 14.4% 16.0%
Medicare expenditures (% of GDP) 2.3% 2.3% 2.7%
Life expectancy at age 20 58.1 58.0 59.5
Population share 65 years and oldera 17.6% 17.5% 18.4%
Employment-population ratioa 62% 62% 61.5%

Capital-output ratiob 3.1 3.3 3.5

Interest rate 4.12%c 4.3% 3.95%
Annual earnings (full-time) d $42,201 $43,800 $44,700
Medicare payroll tax rate, 𝜏

MC
2.9% 3.4% 3.8%

https://fred.stlouisfed.org/series/MPRIME
https://stats.oecd.org/Index.aspx?DataSetCode=AV_AN_WAGE
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Equation (25) affords some insight into the demand response of individual health 
care to medical progress. Obviously, the increased marginal effectiveness of health 
care through medical progress ( 𝜇hM < 0 ) boosts demand, an effect that is consist-
ent with the empirical evidence in Baker et al. (2003), Cutler and Huckman (2003), 
Wong et al. (2012) and Roham et al. (2014).34 The effect is dampened, however, by 
the ensuing reduction in consumption over the remaining life-time, which tends to 
diminish the VOL (but within the highest age groups) and, thus, the individual’s will-
ingness to pay for health care. Notably, the consumption level drops because a greater 
part of the life-cycle budget is allocated to health care and because the remaining 
budget now needs to be spread over a longer life-time. According to Eq. (28), how-
ever, improved survival chances also induce individuals to shift consumption into 
higher age classes, a force that leads to increasing consumption at the highest ages.

Overall, the reallocation of resources from consumption to health care in 
response to medical progress is substantial in a partial equilibrium context. In gen-
eral equilibrium, it is subject, however, to additional impacts from the price changes 
induced. Most notably, medical progress triggers a reduction in the market inter-
est rate r and an increase in the price for health care pH (which will be discussed 
later). While the reduction in the market interest rate works to increase the value of 
life and, thus, to boost the demand for health care, the negative impact of the price 
increase dominates and dampens the demand increase in general equilibrium.35 We 
find that while per capita health care expenditure would increase by some 30% in 
partial equilibrium, in general equilibrium it increases by only 12.2%, and thus by 
less than a half.36 This also implies that the increase in asset holdings for the pur-
pose of funding the additional health care is much more modest in general equilib-
rium (see Fig. 2, lower left panel).

We can summarise as follows:

Result 1  (i) Medical innovation leads to a reallocation of consumption to health 
care expenditures for all but the highest ages, and to a reallocation of consumption 
to higher ages. (ii) The general equilibrium impact of a mortality reducing medical 
innovation on the demand for health care tends to be dampened by an associated 
price increase.

34  Roham et al. (2014) also show that the bulk of the expenditure increase associated with more inten-
sive treatments lies with the age groups 55 and over with a peak increase within the age group 75–79 
(see their Figure 6). Qualitatively, this is very similar to the age-profile of the expenditure increase in our 
model.
35  A partial equilibrium perturbation of pH enables us to determine the price elasticity of per-capita 
health care expenditures for the benchmark calibration. We find a price elasticity of −0.3 , which is close 
to the estimated mean elasticity of − 0.2 determined in the RAND Health Insurance Experiment (Man-
ning et al. 1987).
36  Fonseca et  al. (2013) find within a partial equilibrium model calibrated to the US context that an 
increase of health care expenditure by 247% and an increase in life expectancy by 9.6 years over the 
time span 1965–2005 could be attributed to medical change. Assuming linearity, this would imply that 
an innovation-induced increase in life expectancy by 1.1 years would be associated with an increase in 
expenditure by 28%, which is consistent with our partial equilibrium result.
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Although per capita demand for health care and the associated expenditure, 
pH(t)H(t)∕N(t) , have increased after the innovation, (see Fig.  3, right panel) the 
magnitude of the effect varies across age-groups. Specifically, those over 90 exhibit 
a very modest demand increase in spite of the innovation. For these cohorts the will-
ingness to pay for care, as measured by the VOL, is so low that the value of the 
survival gains from the innovation barely outweighs the price increase. Finally, and 
strikingly, the medical innovation leads to a reduction in the VOL for all but the very 
youngest and very oldest individuals (see Fig. 2, lower right panel). At face value, 
the lower willingness to pay for survival follows from the reduction in consumption 
over the remaining life-course.

Rewriting the first-order condition for the demand of health care (13) to 
�(a, t) = −�(a, t)pH(t)�

−1
h

 , we find that the VOL is equated to the effective (or qual-
ity-adjusted) price of medical care −�(a, t)pH(t)�−1

h
, the latter depending on both 

the market price and the marginal impact on mortality of health care, −�h . Recalling 
that 𝜇hh > 0, an increasing demand for care would ceteris paribus imply a greater 
effective price. But then it must be true that the medical innovation has lowered 
the effective price for medical care (recall that 𝜇hM < 0) to an extent that it over-
compensates the increase in the market price, pH(t). Notably this finding is consist-
ent with evidence produced by Cutler et al. (1998), Lucarelli and Nicholson (2009), 
Dunn (2012), Lakdawalla et al. (2015) and Hult et al. (2018) who find for a variety 
of treatment settings that while list prices have been subject to inflation [or stag-
nation in case of the anti-cholesterol drugs considered by Dunn (2012)], quality-
adjusted prices have seen much lower increases, have remained constant, or have 
declined (in the majority of cases).37

From this perspective, the decline in the VOL following the medical innovation can 
be interpreted in terms of basic consumption theory: An optimal choice between the two 
goods, survival and consumption, is given if the marginal rate of substitution between sur-
vival and consumption, i.e. the VOL, equals the price of survival in terms of consumption 
goods, i.e. the effective price of medical care. But then a decrease in the price of survival 
triggers a reallocation from consumption to survival (through the purchase of additional 
health care), implying a decline in the marginal rate of substitution and, thus, in the VOL.

Again, we can summarise

Result 2  Medical innovation leads to a reduction in the VOL and in the effective (qual-
ity-adjusted) price for medical care even as it boosts the nominal price for medical care.

The innovation at t = 150 induces an increase in the health expenditure share of 
the GDP by some 1.6 percentage points (Fig. 3, left panel; and Table 3). Underlying 
this increase in the health share is a strong increase in per capita health expenditure 

37  Hult et al. (2018) provide a detailed study of the price patterns for innovative health care treatments. 
They find that while innovative treatments tend to have a higher quality-adjusted price than incumbent 
treatments at the point of their market entry, a reduction of the price in excess of 4% by the time that the 
innovative technology becomes incumbent is sufficient for the price of successive incumbent treatments 
to decline over time. While our macro approach is lacking the detailed modelling of the price wedge 
between innovative and incumbent treatments, it is fully consistent with the price dynamics that arise for 
quality-improvements in a sequence of incumbent products.
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by some 12.2% (in the new steady state). The right panel in Fig. 3 decomposes the 
increase in per capita health expenditure into an increase in individual demand at each 
given age, h(a, t), given the pre-innovation age-structure and price for health care (cor-
responding to the cyan, dashed-dotted line), the additional impact of a changing age-
structure, as measured by the age-shares N(a, t)∕N(t) (corresponding to the distance 
between the cyan, dashed dotted and the red, dotted lines), and the increase in the price 
for health care, pH(t) (corresponding to the distance between the red, dotted and the 
green, dashed line). Overall, the instantaneous boost to demand amounts to a 6.7% 
increase in medical expenditure per capita (=55% of the total increase), with a further 
2.8% increase following during the adjustment process (=23% of the total effect). The 
reason for why individual demand increases over and above the instantaneous impact 
lies with the fact that later born cohorts have been able to accumulate additional sav-
ings for the purchase of health care. The shift in the population structure toward higher 
ages with a greater demand for health care amounts to an expenditure increase by 1.8% 
(=15% of the total effect), with the price increase adding another 0.9% (=7% of the 
total effect). While a total of 78% of the increase in per capita health expenditure is, 
thus, explained by the boost to individual demand, induced population ageing and 
price inflation play a significant part over the transition phase.

The shift from final goods production to health care following the innovation 
leads to a reduction of the employment share in the manufacturing sector, a reduc-
tion in the interest rate and an increase in the wage rate (see Fig. 4). According to 
Eqs. (31) and (32) the change in the factor prices translates into an increase in the 
price of health care, which is underlying the dampening of the demand response 
to innovation.38 Since the increase in the price of health care is driven by changes 
in the factor prices and, thus, by changes in the marginal cost of producing health 
care, it would also arise in a setting in which the price is regulated and set in pro-
portion to the unit cost of producing health care. Furthermore, the social security 
payroll tax rises, following the pronounced increase in longevity, despite the simul-
taneous increase in the gross wage. Similarly, Medicare payroll taxes increase as a 
consequence of both greater health spending and the boost in longevity.

These sectoral and price adjustments notwithstanding, the medical advance has 
very little impact on GDP per capita (see Table 3). The survival gains induced by 
the innovation are greatest among older cohorts and, for a fixed retirement age, lead 
to a 1% reduction in the employment-population ratio, L(t)∕N(t).39 At the same 
time, however, the expansion of the expected retirement period and the prospect 
of greater health expenditures in the presence of a more effective medical technol-
ogy trigger additional savings, translating into a 4% increase in the capital stock 
per capita, K(t)∕N(t). These channels have been confirmed empirically by Bloom 
et al. (2007) and De Nardi et al. (2010). Overall, this leads to capital deepening, i.e. 
to a higher K(t)∕L(t) , which in optimum induces a shift of resources to the more 

38  The increase in the price of health care is well in line with the fact that the US consumer price index 
(CPI) for medical care consistently grows in excess of the CPI for all items (see US Bureau of Labor 
Statistics).
39  The medical innovation raises the remaining life expectancy at age 20 by 1.0 years from 58.04 years 
(and, thus, by 1.3%) and remaining life expectancy at age 65 by 0.81 years from 18.02 years (and, thus, 
by 4.5%).
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labour intensive health care sector. As we have shown in Sect. 5, both the increase 
in K(t)∕L(t) and the shift in resources to the health care sector lead to an increase 
in GDP per worker. Our numerical analysis shows that for the US context we are 
studying, this effect is strong enough to compensate (even mildly over-compensate) 
the decline in the employment rate.

Thus, we can summarise the following set of insights.

Result 3  (i) About 78% of the increase in per capita health care expenditure follow-
ing a medical innovation are due to an increase in individual demand, about 15% 
are due to induced population ageing, and 7% are due to a price increase. (ii) Medi-
cal innovation tends to stimulate additional saving. (iii) The ensuing increase in the 
economy-wide capital intensity, combined with the shift of employment into the 
health-care sector increase the economy-wide productivity, i.e. GDP per worker, by 
enough to compensate the reduction of the employment-population ratio, leading to 
little impact on GDP per capita.

It is worth noting that the transitional dynamics following a medical innova-
tion tie in closely with recent findings about the impact of capital deepening on the 
structural composition of an economy. Acemoglu and Guerrieri (2008) show for a 
two-sector economy that capital deepening, i.e. an increase in the economy-wide 
capital intensity tends to raise the output share of the capital-intensive sector but 
also induces a shift of both labour and capital inputs into the labour intensive sec-
tor. These shifts are accompanied by an increase in the wage rate, as is the case in 
our model. Acemoglu and Guerrieri (2008) go on to show that the same process is 
underlying unbalanced growth whenever productivity growth is larger in the capital-
intensive sector (see also Baumol 1967).

While the transition to a new equilibrium after a medical innovation in our 
model follows a similar process, this is for rather different reasons. First, technical 
progress occurs in the health care sector; second, and importantly, medical pro-
gress works through the household side of the economy: Through its impact on 
survival and the consequent shift of the age-structure toward older cohorts, medi-
cal progress triggers an increase in savings, and, thus, in the per capita supply of 
capital while at the same time reducing the per capita supply of labour. Notably, 
this impact is present even when holding the aggregate demand for health care 
fixed. As we have seen, capital deepening and the sectoral shift combine to render 
the overall economy more productive, as measured by GDP per worker.

7 � Conclusion

We have set out an OLG model built around the endogenous demand and supply of 
health care. In contrast to much of the received macroeconomic literature on health 
and health care, our model involves a rich model of the life-cycle, based on a real-
istic pattern of mortality. This allows us to characterise in detail the individual life-
cycle allocation of consumption and health care, and to construct macroeconomic 
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aggregates that are based on a realistic age-structure of the population. At the micro-
economic level, we can study in detail how the demand for health care responds 
to medical progress, taking into account induced price changes and changes in the 
willingness-to-pay for health care, as summarised by the value of life.

Based on a calibration of the model to the US economy in the year 2003, our 
numerical analysis is designed to provide a quasi-experimental identification of the 
channels through which changes in medical technology are transmitted between 
individual choices and macroeconomic dynamics. Our numerical experiments yield 
a number of policy relevant, and potentially challenging, insights.

First, we find that a medical innovation that increases the remaining life expec-
tancy at age 20 by some 1.5 years, boosts health expenditure per capita by some 
12.2%, with 0.9 percentage points owing to price inflation, 1.8 percentage points 
owing to a shift in the age-structure towards older individuals with greater consump-
tion of health care, and 9.5 percentage points owing to an increase in individual 
demand. Our finding that the expansion in health expenditure is mostly driven by 
an increase in utilisation is well in line with recent evidence (Bundorf et al. 2009; 
Chernew and Newhouse 2012). However, our model also suggests that in spite of its 
modest contribution to expenditure growth in accounting terms, the increase in the 
price for health care has a significant impact on demand as described in the following.

Second, more than half of the partial equilibrium impact on the individual 
demand for health care of a mortality reducing innovation is neutralized in general 
equilibrium by an increase in the price for medical care. This result indicates a need 
for a general equilibrium framework when it comes to assessing the impact of medi-
cal change on health care expenditure, as otherwise findings may be biased.

Third, for an economy with social security and health care organised in similar-
ity to the US (as of 2003), a costless medical innovation does not have a negative 
impact on economic performance, as measured by GDP. This is despite a reduc-
tion in the employment rate due to the concentration of survival gains within the 
population of pensioners. The main mitigating channel is the accumulation of addi-
tional savings/capital for the purpose of financing consumption over an extended 
life-course and purchasing more effective health care at a higher price. Indeed, this 
channel is very much in line with evidence for the US on savings related to health 
expenditures in old age (e.g. De Nardi et al. 2010). Overall, the capital deepening 
of the economy combines with a shift in economic activity to the labour intensive 
health care sector, and translates into a higher GDP per worker. For our calibration, 
this effect more than compensates the decline in the employment rate. Two caveats 
are worth of note here: The cost of medical innovation, e.g. through the absorption 
of production factors within a medical R&D sector may after all induce a drag on 
economic growth (Jones 2016).40 In addition, the question as to whether additional 
savings are induced in the wake of a medical innovation depends on the design of 
the social security system. To the extent that expenditures during retirement are 
financed through public transfers, the savings response is weaker (Bloom et  al. 

40  Note, however, that within a decentralised economy with R&D-driven growth a la Romer (1990) the 
increase in the capital intensity of final goods production that follows the absorption of (relatively more) 
labour by a growing health care sector provides a stimulus for conventional R&D (Kuhn and Prettner 
2016).
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2007), implying that the accumulation of additional capital may not be sufficient to 
offset the reduction in the employment rate. Additional offsetting impacts arise if 
health improvements not only translate into lower mortality but also into a greater 
propensity to provide labour into older ages (Kuhn and Prettner 2016).

Fourth, mortality reducing medical innovations tend to come with a reduction 
in the value of life over large parts of the life-course. This finding has two inter-
esting ramifications. At face value, the reduction in the value of life arises from a 
reallocation by the individual of resources from consumption to health care. While 
per se, this is reflecting an efficient response by the individual to the availability of 
more effective health care, it also implies that individuals may be less willing to 
prevent risks to their life. Thus, some of the benefits of medical innovations in terms 
of improved survival prospects may well be offset by the adoption of less healthy 
life-styles.

Finally, the reduction in the value of life also implies a reduction in the effec-
tive (quality-adjusted) price of medical care as triggered by the innovation in spite 
of a parallel increase in its nominal price. This is in line with evidence for the US, 
as provided in Cutler et al. (1998), Lucarelli and Nicholson (2009), Dunn (2012), 
Lakdawalla et al. (2015) and Hult et al. (2018). Our analysis also shows that these 
divergent price trends are consistent with medical progress coming in the form of 
demand-increasing product innovation rather than process innovation.

In the present work, we have abstracted from long-run trends to productiv-
ity and population in order to avoid that these trends obfuscate the identification 
of the transmission channels of medical progress. Thus, we would not claim our 
findings to be precise in quantitative terms. This is in particular in the light of 
the findings by Fonseca et al. (2013) and Frankovic and Kuhn (2018, 2019) that 
medical progress and income growth are highly complimentary in boosting the 
demand for health care. We would maintain, however, that by laying out the anat-
omy of medical progress at the individual, sectoral and macroeconomic level our 
work provides a foundation for understanding the mechanics behind the quantita-
tively richer numerical analyses.
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Appendix 1: Optimal Solution to the Individual Life‑Cycle Problem

The individual’s life-cycle problem, i.e. the maximisation of (1) subject to (2) and 
(5) can be expressed by the Hamiltonian

leading to the first-order conditions

and the adjoint equations

Optimality conditions (12) and (13): Evaluating (35) at two different ages/years (a, t) 
and 

(
â, t + â − a

)
 , equating the terms and rearranging gives us

which is readily transformed into the Euler equation (12) as given in the main body 
of the paper.

Inserting (35) into (36) allows to rewrite the first-order condition for health 
care as

Integrating (37) we obtain

Using this, we can express the private VOL as

H = uS − �S�S + �k
(
rk + lw − c − �pHh − � + � + s

)
,

(35)Hc = ucS − �k = 0,

(36)Hh = −�S�hS − �k�pH = 0,

(37)
⋅

�S = (� + �)�S − u,

(38)
⋅

�k = (� − r)�k.

(39)

uc
(
â, t + â − a

)
uc(a, t)

=
�k
(
â, t + â − a

)
�k(a, t)

S(a, t)

S
(
â, t + â − a

)

= exp

{
∫

â

a

[
� + �

(
̂̂a, t + ̂̂a − a

)
− r

(
t + ̂̂a − a

)]
d̂̂a

}
,

(40)−�h(a, t)
�S(a, t)

uc(⋅)
= �(a, t)pH(t).

�S(a, t) = ∫
�

a

u
(
â, t + â − a

)
exp

[
−∫

â

a

(� + �)d̂̂a

]
dâ.
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Substituting from (39) and rearranging we obtain (14) as given in the main body of 
the paper. Inserting this into ( 40) gives condition (13) in the main body of the paper.

Dynamics (17) and (18): Total differentiation of (35) with respect to age gives

From this we obtain the consumption dynamics (17) as given in the main body of 
the paper.

Holding prices and the state of medical technology constant, total differentiation 
of −�h(a, t)�(a, t) − �(a, t)pH(t) = 0 with respect to age gives

Substituting pH = −�h��−1 from (13) and rearranging, we obtain the dynamics for 
health care as reported in (18) within the main body of the paper.

Appendix 2: Characterisation of General Equilibrium

For each period t we have the following unknown variables:

•	 inputs 
{
KY (t),KH(t), LY (t), LH(t)

}
,

•	 prices 
{
r(t),w(t), pH(t)

}
,

•	 aggregate demand {C(t),H(t)},
•	 aggregate net saving, equivalent to the change in the capital stock 

⋅

K(t),

summing up to 10 variables. These are determined through

•	 4 first-order conditions on factor inputs (20)-(23), which give the fac-
tor demand functions {Kd

Y
(r,w;A,M,B),Kd

H

(
r,w, pH;M,B

)
, 

Ld
Y
(r,w;A,M,B), Ld

H

(
r,w, pH;M,B

)
}, depending on prices as well as on technol-

ogy and population {A,M,B} ;41

•	 a set of first-order conditions (12) and (13) for a ∈ [0,�] , which together with 
the individual’s life-cycle budget constraint determine the age-specific lev-
els of consumption c(a, t) and health care h(a, t). Aggregation according to (6) 

�(a, t) ∶=
�S(a, t)

uc(a, t)

= ∫
�

a

uc
(
â, t + â − a

)
uc(a, t)

u
(
â, t + â − a

)

uc
(
â, t + â − a

) exp

[
−∫

â

a

(� + �)d̂̂a

]
dâ.

uccS
⋅

c + uc

⋅

S −
⋅

�k = uccS
⋅

c − uc�S − (� − r)�k = uccS
⋅

c − (� − r + �)ucS = 0.

−

(
�hh

⋅

h + �ha

)
� − �h

⋅

� − pH

⋅

� = 0.

41  Note here that Kd
Y
(r,w;A,M) and Ld

Y
(r,w;A,M) may vary with M and B through its impact on the 

aggregate supply of effective labour L.
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and (7) gives the demand for consumption C
(
r,w, pH ;M,B,�

)
 and health care 

Hd
(
pH;M,B,�

)
, depending on the three prices as well as on technology, popula-

tion and the vector of co-insurance rates;42

•	 4 market clearing conditions 

 which determine the set of equilibrium prices 
{
r∗
(
A,M,B,�,

⋅

K

)
, 

w∗

(
A,M,B,�,

⋅

K

)
, p∗

H

(
A,M,B,�,

⋅

K

)}
 and aggregate net saving, as captured by 

⋅

K.

Appendix 3: Equilibrium Relationships with Cobb–Douglas 
Technologies

Consider the Cobb–Douglas-specifications in (29) and (30). From the first-order 
conditions (20)–(23) we obtain the (implicit) factor demand functions

Combining (41) with (42) and (43) with (44) we obtain the equilibrium capital 
intensity

Kd
Y
(r,w;A,M,B) + Kd

H

(
r,w, pH;M,B

)
= K,

Ld
Y
(r,w;A,M,B) + Ld

H

(
r,w, pH;M,B

)
= L(M,B),

F(Kd
H

(
r,w, pH;M,B

)
, Ld

H

(
r,w, pH;M,B

)
) = Hd

(
pH;M,B,�

)
,

Y(Kd
Y
(r,w;A,M,B),ALd

Y
(r,w;A,M,B))) = C

(
r,w, pH;M,B,�

)

+
⋅

K + �K,

(41)Kd
Y
(t) =

�Y(t)

r(t) + �
,

(42)Ld
Y
(t) =

(1 − �)Y(t)

w(t)
,

(43)Kd
H
(t) =

�pH(t)F(t)

r(t) + �
,

(44)Ld
H
(t) =

(1 − �)pH(t)F(t)

w(t)
.

42  Through the life-cycle budget constraint and the individual Euler equation the demand function C(⋅) is 
also contingent on the expectation about future prices over the remaining life-course. The same applies to 
the demand function Hd(⋅) for which the future price paths filter in through the VOL.
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and, thus, Kd
Y
(t) = k∗

Y
(t)Ld

Y
(t). Using k∗

Y
(t) in (29) to rewrite Y(t) = Ld

Y
(t)A(t)1−�

(
k∗
Y

)� and 
inserting this in (42) we can solve for the equilibrium wage as a function of the interest rate

This, in turn, determines the capital intensities k∗
Y
(t) = k̂Y (r(t);A(t)) 

and k∗
H
(t) = k̂H(r(t);A(t)) . Using the market clearing condition 

F
(
p∗
H
(t);K∗

H
(t), L∗

H
(t)
)
= Hd

(
p∗
H
(t);M(t),B(t)

)
 together with (43) and (44) we obtain 

the general equilibrium price for health care as

Reinserting this, we obtain the equilibrium utilisation of health care, as
Hd

(
p∗
H
(t);M(t),B(t)

)
= Ĥ(r(t);A(t),M(t),B(t)) . Using (44) we now can deter-

mine L∗
H
(t) = L̂H

(
p∗
H
(t),w∗(t),H∗

d
(t)
)
= L̂H(r(t);A(t),M(t),B(t)) . The labour market 

equilibrium then determines

where L(t) = L̂(r(t);A(t),M(t),B(t)).43 This implies the restriction

Given this is satisfied, we now have all inputs and outputs as functions of r(t) and the 
states {A(t),M(t),B(t)}.

Appendix 4: Impact of Medical Technology

Impact on the demand for health care and on the VOL: Totally differentiating the 
first-order condition −�(a, t)pH(t) − �h(a, t)�(a, t) = 0 with respect to the state of 
technology M(t) gives

which transforms to

(45)k∗
Y
(t) ∶=

Kd
Y
(t)

Ld
Y
(t)

=
�

1 − �

w(t)

r(t) + �
,

(46)k∗
H
(t) ∶=

Kd
H
(t)

Ld
H
(t)

=
�

1 − �

w(t)

r(t) + �
.

(47)w∗(t) = ŵ(r(t);A(t)) = (1 − �)A(t)

[
�

r(t) + �

] �

1−�

.

(48)p∗
H
(t) = p̂H

(
r(t),w∗(t),H∗

d
(t)
)
= p̂H(r(t);A(t),M(t),B(t)) =

(r + �)�w1−�

��(1 − �)1−�
.

L∗
Y
(t) = L(t) − L∗

H
(t),

L̂(r(t);A(t),M(t),B(t)) ≥ L̂H(r(t);A(t),M(t),B(t)).

−�dpH −
(
�hhdh + �hMdM

)
� − �hd� = 0

43  Note that through the impact of the demand for health care on the pattern of survival, labour supply 
becomes a function of the prices and the states of the economy.
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The impact of technology on the private value of life, as defined in (14), is given by

where

Note, that (1 − uucc

u2
c

) is always positive: Assuming b is sufficiently large and c > c0 , 
u(c) = b +

(c−c0)
1−𝜎

1−𝜎
> 0 , uc = (c − c0)

−𝜎 > 0 and ucc = −𝜎(c − c0)
−𝜎−1 < 0 . Equa-

tion (25) is then obtained by inserting (50) into (49).
Impact on the wage rate and price for health care:44 In the following we derive 

Eq. (31) and (32). We use Eq. (47) from “Appendix 3” and obtain

Hence, given Eq. (48), it then holds, that

Impact on the GDP per worker: GDP is defined as the sum of output value in the 
health care sector, phF , and in the final good sector, Y. Hence, GDP per unit of 
labour is given by

(49)

dh(a, t)

dM(t)
=

−1

�hh

[
�hM +

1

�(a, t)

(
�
dpH(t)

dM(t)
+ �h(a, t)

d�(a, t)

dM(t)

)]

=
−1

�hh

[
�hM + �h(a, t)

(
1

�(a, t)

d�(a, t)

dM(t)
−

1

pH(t)

dpH(t)

dM(t)

)]
.

(50)

d𝜓(a, t)

dM(t)
= ∫

𝜔

a

dv
(
�a, t + �a − a

)
dM(t)

R
(
�a, a

)
+ v

(
�a, t + �a − a

)dR(�a, a)
dM

d�a

= ∫
𝜔

a

dv
(
�a, t + �a − a

)
dM(t)

R
(
�a, a

)

− v
(
�a, t + �a − a

)
R(�a, a)∫

�a

a

dr(t + ̂̂a − a)

dM
d ̂̂ad�a

dv(a, t)

dM(t)
=

(
ucuc − uucc

u2
c

)
dc(a, t)

dM(t)
=

(
1 −

uucc

u2
c

)
dc(a, t)

dM(t)
.

dw

dM
= −A�

1

(1−�) (r + �)
1

(�−1)
dr

dM
= −A

(
�

r + �

) 1

(1−�) dr

dM
= −

�
1 − �

w

r + �
dr

dM
.

dpH

dM
=

1

��(1 − �)1−�)

[
�(r + �)�−1

dr

dM
w1−� + (r + �)�(1 − �)w−� dw

dM

]

=
1

��(1 − �)1−�)
dr

dM
(r + �)�−1w1−�

[
� − (1 − �)

�
1 − �

]

=
pH

r + �

� − �

1 − �
dr

dM
.

44  In the following, we drop the time index for notational convenience.
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Defining the employment share of the final goods sector as � ∶=
LY

L
 one can then 

show that

where we used Eq. (29) together with

which follows from dividing Eq. (44) by (42) and rearranging. The economy-wide 
capital-intensity can be expressed as

where Eq. (52) is employed. Using, in addition, (45) we can write

Substituting this into (51) and rearranging we obtain

as reported in Eq. (33). Taking the total derivative with respect to medical technol-
ogy then yields

as reported in in Eq. (34) in the main body of the paper. Note, that the denominator 
[1 − � + (� − �)�][�(1 − �) + (� − �)�] is positive, as follows from Eq. (53).

GDP

L
=

1

L

(
pHF + Y

)
=

Y

L

(
pHF

Y
+ 1

)
.

(51)
GDP

L
=

[
1 − �
1 − �

1 − �
�

+ 1

]
A1−�

(
KY∕LY
K∕L

)�

�
(
K

L

)�

(52)
pHF

Y
=

1 − �
1 − �

1 − �
�

(53)

K

L
=

KY + KH

LY + LH
=

�Y + �pHF

(1 − �)Y + (1 − �)pHF
w

r + �

=
(1 − �)� + (� − �)�

(1 − �)(1 − �)

w

r + �

KY∕LY
K∕L

=
�(1 − �)

(1 − �)� + (� − �)�
.

GDP

L
=

1 − � + (� − �)�

1 − �
A1−�

[
�(1 − �)

�(1 − �) + (� − �)�

]�(
K

L

)�

d

dM

(
GDP

L

)
= (� − �)

GDP

L

[
1

1 − � + (� − �)�
−

�
�(1 − �) + (� − �)�

]
d�
dM

+ �
GDP∕L

K∕L

d

dM

(
K

L

)

=
−(1 − �)(� − �)2(1 − �)

[1 − � + (� − �)�][�(1 − �) + (� − �)�]
GDP

L

d�
dM

+ �
GDP

K

d

dM

(
K

L

)
,
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Appendix 5: Solving the Numerical Problem

We pursue the following steps towards tracing out the numerical solution, 
sketched here for the benchmark scenario: 

1.	 We derive from the first-order condition for consumption (12) the relationship 

2.	 We derive the life-cycle budget constraint 

 with R(a, 0) as given by (16). We then insert (54) and obtain the consumption 
level 

 for an individual born at t0, contingent on the stream of health care, h
(
a, t0 + a

)
, 

and the set of prices 
{
w
(
t0 + a

)
, r(t0 + a), pH

(
t0 + a

)}
 over the interval [

t0, t0 + �
]
.

3.	 We derive from the first-order condition for health care (13 ) a vector of age-
specific demand levels 

 for all a ∈ [0,�].
4.	 We show in “Appendix 3” that the set of prices 

{
w
(
t0 + a

)
, pH

(
t0 + a

)}
 as well 

as all input and output quantities can be expressed in terms of the interest rate 
r(t0 + a) alone.

5.	 Using (54) together with (56) we can calculate the life-cycle allocation for con-
sumption, c

(
a, t0 + a

)
 , depending on the allocation for health expenditures, 

h(a, t0 + a) , ∀a ∈ [0,�] and on the set of prices 
{
w
(
t0 + a

)
, r(t0 + a), pH

(
t0 + a

)}
 

over the interval 
[
t0, t0 + �

]
 . Vice versa, the allocation of health expenditures can 

be calculated from the allocation of consumption and the macroeconomic prices.

(54)

[
c
(
a, t0 + a

)
− c0

]−𝜎

=
[
c
(
0, t0

)
− c0

]−𝜎
exp

{
∫

a

0

[
𝜌 − r(t0 + â) + 𝜇(â)

]
dâ

}
.

∫
�

0

[
w
(
t0 + a

)
l(a) − c

(
a, t0 + a

)
+ �(a, t)

−�(a, t)pH
(
t0 + a

)
h
(
a, t0 + a

)
− �(a, t) + s(t0 + a)

]
R(a, 0)da = 0,

(55)

c
(
0, t0

)
− c0

=

∫ 𝜔

0

[
w
(
t0 + a

)
l(a) − c0 + 𝜋(a, t)

−𝜙(a, t)pH
(
t0 + a

)
h
(
a, t0 + a

)
− 𝜏(a, t) + s(t0 + a)

]
R(a, 0)da

∫ 𝜔

0
exp

{∫ a

0

[
1−𝜎

𝜎
r(t0 + â) −

𝜌+𝜇(â)

𝜎

]
dâ

}
da

(56)

h(a, t0 + a)

=

(
𝜆s(a, t0 + a)

[
c(a, t0 + a) − c0

]𝜎
𝜇̃(a)𝜂(a)𝜖(a)M(t0 + a)𝜖(a)

𝜙(a, t)pH(t0 + a)

) 1

1−𝜖(a)
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6.	 We apply these calculations on initial guesses of c and h iteratively. We then use 
the results as an initial guess to the age-structured optimal control algorithm, as 
presented in Veliov (2003). This yields an optimal allocation of individual con-
sumption and health expenditures contingent on an initially assumed r(t0 + a).

7.	 Drawing on this, we apply the following recursive approximation algorithm: 
(1) Guess an initial interest rate r(t0 + a) and derive the optimal life-cycle 
allocation. (2) Based on this, calculate the market interest rate r∗(t0 + a) from 
the capital market equilibrium Kd

(
r(t0 + a), ŵ

(
r(t0 + a)

))
= Ks

(
r(t0 + a)

)
. 

(3) Adjust the initial interest rate, so that it approaches r∗(t0 + a) , e.g. by set-
t i n g  r1(t0 + a) ∶= r0(t0 + a) + �(r∗(t0 + a) − r0(t0 + a)), � ∈ (0, 1] .  T h e 
process converges to an interest rate for which households optimise and cap-
ital demand equals capital supply. The output market clearing condition, 
Y(t0 + a) = C(t0 + a) + K̇(t0 + a) + 𝛿K(t0 + a) then determines the dynamics of 
the capital stock to the next period. (4) This process is reiterated in a recursive 
way, employing a solution algorithm based on Newton’s method. Equations (54)–
(56) allow us to verify ex-post an optimum life-cycle allocation for the focal 
cohort born at t0 . While the numerical algorithm cannot determine in a precise 
way the optimal allocation for other cohorts, it nevertheless structures the alloca-
tion in a way that approximates the optimum for all cohorts.

We solve the model over a time horizon of 300 periods. The number of periods is 
chosen to be this large in order for the initial and final conditions of the model simu-
lation not to matter for the medical innovation occurring at t = 150 . This implies, 
that the economy is in steady state well before the shock occurs, and that the transi-
tion to the new steady state is fully achieved before the end of the simulated time 
horizon.
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