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Abstract
This study examines the portfolio optimization problem by exploiting daily data of 
10 international Exchange Trade Funds (ETF) from 2012 to 2022. We extend the 
Black-Litterman (BL) approach using ARMA-GARCH-copula-based expected 
returns as a proxy for investor views and use the CVaR metric as a risk measure 
in the optimization procedure. The BL approach provides a Bayesian methodology 
for combining the equilibrium returns and the investor views to produce expected 
returns. We use Regular Vine (R-vine) copula since it provides a flexible multivari-
ate dependency modeling. The suggested approach is compared against the copula-
CVaR portfolio, which likewise a BL copula approach avoids excessive corner solu-
tions that many optimization approaches would generate in case of extreme values of 
estimated parameters. We compare the performance of these two approaches using 
out-of-sample back-testing against two benchmarks: Mean–Variance optimizations 
(MV) and equal weights portfolio (EW). To further reduce the sensitivity of consid-
ered strategies to input parameters, we evaluate out-of-sample performance at three 
levels of maximum weight constraints: 30%, 40%, and 50%. Moreover, in this paper, 
we consider different levels of view confidence—τ in the Black-Litterman model as 
it significantly affects the obtained results and inferences. We calculate and report 
the portfolios’ tail risks, maximum drawdown, turnover, and the break-even point 
for all optimization approaches. Our empirical analysis indicates better performance 
for the CBL portfolio regarding lower tail risk and higher risk-adjusted returns, and 
the copula-CVaR portfolio is better regarding lower turnover and higher break-even 
point.
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1  Introduction

Researchers and practitioners have long been disputing the effective ways of allocating 
the assets in an investment portfolio. We assume that an efficient portfolio provides 
the best-expected return on a given level of risk that the investor is willing to take. 
The first quantitative treatment of the trade-off between profit and risk refers to Harry 
Markowitz (1952), pioneering Modern Portfolio Theory (MPT), where the probabilis-
tic formalization of "return" and "risk" concepts were introduced. The main problem of 
the Markowitz model is the assumption of linear dependence between asset returns. In 
practice, estimation errors of the expected returns and the covariance matrix of these 
returns might significantly affect the asset allocations. A small change in the estimates 
may lead to a drastic change in portfolio weights. Moreover, during the past two dec-
ades, researchers have come to an agreement on several stylized facts about financial 
markets, i.e., heavy tails in asset return distributions, volatility clustering, etc. (Cont. 
2001; Mantegna et  al. 2000). Therefore, the application of the classical Markow-
itz theory with the assumption of the normality of the logarithmic return distribution 
might lead to significant drawdown during nonstable periods of the economy. Several 
approaches e.g., Bayesian framework, higher moments, robust portfolio optimiza-
tion, tail risk optimization, and weight constraints have been developed to alleviate the 
effects of estimation error.

A major novelty of this paper is that the suggested copula-based Black-Litterman 
portfolio’s performance is compared against the copula-CVaR portfolio performance 
since they share a common part of multidimensional distribution modeling and avoid 
excessive corner solutions that many optimization approaches would generate in case 
of extreme values of parameters’ estimates. Moreover, to further control sensitivity to 
input parameters we evaluate the performances of optimization strategies at three levels 
of weight constraints (30%, 40%, and 50%). Weights constraints are often encountered 
in practice and can be inherent to the internal investing fund policy or set by regulators 
in the case of bank-based markets. Moreover, instead of setting the level of confidence 
exogenously as usually done in other papers (Beach and Orlov 2007; Sahamkhadam 
et al. 2022), we test a range of τ values, as the level of confidence may significantly 
affect the obtained results and inferences. The confidence in estimates determines the 
extent to which the model will deviate from the equilibrium weightings. We also sup-
port our results with the classical mean–variance and equally weighted optimization 
results as benchmarks. In addition, we provide the tail risk measures, maximum draw-
down for 1 day and 3 months, portfolio turnover, and the break-even transaction cost of 
all optimization approaches.

In Sect. 2 we present a literature review, notations, and definitions. The data we use 
are briefly discussed in Sect. 3. In Sect. 4 we describe the methodology. Section 5 sum-
marizes the empirical results of the analyses, while Sect. 6 concludes and provides sug-
gestions for future research.
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2 � Literature review

Modern portfolio management and asset pricing theory based on the famous 
Markowitz portfolio optimization concept makes intuitive sense and logic. Nev-
ertheless, the Markowitz model has a number of disadvantages that inspired the 
clarifications in the existing approach and the development of new portfolio opti-
mization approaches.

In particular, the proxy of risk is like Achilles’ heel. Among the vast majority 
of risk measures innovations, only a few have been widely accepted by practition-
ers, despite their active interest in this area. Traditionally standard deviation has 
been considered as the main measure of the risk of an asset or portfolio of assets 
and is widely used in different coefficients like the Sharpe ratio and models like 
Black–Scholes Option Pricing Model. However, the volatility measure implies 
normal distribution of underlying data, which makes it a weaker instrument for 
risk estimation when this condition is not met.

Another popular tool for managing risk is VaR which was introduced by 
experts of the investment bank J.P. Morgan after the 1987 crisis when all the basic 
model assumptions concerning the correlation of stock markets, currencies, and 
bonds were violated due to the market inefficiency. Initially, VaR was designed 
in order to include the likelihood of extremely high losses that are observed on 
historical data in the appraisal of market risk. VaR can be defined as a meas-
ure of the maximum potential loss that the portfolio of financial instruments will 
suffer from a given probability over a defined period. Soccorsi (2016) concludes 
that despite the criticism of VaR for highly volatile markets, the risk is meas-
ured accurately. The use of VaR for market risk quantification is also mentioned 
in Basel II regulatory requirements. In the academic literature, there are many 
works that exploited this risk indicator in terms of investment decisions (Basak 
and Shapiro 2001).

However, Artzner et  al. (1999) shows that the VaR measure suffers from some 
theoretical limitations and requires additional adjustments for emerging capital mar-
kets (Teplova and Ruzanov 2019). First, VaR is not a convex and smooth function in 
the case of discrete distributions and therefore can have many local extremes. Sec-
ond, VaR is not a coherent measure of risk. In particular, there may be a situation 
where portfolio diversification may increase the value of VaR (subadditivity will be 
violated). CVaR is proposed as the alternative measure to VaR and measures how 
much investment is lost on average given that the VaR limit is exceeded. Rockafellar 
and Uryasev (2000, 2002) analyze portfolio optimization with the expected short-
fall as a measure of risk. They show that CVaR can be used in conjunction with an 
optimization algorithm reducing the problem to a linear programming problem. It 
allows for optimizing a portfolio with large dimensions and gives stable numerical 
implementation. CVaR as a measure of risk has become a big research interest deal-
ing with portfolio management and other economic and financial problems (Mulvey 
and Erkan 2006; Huang et al. 2008; Zhu and Fukushima 2009).

Another important question that takes the attention of many researchers and 
practitioners in portfolio optimization problems is modeling the dependencies 
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between financial assets. The linear correlation metric provides no accurate esti-
mation especially during unstable periods when the asymmetry of the financial 
assets increases and distributions strongly deviate from normal distributions 
(Erb et  al. 1994; Longin and Solnik 2001; Ang and Chen 2002; Patton 2006). 
The first stylized fact about financial returns is that they have heavy-tailed dis-
tribution. The second is the clustering volatility, meaning that there are periods 
of low volatility and periods where volatility is high. The importance of taking 
this effect into account when predicting the future volatility of returns inspired 
the creation of a new class of GARCH models, formulated by Engle (1982), and 
Bollerslev (1986). The asymmetric volatility in financial market returns has been 
widely documented and indicates a different response to positive and negative 
events. Traditionally, negative events cause a greater spillover in volatility than 
positive, which is empirically proven by Nelson (1991). The asymmetric volatil-
ity is associated with the financial leverage effect: the company’s debt increases 
after the initial fall in the stock market and, consequently, leads to an increase in 
the risk of this specific security, further increasing the volatility of the market 
(Black 1976; Christie 1982).

Copula models take step toward preserving mentioned stylized facts in mul-
tidimensional distribution modeling, allowing simulating any types of structural 
dependencies in both the upper and lower tails of the distributions (Embrechts et al. 
2003; Lee and Long 2009). The theory of copula functions originates from the work 
of Hoeffding (1940) and Sklar (1959) but its development and widespread applica-
tion occurred only by the end of the 1990s. The copula is a multidimensional distri-
bution function defined on an n-dimensional unit cube. According to Sklar’s (1959) 
theorem, any multidimensional distribution can be constructed from a set of mar-
ginal distributions and a particular copula function that specifies the structure of the 
relationship between random variables. The number of studies investigating copula 
functions application has increased quite rapidly. In recent years, various methods 
for estimating the parameters of copula functions have been proposed, starting with 
parametric ones (Jondeau and Rockinger 2003), semiparametric (Breymann et  al. 
2003), and ending with nonparametric methods (Fermanian and Scaillet 2003).

One of the first studies of portfolio optimization based on copula functions 
belongs to Lauprete et al. (2002). Authors consider the problem of selecting opti-
mal portfolios with risk minimization, considering the deviation from the stand-
ard Gaussian distribution of returns. The meta-elliptical t copula with non-central 
t-GARCH univariate margins is studied as a model for time-series forecasting and 
portfolio optimization is performed with respect to the mean-CVaR measure. The 
authors provide an out-of-sample backtesting exercise and compare performance 
with common asset allocation techniques. Chirag and Mark (2017) show that the 
copula function is capable of rendering simulations that retain the most essential 
statistical traits of the underlying data, and that the copula-CARGH optimization 
framework can capture the broad range of risk preferences. Autchariyapanitkul et al. 
(2014) evaluate the minimum risk portfolios using the Student distribution for the 
copula. Bai and Sun (2007) exploit three-dimensional Archimedean copulas for 
data analysis. The authors demonstrate that the copula-based CVaR method over-
performs the approaches with assumptions of the normal distribution. Kakouris and 
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Rustem (2014) show how copula-based models can be incorporated into the Worst 
Case CVaR (WCVaR) framework. Krzemienowski and Szymczyk (2016) introduce 
a new measure of risk named Copula-based conditional value-at-risk (CCVaR). 
Vine copulas are the most flexible multivariate distribution modeling tool that are 
able to model highly complicated dependence structures even in high dimensions 
(Joe 1996; Bedford and Cooke 2001, 2002; Kurowicka and Cooke 2006; and Aas 
et  al. 2009). Vine copulas found a wide application in the portfolio optimization 
problem. Mendes and Marques (2012) empirically show that the pair-copulas-based 
robust portfolios always outperform the classical versions based, providing higher 
gains in the long run and requiring a smaller number of updates. Hernandez (2014) 
concludes that the combination of a pair of C-vine copula and nonlinear portfolio 
optimization produces the highest return relative to risk. Bekiros et al. (2015) per-
form vine copula-based minimum risk allocation for mining stock portfolios dur-
ing a financial crisis and show the overperformance of vine copula in forecasting 
tail dependence. Hernandez et  al. (2017) show overperforming of R-vine copulas 
in modeling the dependence between stocks in the different sectors of the economy. 
Pang and Karan (2018) found that the overperformance of the vine copula models is 
more prominent when the portfolio size increases.

Another popular in the financial industry approach that deals with the instabil-
ity of Markowitz’s optimization is the Black-Litterman model. Black and Litterman 
(1991, 1992) make a long-awaited step in closing the gap between investment the-
ory and practice by allowing investors to include their subjective views on expected 
returns. This model functions within a Bayesian framework in which these views 
are inputs to an optimization procedure and leads to portfolio weights that can be 
close to, or far from, the market equilibrium weights, depending on the investor’s 
confidence in their views. Despite the popularity of the Black-Litterman model in 
the investment industry, it has received limited attention in the academic literature. 
Beach and Orlov (2007) suggest using the GARCH process in defining views vec-
tors and its uncertainty. Kolm and Ritter (2017) utilize a generalized BL approach 
using views modeled with asset pricing models’ parameters, for example, risk 
premia in the Arbitrage Pricing Theory. Silva et al. (2017) address the difficulty of 
quantifying subjective views and suggest an alternative approach using the Formal 
Index of Quality. Deng (2018) incorporates investors’ views using the VECM model 
augmented with DCC. Pang and Karan (2018) suggest a closed-form solution for the 
classical BL portfolio optimization problem using conditional value-at-risk (CVaR) 
as the risk measure. Bessler et  al. (2017) utilizing a sample-based version of the 
Black–Litterman model showed its significant overperformance in comparison with 
naive-diversified, mean–variance, Bayes–Stein, and minimum-variance strategies. 
Platanakis and Urquhart (2019) show that the Black-Litterman framework with var-
iance-based constraints yields superior out-of-sample risk-adjusted returns in com-
parison with equally weighted and Markowitz optimization.

In our paper, we suggest extending the Black-Litternan approach with copula-
generated views since copula models capture many properties of financial returns 
in an elegant and systematic way. In practice, the contribution of these views to 
the final solution can be calibrated through confidence level τ based on the vali-
dation performance. Sahamkhadam and et al. (2022) use a similar extension to the 
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Black-Litterman model and show better performance of the copula-based views 
portfolios in terms of lower tail risk and higher risk-adjusted returns compared to the 
Markowitz’s optimization. In our paper, we evaluate the performance of the copula-
based Black-Litterman model against the copula-CVaR approach. Since they share a 
common part of multidimensional distribution modeling, it is interesting to estimate 
how much the view’s confidence calibrating (contribution of the views to the final 
optimization) can bring in terms of profitability and risk metrics control. Therefore, 
unlike Sahamkhadam and et al. (2022) where authors use an exogenously set confi-
dence level τ at 0.5, we test a range of values starting from 0.1 and ending with 0.5. 
Typically, in the literature, the confidence level τ is not set higher than 0.5 (Black 
and Litterman 1992; He and Litterman 1999; Idzorek 2007; Drobetz 2001). Addi-
tionally, we provide Markowitz’s and equally weighted portfolios performance as 
benchmarks. Since Markowitz’s optimization is known as being highly sensitive to 
the input data, we analyze the performance of considered strategies under differ-
ent levels of weight constraints. Weights constraints can be inherent to the internal 
investing fund policy or set by regulators in the case of bank-based markets. There-
fore, another contribution of this paper is the empirical evaluation of weights limits 
the impact on different strategies, which are practically actively used in the financial 
industry and helpful in decreasing rebalancing volumes and increasing break-even 
points.

3 � Dataset and sources

Our study analyses the portfolio optimization on such instruments as ETFs. The 
selection among all listed ETFs is made according to the following criteria: the asset 
class of ETFs, liquidity, size, and ETF provider. We have firstly limited our sample 
to 84 ETFs—middle and large-capitalization, high degree of liquidity, invested in 
Equity and Fixed Income, with inception date not later than 02/01/2012, and pro-
vided by Blackrock (https://​www.​black​rock.​com). “Appendix Table 3” provides the 
details about chosen ETFs for current research: EEM Equity, TDXPEX GR Equity, 
AIA US Equity, DVY US Equity, SHY US Fixed Income, IEMB LN Fixed Income, 
IEF US Fixed Income, EWK US Equity, SOXX US Equity, and CSNDX SW Equity. 
The data are obtained from Eikon Thompson Reuters’ database and runs from 
02/01/2012 to 03/01/2022 expressed in US dollars. Our analysis is based on the log-
arithmic daily returns, obtained using the formula:

where pi – is the asset price at time i.
Before building a copula function, it makes sense to check whether the distribu-

tion is subject to a normal distribution whose density is given by the formula:

(1)ri = ln
pi

pi−1
,

(2)f (x) =
1

�
√
2�

e
−

(x−�)2

2�2 ,

https://www.blackrock.com
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where � stands for the distributions mean and � stands for the distribution’s standard 
deviation.

Skewness and leptokurtic are presented in Table 4, “Appendix”. The distribu-
tion of logarithmic ETFs returns is characterized by strong skewness and heavy 
tails, indicating that these return time series are non-normally distributed. We 
additionally run the statistical Shapiro–Wilk test, where the null hypothesis 
is that the distribution of logarithmic returns is a normal distribution. The null 
hypothesis is rejected in all cases, that is, the logarithmic return time series of 
the ETFs cannot be considered normally distributed. In turn, the mean–variance 
optimization assumes that the returns are distributed according to the normal law, 
which could lead to not optimal solution.

4 � Methodology

4.1 � Black‑Litterman equation

Capital market expectations are the key inputs for asset allocation in MV optimi-
zation framework, which however often leads to instability, concentration, and 
underperformance. The BL model is a way to incorporate investor’s views into 
the portfolio optimization process. Based on the Bayesian method BL approach 
incorporates the investor’s views about expected asset returns. In the BL model, 
the posterior distribution of returns is estimated using (i) the prior distribution, 
(ii) investors’ views, and (iii) the dependency structure between assets. Therefore, 
copula models are applied to obtain both the prior covariance and the depend-
ency structure. In this paper, we use R-vine copula due to its high flexibility and 
popularity.

Black-Litterman expected return is calculated based on vector of equilibrium 
returns (prior mean π ) and the vector of investor’s views (V):

The Ω matrix is the covariance matrix of excess returns, Σ is a diagonal matrix 
of error terms (or variances) of the views. The P matrix selects the assets for 
which views are imposed. The effective weight placed on the views is set with 
the value of τ . In the Black-Litterman equation a lower value of τ gives greater 
weight to the implied equilibrium return vector π.

The equilibrium returns vector represents the required (excess) returns that 
would clear the market, based on the given vector of market capitalization weights 
wmkt , Ω—covariance matrix of excess returns; and �—risk aversion coefficient.

The value of � is an estimate of the required investor reward-to-risk

(3)E(R) =
[
(�Ω)−1 + P

�
∑

−1P
]−1[

(�Ω)−1� + P
�
∑

−1V
]

(4)� = �Ω−1wmkt,
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We estimate returns’ posterior distribution using the expected return—V  and 
covariance matrix Σ from the returns generated based on vine copula model. In 
the copula-based, both the simulated residuals and posterior covariance matrix 
preserve the dependency structure between assets.

4.2 � Simulation and optimization procedure

In this section, the steps involved in constructing the CBL-based portfolio strate-
gies are presented. Let Tt = Ot + Ht be the time points  in the observation inter-
val Ot (250  days)  and the out-of-sample holdout interval  Ht (here we utilize 
one period forward estimate—the next day after the last observed day in Ot ) at 
time  t, Ot ∩ Ht = ∅, ∀t. Repeat steps 1–8 for a specified level of confidence and 
levels of weight constraint.

Step 1	� Estimate the return’s prior distribution.

Calculate the prior covariance matrix Ω , and prior mean � defined in Eq. (4).

Step 2	� Fit the ARMA-GARCH model and get standardized residuals.

Let yt be the yield of a financial asset at time t, then the ARMA (p, q) model’s 
regression equation looks like this:

where �—mean value,ai—autoregressive coefficient,bj—moving average coefficient, 
and �t—is a random regression error in the model for at t. The formal criterion for 
choosing the order of the model is the value of the Akaike Informational Criterion 
(AIC) or Schwartz Informational Criterion (SIC). The regression equation for the 
standard GARCH model is as follows:

where �t —quantities that depend on the previous error values and their lagged val-
ues and �t—is a random regression error in the model for the mean. The results of 
the ARMA-GARCH fitting to data are given in Table 5 in “Appendix”. Using the 
estimated parametric model, we obtain standardized residuals:

(5)� =
E
(
Rm − rf

)

�2
m

,

(6)yt = � +

p∑

i=1

aiyt−i +

q∑

j=1

bj�t−j + �t,

�t = �tzt, zt ∼ i ⋅ i ⋅ d ⋅ (0, 1),

�2

t
= � +

p∑

i=1

�i�
2

t−i
+

q∑

j=1

�j�
2

t−j
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Step 3	� Estimate the conditional multivariate cumulative distribution function 
of the returns using the R-vine copula model on the pseudo-observations 
defined by:

Step 4	� Estimate the copula-based investors’ views.

(a)	 Simulate the return from the fitted cumulative distribution copula-function a suf-
ficient number of times. Get matrix of innovation parameters using the quantile 
function:

(b)	� Then we utilize the estimated values of 𝜔̂ , 𝛼̂ , and 𝛽  from ARMA-GARCH 
model to obtain the simulated return series:

where 𝜎̃2

0
 =  𝜔̂

(1−𝛼̂−𝛽)
.

(c)	� Based on simulated returns estimate vector of investor’s views (V) and 
matrix of error terms (or variances) of the views Σ

Step 5	� Estimate the Black-Litterman returns’ posterior distribution defined in 
Eq. (3).

Step 6	� Solve the portfolio optimization problem with CVaR as a risk measure.

Step 7	� Register the performance of the portfolio.

Calculate Pt = ŵT
t
pt using the observed prices pt , with comparisons to the rep-

resentative benchmark portfolios constructed and held over  Ht . In copula-CVaR 

(8)ẑi,t =
�i,t

𝜎̂i,t

(9)ui,t = Fi

(
ẑi,t

)

(10)𝜀̃i,t = F−1

t

(11)
�2

t
= � + �(rt−1 − �)2 + ��2

t−1

rt = � + �t�t

(12)max
wi

E
(
rp
)
− rf

CVaR
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portfolio we utilize the copula-generated returns and covariance matrix as posterior 
distribution parameters. Copula-CVaR portfolio is optimized based on maximum 
ratio of excess return over CVaR.

Step 8	� Step ahead and repeat.

Let t = t + Δt and repeat Step 1–Step 8 till the end of data sample.

4.3 � Performance metrics

In this study we compare results of vine-copula generated views BL portfolio with 
copula-CVaR, mean–variance and equally weighed portfolios. We assess out-of-
sample portfolio allocation performance and its associated risks by means of the 
statistics namely, Mean return, Standard deviation, Maximum drawdown between 
two consecutive days, Maximum drawdown between two days within a period of 
3 months, Sharpe Ratio, Sortino Ratio, Turnover, Breakeven costs and CVaR 0.95. 
We compute the portfolio mean excess return by:

The portfolio standard deviation and Sharpe Ratio are given, respectively, by:

Maximum of the drawdown at time t is an indicator of the risk that measures the 
largest difference between the maximum and minimum the cumulative returns over 
the history preceding time t.

The Sortino’s Ratio (Sortino and Price, 1994) is given by:

where 𝜎̂p,n =

�

1

M−T−2

M−1∑

t=T+1

min
�
0,wT

t−1
rp,t − 𝜇̂p

�2.

(13)𝜇̂p =
1

M − T

M−1∑

t=T+1

wT

t−1
rp,t

(14)𝜎̂p =

√√√
√ 1

M − T − 2

M−1∑

t=T+1

(
wT

t−1
rp,t − 𝜇̂p

)2

(15)SR =
𝜇̂p − rf

𝜎̂p

(16)MaxDD = max
0≤�≤t

rp(w, �) − min
0≤�≤t

rp(w, �)

(17)SR =
𝜇̂p − rf

𝜎̂p,n
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We further compute the break-even transaction cost that defines the level of trans-
action cost leading to zero net profit. In other words, the break-even point is the 
transaction cost that can be imposed before making the strategy not profitable. We 
consider the net returns on transaction costs 𝜇̂net by:

where c is break-even transaction cost when we solve  𝜇̂net = 0.
We also report the portfolio turnover calculated as the sum of the absolute 

changes in the N asset weights for a certain period:

where wj,t—weight in asset j before rebalancing at the next period and wj,t+m 
weight in asset j after rebalancing at time t + m. By portfolio turnover, we meas-
ure the required amount of trading operations by each optimization strategy under 
consideration.

5 � Empirical results

Figure  1 presents the performance of the portfolios under consideration: copula-
based Black-Litterman with τ = 0.2 (CBL), Copula-CVaR, Mean–Variance (MV), 
and equally weighted portfolio (EW). We can notice that EW portfolio cumulative 

(18)𝜇̂net =
1

L − T

M−1∑

t=T+1

[
(
1 + wT

t−1
rp,t

)
(1 − c

N∑

j=1

(
|
|
|
wj,t − wj,t+m

|
|
|

)
− 1

]

(19)TO =
1

M − T − 1

M−1∑

t=T

N∑

j=1

(
|
||
wj,t − wj,t+m

|
||

)

Fig. 1   Out-of-sample cumulative excess returns of the portfolio strategies without maximum weight con-
straint
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return trajectory shows the least variation, while other strategies have a higher mag-
nitude of fluctuations. EW portfolio shows significant underperformance till 2020 
in comparison with other portfolios. In 2020 cumulative returns under all strategies 
experienced a dramatic drop due to the COVID-19 breakthrough, however, we can 
notice that the CBL portfolio had the lowest drawdown and highest speed of upward 
rebound. MV portfolio showed the least stable performance after 2020. In the sec-
ond part of 2020 it recovers faster than Copula-CVaR and EW portfolios, however, 
has a significant dropdown in 2021. Copula-CVaR portfolio shows the most stable 
positive trend after the 2020 crisis, and the CBL portfolio which is partially depend-
ent on copula-based optimization also showed a dropdown in 2021, however, less 
than in the case of the MV approach. The main reason for overperforming of the 
CBL portfolio after 2020 lies behind the lower dropdown at the beginning of the 
global pandemic crisis.

Table  1 summarizes out-of-sample performance statistics under the different 
strategies. We examined the impact of the level of �—the measure of confidence 
in the Black-Litterman implied returns. As � increases, the weight of the inclusion 
of the views, proxied by the copula-CVaR model, also increases. We tested port-
folio performance at different levels of τ (starting at 0.1 and limiting τ at 0.5 with 
0.1 steps). We empirically obtained that the optimal level of τ for our optimization 
strategy is 0.2 and include out-of-sample performance statistics of three CBL best 
portfolios with τ being set to 0.1, 0.2, 0.3 MDD (1 day) is the maximum drawdown 
between two consecutive days and MDD (3  months) is the maximum drawdown 
within 3  months. The results indicate that CBL portfolios show better risk-return 
performance compared to Copula-CVaR, and two benchmarks MV and EW portfo-
lios. The performance of portfolios with τ being set to 0.4 and 0.5 showed underper-
forming results and therefore was not included in Table 1. According to the obtained 
results, allocations with the copula-based strategies overperform the MV in terms 
of profitability. The copula-CVaR approach shows the best results, as expected, in 
terms of the conditional risk measure. Judged by CVaR and maximum drawdown, 

Table 1   Out-of-sample statistics of portfolios

Returns, standard deviation, Sharpe ratio and Sortino ratio are annualized

Copula-CVaR CBL ( � = 0.1) CBL(� = 0.2) CBL ( � = 0.3) MV EW

Mean return (%) 3.732 3.771 3.965 3.796 3.398 3.147
Standard devia-

tion (%)
9.836 9.726 9.712 10.028 8.743 7.143

Sharpe ratio 0.176 0.182 0.202 0.179 0.159 0.161
Sortino ratio 0.162 0.166 0.184 0.165 0.148 0.142
Turnover 0.496 0.545 0.539 0.524 0.646 0.001
Break-even (%) 0.028 0.021 0.021 0.021 0.014 1.646
MDD (%), 1 day  − 6.489  − 7.389  − 7.436  − 8.461  − 7.499  − 7.318
MDD (%), 

3 months
 − 18.093  − 17.179  − 17.042  − 18.425  − 17.229  − 22.164

CVaR0.95  − 5.441  − 5.459  − 5.537  − 6.346  − 5.683  − 5.186
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the CBL (τ = 0.1) and CBL (τ = 0.2) portfolios yields less risky trajectory than CBL 
(τ = 0.3). Copula-CVaR and CBL (τ = 0.3) portfolios can be identified as the riskiest 
with respect to volatility. MV portfolio showed lower risk than copula-based models 
measured by standard deviation. The maximum Sharpe Ratio is reached with the 
CBL strategy at τ = 0.2 and equal to 0.202. Overall, Copula-CVaR standard devia-
tions are larger than obtained with the MV approach. Thus, our results show that 
the suggested method can be recognized as an effective strategy for an investor who 
tries to minimize tail loss, rather than the standard deviation. Another important 
notice is that the copula-CVaR portfolio has the lowest turnover after EW portfolio, 
while the MV portfolio has the highest turnover. A high level of turnover in the MV 
portfolio affects the break-even point and makes this approach less effective when 
transaction costs are taken under consideration. This proves the fact that the MV 
portfolio is the most sensitive to even small changes in the input parameters, which 
leads to greater turnover. EW portfolio has the lowest turnover as expected since 
there is no rebalancing.

Figure 2 depicts the cumulative returns of the MV portfolio with the maximum 
weight constraint imposition at three levels: 30%, 40%, and 50%. Maximum weight 
constraint imposes limits on the portfolio weights to obtain a more robust portfolio 
with lower turnover and lower risks regarding high concentrations. Figure 2 shows 
that in the case of the MV approach less strict constraints at the level of 50% and 
40% effectively increased the cumulative return. Since we have only 10 assets in 
the portfolio 30% of weight constraint might be too strict and lead to less effective 
allocations, even though helping to decrease turnover: even though gaining higher 
cumulative return. 30% weight constraint imposition shows greater drawdown in 
2016, 2019, and 2020.

Figure  3 depicts the cumulative returns of the Copula-CVaR portfolio with 
the maximum weight constraint imposition. We can notice that overall weight 

Fig. 2   Out-of-sample cumulative excess returns of the MV portfolio with weight constraints
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constraints are less effective for the copula-based approach in comparison with MV 
portfolios. We can notice that the least effective constraint is 30% likewise in the 
case of the MV portfolio, leading to the greatest drawdown in 2016, 2019, and 2020. 
Figure 3 shows that 40% of weight constraint significantly improved performance at 
the beginning of 2021.

Figure 4 presents the cumulative returns of the CBL portfolio with the maxi-
mum weight constraint imposition. Till the beginning of 2020, any level of weight 
constraint was ineffective in terms of cumulative return and the CBL optimization 

Fig. 3   Out-of-sample cumulative excess returns of the Copula-CVaR portfolio with weight constraints

Fig. 4   Out-of-sample cumulative excess returns of the CBL portfolio with weight constraints
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without any constraint provided the best performance. After 2020 30% of limita-
tion shows the best performance and has a similar effect as in the case of MV 
optimization after 2020. The reason behind this effect might be explained by too 
much fear in financial markets at the beginning of 2020 and a lower level of pre-
dictability of financial series. Therefore, optimization based on a more complex 
dependence structure might lead to higher estimation errors and more conserva-
tive weight constraint helps additionally diversify the portfolio and brings better 
out-of-sample cumulative return.

Table 2   Statistics of out-of-sample portfolios with maximum weight constraints

Returns, standard deviation, Sharpe ratio and Sortino ratio are annualized

100% 50% 40% 30%

Copula-CVaR
Mean Return (%) 3.732 3.443 2.938 3.847
Standard Deviation (%) 9.836 11.984 9.364 10.353
Sharpe Ratio 0.176 0.120 0.206 0.178
Sortino Ratio 0.162 1.113 0.187 0.159
Turnover 0.496 0.428 0.407 0.401
Break-even (%) 0.023 0.031 0.034 0.034
MDD (%), 1 day  − 6.489  − 6.343  − 6.238  − 6.395
MDD (%), 3 months  − 18.093  − 17.940  − 17.923  − 17.639
CVaR0.95  − 5.441  − 5.303  − 5.311  − 5.119
Copula-based Black-Litterman (� = 0.2)
Mean return (%) 3.965 3.497 3.234 3.451
Standard deviation (%) 9.712 9.890 9.174 9.438
Sharpe ratio 0.202 0.151 0.134 0.153
Sortino ratio 0.184 0.133 0.118 0.148
Turnover 0.585 0.534 0.521 0.521
Break-even (%) 0.021 0.025 0.026 0.026
MDD (%), 1 day  − 7.436  − 8.213  − 7.854  − 7.239
MDD (%), 3 months  − 17.042  − 17.439  − 16.854  − 16.538
CVaR0.95  − 5.537  − 5.615  − 5.393  − 5.280
Mean-variance
Mean return (%) 3.398 3.756 3.525 2.939
Standard deviation (%) 8.743 8.634 8.543 9.108
Sharpe Ratio 0.159 0.203 0.178 0.103
Sortino Ratio 0.148 0.193 0.162 0.101
Turnover 0.646 0.583 0.559 0.533
Break-even (%) 0.014 0.021 0.022 0.027
MDD (%), 1 day  − 7.499  − 7.224  − 7.433  − 8.294
MDD (%), 3 months  − 17.229  − 17.411  − 17.143  − 17.882
CVaR0.95  − 5.683  − 5.539 5.533  − 5.604
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Table  2 presents out-of-sample performance statistics under the weight con-
straints for Copula-CVaR, CBL, and MV optimization approaches. Without weight 
constraints (100%) the highest out-of-sample Sharpe Ratio was gained with CBL 
optimization (0.202). However, we can notice that the 40% level of weight constraint 
applied to the copula-CVaR approach led to a significant decrease in standard devia-
tion metric and an increase in Sharpe Ratio to the level of 0.206. Mean–Variance 
optimization with 50% of maximum weight limit also showed an increase in Sharpe 
ratio due to both increases in return and decrease in standard deviation. Figure  4 
shows another positive effect of imposing weight constraints for all strategies—
a decrease in turnover and an increase in break-even points for all strategies. The 
Break-even point helps to account for transaction costs depending on rebalancing 
volume. The lowest turnover and the highest break-even point were reached under 
the Copula-CVaR approach with 30% of the weight constraint. Very close result in 
terms of profitability was reached with the benchmark of MV optimization and 50% 
of weight constraint. However, tail risk measures, maximum drawdown, and break-
even point are still lower in the case of copula-based optimization. The lowest CVaR 
values were realized under the Copula-CVaR strategy for all levels of weight con-
straints in comparison with CBL and MV portfolios. This is also true for the 1-day 
MDD measure of risk: regardless of the level of weight constraint Copula-CVaR 
approach provides the lowest risk.

We found that the maximum weight constraint provided the highest effectiveness 
to the MV approach in terms of increasing profitability, improving the Sharpe-Ratio 
metric, and decreasing turnover. This result however might depend on the rebalanc-
ing period since with a frequent rebalancing period estimation error might be higher 
and additional control of weights are helpful for lowering the total risks. We found 
that the most optimal weight constraint for MV portfolio in terms of improving 
risk-adjusted profitability and break-even point is the least strict – 50%; however, in 
terms of lowering the standard deviation, tail risk, and turnover the optimal level of 
weight limit was found to be 40%. Copula-CVaR portfolio showed the best perfor-
mance in terms of tail risk control at 30% of weight constraint and at 40% for all the 
rest of the metrics. CBL strategy has the most doubtful effect of weight constraint 
imposing. Risk measured by CVaR decreased at 40% and 30% of weight constraint, 
however at cost of noticeable decrease in Sharpe Ratio. Moreover imposing weight 
limits helped to decrease turnover and increase the break-even point, however, the 
effectiveness of this increase is lower than in the case of the MV portfolio. 30% of 
weight constraint managed to decrease turnover from 0.585 to 0.521 at the cost of 
decreasing the Sharpe Ratio from 0.202 to 0.153. The obtained results suggest that 
the weight limits must be tested and chosen specifically for a certain portfolio with 
all possible factors taken into consideration: strategy, number of assets in a portfolio, 
rebalancing period, etc.

As a robustness check, we compare the performance of the portfolios with 
the different rolling windows (200 days and 300 days, against 250 in the origi-
nal version). We also change the rebalancing period from daily to weekly and 
monthly. Changing the rebalancing period preserves the relative inferences 
among different strategies however decreases the turnover metrics and increases 
the break-even point, being more significant for the MV approach. While the 
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CBL portfolio still overperforms competitive portfolios the absolute difference 
between risk-adjusted return and tail risk measures was least significant with the 
weekly-based rebalancing period.

There are few limitations regarding the proposed optimization approach and the 
study of its effectiveness. First, the procedure implies 100% placement in assets 
without short selling, therefore the portfolio value will lose in falling markets. Sec-
ond, the procedure, in fact, does not offer any criterion for the selection of assets. 
Portfolio managers can select assets according to various criteria depending on the 
management style and the risk preferences of investors which were not covered in 
this paper.

6 � Concluding remarks

The output of the Black-Litterman model is a mixture of equilibrium returns and 
investor views. The main value added by this paper goes from using copula-based 
views instead of relying on financial analyst views in the Black-Litterman model, 
which received limited attention in the literature. Copula models capture many 
properties and dependencies of financial returns in an elegant and systematic way. 
We utilize vine-copula in our analysis due to its flexibility and use CVaR as a risk 
measure in optimization procedure instead of classical variance. We compare the 
CBL model with copula-CVaR optimization since they share a common part of 
multidimensional distribution modeling and avoid excessive corner solutions that 
many optimization approaches would generate in case of extreme values of param-
eters’ estimates. The results presented in this paper indicate the great potential of 
the Black-Litterman methodology in generating global portfolios. Our empirical 
analysis indicates better performance for the CBL portfolio regarding risk-adjusted 
returns, and the copula-CVaR portfolio is better regarding tail risk control, lower 
turnover, and higher break-even point. However, EW and MV portfolios showed the 
lowest risk measured by standard deviation. We showed that the MV portfolio is 
the most sensitive to the input parameters and has the greatest turnover leading to 
further decreasing effectiveness of this approach when taking into account trans-
action costs. Therefore, we impose an additional risk control instrument—weight 
constraint to evaluate the performance of all strategies under three levels of weight 
limits. We showed that the weight constraint imposition is the most effective tool for 
MV optimization, and did not provide a significant well-defined positive effect on 
the CBL portfolio.

Finally, we offer a few suggestions for future research. First, the dynamic confi-
dence parameter could be incorporated into the Black-Litterman approach, instead 
of using a static value. The level of confidence could depend on a certain threshold 
of the variance matrix of the returns from the previous 250-days period. If the port-
folio risk is higher than acceptable, the investor can alter the confidence parameter 
until a risk-appropriate allocation is generated. Second, we use the rolling 250-days 
historical covariance matrix as the estimate of the prior covariance matrix and prior 
mean in the Black-Litterman equation. Another approach could be using a decay 
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factor to weigh more heavily on recent observations for prior input parameter esti-
mates. Additional suggestions include relaxing the assumption of no short selling 
and including other copula-function models.

Appendix

See Tables 3, 4, 5.

Table 3   Information on ETFs included in the sample

ETF ticker Information about fund

EEM equity Seeks to track the investment results of an index composed of large- and mid-
capitalization emerging market equities

TDXPEX GR equity Track the performance of an index composed of the 30 largest technology com-
panies listed on the Prime Standard segment of the Frankfurt Stock Exchange

AIA US equity The iShares Asia 50 ETF seeks to track the investment results of an index 
composed of 50 of the largest Asian equities

DVY US equity Seeks to track the investment results of an index composed of relatively high 
dividend-paying US equities

SHY US fixed income The iShares 1–3 Year Treasury Bond ETF seeks to track the investment results 
of an index composed of US Treasury bonds with remaining maturities 
between one and three years

IEMB LN fixed income The Fund seeks to track the performance of an index composed of US dollar-
denominated bonds from Emerging Market countries

IEF US fixed income The iShares 7–10 Year Treasury Bond ETF (IEF) seeks to track the investment 
results of an index composed of US Treasury bonds with remaining maturi-
ties between seven and ten years

EWK US equity Provides investment results that correspond to the performance of publicly 
traded securities in the Belgian market, as measured by the MSCI Belgium 
IMI 25/50 Index

SOXX US equity SOXX tracks a popular benchmark of companies that produce semiconductors, 
a crucial part of modern computing and focuses on US stocks

CSNDX SW equity An equity index of securities comprising the largest US and international com-
panies in terms of market capitalization listed on the NASDAQ Stock Market

Table 4   Skewness and kurtosis 
of portfolio assets

ETF Skewness Kurtosis

EEM equity  − 0.1071 4.0014
TDXPEX GR equity  − 0.4332 6.3053
AIA US equity  − 0.2847 3.2383
DVY US equity  − 0.2274 5.4375
SHY US fixed income  − 0.1374 2.4826
IEMB LN fixed income  − 0.2847 7.4328
IEF US fixed income  − 0.4382 6.2817
EWK US equity  − 0.0927 5.3972
SOXX US equity  − 0.2981 9.1287
CSNDX SW equity  − 0.2974 4.3924
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