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taxonomic resolution used. Spatial variations in daily 
meal ranged between 296.3 and 438.9  g   day−1, cor-
responding to daily ration of 6.1–8.2% body mass 
BM  day−1. Otherwise, size-related variations in both 
DM and DR were observed. Thus, while daily food 
intake increased with size from 177.3 for the small-
est fish (LF < 80 cm) to 496.7 g  day−1 for the largest 
ones (LF ≥ 110  cm), DR decreased from 13.0 ± 22.1 
to 3.7 ± 0.7 BM  day−1. The present results contribute 
to improve the understanding of dolphinfish feeding 
habits in the Southeast Pacific Ocean.

Keywords Coryphaenidae · Trophic biology · 
Stomach content analysis · Food items · Daily ration

Introduction

The common dolphinfish (Coryphaena hippurus, 
Linnaeus 1758) is an epipelagic predator occurring in 
tropical and subtropical regions of the Pacific, Indian, 
and Atlantic oceans (Palko et al. 1982). This species 
is caught in open and coastal waters (Briggs 1960), 
and spends most of its time at the upper 30 m of the 
water column (Palko et  al. 1982; Tripp-Valdez et  al. 
2015). With a high socio-economic importance, the 
dolphinfish supports commercial and recreational 
fisheries in all seas worldwide. Furthermore, it plays 
an important ecological role delineating pelagic food-
webs by “top down” control mechanisms (Olson and 
Galván-Magaña 2002; Varela et al. 2017a).

Abstract Feeding habits of common dolphinfish 
(Coryphaena hippurus) were investigated in the 
Southeast Pacific Ocean using stomach content analy-
sis. Stomachs were collected from 1506 individuals 
ranging between 18 and 187 cm in fork length. The 
fish were caught by longliner boats in 2009–2017. 
Based on percentage of wet weight (%Wi), percent-
age of number (%Ni), and frequency of occurrence 
(%Oi), flyingfishes were the predominant prey, fol-
lowed by the cephalopods jumbo squid (Dosidicus 
gigas) and argonaut (Argonauta spp.). Permutational 
multivariate analysis of variance (PERMANOVA) 
detected significant differences between zones 
(p < 0.001). PERMANOVA also revealed two size-
related shifts in feeding habits to occur at FL ~ 80 cm 
and FL ~ 110 cm (p < 0.001). Cumulative prey curves 
did not reach an asymptote in any of the zones and 
size classes, which may be attributed to the fine 
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Like other large pelagic fishes inhabiting the 
southeastern Pacific Ocean, the dolphinfish shows 
exceptionally high standard metabolic rates (Ben-
etti et al. 1995; Crossley et al. 2021), which allow 
fast somatic and gonadal growth (Palko et  al. 
1982). This, therefore, requires a high consump-
tion of prey, which may significantly impact on the 
abundance, diversity, or distribution of other spe-
cies within the food web. In this context, stomach 
content analysis (SCA) is a powerful tool to under-
stand prey-predator relationships.

Although previous studies carried out in the 
Southeast Pacific Ocean provide useful data on 
the feeding habits of dolphinfish, they do not con-
sider spatial-related variations (Lasso and Zapata 
1999; Varela et  al. 2017a). Thus, while Lasso and 
Zapata (1999) reported that this species feeds on 
large number of fishes, mollusks, and crustaceans 
in the Pacific coast of Colombia and Panama, Var-
ela et al. (2017a) found that the family Exocoetidae 
was the predominant prey species off Ecuador. The 
only research conducted to assess spatial-related 
shifts in the feeding patterns of this top predator 
was carried out two decades ago by Olson and Gal-
ván-Magaña (2002). Therefore, new data on this 
issue may be useful to better understand the trophic 
role of this predator in the Southeast Pacific Ocean 
ecosystem.

The Southeast Pacific coast is characterized by 
a marked spatial variation in the oceanographic 
conditions. Thus, the northernmost area is affected 
by the Panama current (warm and nutrient-poor 
water), whereas the southernmost area is influenced 
by the Chile-Peru current (cold and nutrient-rich 
water) (Sonnenholzner et  al. 2013; Martínez-Ortiz 
et  al. 2015). These singular oceanographic fea-
tures may cause geographic variation in the abun-
dance and distribution of prey between both areas. 
Moreover, differences in the dietary composition 
between inshore and offshore waters have been 
reported for dolphinfish and other large pelagic 
fishes from the region (Alverson 1963; Olson and 
Galván-Magaña 2002; Olson et al. 2014). The pre-
sent study was conducted to assess spatial- and 
size-related shifts in the dietary composition of the 
dolphinfish in the southeastern Pacific Ocean con-
sidering four regions: North, South, inshore, and 
offshore (see Fig. 1).

Material and methods

Sampling and stomach content analysis

Stomachs of dolphinfish (n = 1506) were collected 
aboard surface longline boats fishing in the South-
east Pacific Ocean in 2009–2017. The main species 
employed as bait during the fishing operations were 
jumbo squid (Dosidicus gigas) and frigate tuna (Auxis 
thazard).

Most fish were measured to the nearest centim-
eters (fork length, FL) and the stomachs were stored 
at − 20 °C until analysis. In the laboratory, they were 
thawed and opened and prey species were weighed, 
counted, and identified to the lowest possible taxo-
nomic level using a stereoscopic microscope. Food 
items considered as bait were not taken into consid-
eration for analysis, and the stomachs containing only 
these species were treated as empty. Fish and cepha-
lopod species were identified from otoliths and lower 
beaks, respectively, using available guides (Clarke 
1986; Harvey et  al. 2000; García-Godos Naveda 
2001).

Data analysis

The contribution of each prey to the diet was evalu-
ated by three indices: (1) percentage of wet weight 
(%Wi), (2) percentage of number (%Ni), and (3) fre-
quency of occurrence (%Oi).

Spatial- and size-related shifts in dietary composi-
tion were tested by a permutational multivariate anal-
ysis of variance (PERMANOVA) (Anderson 2001; 
McArdle and Anderson 2001; Anderson et al. 2008). 
The analytical design considered “zone” as fixed fac-
tor with four levels. As in Varela et  al. (2017a), we 
also considered the factor “size class” with 3 lev-
els (< 80  cm in FL, 80–110  cm in FL, ≥ 110  cm in 
FL). The analysis was based on a Bray–Curtis simi-
larity matrix calculated from the prey weight val-
ues, after performing a fourth-root transformation 
(Van Ginderdeuren et  al 2014; Kvaavik et  al. 2019; 
Valls et  al. 2022). Significant terms were investi-
gated using a posteriori pair-wise comparisons with 
PERMANOVA test. Multivariate dispersion among 
zones was tested by PERMDISP (Anderson 2006). 
Both PERMANOVA and PERMDISP were per-
formed using the software PRIMER v6.1.13 and 
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the PERMANOVA + v1.0.3 statistical package 
(PRIMER-E Ltd., Plymouth, UK).

Cumulative prey curves (CPCs) were used to eval-
uate if the sample size was sufficient to describe the 
food habits of dolphinfish in each zone, size class, 
and in the whole area (Ferry and Cailliet 1996). 
CPCs were built using the vegan package (Oksanen 
et al., 2010) in R (R Core Team, 2020). To determine 
whether the curve reached an asymptote, the slope 
of the linear regression estimated from the last four 
stomachs was compared with a horizontal asymptote 
by t test.

The food consumption rate was estimated from the 
formula    r̂ =

∑I

i=0
W

i
∕A

i
 (Olson and Mullen 1986), 

where r̂ is the feeding rate measured in grams per 
hour, W

i
 is the weight of prey i divided by the total 

number of stomachs, and A
i
 represents the average 

time required to evacuate the average proportion of 

prey i. As in Olson and Galván-Magaña (2002), we 
applied A

i
 values estimated for yellowfin tuna (Thun-

nus albacares) (Olson and Boggs 1986). Considering 
that the dolphinfish feeds during both day and night 
hours (Olson and Galván-Magaña 2002), daily meal 
(DM) was estimated by multiplying r̂ by 24 h. Daily 
ration (DR) is equivalent to the daily meal expressed 
as percent of the dolphinfish body mass (BM). BM 
was estimated from the length using the equation pro-
posed by Lasso and Zapata (1999).

Stomach content data from unmeasured fish were 
not considered in the analysis involving FL.

Results

FL of the sampled dolphinfish ranged between 18 
and 187 (mean ± SD = 96.7 ± 20.1  cm). A total 

Fig. 1  Map showing sam-
pling locations
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of 1506 stomachs were analyzed, of which 1270 
(84.3%) contained at least one prey (Table  1). The 
diet was made up of 57 prey items, including 35 
fishes, 19 cephalopods, and 3 crustaceans. Fishes 
were the most important prey group (%W = 60.9, 
%N = 54.5, and %O = 67.9), followed by cephalopods 
(%W = 39.1, %N = 54.5, and %O = 50.9) and crusta-
ceans (%W < 0.1, %N = 0.1, and %O = 0.2). Among 
all the prey species, flyingfishes were the most abun-
dant (%W = 30.7, %N = 34.8, and %O = 39.8), fol-
lowed by the cephalopods jumbo squid (Dosidicus 
gigas) (%W = 34.9, %N = 13.0, and %O = 21.0) and 
argonaut (Argonauta spp.) (%W = 1.2%, N = 24.9, and 
%O = 24.4) (Table 2).

The dolphinfish caught in zone A ranged from 
36.0 to 187.0 cm in FL (mean SD: 94.0 ± 20.6 cm), 
whereas the size rage of the individuals sampled 
in zone B was 36–187 in FL (85.8 ± 28.7 cm). The 
dolphinfish from the zone C ranged between 26 and 
154  cm in FL (98.9 ± 16.2), and the fish caught in 
zone D sized from 37 to 187 in FL (96.7 ± 20.1). 
Although fishes were the most representative prey 
group in all zones, spatial variations in dietary 
composition were found. In zone A, flyingfishes 
were the most abundant prey species (%W = 50.1, 
%N = 40.6, and %O = 8.1%), followed by jumbo 
squid (%W = 26.3, %N = 15.7, and %O = 7.5) and 
frigate tuna (Auxis spp.) (%W = 15.6, %N = 6.5, and 
%O = 5.9). Dolphinfish caught in zone B mainly 
consumed flyingfishes (%W = 40.6, %N = 47.4, and 
%O = 19.2), frigate tuna (%W = 11.4, %N = 5.6, and 
%O = 10.5), and argonauts (%W = 0.8, %N = 13.7, 
and %O = 11.0). In zone C, flyingfishes (%W = 27.7, 
%N = 32.8, and %O = 38.6), jumbo squid 
(%W = 33.6, %N = 16.5, %O = 49.8), and frigate 

tuna (%W = 26.4, %N = 12.1, %O = 53.4%) were the 
most representative prey food. The diet of the speci-
mens from zone D was mainly composed of fly-
ingfishes (%W = 27.5, %N = 29.8, and %O = 34.0), 
argonauts (%W = 1.4, % = 35.6, and %O = 53.2), 
and jumbo squid (%W = 42.1, %N = 11.0, and 
%O = 33.0) (Table 2). Fishes were also the predomi-
nant prey group in the three size classes, but dietary 
composition changed with body size. Class I fish 
(< 80  cm) fed mainly on flyingfishes (%W = 43.1, 
%N = 29.4, and %O = 30.9), argonauts (%W = 2.9, 
%N = 30.4, and %O = 19.1), and jumbo squid 
(%W = 19.7, %N = 9.5, and %O = 14.9) (Table  3). 
The medium-sized fish (80–110  cm, FL) mainly 
consumed flyingfishes (%W = 29.8, %N = 37.0, and 
%O = 31.0), frigate tuna (%W = 23.6, %N = 11.4, 
and %O = 20.9), and argonauts (%W = 0.9, 
%N = 19.6, and %O = 24.8). The largest fish 
(≥ 110  cm) preyed fed mainly on flyingfishes 
(%W = 25.2, %N = 32.3, and %O = 27.7), jumbo 
squid (%W = 35.9, %N = 14.4, and %O = 28.5), and 
frigate tuna (%W = 14.2, %N = 8.1, and %O = 16.4) 
(Table  2). Despite the large number of stomachs 
analyzed (n = 1506), CPCs did not reach an asymp-
tote in any of the zones, size classes, or in the whole 
stomach sample (t test, p < 0.05).

The PERMANOVA analysis detected significant 
spatial- and size-related differences in the dietary 
composition (p < 0.05) (Table  4). The interactions 
between both factors were also significantly differ-
ent, indicating that the differences in “zone” were not 
homogeneous across the levels of the “size classes” 
factor (PERMANOVA, p < 0.05) (Table 4). Pair-wise 
PERMANOVA comparisons indicated significant 
differences between the four zones or between the 
three size classes (p < 0.05). Overall, significant die-
tary differences between size classes were found by 
zone (p < 0.05), except in zone C (p > 0.05) (Table 5). 
The PERMDISP analysis showed no significant dif-
ferences (p > 0.05), suggesting that the differences 
detected by PERMANOVA were not due to multivar-
iate dispersion.

DM showed similar values in zones A, B, and 
C, whereas highest values were found in zone C. 
DR estimates were comparable in all zones, except 
in zone B where they were highest (Table  2). Oth-
erwise, size-related variations in both DM and 
DR were observed. Thus, while daily food intake 
increased with size from 177.3 for the smallest fish 

Table 1  Data summary of sampled dolphinfish by zone and 
size class

Fork length (cm) n Percentage of 
stomachs containing 
preyRange mean ± SD

Zone A 36–187 94.0 ± 20.6 105 81.9% (n = 86)
Zone B 18–147 85.8 ± 28.7 234 83.8% (n = 196)
Zone C 26–154 98.9 ± 16.2 630 84.3% (n = 531)
Zone D 37–150 99.0 ± 18.5 537 85.1% (n = 457)
Size class I  < 80 191 84.8 (n = 162)
Size class II 80–110 797 84.6 (n = 674)
Size class III  ≥ 110 320 85.6 (n = 274)
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(LF < 80  cm) to 496.7  g   day−1 for the largest ones 
(LF ≥ 110  cm), DR decreased from 13.0 ± 22.1 to 
3.7 ± 0.7 BM  day−1 (Table 3).

Discussion

SCA data showed that the diet of dolphinfish from 
the Southeast Pacific Ocean is mainly composed of 
epipelagic fishes and cephalopods (flyingfishes, frig-
ate tuna, jumbo squid, and argonauts). This finding is 
consistent with earlier studies carried out in the region 
(Lasso and Zapata 1999; Olson and Galván-Magaña 
2002; Varela et al. 2017a). Lasso and Zapata (1999) 
and Varela et al. (2017a, b) reported that family Exo-
coetidae was the most important prey in the diet of 
dolphinfish caught in the Pacific coast of Colombia, 
Panama, and Ecuador, whereas Olson and Galván-
Magaña (2002) found that flyingfishes and epipelagic 
cephalopods were the predominant prey species in the 
coast of Ecuador and Peru. Similarly, Campos et  al. 
(1993) reported that the dolphinfish preyed mainly on 
exocoetids and squids off Costa Rica. In the south-
eastern Gulf of California, Tripp-Valdez et al. (2010) 
and Bergés-Tiznado et al. (2019), however, observed 
that the dolphinfish fed primarily on the fishes longfin 
halfbeak (Hemiramphus saltator) and finescale trig-
gerfish (Balistes polylepis), respectively. Torres-Rojas 
et al. (2014) and Tripp-Valdez et al. (2015) found that 
crustaceans (Pleuroncodes planipes and Hemisquilla 
californiensis) were the dominant prey group in the 
southern Gulf of California. These marked spatial 
variations indicate that dolphinfish show high feeding 
plasticity, adjusting their diet to local prey availability.

Comparing dolphinfish diet with that of other 
large pelagic fishes co-occurring in the region may 
be useful to infer trophic relationships. Assuming 
that interspecific food competition occurs when the 
presence of a food item is more than 25% in two or 
more predators (Johnson 1977), we found that niche 
partitioning occurs between dolphinfish and yellowfin 
tuna, swordfish (Xiphias gladius), and striped marlin 
(Kajikia audax) in the southeastern Pacific Ocean 
(see previous studies for yellowfin tuna, striped mar-
lin and swordfish; Alverson 1963; Baque-Menos-
cal et  al. 2012; Rosas-Luis et  al. 2016; Varela et  al. 
2017b; Loor-Andrade et  al. 2017; Zambrano-Zam-
brano et al., 2019). Off eastern Australia, Young et al. 
(2010) reported that these predators feed on different Ta
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Table 3  Results of the stomach content analysis (SCA) by size class. FL, fork length; %W, percentage weight: %N, percentage of 
number; %O, frequency of occurrence; DM, daily meal; DR, daily ration; BM, body mass

Preys FL < 80 cm 80 cm ≤ FL < 110 cm FL ≥ 110 cm

%W %N %O %W %N %O %W %N %O

Fishes
Balistes polylepis 0.1 0.1 0.1
Family Belonidae
Ablennes hians  < 0.1 0.1 0.1
Family Carangidae
Carangidae 0.3 0.2 0.4
Naucrates ductor  < 0.1 0.2 0.4 1.6 0.2 0.4
Family Cottidae
Oligocottus rubellio  < 0.1 0.1 0.1
Family Coryphaenidae
Coryphaena hippurus 11.1 0.2 0.3 7.1 1.0 2.0
Family Clupeidae
Opisthonema libertate 0.8 0.3 0.6 0.2 0.5 0.4
Family Echeneidae
Remora remora 0.1 0.1 0.1
Family Exoetidae
Cheilopogon atrisignis 0.2 0.2 0.3
Cheilopogon cyanopterus  < 0.1 0.1 0.1 0.4 0.2 0.4
Cheilopogon exsiliens 1.3 0.7 1.3 0.3 0.7 0.8
Cheilopogon furcatus 1.1 1.1 1.4 1.9 2.2 3.5
Cheilopogon heterurus  < 0.1 0.1 0.1
Cheilopogon papilio  < 0.1 0.2 0.3
Cheilopogon spilonotopterus 1.7 0.3 0.6 1.5 1.1 1.3
Cheilopogon unicolor 1.0 0.3 0.6 0.3 0.2 0.3
Cypselurus callopterus 0.8 1.3 1.9 2.0 0.8 1.2 0.4 0.3 0.4
Exocoetidae  < 0.1 0.1 0.1
Exocoetus spp. 0.2 0.3 0.6 1.0 1.1 1.3 1.4 0.5 0.8
Ecxocoetus monocirrhus 21.9 15.7 20.4 5.5 8.1 10.8 5.7 8.8 13.3
Exocoetus volitans 8.0 3.3 5.6 9.6 11.1 11.4 9.0 9.3 12.9
Fodiator acutus 0.1 0.1 0.1
Hirundichthys marginatus 1.4 0.3 0.6
Parexocoetus brachypterus 0.2 0.2 0.3
Prognichthys sealei 1.0 0.7 1.2 1.3 0.8 1.2
Family Hemiramphidae
Oxyporhamphus micropterus 7.3 7.2 10.5 7.0 11.3 11.8 6.1 10.3 10.6
Family Myctophidae
Myctophidae 0.1 0.3 0.6
Family Scombridae
Auxis thazard 20.1 6.5 12.4 23.6 11.4 20.9 14.2 8.1 16.9
Familia Stromateidae
Peprilus simillimus 1.9 4.9 5.6
Family Syngnathidae
Hippocampus ingens 0.1 0.3 0.6 0.1 0.8 1.2 0.1 0.3 0.8
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Table 3  (continued)

Preys FL < 80 cm 80 cm ≤ FL < 110 cm FL ≥ 110 cm

%W %N %O %W %N %O %W %N %O

Family Tetraodontidae
Lagocephalus lagocephalus 0.1 0.3 0.6 1.7 1.6 2.7 5.1 2.1 4.3
Sphoeroides trichocephalus 0.5 0.7 1.2 0.1 0.2 0.3 0.4 0.2 0.4
Family Trichiuridae
Trichiurus lepturus 1.5 1.3 1.2  < 0.1 0.1 0.1
Fish remains 5.0 8.8 15.4 4.1 8.0 14.0 4.5 3.6 8.2
Cephalopods
Family Ancistrocheiridae
Ancistrocheirus lesueurii 0.3 0.7 1.2  < 0.1 1.3 2.3 1.1 1.7 2.8
Family Argonautidae
Argonauta sp. 2.8 29.7 19.1 0.8 18.7 23.6 1.5 28.0 19.6
Argonauta nouri  < 0.1 0.7 1.2 0.1 0.9 0.9  < 0.1 0.3 0.8
Family Cranchiidae
Helicocranchia pfefferi  < 0.1 0.2 0.4
Family Enoploteuthidae
Abraliopsis felis  < 0.1 1.3 1.9  < 0.1 0.1 0.1  < 0.1 0.2 0.4
Family Gonatidae
Gonatus sp.  < 0.1 0.3 0.6  < 0.1 0.2 0.4
Gonatus anonychus  < 0.1 0.3 0.6 0.1 0.2 0.4
Family Histioteuthidae
Stigmatoteuthis dofleini 0.1 0.7 1.2  < 0.1 0.7 1.6
Family Loliginidae
Loligo sp. 0.1 0.2 0.4
Family Mastigoteuthidae
Mastigoteuthis dentata  < 0.1 1.0 1.9  < 0.1 0.7 1.3  < 0.1 0.3 0.8
Family Octopoteuthidae
Octopoteuthis sícula  < 0.1 0.3 0.6 0.3 1.1 1.9 0.3 1.0 2.4
Family Ommastrephidae
Dosidicus gigas 19.7 9.5 14.8 35.0 13.2 21.0 35.9 14.4 27.8
Sthenoteuthis oualaniensis 0.9 0.7 0.6 0.6 0.2 0.3 0.7 0.2 0.4
Family Onychoteuthidae
Onychoteuthis borealijaponica 2.0 0.7 1.2  < 0.1 1.1 1.2  < 0.1 0.9 1.6
Family Pholidoteuthidae
Pholidoteuthis boschmai  < 0.1 0.3 0.6  < 0.1 0.5 1.2
Family Vampyroteuthidae
Vampyroteuthis infernalis  < 0.1 0.2 0.3  < 0.1 0.5 1.2
Cephalopod remains 1.1 2.0 3.7 1.0 1.4 2.6 1.9 2.2 5.1
Crustaceans
Infraorder Caridea
Unidentified Caridea  < 0.1 0.1 0.1
Crustacean remains 0.1 0.3 0.6
DM (g  day−1) 177.3 386.2 496.7
DR (%BM  day−1) 13.0 ± 22.1 5.7 ± 1.4 3.7 ± 0.7
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prey sizes, depths, and/or times, which would allow 
them to reduce their trophic competition. These 
authors, however, stated that this pattern may be not 
consistent across all oceans. Moteki et al. (2001), in 
fact, reported that dolphinfish and yellowfin tuna may 
compete for exocoetids in the eastern tropical Pacific 
Ocean, whereas Oxenford and Hunte (1999) sug-
gested that these two predators may compete for fly-
ing gurnards (Dactylopterus volitans) and for filefish 
(Monacanthidae) in Barbados waters (see Lewis and 
Axelsen 1967). Conversely, Kojadinovic et al. (2008), 
based on stable isotope analysis, observed trophic 
segregation between common dolphinfish and tuna 
species in Reunion Islands waters.

Although flyingfishes were the dominant prey 
in all zones, interspecific variations in their abun-
dance were observed. Thus, while smallwing fly-
ingfish (Oxyporhamphus micropterus) was the main 
prey species in the North region, barbel flyingfish 
(Exocoetus monocirrhus) was the most abundant 
prey species in the South region (see Table  2). 
These differences may be related to variations in 
the oceanographic features. Lewallen et  al. (2018), 
in fact, reported that surface temperature and salin-
ity are key parameters defining flyingfish habi-
tats. Otherwise, spatial variations between inshore 
and offshore waters were also found, epipelagic 

cephalopods such as argonauts being more prevalent 
in inshore caught fish. Similarly, Olson and Galván-
Magaña (2002) found that epipelagic cephalopods 
were more abundant in fish caught nearshore. Mul-
tivariate analysis also suggested two size-related 
shifts in feeding habits. The first shift in the feed-
ing habits was detected between the small- and the 
medium-sized fish, and was caused by a decrease 
in the consumption of barbel flyingfish along with 
an increased proportion of frigate tuna. The second 
shift was found around 110  cm, where the cepha-
lopods jumbo squid and argonauts showed a higher 
contribution to the diet than flyingfishes. This find-
ing is consistent with previous studies carried out 
in Brazilian waters and EPO area (Zavala-Camin 
1986; Olson and Galván-Magaña, 2002), where 
large-sized dolphinfish also show greater predation 
on cephalopods than on flyingfishes.

Similar to what was observed by Varela et  al. 
(2017a) in dolphinfish caught in Ecuadorian waters, 
DR decrease with body size. Benetti et  al. (1995) 
stated that the dolphinfish mass-specific standard 
metabolic rate (SMR) diminishes with increas-
ing body weight. This fact, therefore, suggests 
that smaller fish may need to consume proportion-
ally larger amount of food to meet their SMR, and 
that DR decreases with increasing size has also 
been reported in others top predators. For instance, 
Ménard et  al. (2000) found that DR of yellowfin 
tuna in the equatorial Atlantic Ocean decreased 
from 16.0% BM  day−1 for > 90 cm fish to 2.6% BM 
 day−1 for > 90  cm fish. Similarly, Griffiths et  al. 
(2007) found that DR values of longtail tuna (Thun-
nus tonggol) in Australian waters decreased from 
2.2% BM  day−1 for < 60  cm fish to 1% BM  day−1 
for > 130 cm fish. The highest DR values (17.6%BM 
 day−1) in zone B may be attributed to the smaller 
fish size in this region (FL = 85.8 ± 28.7  cm). This 
result is consistent with the findings of Olson 

Table 4  Results of PERMANOVA test performed on Bray–
Curtis dissimilarity matrix based on prey biomass

Zo, zone; Si, size class

Source df SS MS Pseudo-F P

Zo 3 59,922 19,974 4.73 0.01
Si 2 25,126 12,563 2.97 0.01
Zo × Si 6 57,049 9508.2 2.95 0.01
Residual 1098 4.64E + 09 4224.2
Total 1109 4.81E + 09

Table 5  Results of a 
posteriori pair-wise 
PERMANOVA for the 
interaction between “zone” 
and “size class” factors

FL, fork length

Size Zone

A B C D

t p t p t p t p

FL < 80 cm / 80 cm ≤ FL < 110 cm 1.31  > 0.05 2.21  < 0.01 0.84  > 0.05 1.53  < 0.05
FL < 80 cm / FL ≥ 110 cm 1.43  < 0.01 2.05  < 0.01 0.90  > 0.05 2.01  < 0.01
80 CM ≤ FL < 110 cm / FL ≥ 110 cm 1.97  < 0.01 1.19  > 0.05 1.24  > 0.05 1.87  < 0.01
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and Galván-Magaña (2002) who reported DR 
values ~ 20% BM  day−1 for individuals ranging 
between 65 and 80 cm in FL.

In comparison with other large pelagic fishes 
inhabiting the study area, our DR estimates were 
greater than those reported for yellowfin tuna (3.9% 
BM  day−1: Olson and Boggs 1986) and swordfish 
(1.6–8.2% BM  day−1; Zambrano-Zambrano et  al. 
2019). Such differences may be attributed to species-
specific factors that may affect prey evacuation rates, 
such as metabolic rates or gut morphology (Griffiths 
et  al., 2007; Perelman et  al., 2017). Another fac-
tor explaining DR differences among these species 
may be related to the consumed prey type (Buckel 
and Conover 1997). Thus, Olson and Boggs (1986) 
reported that scombrids were the main prey species in 
the diet of yellowfin tuna, whereas Zambrano-Zam-
brano et  al. (2019) found that the diet of swordfish 
was mainly composed of squids, which are more eas-
ily digested and evacuated (Varghese and Somvanshi, 
2016).

The presence of conspecifics in the stomachs was 
not unexpected, since dolphinfish cannibalism has 
been widely reported in all seas worldwide (Oxen-
ford and Hunte 1999; Olson and Galván-Magaña 
2002; Castriota et al. 2007; Rudershausen et al. 2010; 
Brewton et al. 2016; Luckhurst 2017). The cannibal-
ism rate found in the present study (0.6 based on %O) 
was similar to that previously reported in the east-
ern Pacific Ocean. Thus, Olson and Galván-Magaña 
(2002) reported %O = 0.4, whereas Torres-Rojas et al. 
(2014) found O% values of 2.2. However, Moteki 
et  al. (2001) based on a low sampled size (n = 38) 
reported higher cannibalism rates (%O = 10.5). 
According to Torres-Rojas et  al. (2014), dolphinfish 
cannibalism may be sporadic as this species shows 
spatial stratification by size.

The present study provides new information on the 
feeding habits and consumption rate of common dol-
phinfish in the Southeast Pacific Ocean. Our findings 
indicate that this species is an epipelagic carnivorous 
predator that shows two size-related dietary changes 
to occur at a FL ∼ 80 cm and FL ∼110 cm. Although 
flyingfishes seem to be the main prey species in the 
whole sampling area, interspecific variations among 
zones were found. Considering that surface tem-
perature and salinity are factors that define flying-
fish habitats, this spatial variation may be related the 
oceanographic features of each zone. For instance, 

the northern area is affected by the Panama current 
(warm water), whereas the southern area is influenced 
by the Chile-Peru current (cold water). Otherwise, 
our estimates of daily ration suggest that this spe-
cies play an important trophic role structuring pelagic 
ecosystems. However, the lack of information on spe-
cific gastric evacuation rates for dolphinfish may bias 
our estimates. Therefore, further investigations should 
be addressed to determine accurate rates of gastric 
evacuation for this predator.
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