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Abstract
Social costs for methane and carbon dioxide emissions, from the risk of climate tipping 
events and deterministic damages, are derived in an analytically tractable model. In the 
core model: social costs from tipping risks rise with income, just as they do for deter-
ministic damages, and depend on only a few parameters. Consequently, methane’s weight 
(its social cost relative to carbon dioxide) is constant and independent of temperature pro-
jections. But other damage and tipping probability formulations assumed in the literature 
imply methane’s weight varies over time and with temperature projections. (JEL H23, O44, 
Q40, Q54, Q56, Q58).

Keywords Climate change · Tipping points · Optimal policy · Social costs · Global 
warming potential

Climate change includes the risks of irreversible events, referred to as tipping points. These 
events can have a material impact on optimal policy. One potential consequence of a risk 
of tipping is a change in the relative, as well as absolute, social costs of different green-
house gases because the timing of effects of these gases differ. While carbon dioxide is 
long-lived, methane decays relatively quickly. Under current Intergovernmental Panel on 
Climate Change policy, 100-year Global Warming Potentials (GWP100) are used to aggre-
gate methane and carbon dioxide. This paper investigates how tipping risks may affect the 
social cost of carbon dioxide and the methane weight (its social cost relative to carbon 
dioxide), compared to the weight determined under GWP100.

The social costs of greenhouse gases equal the sum of discounted economic losses from 
deterministic damages and stochastic tipping events, which I assume are linked to atmos-
pheric temperature. As atmospheric carbon dioxide and methane lifetimes differ, one may 
expect their social costs to vary over time in absolute and relative terms and depend upon 
temperature projections. However, this is not the case in my benchmark core model build-
ing on Golosov et al. (2014): I assume the risk of tipping rises linearly with temperature 
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and will persist long into the future, and a fixed proportional economic impact from a tip-
ping event after some delay.1 Social costs consist of two components that rise with income: 
one from deterministic damages and the other from the risk of tipping. This latter compo-
nent depends on the discount rate, long-run damages from tipping, the delay in onset and 
ramp-up of impacts, and how much the tipping probability rises with each degree of warm-
ing. So the methane weight is constant, and an increase in deterministic damages can lead 
to the same social cost (as a ratio of income) as the inclusion of a tipping risk.

While this core model provides a useful benchmark, the underlying assumptions do not 
cater for our understanding of different potential tipping events; Sect.  3 discusses other 
assumptions made in the literature. My objective is not to present estimates based on distri-
butions of parameters and the latest knowledge of potential tipping events (Cai & Lontzek 
2019; Instead, I derive and discuss analytical equations for the sensitivities and illustrate 
their effect in Sect.  4 using temperature projections from Representative Concentration 
Pathways (RCP) scenarios 2.6 and 4.5 that, in my view, bound likely temperature out-
comes. The first sensitivity assumes the tipping probability rises quadratically with tem-
perature rather than linearly. Social costs increase for the higher temperature scenario RCP 
4.5 relative to RCP2.6. The methane weight is higher than the core model for RCP2.6, as 
temperature peaks quickly, and lower than core for RCP4.5. Identical social cost-to-income 
ratios could be obtained using deterministic damages that are quadratic in temperature.

The second sensitivity restricts the number of possible tipping events to one: social costs 
are lower and an interesting “inevitability” effect emerges, where higher projected tem-
perature outcomes reduce costs, similar to the dead-anyway effect for valuing a statistical 
life (Pratt & Zeckhauser 1996). Social costs become zero after a tipping event and cannot 
be replicated using deterministic damages. In the third sensitivity, exponential-linear (in 
temperature) damages from tipping events introduce a differential welfare impact, propor-
tional to the difference in social costs before and after an event (Lemoine & Traeger 2014). 
This effect raises social costs and gives more weight to the benefits of reduced temperature 
in the distant future as the cumulative probability of tipping rises, lowering the methane 
weight. The fourth sensitivity assumes a tipping risk only exists if temperature rises to new 
levels (threshold formulation): social costs depend on the timing of peak temperature (the 
maximum projected temperature level) and the methane weight rises markedly prior to the 
peak. The fifth sensitivity discusses the increase in social costs when risk aversion is in line 
with the literature.

1  Previous Literature

Engström and Gars (2016) use a similar model approach to consider different tipping 
impacts, but do not consider methane and focus on extraction rates and the green paradox, 
rather than social costs. Nævdal (2006) considers the optimal regulation of methane and 
carbon dioxide under a threshold tipping risk and finds a temporary boost in the ratio of 
methane to carbon dioxide stock above the steady state, consistent with an increasing meth-
ane weight in a decentralised model. Table 1 in Appendix A lists previous literature that 
consider tipping points and their approaches – see also Cai (2021) for a recent review.

1 A collapse of major ice sheets leading to severe sea-level rise is an example of a shock that would have 
long-term and direct economic impacts.
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Under deterministic damages, Marten and Newbold (2012) find that the methane weight 
rises by up to 50% by 2050, partly due to their climate model, where the marginal forc-
ing of methane decreases slower than carbon with the increasing atmospheric stock. Azar 
et al. (2023) also find an increasing weight for methane from deterministic damages that 
are quadratic in temperature if temperatures fall after 2100, and review estimates of the 
social costs of methane from deterministic damages in the literature.

Another stream of literature investigating different greenhouse gases imposes a maxi-
mum temperature and uses a cost-minimisation approach, suggesting a very low weight of 
methane today, which rises over time.2 This paper does not support such a policy, but the 
threshold formulation induces a similar rise in the methane weight before peak tempera-
ture. The framework outlined in this paper can consider other actions with different tem-
poral characteristics, including geoengineering (Bickel & Agrawal 2013; Goes et al. 2011; 

Table 1  Climate tipping approaches adopted in the literature

Literature Single or multiple 
tipping events

Tipping probability 
formulation

Impacts of tipping

One only Multiple Threshold Other Fixed Temperature-
dependent or climate 
response

Cropper (1976) ✓ ✓ ✓
Clarke and Reed (1994) ✓ ✓ ✓
Tsur and Zemel (1998) ✓ ✓ ✓ ✓ ✓
Keller et al. (2004) ✓ ✓ ✓
Polasky et al. (2011) ✓ ✓ ✓ ✓
Lemoine and Traeger (2014) ✓ ✓ ✓
van der Ploeg (2014) ✓ ✓ ✓
Cai et al. (2015) ✓ ✓ ✓
Lontzek et al. (2015) ✓ ✓ ✓
Cai et al. (2016) ✓ ✓ ✓ ✓
Diaz and Keller (2016) ✓ ✓ ✓ ✓
Engström and Gars (2016) ✓ ✓ ✓ ✓
Lemoine and Traeger (2016) ✓ ✓ ✓
van der Ploeg and de Zeeuw 

(2016)
✓

Gerlagh and Liski (2018) ✓ ✓ ✓
van der Ploeg and de Zeeuw 

(2018)
✓ ✓ ✓

Cai and Lontzek (2019) ✓ ✓ ✓
W. Nordhaus (2019) ✓ Deterministic ✓
van der Ploeg and de Zeeuw 

(2019)
✓ ✓ ✓ ✓

Dietz et al. 2020b) ✓ ✓ ✓
Taconet et al. (2021) ✓ ✓ ✓ ✓

2 Cost-minimisation (also called cost-effectiveness) references include Manne and Richels (2001), O’Neill 
(2003), Aaheim et al. (2006), and Johansson, Persson, and Azar (2006). A growing methane weight as a 
target stock of emissions is approached was perhaps first illustrated by Michaelis (1992).
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Heutel et al. 2018) and leakage rates and risks from carbon capture and sequestration (van 
der Zwaan & Gerlagh 2009).

2  Core Model and Social Costs

The core model uses five key assumptions that lead to analytical tractability: (i) logarithmic 
utility; (ii) full one-period depreciation of capital; (iii) an exponential-linear deterministic 
impact of historical emissions on output;(iv) Cobb–Douglas production; and (v) a risk of 
tipping events linear in temperature with fixed proportional impacts. Golosov et al. (2014) 
use assumptions (i) to (iv) and find a constant optimal tax-to-income ratio for carbon diox-
ide, independent of economic growth and climate outcomes. This result occurs because 
the assumptions imply a constant savings rate, so consumption is proportional to output, 
and damages are exponential-linear, so emissions lead to a linear reduction in log output 
and thus welfare. Barrage (2014) and Rezai and van der Ploeg (2015) find the results are 
reasonably robust to variation in these assumptions. Golosov et al. (2014) satisfy (iii) by 
assuming that atmospheric carbon concentration is a linear function of historical emis-
sions and an exponential impact of carbon concentration on output. Instead, I assume that 
temperature is a linear function of historical emissions, which can replicate more com-
plex climate-economy models well, and an exponential-linear impact of temperature on 
output. This latter assumption leads to an approximately linear relationship between global 
damages and temperature for the level of damages considered, consistent with Burke et al. 
(2015).3

A global representative household maximises the following in discrete time, for con-
sumption Ct and discount factor �:

(1)max�0

∞∑
t=0

� tU
(
Ct

)
where U

(
Ct

)
∶= log

(
Ct

)
.

Fig. 1  Temperature impact years after a pulse (1  GtCO2e) emission

3 For damages up to around 10% of output, an exponential function is approximately linear. Burke, Hsiang, 
& Miguel 2015 find non-linear local responses to temperature but approximately linear losses at a global 
level.



Social Costs of Methane and Carbon Dioxide in a Tipping Climate  

1 3

Atmospheric temperature above pre-industrial is a linear function of historical non-
interacting carbon dioxide and methane emissions Ec,t and Em,t in units of  GtCO2e:

Figure 1 shows temperature responses to pulse emissions under GWP100, �g,t.4 These 
impulse functions are central to this paper and highlight the sharp temperature responses to 
methane relative to the carbon dioxide pulse. Further details are in Appendix C.

Deterministic damages are exponential-linear in temperature with parameter γ > 0, and 
the function ft represents stochastic damages from tipping. For capital Kt and a function F 
of emissions and a vector of other inputs Xt , such as labour, output Yt is given by:

The emission variables Eg,t , g ∈ {c,m} , correspond to emission-intensive activities, in 
units of carbon dioxide equivalent, which could themselves be functions of other factors 
and emissions without affecting the results. However, to simplify the treatment of uncer-
tainty, I ensure that temperature outcomes (hence emissions) are independent of whether 
tipping events have occurred, so emissions-intensive activities cannot be functions of capi-
tal or final output. Thus, while a tipping event will have a lasting effect on output and capi-
tal stocks, it does not affect emissions.5 Capital depreciates completely after one period, so 
the feasibility constraint in the final goods sector is

Tipping occurs in each period with probability pt . An event variable It is zero if tipping 
does not occur in period t, and � if tipping occurs. Multiple tipping events are possible, but 
no more than one event in a period, and the tipping probability is independent of whether 
events have already occurred, making things easier in a discrete-time framework.6 Follow-
ing a tipping event, there is a delay of d periods until the onset of impacts and awareness 
that an event has been triggered. Impacts then ramp up linearly over r periods so that the 
full impact occurs after d + r periods. The function ft is a function of temperature, previ-
ous tipping events, the safe temperature below which there is no risk of tipping Tmin , and 
parameter � as follows:

(2)Tt =
∑

g∈{c,m}

t∑
i=−∞

�g,t−iEg,i where �g,t−i ∶=
�Tt
�Eg,i

.

(3)Yt = e−(γTt+ft)K𝜅
t
F
(
Xt,Ec,t,Em,t

)
with parameter 0 < 𝜅 < 1.

(4)Ct + Kt+1 = Yt.

(5)ft =

t∑
i=−∞

Rt−i+1Ii−d and pt = �T̃t where T̃t ∶= max
(
0, Tt − Tmin

)
and Ri ∶=

min(r + 1, i)

r + 1
.

4 The GWP of a gas is the time-integrated radiative forcing from a pulse emission, relative to an equal mass 
of carbon dioxide, and thus resulting weights depend on the choice of time horizon. For example, methane 
has a 100-year GWP of 28 and a 20-year GWP of 84 (IPCC 2014). The 100-year GWP was adopted by the 
United Nations Framework Convention on Climate Change and its Kyoto Protocol and is now used widely 
as the default metric. The clearest recommendation for 100  years is that a significant fraction of carbon 
dioxide is removed from the atmosphere over this time scale (Fuglestvedt et al. 2003), and this period also 
roughly corresponds to the anticipated maximum change in temperature (WMO 1992).
5 An alternative assumption is that tipping impacts directly lowers utility rather than production, as dis-
cussed in Gerlagh and Liski (2018).
6 Multiple potential tipping points mean that the expected number of tipping events increases without 
bound as temperature rises, and there is no updating the probability function if a tipping event occurs.
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2.1  Social Costs

The social cost-to-income ratio consists of a constant component due to deterministic dam-
ages D̂g , and a variable component due to the stochastic risk of tipping Ŝg,t.

Lemma 1: Given (1) to (4), the social cost-to-income ratio for emission g is

The proof is in Appendix A. As described by Golosov et al. (2014), a tax equal to the 
social costs combined with lump-sum rebates implements the social optimum in a competi-
tive equilibrium where production factors are freely allocated across sectors.7 The weight 
of methane is Λ̂m,t∕Λ̂c,t. The following proposition assumes that the risk of tipping fol-
lows (5) and is always present, which seems reasonable as temperatures will likely remain 
elevated above pre-industrial levels for centuries.

Proposition 1: Given (1) to (5) and assuming Tt ≥ Tmin for all t, then the social cost-to-
income ratio from a tipping risk is given by:

The proof is in Appendix A. The parameter Ω accounts for the delay in the onset of 
impact and the time to ramp up to full impact � . The effect of tipping risks on the 
social cost-to-income ratio is equivalent to boosting the deterministic damages param-
eter � by Ω��

1−�
 . Both components D̂g and Ŝg are constant by construction: while deter-

ministic damages combine (exponential) linear damages with a fixed (100%) proba-
bility, climate tipping combines fixed proportional damages with a probability of 
tipping linear in temperature and independent of previous tipping events.

Naturally, the weight of methane will be constant and equals Γm∕Γc . When the discount 
rate is high, the weight of methane is high due to the rapid temperature effect of a methane 
pulse relative to carbon dioxide (Fig. 1). A discount rate of around 1% implies a methane 
weight of 1, corresponding to current policy using GWP100.

3  Sensitivities

This section discusses the effect of the following model changes on social costs: a quad-
ratic tipping probability, limiting the risk of tipping to a single event, exponential-linear 
damages where the post-tipping impact increases with temperature, a threshold tipping risk 
formulation, and greater risk aversion. As deterministic damages are unchanged, discus-
sions of social costs relate solely to tipping risks.

(6)Λ̂g,t ∶=
Λg,t

Yt
= D̂g + Ŝg,t where D̂g = γΓg,Γg ∶=

∞∑
i=0

� i�g,i and Ŝg,t =

∞∑
i=0

� i�g,i

(
∞∑
j=0

� j
��tft+i+j

�Tt+i

)
.

(7)Ŝg =
Ω��

1 − �
Γg where Ω ∶= �d

1 − �r+1

(r + 1)(1 − �)
.

7 Golosov et al. (2014) also show the optimal tax formula applies when exhaustible resource stocks apply.
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3.1  Tipping Probability Quadratic in Temperature

If the tipping probability rises quadratically with temperature, p
(
Tt
)
= �QT̃

2
t
 , then social 

costs ŜQ,g,t become

Social costs now depend on temperature projections and no longer grow with income, 
and the methane weight will vary. Note the absence of an expectation operator, as a tipping 
event does not impact temperature outcomes. Consider temperature stabilisation at T∗ , so 
that 

∑∞

i=0
� i�g,iT̃i = T̃∗Γg and social costs become:

3.2  One Tipping Event Only

While a few other papers consider the possibility of multiple tipping events, most studies 
consider the effect of a single event. In this case, the expectation at time t of the derivative 
of the tipping probability at time t + i , pone,t+i , is reduced by the chance that tipping will 
have occurred between t − d + 1 and t + i − 1 as follows:

Thus, social costs are lower in this framework. While this result is intuitive, consider 
the effect of temperature projections. As the risk of tipping before period t + i increases 
with temperature, higher temperature projections reduce social costs today, which I call an 
“inevitability” effect. This effect would create positive feedback from lower emission taxes 
to higher temperature projections in a model with endogenous temperature.

3.3  Exponential‑Linear Damages

A tipping event could lead to a change in the climate response rather than fixed damages, 
such as reduced absorption of carbon into the oceans discussed by Lenton et  al. (2008) 
and considered by Lemoine and Traeger (2014).8 Increased sensitivity to temperature can 
act as a proxy for a change in the climate response: an exponential-linear damages (ED) 
case examines the implications of both the probability of tipping and impacts increasing 
with temperature, so (5) becomes fED,t = Tt

∑t

i=−∞
Rt−i+1Ii−d . Social costs are a function of 

expected temperature levels and, assuming the impacts of tipping have not occurred at time 
t, (6) becomes

(8)ŜQ,g,t =
2Ω��Q

1 − �

∞∑
i=0

� i�g,iT̃i.

(9)ŜQ,T∗,g = 2T̃∗
�Q

�
Ŝg.

(10)
(
��tpone,t+i

�Tt+i
|ft = 0

)
= �

d+i−1∏
k=1

(
1 −

(
�t

(
pt−d+k

)|ft+k = 0
))

≤ � =
��tpt+i

�Tt+i
.

8 van der Ploeg (2014) also discusses sensitivity to the functional form of damages.
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The first bracketed term in (11) relates to the differential welfare impact (Lemoine & 
Traeger 2014) and is proportional to the difference in social costs before and after tipping 
impacts. The second bracketed term relates to the marginal hazard effect, as exists in the 
core model and previous sensitivities, and captures the benefits of a marginal reduction in 
the tipping risk. Social costs now increase by �ED

1−�
Γg after the full impact of a tipping event 

as the marginal damages from temperature increase. Consider temperature stabilisation at 
�T∗ > 0 , so that �tIED,t−d+k = �T̃∗�ED . Then, social costs become

A delay in the onset of tipping impact, or a gradual ramp-up of impacts, decreases the 
marginal hazard effect due to discounting: core social costs Ŝg for carbon dioxide and meth-
ane reduce equally. The differential welfare impact has an opposing force: a delay in aware-
ness increases social costs ( 

∑i+d

j=1
Rj rises with d ), assuming no awareness of a tipping event 

to date. Further, the component 
∑∞

i=0
� i�g,i

∑i+d

j=1
Rj

Γg

 lowers the methane weight in two key ways. 
First, there is a greater weight on future temperature impacts because the cumulative 
chance that tipping occurs increases with time.9 Second, a gradual ramp-up of impacts 
amplifies this effect by reducing the extent of short-run temperature effects. In contrast, a 
delay in the onset of impacts partially offsets these effects.10

3.4  Threshold Tipping Formulation

A threshold formulation is akin to a phase transition in physics, such as a transition from 
liquid to gas at a particular temperature (and pressure). The literature often suggests tipping 
events could occur above a temperature threshold or within a range: the collapse of Atlan-
tic thermohaline circulation “probably requires more than 4 °C warming”; the disappear-
ance of the Greenland ice sheet “may occur at 0.8 °C – 3.2 °C (with best estimate 1.6 °C)”; 
and collapse of the West Antarctic ice sheet “may be triggered at > 4 °C warming” (Lenton 
2013). Assuming tipping risks are proportional to the extent that the current temperature 
exceeds the previous maximum, the tipping probability from (5) becomes

(11)
(
ŜED,g,t|ft = 0

)
=

∞∑
i=0

� i�g,i

(
d+i∑
k=1

Rd+i−k+1�t IED,t−d+k + �d
��tIED,t+i

�Tt+i

∞∑
j=0

� jRj+1Tt+i+j+d

)
.

(12)

�
�SED,T∗ ,g�ft = 0

�
= 𝛿ED𝜇

�
�T∗

∞�
i=0

𝛽 i𝜓g,i

i+d�
j=1

Rj + T∗
ΩΓg

1 − 𝛽

�
=

𝛿ED
𝛿

T̃∗ (1 − 𝛽)

Ω

�∑∞

i=0
𝛽 i𝜓g,i

∑i+d

j=1
Rj

Γg

�
Ŝg

���������������������������������������������������������������
differential welfare impact

+
𝛿ED
𝛿

T∗ Ŝg

�������
marginal hazard effect

.

(13)pT ,t = 𝜇T
�TT ,t where �TT ,t ∶= max

(
0, Tt −max

k<t

(
Tk
))

.

9 Assuming no delay or ramp-up for clarity, the component 
∑∞

i=0
� i�g,i

∑i+d

j=1
Rj

Γg

 simplifies to 
∑∞

i=0
� i i�g,i

Γg

 . As the 

temperature effect of methane is relatively short-lived, 𝜓m,i

𝜓c,i

>
𝜓m,j

𝜓c,j

for0 < i < j, then 
∑∞

i=0
𝛽 i i𝜓c,i

Γc

>
∑∞

i=0
𝛽 i i𝜓m,i

Γm

.

10 Omitting a ramp-up, the component 
∑∞

i=0
� i�g,i

∑i+d

j=1
Rj

Γg

 reduces to 
∑∞

i=0
� i i�g,i

Γg

+ d , so the presence of d miti-

gates the contribution of 
∑∞

i=0
� i i�g,i

Γg

.
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There is a discontinuity in the temperature-derivative of the tipping probability if tem-
perature stabilises. If we assume increasing temperatures so �TT ,t > 0 for all t, then the tip-
ping social cost-to-income component is constant and equal to βd��TΓg (note the absence 
of the denominator compared with (7), which will become clear). But the occurrence of 
peak temperature should be considered in this case. Consider the weak assumption that 
until period τ , �TT ,t > 0 for t < τ , and from then on T̃T ,t = 0 for t ≥ τ , so once temperature 
peaks, it never rises back above that peak. Then

The proof is in Appendix A. Consider no impact delay or ramp-up for clarity. A mar-
ginal increase in temperature Tt increases the chance of tipping in period t by �TdTt if 
t ≤ � . In the core model, there is no effect on the tipping probability in future periods, so 
��tft+j

�Tt
= �� for all j ≥ 0, and the infinite sum leads to the denominator 1 − � . However, for 

the threshold formulation, if t < 𝜏, the chance of tipping in period t + 1 is reduced by �TdTt 
so ��tft+j

�Tt
= 0 for j ≥ 1 and there is no 1 − � denominator, while if t = �, then ��tft+j

�Tt
= �T� 

for j ≥ 0.
Interestingly, initial social costs are lower if peak temperature occurs further into the 

future. There is no tipping risk (hence no social cost) once temperature stabilises or falls in 
the long run.11 In contrast, tipping will (eventually) occur in the core model for any temper-
ature stabilisation with a non-zero tipping probability. Ultimately, the best representation 
will depend on the nature of the specific tipping event, and may be a combination of both 
core and threshold (or other) formulations.12

3.5  Risk Aversion

A logarithmic power utility is commonly used and implies an intertemporal elasticity of 
substitution of unity. However, some papers disentangle time preferences and risk aversion 
as described by Epstein and Zin (1990), including Bretschger and Vinogradova (2018), 
Cai and Lontzek (2019), Olijslagers and van Wijnbergen (2024) and Traeger (2018). This 
approach allows compliance with risk aversion estimates in the literature without leading 
to excessively high risk-free discount rates. An increase in risk aversion over that implied 
by a logarithmic utility is achieved by adding an expectation term as shown in the Bellman 
equation, omitting time subscripts and with parameter �:

(14)ŜT ,g,t = Ω��T

(
τ−t−1∑
i=0

� i�g,i +
�τ−t�g,�−t

1 − �

)
.

(15)V(K,E, T) = max
K,E,T

(
U(C) +

�

�
log

(
�

(
eαV

�
)))

.

11 A declining optimal carbon price-to-income ratio has been found in other studies: as a consequence of 
uncertainty in Cai and Lontzek (2019) and Daniel, Litterman, and Wagner (2019) and of directing technical 
change to clean energy in Acemoglu, Aghion, Bursztyn, and Hemous (2012). Such a decline has implica-
tions for temperature and emissions outcomes and potentially on public perceptions of a carbon price. A 
lower tax after peak temperature has passed may help people appreciate the objective of the tax, and its 
temporary nature may alleviate public resistance.
12 Crépin and Nævdal (2020) discuss an approach that would account for delays between temperature and 
the tipping probability called inertia risk not considered in this paper.
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Given the simplifying assumptions detailed in Appendix A, further risk aversion 
increases the tipping component of the social cost-to-income ratio for carbon dioxide 
according to the following approximation:

(16)ŜEZ,c
small Φ
→ Ŝc

(
1 +

Φ

2

)
where Φ ∶= αφf

Ω

�
�, φf =

−1

(1 − ��)(1 − �)
.

Fig. 2  Social costs and cost-to-income ratios of carbon dioxide, and the methane weight, from a tipping 
risk.  CO2 Carbon dioxide. Methane weight of 1 is consistent with GWP100. Quadratic= Tipping probabil-
ity quadratic in temperature. One only= A tipping event can only occur once. Exp damages= Damages from 
tipping are exponential-linear. Deterministic damages are infinitesimal for clarity. One only and Exp dam-
ages projections assume tipping does not occur ex-post. $ values in Panel D indicate social costs in 2020
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For parameters used in the next section � = 0.1 , d = 5, � = 0.98510 = 0.86 so 
φf = 10 , � =

1

3
 and d = 5 and r = 5 , so Ω = 0.33 . Traeger (2018) show that values of 

α ∈ [−1.2,−0.7] are consistent with relative risk aversion values between 10 and 6 in the 
literature.13 The uplift approximation in (16) relies on a small Φ , between 0.27 and 0.46 
given the parameters, so it is rough. The range of risk aversion uplift to match the litera-
ture is between 13% and 23%, broadly consistent with Cai and Lontzek (2019) for similar 
parameter values.

4  An Illustration Using Temperature Projections

Consider the RCP2.6 and 4.5 temperature projections detailed in Stocker et al. (2013)14: 
I extrapolate to 2300 and then assume temperature stabilises (Panel A in Fig. 2). Assume 
that emissions lead to these temperature outcomes in each case, but allow marginal changes 
so that social costs are well defined by (6). For expositional clarity, deterministic damages 
are infinitesimal, so carbon dioxide social costs relate to a tipping risk only, and methane 
weights are well-defined even if the tipping risk is zero.

Global output is $85 trillion in 2020 and grows by 2 per cent annually. Fixed damages 
from a tipping event are 10% of output, and the annual discount rate is 1.5%, as used in the 
DICE 2016R2 model. Following Lontzek et al. (2015), the tipping probability parameter 
is � = 0.025 and Tmin is set to 1 °C. A linear rise in temperature to 2 °C in 2100 leads to 
an expectation of 0.13 tipping events triggered by 2100.15 The quadratic tipping probabil-
ity and threshold sensitivities are calibrated to match this tipping expectation by 2100, so 
�Q = 0.035 and �T = 0.16 . In the exponential-linear damages case, 2 degrees of warming 
post-tipping leads to 10% damages, so δED = δ∕2 . The delay from a tipping event to the 
onset of impact is 5 decades, followed by another 5 decades ramping up to full impact.

Panel B shows the social costs for carbon dioxide for the core model and the quadratic, 
one-only and exponential-linear damages sensitivities for the RCP2.6 projection. Panel C 
shows the same results as Panel B as a ratio of income Y  , highlighting how social costs 
deviate from income growth in the sensitivities. Consistent with Proposition 1, social costs 
rise with income in the core formulation and are independent of temperature outcomes; 
thus, core results are identical in Panels C and D. The weight of methane in core is greater 
than one (Panels E and F): the initial methane social cost is $26 per tonne  CO2e compared 
with $22 for carbon dioxide.16 There are 0.11 and 0.20 expected tipping events triggered by 
2100 under RCP2.6 and RCP4.5, respectively.

A quadratic tipping probability means higher temperatures lead to greater marginal tip-
ping risks and higher social costs. Under RCP2.6, the social cost for carbon dioxide begins 
higher than core but rises slower than income due to falling temperatures, while it is higher 
than core and rises faster than income under the increasing temperatures in RCP4.5. The 
methane weight is higher under RCP2.6 as temperatures fall in the future, while the weight 
starts lower and rises under RCP4.5. In both cases, the methane weight matches the core 

14 I consider these projections as likely bounds to the future temperature path.
15 The probability of at least one tipping event by 2100 is 12.5%.
16 For comparison, Nordhaus (2017) finds a social cost of carbon of $44 (converting $31 in 2015 using 
2010 $US) per tonne of carbon dioxide using the DICE-2016R2 model. Note I only consider social costs 
due to tipping risks.

13 The standard risk aversion coefficient defined in the Epstein-Zin setting is 1 − �

1−�
.
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weight as the temperature stabilises. At this point for RCP4.5, for example, social costs are 
2T̃∗�Q∕� ≈ 5.6 times the core model from (9).

If only one tipping event is possible, social costs are lower than core: initially by 7% and 
13% for carbon dioxide for RCP2.6 and RCP4.5 respectively, and when temperature stabi-
lises, by 2% and 41% respectively. The reduction in the methane social cost is smaller than 
for carbon dioxide, as the cumulative risk of tipping grows into the future, so the methane 
weight is higher than core.

If damages from tipping are exponential-linear in temperature, the profile of social costs 
for carbon dioxide is similar to the quadratic sensitivity. Consider the endpoint under 
RCP4.5. From (12), the marginal hazard effect is �ED

�
T∗ ≈ 1.5 times the core social cost. 

The differential welfare impact is �ED
�
T̃∗ (1−�)

Ω

�∑∞

i=0
� i�c,i

∑i+d

j=1
Rj

Γc

�
≈

1

2
2
0.14

0.33
(7.5) = 3.2 times 

core, making the social cost about 4.7 times core. As 
∑∞

i=0
� i�g,i

∑i+d

j=1
Rj

Γg

 is 7.5 for carbon diox-
ide and only 3.6 for methane, the methane weight is markedly lower and less than current 
policy.

In the threshold formulation, the initial social cost of carbon dioxide is 9% higher than 
core for RCP2.6 and 10% lower than core for RCP4.5 (Fig. 3). As a tipping risk only exists 
if temperature rises, this social cost ratio increases slightly and then drops to zero following 
peak temperature, and the methane weight is more than triple the current policy just before 
the peak. As social costs depend on the timing, rather than level, of peak temperature, the 
dynamics are identical between projections but shifted in time. The sharp changes in costs 
would become smooth with uncertainty of temperature outcomes, or with the effect of 
climate policy in an endogenous model where temperature may stabilise for an extended 
period.17 If the threshold formulation were combined with exponential-linear damages, the 
social cost would drop gradually beyond peak temperature due to the delay in awareness 
that an event has occurred.

Fig. 3  Social cost-to-income ratios of  CO2 and the methane weight from a threshold tipping risk.  CO2 Car-
bon dioxide. Methane weight of 1 is consistent with GWP100. Deterministic damages are infinitesimal for 
clarity

17 As found in simulations in an earlier draft.
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5  Conclusion

This paper examines the social costs of methane and carbon dioxide under climate 
tipping risks. Several formulations are considered as the nature and consequences of 
such risks differ between tipping events and are uncertain. The core model has restric-
tive assumptions that allow an easy calculation of social costs given a few parameters. 
A couple of temperature projections illustrate the results.

As in all work in this field, this paper has many limitations. While the risks of tip-
ping in a stochastic framework are considered, the model and associated parameters 
are assumed to be known a priori. The restrictive assumptions in the economic frame-
work do not allow precautionary capital formation considered in other papers such as 
van der Ploeg and de Zeeuw (2018). There is no discussion of the effect of climate 
policy on growth and emissions. The assumption that temperature is a linear function 
of previous actions can replicate the more complex climate-economy models well, but 
tipping impacts on climate feedback, such as a lower carbon dioxide decomposition 
rate, require a more complex framework.

Appendix A: Proof and derivations

Proof of Lemma 1 (6)

The social cost of carbon equals the optimal carbon tax and is derived using a Lagran-
gian method. The social planner chooses Ct , Kt , Em,t , Ec,t and Xt to maximise (1) sub-
ject to production and temperature constraints. Constraints on emissions technologies, 
which do not use capital or the final good as inputs, and other factors are omitted.

First-order conditions for Ct , Kt+1 and Tt are

A constant savings rate is implied by the conditions for Ct and Kt , as 1
Ct

= ���t

(
1

Ct+1

Yt+1

Kt+1

)
 

leads to Yt−Ct

Ct

= ���t

(
Yt+1

Ct+1

)
 which implies Ct = (1 − ��)Yt . The multiplier for temperature 

reflects marginal deterministic damages and the expected damages from tipping risks. The 
social cost of gas g in units of the final good Λg,t equals the sum of the future effects on tem-
perature �g,i multiplied by the temperature multiplier:

(17)

L
(
Ct,Kt,Em,t,Ec,t,Xt, Tt

)

= �0

∞∑
t=0

{
� tlogCt + λY ,t

(
Yt − e−(�Tt+ft)K�

t
F
(
Em,t,Ec,t,Xt

))

+λC,t
(
Ct + Kt+1 − Yt

)
+ λT ,t

(
Tt −

∑
g

t∑
i=−∞

�g,t−iEg,i

)}
.

(18)

� t

Ct

= −λC,t = −λY ,t , �t

(
λY ,t+1�

Yt+1

Kt+1

)
= −λC,t , and λY ,t�Yt + �t

(
∞∑
i=0

λY ,t+i
��tft+i

�Tt
Yt+i

)
= −λT ,t .
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Proof of Proposition 1 (7)

From (6),

Derivation of (14)

(19)Λg,t =
1

λY ,t
�t

(
∞∑
i=0

λT ,t+i�g,i

)
and from (18)

=
Ct

� t
�t

(
∞∑
i=0

� t+i�g,i

(
Yt+i

Ct+i

γ +

∞∑
j=0

� j
Yt+i+j

Ct+i+j

��tft+i+j

�Tt+i

))

= Yt

(
∞∑
i=0

� i�g,i

(
γ +

∞∑
j=0

� j
��tft+i+j

�Tt+i

))
.

(20)
∞∑
j=0

� j
��tft+i+j

�Tt+i
= �d

∞∑
j=0

� j
��tft+i+j+d

�Tt+i+d
= �d��

∞∑
j=0

� jRj+1

= �d��
(

1

r + 1
+

2

r + 1
� +⋯ +

r

r + 1
�r−1 +

r + 1

r + 1
�r + �r+1 +…

)

= �d��
(

1

r + 1
(1 + 2� +⋯ + (r + 1)�r) + �r+1(1 + � +…)

)

= �d��

(
1

r + 1

(
1 + � +⋯ + �r − (r + 1)�r+1

)
1 − �

+
�r+1

1 − �

)

=
�d��

1 − �

(
1

r + 1
(1 + � +⋯ + �r) − �r+1 + �r+1

)

=
�d��

1 − �

1 − �r+1

(r + 1)(1 − �)
.

𝜕�tft+i+j

𝜕Tt+i
=

{ 𝜕�tIt+i

𝜕Tt+i
R1ifj = d

𝜕�tIt+i

𝜕Tt+i
Rj−d+1 +

𝜕�tIt+i+1

𝜕Tt+i
Rj−d+2ifj > d

so from (6)

Ŝg,t = �d

(
τ−t−1∑
i=0

� i�g,i

(
��tIt+i

�Tt+i
R1 +

∞∑
j=1

� j
(
��tIt+i

�Tt+i
Rj+1 +

��tIt+i+1

�Tt+i
Rj+2

))
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which leads to (14) as.

Derivation of (16)

For simplicity, assume a constant temperature effect for carbon �c,j = �cj ≥ 1 , as outlined 
in Matthews et al. (2009) and recently adopted by Dietz and Venmans (2019). Assume the 
impact of a tipping event in the next period is Ω�∕� , to reflect delay in impact onset and ramp-
up time used in Sect. 4. Omitting deterministic damages, time subscripts and signifying time 
t + 1 variables using prime, the value function is

Using a trial solution, we have:

The first-order condition for capital leads to K� =
�φK

1+�φK

Y , and substitution into (22) leads 
to

+𝛽τ−t𝜓g,τ−t

𝜕�tIτ

𝜕Tτ

∞∑
j=0

𝛽 jRj+1

)
as

𝜕�tIt+i+k

𝜕Tt+i
= 0 if t + i + k > 𝜏 or k > 1, so

Ŝg,t = �d��T

τ−t−1∑
i=0

� i�g,i

(
R1 +

∞∑
j=1

� j
(
Rj+1 − Rj+2

))
+ �τ−t�g,τ−t

�TΩ�

1 − �

R1 +

∞∑
j=1

� j
(
Rj+1 − Rj+2

)
=

1

r + 1
+

�

r + 1
+⋯ +

�r

r + 1
=

1

r + 1

(
1 − �r+1

1 − �

)
.

(21)V(K,E, T) = max
K,T ,E

{
log

(
Y − K�

)
+

�

�
log

(
�t

(
eαV

�))}
where C = Y − K�,

V
�

= V
(
K

�

,E
�

, T
�)
, Y = e−f K�F(E), T � = T + �c,1E and f � = f + I.

So V = max
K,T ,E

(
log

(
(1 − ��)e−f K�F(E)

)
+

�

�
log

(
�t

(
eαV

�)))
.

(22)φK logK + φTT + φEE + φf f

= max
K,T ,E

(
log

(
Y − K�

)
+

�

�
log

(
�t

(
eα(φK logK

�+φTT
�+φEE

�+φf (f+I))
)))

= max
K,T ,E

(
log

(
Y − K�

)
+ �φKlogK

� + �φTT
� + �φEE

� + φf f +
�

�
log

(
�t

(
eαφf I

)))
and

log
(
�t

(
eαφf I

))
= log

(
pe

αφf
Ω

�
�
+ 1 − p

)
→

small Φ
φf ��TΩ

(
1 +

Φ

2

)
, Φ ∶= αφf

Ω

�
�.
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Equating terms for logK, f, and the first-order conditions for T and E:

The shadow price of carbon energy φE consists of the benefits for production and the 
negative externality from temperature increase. The latter term is the social cost of car-
bon dioxide expressed in consumption units, SEZ,c∕C , so:

Appendix B: Previous literature

Appendix C: Climate model

The climate model in this paper follows Shine et  al. (2005), giving a rapid tempera-
ture response to carbon dioxide emissions as recently advocated by Dietz et al. (2021). 
The GWP100 of methane is determined by summing radiative forcings annually up to 
100 years. For carbon dioxide, temperature responses at time t  after an emissions pulse 
(in discrete time) are

(23)

φK logK + φTT + φEE + φf f = log
((
1 − �φK

)
e−f K�F(E)

)

+ �φK(�logK + logF − f ) + �φTT
� + �φEE

�

+ �φf

(
f + φf ��TΩ(1 + X)

)
.

(24)logK ∶ φK = � + ��φK so φK =
�

(1 − ��)
.

(25)f ∶ φf = −1 − �φK + �φf so φf =
−
(
1 + �φK

)
1 − �

=
−1

(1 − ��)(1 − �)
.

(26)FOC T ∶ φT = �φT + φf��Ω(1 + Φ) so φT =
φf��Ω

1 − �
(1 + Φ).

(27)FOC E ∶ φE =
F�(E)

F(E)

(
1 + �φK

)
+ �φT�c,1.

(28)

ŜEZ,c ∶=
SEZ,c

Y
= φT�φT�c,1(1 − ��), as

C = (1 − ��)Y , so ŜEZ,c = Ŝc(1 + Φ) from (26), (25)

and (7) and as Γc =
��c,1

1 − �
.

(29)�c,t ∶=
�Tt
�Ec,0

=
Bc

H

⎧⎪⎨⎪⎩
�a0

�
1 − e

−
t

�

�
+

4�
i=1

ai

�
e
−

t

�i − e
−

t

�

�

(�−1 − �i
−1)

⎫⎪⎬⎪⎭
,
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where H is the heat capacity of the system, � is a climate sensitivity parameter, ai are coef-
ficients which sum to 1, �i reflect gas lifetimes in years, � is by definition the constant �H in 
years, and Bc is the radiative forcing due to a 1 Gt change in carbon dioxide. For methane, 
the equations are simpler:

Parameter values are shown in Table 2.
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