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Abstract
This study explores a spatial piecewise approach for the hedonic valuation of the area of 
urban green space at different distances from a property, using a rich census dataset col-
lected from Beijing. We explore three novel empirical strategies that improve the identi-
fication of the spatial boundary or threshold distance within which green space is capital-
ised into housing prices. We first delineated a series of concentric circles surrounding each 
property and measured the area of green space within each doughnut-shaped ring. We next 
estimated the hedonic price using three methods. The first is a regression spline model 
combined with a machine learning type of model selection procedure which objectively 
selects the exact location of the threshold distance that optimises the model’s predictive 
performance. The second is a novel matching algorithm that minimises covariate imbal-
ance for a continuous treatment variable (i.e., the area of green space) to provide stronger 
causal evidence on the hedonic prices of green space at different distances. The third is a 
spatial difference-in-differences approach that further accounts for endogeneity bias associ-
ated with unobserved factors. For our dataset, we found that housing prices are more likely 
to be affected by green space within a 1 km radius.
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1  Introduction

Urban parks and other green amenities provide urban residents with recreational, health 
and aesthetic benefits, as well as many other desirable ecosystem services (Millennium 
Ecosystem Assessment 2005). Urban green amenities are one of the primary components 
of the urban ecosystem accounts of many large-scale ecosystem accounting frameworks, 
such as the United Nation’s System of Environmental-Economic Accounting - Ecosystem 
Accounting (United Nations 2021), the UK’s urban natural capital accounts (Office for 
National Statistics 2023) and the US pilot urban ecosystem accounting (Heris et al. 2021). 
These ecosystem accounting frameworks often depend on the monetary value of urban 
green amenities, which is usually quantified using environmental valuation techniques. The 
fact that urban green amenities are mostly open to visitors free of charge precludes a mar-
ket price as a monetary measurement.

Hedonic pricing is one of the tried and trusted methods for the monetary valuation of 
urban green amenities. It considers green amenities surrounding a property as an attribute 
of the property, and seeks to derive the implicit price of green amenities as a component of 
the property’s total market value. This paper presents a case study in Beijing. We test three 
novel empirical strategies to identify the maximum distance from a property within which 
urban green amenities are capitalised into the property’s market value. This facilitates the 
measurement of the aggregate hedonic price by identifying which green spaces in a city 
should be included in a hedonic valuation, and thereby contributes to the extensive global 
efforts in standardising and mainstreaming ecosystem accounting.

There is a vast array of literature on the hedonic pricing of urban green amenities (see 
Bockarjova et al. 2020; Brander and Koetse 2011; Kovacs et al. 2022; Perino et al. 2014 for 
systematic reviews). Many previous hedonic studies from Beijing involved green ameni-
ties, either as the primary focus or as one of the locational attributes in the hedonic pricing 
model (e.g., Dong and Wu 2016; Mei et al. 2019, 2021; Wu et al. 2022; Zhang et al. 2020; 
Zheng et al. 2016; Zheng and Kahn 2008). However, it tends to be more straightforward to 
value the proximity to the nearest green space. Proximity can be measured, for example, 
as the length of the shortest route, as described in the studies mentioned above. Moreover, 
recent developments in applying Geographical Information Systems (GIS) and machine 
learning techniques to environmental valuation have facilitated hedonic valuations of the 
views of green amenities that can be seen from a property (e.g., Black 2018; Cavailhès 
et al. 2009; Daams et al. 2016; Walls et al. 2015; Wu et al. 2022).

In valuing the area (or size) of green space, there is an additional technical consideration 
as to which green spaces should enter the hedonic price model. The value of a property is 
less likely to be affected by a sufficiently distant green space, according to Tobler’s first law 
of geography that ‘near things are more related than distant things’ (Tobler 1970) and dis-
tance decay in spatial interactions (Taylor 1983). This implies that the value of a property 
might be affected only by green spaces within a ‘threshold’ or maximum distance, and that 
only these green spaces should enter the hedonic price model. In that regard, a common 
strategy has been to adopt a predetermined spatial bound, such as a predetermined radius 
(e.g., Albouy et al. 2020; Czembrowski and Kronenberg 2016; Netusil et al. 2010; Waltert 
and Schläpfer 2010) or a census block (e.g., Cho et al. 2008; Netusil et al. 2014). Some 
other studies (e.g., Conway et  al. 2010; Nafilyan and Lorenzi 2019; Sander et  al. 2010; 
Stromberg et al. 2021) undertook what we call a spatial piecewise step function analysis. 
They delineated a series of concentric circles surrounding each property and measured the 
area of green space within each doughnut-shaped ring. All these green space area variables 
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entered the hedonic pricing model. It was assumed that the estimated hedonic prices of 
green space beyond a certain threshold distance would become statistically equal to zero, 
and this threshold distance would be regarded as the spatial bound of the hedonic valuation.

This study builds upon the standard spatial piecewise step function approach by explor-
ing three novel empirical strategies that improve the identification of the threshold dis-
tance. These strategies include a model-selection-based regression spline method, a spatial 
piecewise matching analysis, and a spatial difference-in-differences (DID) approach. The 
three strategies offer different strengths and thus reinforce each other in the identification 
of the threshold distance. To the best of our knowledge, this is the first study that imple-
ments and compares the three empirical strategies in the hedonic pricing of urban green 
amenities.

We start with a model-selection-based regression spline approach, assuming that the 
hedonic prices of green spaces at different distances within the threshold distance can be 
estimated as a polynomial function of distance, whereas the hedonic prices of green spaces 
beyond the threshold distance are statistically equal to zero and no longer vary along dis-
tance. We next loop over all possible threshold distances in search of the preferred thresh-
old distance that has the best predictive performance within-sample and/or out-of-sample. 
This model selection approach echoes that proposed by Fitzpatrick and Parmeter (2021), 
who focused on the effects of coal mines on housing prices. This approach objectively 
selects the exact location of the threshold distance that maximises the predictive perfor-
mance of the hedonic pricing model. This provides a useful twist to the standard step func-
tion approach, which often relies on visual assessment and/or on arbitrary cut-off levels of 
statistical significance.

Next, to enhance the causal strength of the standard step function approach, we use a 
novel matching algorithm proposed by Fong et al. (2018) for a continuous treatment vari-
able (e.g., the area of green spaces). In comparison, the standard step function analysis of 
the hedonic price of urban green amenities typically relies on the OLS estimator, which is 
more prone to endogeneity bias associated with factors that correlate with both housing 
prices and urban green spaces but are not adequately controlled. This speaks to an increas-
ing emphasis in the hedonic pricing literature on adopting quasi-experimental methods 
(i.e., matching, difference-in-differences, instrumental variables, and regression discon-
tinuity designs) to mitigate endogeneity bias (Bishop et al. 2020; Kuminoff et al. 2010). 
Under the spatial piecewise framework, we used the matching algorithm of Fong et  al. 
(2018) to re-estimate the hedonic prices of green spaces at different distances to further 
assess the robustness of the findings in our regression spline analysis.

Lastly, we adopt a spatial difference-in-differences (DID) approach to further account 
for endogeneity bias associated with unobserved factors. This is achieved by assessing 
whether the creation of a new urban green space affects housing prices within a certain 
radius, taking housing prices outside the radius as the control, as in Haninger et al. (2017), 
Mei et al. (2021), Muehlenbachs et al. (2015) and Tanaka and Zabel (2018).1 We repeat the 
analysis by redefining the ‘treated’ observations using a series of different radiuses to iden-
tify the threshold distance where the treatment effect disappears. This spatial DID approach 
better accounts for endogeneity bias associated with unobserved factors, but requires 

1  These studies focused on environmental amenities/disamenities other than green space, namely restored 
brownfields (Haninger et  al. 2017), power plants that switched fuels from coal to gas (Mei et  al. 2021), 
shale gas wells (Muehlenbachs et al. 2015), and nuclear power plants (Tanaka and Zabel 2018).
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housing price observations before and after the creation of urban green spaces, and thus 
focuses on only a subset of the green spaces in our dataset to satisfy that requirement.

The remainder of this paper is structured as follows. Section 2 describes the study site, 
data and variables. Section 3 performs the spatial piecewise analysis of the hedonic prices 
of green spaces, focusing on the regression spline, matching and spatial DID approaches. 
Section 4 derives the aggregate hedonic value of green spaces, which can be used for eco-
system services accounting and cost-benefit analysis for urban land use decision-making. 
Section 5 discusses the results and concludes.

2 � Study Area, Data and Variables

The hedonic pricing analysis in this study is applied to data collected from Beijing. The 
city’s real estate sector experienced China’s housing reform programme in the late 1990s 
and became by and large a market-oriented system, where privately-developed new homes 
generally can be traded freely (Ren and Folmer 2022; Zheng and Kahn 2008). In the first 
two decades of this century, the city’s population increased dramatically, from slightly over 
13 million to nearly 22 million (Beijing Municipal Bureau of Statistics 2023), which has 
led to spiralling housing prices. According to the China Index Academy, the average price 
of newly built housing in 2023 is around CNY 60,000/m2. This implies that a homebuyer 
has to shell out nearly half a million US dollars for a typical 50-m2 apartment.

Nevertheless, urban green amenities are extensive in this densely populated city. Bei-
jing’s dry climate and inland location have left green spaces as one of the few types of 
environmental amenities available to its residents. By definition, the scope of urban green 
amenities is confined to those in Beijing’s urban areas, and hence does not include veg-
etated land in the municipality’s outlying rural areas, such as forests and national parks. In 
2016, the city’s per capita area of urban green space came to 40 m2, which was higher than 
the per capita area of housing (32 m2). The seemingly unbalanced trade-off warrants reas-
sessment on whether it is worthwhile to spare such extensive area of land for green space.

In this context, we undertake a hedonic analysis to investigate the housing price premi-
ums attributable to green space. Our analysis relies on a geographically referenced census 
dataset that details the first-time transactions of all newly built properties in Beijing from 
2006 to 2016. All geographic data were mapped and compiled using ArcGIS. We con-
sulted previous hedonic studies, particularly those from Beijing (i.e., Dong and Wu 2016; 
Li et al. 2016; Wu and Dong 2014; Zheng et al. 2016; Zheng and Kahn 2008), to guide our 
data collection and measurement of variables. Table A1 in the appendix defines these vari-
ables and presents the descriptive statistics.

Our housing transaction data were obtained from the China Index Academy and were 
sourced from the housing transaction registration system of the municipal government, 
which recorded the first-time transactions of all 1270 newly built residential blocks from 
2006 to 2016 (see Fig. 1a).2 We were only able to obtain the longitude and latitude coordi-
nates of the centroids of these residential blocks. These coordinates were used to map the 
housing data to green spaces and other urban amenities and infrastructure. Therefore, the 
green space and other locational variables have the same values for all properties within 

2  Most new homes in Beijing are units within multi-family residential blocks, which go on the market at 
about the same time. We excluded data points for publicly subsidised affordable homes.
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each residential block. In light of this, we measured all variables at the residential block 
level.

Data on urban green amenities were collected by the Beijing Municipal Bureau of Land-
scape and Forestry through field surveys in 2014 (see Fig. 1b). This dataset is a full inven-
tory of more than 230,000 plots of green space in Beijing’s urban areas. Surveyors digit-
ised the boundaries of these green spaces using GPS trackers, and investigated a number of 
other attributes, such as the area of a green space and the time when it was created. This 
enabled us to map property transactions to the green spaces that existed at the time of sale. 
As illustrated in Figure A1 in the appendix, we calculated the area of green space in each 

Fig. 1   Housing prices and urban 
green space in Beijing
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ring3 around the centroid of a residential block, giving rise to a series of variables indicat-
ing the area of green space at different distances.4

Further, we constructed a wide range of control variables for other locational charac-
teristics that may affect property values. We calculated the distance from each residential 
block to Tiananmen Square to indicate a residential block’s location relative to the city cen-
tre. The dummy variable ‘Southern half of Beijing’ takes the value one for those residential 
blocks located to the south of Tiananmen Square, and zero otherwise. This dummy vari-
able is expected to capture a downward shift in property values, since the southern half of 
Beijing was historically occupied by economically disadvantaged groups. We digitised the 
paper-based Beijing Education Map (Beijing Municipal Education Commission 2015) into 
an ArcGIS data file, which specifies the school district that covers each residential block 
and hence the schools assigned to it. School quality is proxied by the number of ‘dem-
onstration’ (‘shifan’) schools/kindergartens in each school district. The title ‘demonstra-
tion’ is usually awarded to the highest ranked and most reputable schools in Beijing. We 
extracted geographic data on other urban infrastructure and services (including hospitals, 
railways, highways, roads, subway stations, bus stops, restaurants and shops) from Gaode 
Maps, a leading web map service in China, and measured their proximity and quantity 
variables. These services and infrastructure benefit local residents, but may also induce 
adverse effects such as noise and crowding. Lastly, we generated a set of dummy variables 
that distinguish the districts, ring roads (representing zones partitioned by the ring roads), 
and years. The district and ring road dummies control for the price effects of features spe-
cific to a district or ring road that do not vary over time. The year fixed effects capture year-
specific macro shocks that have a common effect on property values, such as changes in 
housing and mortgage policies.

3 � Spatial Piecewise Analysis of Hedonic Prices for Green Space

As a reference point, we first performed the standard spatial piecewise step function 
analysis, where housing prices are regressed against a sequence of green space variables 
that measure the total area of green space in different rings at different distances of each 
residential block (as described in Section 2), controlling for other property- and location-
specific variables listed in Table A1.5 The estimated hedonic prices at different distances 
are graphically reported in Figure A2. However, there appears to be a lack of clear-cut 
indication of a breakpoint distance where green spaces cease to affect housing prices, and 
the patterns are sensitive to the choice of the step length (the width of the rings in Figure 
A1). These difficulties motivate us to explore three novel empirical strategies that facili-
tate the identification of the breakpoint distance. These strategies are the model-selection-
based regression spline, spatial piecewise matching, and spatial difference-in-differences 
approaches.

3  The ring at the centre is a solid circle.
4  We measured 100 variables that indicate the total area of green space in each 100 m-wide ring in a 10 km 
radius of each residential block. For brevity, Table A1 only describes green space variables for each 1 km-
wide ring in a 10 km radius.
5  The hedonic pricing model is log(HousePricei) =

∑

j pjGreenij + �x
i
+ �i , where i indexes residential 

blocks and j refers to rings at different distances. pj is the hedonic price to be estimated. The vector x
i
 con-

sists of all other explanatory variables listed in Table A1.
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3.1 � Regression Spline Analysis

Our regression spline approach was adapted from a standard restricted cubic spline regres-
sion (as formally discussed in Orsini and Greenland 2011; Smith 1979; Wegman and 
Wright 1983). This approach is used in high-quality applied statistical research, notably in 
medicine (e.g., Austin et al. 2022; Desquilbet and Mariotti 2010; Keogh and Morris 2018). 
The hedonic pricing model is re-parametrised as Eq. (1). We make two assumptions. First, 
only green spaces within a threshold distance DK (the last knot of the spline) affect hous-
ing prices, and the hedonic price of these green spaces can be expressed as a polynomial 
function of distance. Second, outside the threshold distance (or after the last knot), the 
hedonic price of green spaces no longer varies over distance and is expected to be statisti-
cally insignificant.

In this hedonic pricing model, the subscript i indexes residential blocks, j denotes rings at 
different distances from each residential block, and k indicates the knots of the regression 
spline. The vector x

i
 consists of all other explanatory variables in Table A1. � , �k and � 

are the parameters to be estimated, dj represents the radius of the middle of the jth ring, 
and Dk denotes the location of the kth knot. The positive part function (Dk − dj)+ trun-
cates (Dk − dj) at zero. The hedonic price estimates can be recovered through evaluating 
the function pj = � +

∑

k �k
∑

j(Dk − dj)
n
+
 at different distances, and their standard errors 

can be estimated using the delta method described in Greene (2020).6
The positions of the knots (and hence the threshold distance) are objectively decided via 

a model selection procedure. The step function estimates (in the finest 100 m step length 
setting) suggest that the hedonic price curve along distance is likely to have two conspicu-
ous turning points (around 0.5 km and 1 km, respectively). We therefore allow for a maxi-
mum of two knots (K = 0, 1 or 2) to accommodate the two turning points. We specified 
the degree of the spline function to be three (n = 3), which is the most commonly adopted 
choice in the regression spline literature (Orsini and Greenland 2011; Wegman and Wright 
1983), to ensure that the estimated hedonic price curve and its first- and second-order 
derivatives are continuous at the knots (so that the curve is visually smooth). The hedonic 

(1)log(HousePricei) = �
∑

j

Greenij +

k=K
∑

k=1

�k

∑

j

(Dk − dj)
n
+
Greenij + �x

i
+ �i.

6  Suppose we confine the analysis to a 300 m radius using a 100 m step length, and thus have three green 
space variables for each home i: Greeni1 for green space in the 0–100 m ring, with d1 = 50 (the radius of 
the middle of the ring), Greeni2 for green space at 100–200 m, with d2 = 150 , and Greeni3 for green space 
at 200–300  m, with d3 = 250 . Suppose we have a total of two knots, the first at 100  m and the second 
at 200 m ( K = 2 , D1 = 100 , D2 = 200 ). In that case, the green space variable associated with the param-
eter � is ( Greeni1 + Greeni2 + Greeni3 ), as in the first term of Eq. (1). The green space variable for �1 is 
503Greeni1 , and that for �2 is ( 1503Greeni1 + 503Greeni2 ), as in the second term of Eq. (1). The three param-
eters � , �1 and �2 can be identified in the regression because the three green space variables have different 
variation across homes. The three parameters can be loosely regarded as three components of the hedonic 
price estimates: for green space at 0–100 m, the hedonic price is ( � + 503�1 + 1503�2 ); for green space at 
100–200 m, the hedonic price is ( � + 503�2 ); for green space at 200–300 m, the hedonic price is �.
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pricing model (Eq. (1)) is then estimated repeatedly using all possible combinations of the 
knots’ locations within a 5 km radius.7 to search for the model specification (defined by the 
knots’ locations) that fits the data best.

We adopted two different procedures for model assessment and selection. One is the 
conventional approach based on within-sample prediction and the Akaike Information 
Criterion (AIC).8 The other is influenced by the rapid proliferation of statistical learning, 
which suggests that models with better ‘out-of-sample’ explanatory power (as opposed 
to the conventional within-sample explanatory power) are increasingly preferred (Varian, 
2014). In addition, regression spline models are often ill-adapted to extrapolation beyond 
the data used to fit these models (Suits et al. 1978). It is thus particularly helpful to assess 
the out-of-sample predictive performance of our regression spline models. In light of that, 
we conducted a five-fold cross-validation analysis to select a model with the best out-of-
sample prediction accuracy, as per Hastie et  al. (2008), James et  al. (2017), Jardine and 
Siikamäki (2014), and Jaya and Folmer (2020).

Our cross-validation analysis consists of the following steps: (1) specify a candidate 
functional form for Eq. (1) defined by the locations of the two knots D1 and D2 . (2) Ran-
domly split our full sample into five equal-sized sub-samples. (3) For the model speci-
fied in Step (1), remove a randomly selected sub-sample (test data, indexed by m, with a 
total number of observations M), and use the remaining four sub-samples together (train-
ing data, indexed by −m ) to estimate the model using OLS. (4) Use the model derived in 
Step (3) and the explanatory variables of the test data m to predict the dependent variable 
log( ̂HousePricem) . (5) For the test data, use the predicted values log( ̂HousePricem) and the 
actual values log(HousePricem) to derive three measures of fit, including the Mean Squared 
Error (MSE):

the Mean Absolute Error (MAE):

and the the pseudo-R2:

(2)MSE =
1

M

m=M
∑

m=1

[log(HousePricem) − log( ̂HousePricem)]
2
,

(3)MAE =
1

M

m=M
∑

m=1

|log(HousePricem) − log( ̂HousePricem)|,

7  We focus on green space within a 5  km radius because our step function estimates and preliminary 
regression spline analysis suggest that green space outside 5 km is less likely to affect housing prices. In the 
100 m step length setting, Eq. (1) has one possible specification with no knots (where the second term of 
Eq. (1) is 0), 50 possible specifications with one knot ( D1 = 100 m, 200 m, 300 m,..., or 5 km), and 1,225 
possible specifications with two knots (where D1 and D2 are combinations from the 50 possible positions 
ranging from 100 to 5 km, and the total number of such combinations is C50

2
= 1225 ). Therefore Eq. (1) has 

a total of 1276 possible specifications. This total number differs in other step length settings.
8  We have opted for the AIC for within-sample model assessment, instead of the three model performance 
measures described below for the cross-validation analysis (the mean squared error, the mean absolute 
error, and the pseudo-R2 ). Adding regressors (through, for example, increasing the number of knots) always 
improves those three measures in within-sample prediction. Therefore, attempting to select a model specifi-
cation using those three measures in within-sample prediction would lead to overfitting.
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where ̄log(HousePricem) refers to the mean of the dependent variable for the test data. (6) 
Repeat Steps (3)–(5) for each of the five sub-samples as the test data. (7) Repeat Steps 
(2)–(6) 500 times and compute the means of the MSE, the MAE, and the pseudo-R2 . (8) 
Repeat Steps (1)–(7) for all possible specifications of Eq. (1).

(4)R2 =

∑m=M

m=1
[log( ̂HousePricem) −

̄log(HousePricem)]
2

∑m=M

m=1
[log(HousePricem) −

̄log(HousePricem)]
2
,

Table 1   Knots preferred by 
different model performance 
criteria (100 m step length)

Knots AIC MSE MAE R
2

D1 (km) 0.9 0.7 1.0 0.9
D2 (km) 1.0 1.2 1.1 1.0

Fig. 2   Predictive performance of regression spline models (100 m step length)
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Fig.  2 displays the within- and out-of-sample predictive performance of all possi-
ble model specifications in the 100 m step length setting. In each panel of Fig. 2, the 
horizontal plane represents the full set of all possible combinations of the knots’ loca-
tions, and the vertical axis denotes the model performance measure (AIC, MSE, MAE, 
or pseudo-R2 ). The preferred model specification has the lowest AIC/MSE/MAE, or the 
highest pseudo-R2 . Table 1 summarises the model specifications (or the locations of the 
knots) preferred by different model performance measures. Reassuringly, it can be seen 
that all the model performance measures suggest highly comparable (and unambiguous) 

Fig. 3   Hedonic price estimates 
at different distances: regression 
spline estimates (100 m step 
length). Note: this figure focuses 
on the segment of the hedonic 
price curve within 2 km, since 
the curve no longer changes 
along distances outside 1 km

Table 2   Regression spline 
estimates

Standard errors are in parentheses
Asterisks indicate statistical significance: *p < 0.10, **p < 0.05, ***p 
< 0.01

DV: log (housing price) Model 1

Hedonic price
Green area 0–1 km 1.03 × 10−3***

(2.93 × 10−4)
Regression spline parameters
𝛾̂1 −8.51 × 10−11***

(2.71 × 10−11)
𝛾̂2 5.90 × 10−11***

(1.79 × 10−11)
𝛼̂ 1.31 × 10−5

(9.97 × 10−6)
Housing controls (Table A1) Yes
Obs 1270
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breakpoint distances where the hedonic price of green space disappears ( D2 , which 
ranges from 1.0 to 1.2 km). We have opted for 1.0 km as the breakpoint for the subse-
quent analyses, for two reasons. First, this is preferred by two model selection measures: 
one within-sample measure (AIC) and one out-of-sample measure (pseudo-R2 ). Second, 
this is the most conservative (closest) breakpoint across all our selection criteria, which 
may reduce the risk of overestimating the hedonic value of green space.

As can be seen in Model 1 in Table 2, the estimated parameters ( ̂𝛾1 and 𝛾̂2 ) that capture 
the distance-dependent patterns of the hedonic price estimates between the two knots are 
both strongly significant (p value < 0.01). The hedonic price estimates at different dis-
tances (and their confidence intervals) can be recovered from the regression spline, as 
shown in Fig. 3. The negative sign on 𝛾̂1 and the positive sign on 𝛾̂2 jointly give the inverted 
U-shaped curve in Fig. 3 of the hedonic prices inside the second knot (1 km as discussed 
above). The hedonic price first increases with distance, peaks at 500 m, and then declines 
with distance until about 1  km.9 The three estimates, 𝛾̂1 , 𝛾̂2 and 𝛼̂ , jointly formulate the 
hedonic price estimates, as mentioned in Footnote 6; the hedonic prices between the first 
and the second knots are [𝛼̂ + (D2 − dj)

3𝛾̂2] , and the first-order derivative with respect to dj 
is [−3(D2 − dj)

2𝛾̂2] . Therefore, the positive sign on 𝛾̂2 implies a negative first-order deriva-
tive and hence decreasing hedonic prices over dj between the first and the second knots. 
Similarly, the hedonic prices inside the first knot are [𝛼̂ + (D1 − dj)

3𝛾̂1 + (D2 − dj)
3𝛾̂2] , and 

the first-order derivative with respect to dj is [−3(D1 − dj)
2𝛾̂1 − 3(D2 − dj)

2𝛾̂2] . An increas-
ing trend in hedonic prices inside the first knot requires 𝛾̂1 to be negative if 𝛾̂2 is positive. 
However, in that case, the first-order derivative may not be monotonically positive and may 
become negative as dj increases. This would imply an initial increase and then a decrease in 
hedonic prices inside the first knot.

In monetary terms, the highest estimate appears in the 400–500 m ring (CNY 54.23 or 
USD 8.17 per m2 of housing per ha of green space).10 The lowest estimate occurs in the 
0 m-100 m ring (CNY –43.54 or USD –6.56). The area-weighted average hedonic price 
within 1  km ( 1.03 × 10−3)11 translates into CNY 26.98 or USD 4.06, and is highly sig-
nificant (p value < 0.01; standard error estimated using the delta method). For green space 
outside the threshold distance, the hedonic price estimate ( ̂𝛼 ) is statistically insignificant (p 
value = 0.19) and small (less than 2% of the area-weighted average hedonic price estimate 
within 1  km). These estimates characterise the hedonic price curve presented in Fig.  3, 

9  In the context of Beijing, green space provides both amenities (such as views and recreational benefits) 
and disamenities (such as attracting mosquitoes and green space users, which lead to noise and privacy con-
cerns) (Liu et al. 2020). Both the positive and negative effects are likely to decline over distance. However, 
the negative effects are likely to decline more quickly over distance than the positive effects, within a short 
distance to residents’ homes (e.g. within 500 m, as we found in Fig. 3). The net effect could be an increase 
in the hedonic price of green space. Over a longer distance (e.g., beyond 500 m), it is possible that the nega-
tive effects become negligible and the spatial pattern of hedonic prices is dominated by the distance decay 
in the positive effects.
10  The original log-linear estimate ( p̂j ) indicates that the average predicted home price E( ̂HousePricei) 
would change by 100[exp(p̂jΔG)] per cent if the area of green space changes by ΔG (Wooldridge 2020).
11  We first used the estimated parameters 𝛼̂ , 𝛾1 , and 𝛾2 to derive the hedonic price of each 100 m ring within 
1 km: p̂j = 𝛼̂ +

∑K=2

k=1
𝛾̂k
∑

j(Dk − dj)
3

+
 , and then computed the area-weighted average of those hedonic price 

estimates as 
∑10

j=1
wjp̂j , where wj refers to the ratio of the mean area of green space in the jth ring to the 

mean total area of green space inside 1 km.
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which has an inverted U-shape within 1  km and then becomes almost indistinguishable 
from the horizontal axis (though still marginally above zero). This hedonic price curve 
closely resembles that derived from the step function approach using a 100 m step length 
(Figure A2a).

Our findings on the preferred model specification and hedonic price estimates are stable 
if we switch to a 200 m step length.12 In fact, according to each of the four model selection 
criteria, all possible model specifications in the 200 m, 500 m and 1 km step length settings 
are outperformed by the preferred specification in the 100 m step length setting. This has 
inclined us to focus on the findings from the 100 m step length setting.

3.2 � Matching Analysis

We next switch to a novel matching approach proposed by Fong et  al. (2018) to further 
test the robustness of our findings. Matching has been advocated by the causal economet-
ric literature (e.g., Greenstone and Gayer 2009; Imbens and Rubin 2015, and Imbens and 
Wooldridge 2009) as a means to better control for endogeneity issues (especially those 
associated with observed factors), and thereby strengthen an estimate’s causal inference. 
In particular, Fitzpatrick and Parmeter (2021) performed matching estimation to provide 
stronger causal evidence in their study on the effects of coal mines on housing prices at dif-
ferent distances. However, the matching algorithm of Fitzpatrick and Parmeter (2021) was 
intended for a binary variable: whether there was a coal mine within a certain distance of 
a house. By contrast, our study focuses on a continuous variable: the area of green space 
within a certain distance of a home. Fong et al. (2018) built upon conventional matching 
methods by accommodating nonbinary treatment variables and by directly optimising sam-
ple covariate balance by minimising the correlation between covariates and the treatment. 
Fong et al. (2018) named this novel matching algorithm the ‘covariate balancing general-
ised propensity score’ (CBGPS), where the generalised propensity score refers to the distri-
bution of the treatment conditional on the covariates.

Following the empirical strategy of Fitzpatrick and Parmeter (2021), we used a 
CBGPS algorithm to re-estimate the hedonic prices of green spaces at different dis-
tances, to further assess the robustness of the findings in our regression spline models. 
We separately used both parametric and non-parametric CBGPS methods. The para-
metric method assumes that the generalised propensity score is normally distributed. 
In contrast, the non-parametric method does not depend on any assumptions about the 
functional form of the generalised propensity score. Our matching analysis was con-
ducted with the following steps: (1) following Fong et al. (2018), we first identified the 
optimal Box-Cox transformation for the area of green space within a certain distance by 
searching for the exponent parameter (from the range −2 to 2 with a 0.01 step length) 
that gives the best approximation of the standard normal distribution.13 (2) We then per-
formed the parametric matching algorithm on the covariates listed in Table A2. (3) The 
weights derived from the matching algorithm were then utilised to estimate a regression 

12  For the 200 m step length, Figure A3 in the appendix presents the predictive performance of all possible 
specifications of the regression spline model, and Figure A4 in the appendix presents the regression spline 
estimates of the hedonic prices at different distances.
13  We adopted this transformation for both the parametric and non-parametric CBGPS estimation to ensure 
the estimates’ comparability, even though the non-parametric CBGPS does not involve any distributional 
assumptions for the generalised propensity score.



Area‑Based Hedonic Pricing of Urban Green Amenities in Beijing:…

1 3

Fig. 4   Hedonic price estimates at different distances: matching estimates
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of housing prices on the transformed green space variable and the three sets of fixed 
effects listed in Table  A1 (to approximate within-cluster matching). (4) Due to the 
transformation in Step (1), the estimate from Step (3) on the transformed green space 
variable had to be converted (back) to the semi-elasticity form of the hedonic price esti-
mate, in order to be directly comparable with the estimates from the regression spline 
models. (5) Steps (1)–4) were bootstrapped 500 times to derive the standard error and 
confidence intervals of the hedonic price estimate. (6) Steps (1)–(5) were repeated for 
50 green space variables (one at a time), which represent the area of green space within 
different distances ranging from 100 m to 5 km, with a 100 m step length.

Figure 4 presents the matching estimates of the hedonic prices of green spaces within 
different distances. Compared to the regression spline estimates (3), the non-parametric 
CBGPS estimates (Fig. 4b) exhibit a highly similar pattern of hedonic prices over distance. 
The hedonic prices start with positive but low levels at 100 m and 200 m; slightly increase 
to the peak level at 400 m; steadily decline along distance; and, after about 1.5 km, con-
verge to very small swings around zero. The parametric CBGPS estimates (Fig.  4a) are 
notably higher for green spaces within 100 m and 200 m. This is likely because 69% of 
our observations have no green space within 100 m, and 49% have no green space within 
200 m; this might have caused anomalies when the parametric CBGPS algorithm forced 
the estimated generalised propensity score to be normally distributed. Beyond 200 m, how-
ever, the parametric CBGPS estimates closely resemble the pattern of the non-paramet-
ric CBGPS estimates. For the 1–1.5 km interval, both the parametric and non-parametric 
CBGPS estimates are higher than the regression spline estimates. This suggests that the 
1 km breakpoint previously identified might be a lower bound of the threshold distance at 
which the hedonic price starts to disappear.

Finally, we discuss in more detail the matching estimates for green spaces within 1 km. 
Table A2 in the appendix presents the results of the covariate balance tests. The first col-
umn of Pearson correlation coefficients shows considerable pre-matching correlation 
between each covariate and the (transformed) green space variable. The absolute value of 
the correlation coefficient is above 0.15 for 20 out of a total of 22 covariates, and above 
0.30 for 13 covariates. Such correlation was substantially reduced by the parametric and 
non-parametric CBGPS matching procedures. None of the covariates has a post-matching 
correlation coefficient above 0.15 in absolute value, while 19 covariates have a coefficient 
below 0.10 after the parametric matching, and 21 are below 0.10 after non-parametric 
matching. This improvement of covariate balance reduces concerns about potential endo-
geneity issues, since the green space variable has become notably less correlated with the 
observed covariates in the post-matching sample.

Table 3   Matching estimates

Standard errors are in parentheses
Asterisks indicate statistical significance: *p value < 0.10, ** p value < 0.05, ***p value < 0.01

DV: log (housing price) Model 2 Model 3
Parametric CBGPS Non-parametric CBGPS

Hedonic price
Green area 0–1 km 1.26 × 10−3***  1.34 × 10−3**

(2.98 × 10−4)  (5.37 × 10−4)
Obs 1270 1270
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Models 2 and 3 in Table 3 report the hedonic price estimates derived from the para-
metric and non-parametric matching algorithms. It can be seen that the two matching esti-
mates are qualitatively comparable to the regression spline estimate (in Model 1, Table 2), 
although 22–30% higher in magnitude.

3.3 � Difference‑in‑Differences Analysis

Our regression spline and matching analyses controlled for a wide range of factors that may 
correlate with both housing prices and green space. However, it is difficult in those two 
approaches to explicitly account for all such factors, especially unobserved factors, which 
might bias or confound the hedonic price estimates. We seek to better address unobserved 
confounders using a spatial difference-in-differences (DID) approach that better controls 
for location-specific unobserved confounders at a more detailed level.

Our DID analysis switches the unit of analysis from residential blocks to locations 
where new green spaces (larger than 0.5ha each14) were created in the timespan of our 
housing dataset (2006–2016). For each of these locations, we searched in a 5 km radius for 
residential blocks that were sold within two years before or after the new green space was 
created, and calculated the exact distances. This gave us housing price observations at dif-
ferent distances and different points in time before and after the creation of the green space, 
as shown in Fig. 5. Housing prices were residualised by regressing out location and time 
fixed effects and all the other control variables listed in Table A1, which accounted for all 
location- and time-specific confounders, both observed and unobserved. Figure 5a presents 
the means of residualised housing prices at different distances, using a 100 m step length. 
Figure 5b models residualised housing prices as a local linear polynomial function of dis-
tance. There is a reasonably discernible pattern that, within a 1 km radius, housing prices 
became higher after the creation of green spaces. Outside 2 km, housing prices before and 
after the creation of green spaces converge to similar levels.

We next formally investigate these visual patterns using DID regressions as specified in 
Eq. (5):

where the binary variable ‘ Aftersi ’ equals one if housing price i is observed after the 
creation of a new green space in location s, and zero otherwise, and the binary variable 
‘ Radiussi ’ indicates whether housing price i is observed within a certain radius (e.g., 1 km) 
of location s. � is the DID estimator that captures the ‘treatment effect’ of creating a new 
green space on housing prices within a certain radius. The vectors �

s
 and �

t
 represent 

location and time fixed effects, and x
i
 consists of all the other control variables listed in 

Table A1. This model specification utilises housing prices within a certain radius of loca-
tion s as treated observations, and those outside as control observations, as in Haninger 
et al. (2017), Mei et al. (2021), Muehlenbachs et al. (2015) and Tanaka and Zabel (2018). 
However, those studies exploited housing resale data which allowed for DID analyses at 
the property level, whereas our analysis is at the location level and relies on one-off hous-
ing prices observed in different years to introduce time-wise variation.

(5)
log(HousePricesi) = �Aftersi + �Radiussi + �Aftersi × Radiussi + �

s
+ �

t
+ �x

i
+ �si,

14  We repeated the DID analysis using newly created green spaces that are larger than 1ha, and the findings 
are qualitatively stable.
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Fig. 5   Housing prices before and after the creation of green spaces
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We estimated four DID regressions (Models 4–7, Table 4), which have the same speci-
fication as in Eq. (5) but differ in whether Radiussi is defined as within 1, 2, 3 or 4 km. In 
Model 4 where the radius is 1 km, the positive and statistically significant coefficient on the 
interaction term ‘ After × Radius ’ suggests that a new green space tends to increase housing 
prices within a 1 km radius. In our DID dataset, the average size of green spaces is 4.14ha. 
This suggests that, approximately speaking, a new hectare of green space increases housing 
prices in a 1 km radius by CNY 147.82 or USD 22.26 per m2 of housing. This is notably 
higher than the counterpart estimates from the regression spline and matching analyses, 
although the DID estimate refers to only a subset of the green spaces in the regression 
spline and matching analyses. In Models 5–7 (where the radius is 2, 3 or 4 km), the coef-
ficient on the interaction term ‘ After × Radius ’ is statistically indistinguishable from zero 
(the lowest p value = 0.49), and the absolute value of the estimated effect is much smaller 
than that for a 1 km radius. These results provide further evidence that a new green space is 
more likely to be capitalised into housing prices within a 1 km radius.

Our DID approach has controlled for all location- and time-specific factors, in addition 
to the control variables listed in Table A1. If there are no other confounders, the mean dif-
ference in the (residualised) treated and control housing prices would not vary over time 
before the creation of the green spaces, known as the parallel trends assumption (Wool-
dridge 2020). Otherwise, the main causal strength of this DID analysis would be confined 
to accounting for location-specific time-invariants (both observed and unobserved) at a 
more detailed level (compared to the regression spline and matching analyses), at the cost 
of focusing on only a subset of the green spaces in our dataset. Figure A5 in the appen-
dix provides some visual evidence for the applicability of the parallel trends assumption 
in our analysis. A Wald test further corroborates that the mean differences between the 
treated and control housing prices are statistically equal across the two pre-treatment years 
(p value = 0.64). These assessments find no evidence that the parallel trends assumption is 
violated.

Table 4   Difference-in-differences estimates

Asterisks indicate statistical significance: * p value < 0.10, ** p value < 0.05, *** p value < 0.01. Standard 
errors are in parentheses

DV: log (housing price) Model 4 Model 5 Model 6 Model 7
Radius = 1 km Radius = 2 km Radius = 3 km Radius = 4 km

EV
After −1.04 × 10−2* −1.01 × 10−2* −9.09 × 10−3 −8.83× 10−3

(5.35 × 10−3) (5.47 × 10−3) (5.73 × 10−3) (6.52 × 10−3)
Radius −4.13 × 10−3 −1.01 × 10−3 1.11 × 10−2*** 2.22 × 10−2***

(8.04 × 10−3) (4.45 × 10−3) (3.56 × 10−3) (3.64 × 10−3)
After × Radius 2.31 × 10−2* 4.62 × 10−3 −6.58 × 10−4 −1.11 × 10−3

(1.23 × 10−2) (6.73 × 10−3) (5.38 × 10−3) (5.57 × 10−3)
Green space location fixed effects Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes
Housing controls (Table A1) Yes Yes Yes Yes
Model significance (p value) < 0.01 < 0.01 < 0.01 < 0.01
R2 (within) 0.40 0.40 0.40 0.40
Obs 124,137 124,137 124,137 124,137
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3.4 � Further Robustness Tests

The DID analysis, despite focusing on a subset of the green spaces in our dataset, lends 
further support to our finding that housing prices are less likely to be affected by green 
spaces outside a 2 km radius. On the other hand, the spatial distribution of green space 
in neighbouring locations in Beijing tends to be positively correlated (Wang et al. 2023; 
Zhang et al. 2021). A location is likely to have more green space if its neighbouring loca-
tions have more green space. In fact, for the residential blocks in our dataset, the area of 
green space within 1 km has a correlation coefficient above 0.60 with the area of green 
space at 1–2 km, 2–3 km, and 3–4 km. In other words, green space outside a 2 km radius of 
a property is less likely to directly influence housing price, but tends to be highly correlated 
with green space within a 1 km radius. This suggests the possibility of instrumenting green 
space within a 1 km radius using green space outside a 2 km radius, as a means to further 
explore the implications of potential endogeneity issues. Bayer et al. (2009) adopted a sim-
ilar ‘spatial lag’ type of instrument for air quality.

To facilitate the instrumental variable (IV) estimation, we first estimated an OLS 
hedonic pricing regression (Model 8, Table  5). The right-hand side has only one green 

Table 5   Instrumental variable and placebo estimates

Standard errors are in parentheses
Asterisks indicate statistical significance: * p value < 0.10, ** p value < 0.05, *** p value < 0.01

DV: log (housing price) Model 8 Model 9 Model 10 Model 11
OLS IV-2SLS OLS OLS

Hedonic price
 Green area 0–1 km 5.90 × 10−4** 1.40 × 10−3** 1.05 × 10−3***

(2.57 × 10−4) (6.42 × 10−4) (3.73 × 10−4)
Future green area 0–1 km −3.92 × 10−4

(1.01 × 10−3)
Housing controls (Table A1) Yes Yes Yes Yes
Excluded instruments
Green area 2–3 km No Yes No No
Green area 3–4 km No Yes No No
Weak IV test
Cragg–Donald Wald F stat 110.83
(H0: Weak IV)
R2 (1st stage) 0.50
Over-identification test
Sargan statistic: p value (H0: Valid IV) 0.19
IV redundancy test
LM test: p value (H0: Redundant IV) < 0.01
Endogeneity test
Diff-in-Sargan–Hansen Statistic: p value 0.17
(H0: Exogenous ‘Green area 0–1 km’)
Hedonic price model sig.: p value < 0.01 < 0.01 < 0.01 < 0.01
Hedonic price model R2 0.68 0.68 0.65 0.66
Obs 1270 1270 889 889
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space variable, which represents the total area of all green space within a 1  km radius, 
controlling for other housing and location-specific variables listed in Table A1. The OLS 
estimate of the hedonic price (the estimate for ‘Green area 0–1 km’ in Model 8 in Table 5) 
is smaller than that derived from the regression spline approach (Model 1 in Table 2), but 
remains statistically significant at the 5% level. In Model 9, ‘Green area 0–1 km’ is instru-
mented using the area of green space at 2–3 km and 3–4 km. The F statistic from the weak 
IV test (110.83) is markedly greater than the conventional rule of thumb (10) and exceeds 
a more recently recommended threshold (104.7) (Lee et al. 2022), which provides evidence 
against the null hypothesis of weak identification. The p value from the over-identification 
test is well above the critical value (0.10), which further justifies the validity of the instru-
ments. Although the p value from the endogeneity test does not reject the null hypothesis 
of no endogeneity bias at the conventional critical level (0.10), the IV estimate for ‘Green 
area 0–1 km’ is notably higher than the OLS and regression spline estimates. This suggests 
that the OLS and regression spline estimates are likely to be conservative estimates of the 
true hedonic price of green space.

Lastly, we undertook placebo tests to further assess whether the foregoing analyses have 
picked up some distance-dependent patterns other than the effects of green space on hous-
ing prices. For each residential block, we measured the total area of green space at differ-
ent distances that was created after the residential block was sold. In theory, such ‘future’ 
green space is less likely to affect housing prices, compared to preexisting green space. We 
next re-estimated Model 8 after replacing the variable ‘Green area 0–1 km’ (green space 
inside 1  km that existed before housing transactions) with ‘Future green area 0–1  km’ 
(green space inside 1 km that was created after housing transactions), to test whether the 
model would falsely attribute any unexpected effect to future green space. As in Model 
10 in Table 5, the estimate on ‘Future green area 0–1 km’ is statistically insignificant (p 
value = 0.70), which is in line with intuition. Note that this placebo analysis is confined to 
housing transactions that happened before 2014, because our green space data were col-
lected in 2014, and thus do not include any future green space for housing transactions 
from 2014 onward. We thus re-estimated Model 8 using housing transactions before 2014 
to test whether the estimates could be affected by dropping subsequent housing transac-
tions. This gave rise to Model 11, where the estimate on ‘Green area 0–1  km’ remains 
positive and statistically significant, although larger in size compared to the estimate for the 
full sample. Moreover, we performed another placebo test by adding to Model 10 the area 
of future green space at 1–2 km, 2–3 km, 3–4 km and 4–5 km. As can be seen in Figure A6 
in the appendix, all these placebo estimates are statistically insignificant; the lowest p value 
is above 0.35. In comparison, the non-placebo estimates in Figure A6 were derived from 
an expanded version of Model 11, which contains preexisting green space at different dis-
tances; here, the estimate on ‘Green area 0–1 km’ is almost identical to that in Model 11.

4 � Aggregate Hedonic Prices of Green Space in Central Beijing

This section derives the aggregate hedonic prices of green space using the unit hedonic 
price estimates from Sect. III. To reduce computational workloads, we confined the analy-
sis to green spaces that are larger than 0.5ha and located in Beijing’s six central districts. 
For each of these green spaces, we first searched in our dataset for all residential blocks 
located in the green space’s 1 km radius. The aggregate hedonic price was then calculated 
by multiplying the unit hedonic price (the coefficient on the variable ‘Green area 0–1 km’ 
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after being converted from a semi-elasticity estimate to a monetary marginal effect esti-
mate) by the total area of the green space and the total floor area of the residential blocks 
within the green space’s 1 km radius. As an example, Fig. 6 maps the aggregate hedonic 
prices of these green spaces individually (based on the regression spline estimate in Model 
(1). Admittedly, owing to the nature of the hedonic approach, the spatial distribution of the 

Fig. 6   Hedonic prices (billion CNY in 2016 prices) of green spaces in Central Beijing

Fig. 7   Aggregate hedonic prices 
(in 2016 prices) of green spaces 
in Central Beijing. Note: M1: 
Model 1, regression spline; M2: 
Model 2, parametric covariate 
balancing generalised propen-
sity score (CBGPS) matching; 
M3: Model 3, non-parametric 
CBGPS matching; M4: Model 
4, difference-in-differences (sub-
sample); M8: Model 8, ordinary 
least squares (OLS); M9: Model 
9, instrumental variable; M11: 
Model 11, OLS (sub-sample)
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aggregate hedonic prices largely depends on the area of green spaces and the density of 
housing (in this study, newly built housing). Still, these results provide instrumental infor-
mation that can be directly fed into cost-benefit analysis for removing or creating a green 
space. Figure 7 presents the total hedonic price estimates of all these green spaces. These 
estimates, although concerning only a subset of Beijing’s green spaces, are sizeable: the 
annual average of the most conservative aggregate hedonic price (based on the OLS esti-
mate in Model 8) is comparable to 0.5% of Beijing’s GDP in 2022 (CNY 4,161.09 billion 
or USD 618.65 billion) (Beijing Municipal Bureau of Statistics 2023).

5 � Discussion and Conclusion

There have been extensive studies that valued urban green amenities by measuring the 
ensuing housing price premiums (or hedonic prices). Nevertheless, in valuing the size 
(or area) of green spaces, there exist difficulties in defining the spatial scope as to which 
green spaces should be included in the valuation. Some previous studies resorted to a spa-
tial piecewise step function approach, which regresses housing prices on a series of green 
space variables representing the area of green spaces at different distances from a home, in 
an attempt to discern the spatial limit where the hedonic value of green spaces disappears. 
This study builds upon that approach by exploring three novel empirical strategies that 
facilitate the identification of the threshold distance under a spatial piecewise framework. 
Among the three strategies, the model-selection-based regression spline method provides 
objective indications of the threshold distance that optimises the predictive performance of 
the hedonic pricing model. By contrast, the spatial piecewise matching and spatial differ-
ence-in-differences (DID) analyses provide stronger causal evidence for the hedonic price 
estimates.

Using a rich dataset from Beijing, we found that green space is more likely to be capi-
talised into housing prices within a 1  km radius. This conclusion is based on the highly 
comparable findings from the three empirical strategies, which offer different strengths and 
thus reinforce each other. In particular, the joint implementation of the three strategies has 
allowed us to assess how the exact threshold distance identified by the regression spline 
analysis compares to the findings from the matching and DID analyses, which better address 
endogeneity bias. The results of the three analyses taken together suggest that 1 km is likely 
to be a lower bound of the threshold distance for our dataset collected from Beijing. In 
comparison, previous spatial piecewise analyses by Conway et al. (2010) and Sander et al. 
(2010) found much shorter threshold distances (300ft in California and 250 m in Minnesota, 
respectively). Nafilyan and Lorenzi (2019) opted to focus on a 500 m radius in England and 
Wales. Such discrepancies regarding the threshold distance may relate to certain contextual 
differences. For example, homes in the US and the UK typically have a private green space 
in the backyard, whereas urban residents in Beijing mostly rely on communal and public 
green spaces at some distance. Some other studies have focused on the distance-dependent 
pattern of the hedonic price of the proximity to the closest green space (e.g., Daams et al. 
2016, 2019; Łaszkiewicz et  al. 2022; Melichar and Kaprová 2013; Wu et  al. 2022), and 
found that the hedonic price does not disappear until several kilometres away.15 However, 

15  These studies all focus on green spaces in urban areas. Regarding other types of vegetated areas, such as 
national parks in rural areas, housing prices can be affected by the proximity to national parks much farther 
away, such as 46.7 km on average, as found by Gibbons et al. (2014).
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this could be a reflection of the inherent difference in the hedonic prices of the proximity to 
a green space and the size of a green space. Moreover, those studies did not adopt multiple 
quasi-experimental strategies to further account for potential endogeneity issues stemming 
from various sources.

Focusing on green spaces within a 1 km radius, we estimated the hedonic price using 
several estimation methods, including OLS, regression spline, CBGPS matching, spatial 
DID, and instrumental variable estimation. These methods gave a range of hedonic price 
estimates and their confidence intervals, which are summarised in Fig. 8. The lowest (CNY 
15.41 or USD 2.32 per m2 of housing per ha of green space) was from the OLS estimation 
(Model 8, Table 5). The highest (CNY 147.82 or USD 22.26, same unit as above) was from 
the DID analysis (Model 4, Table 4). All other estimates are within a narrower range, from 
CNY 26.98 or USD 4.06 (the regression spline estimate, Model 1, Table 2) to CNY 36.56 
or USD 5.51 (the instrumental variable estimate, Model 9, Table 5).

As mentioned previously, these estimation methods offer different strengths and some are 
based on only a subset of our data. Policymakers should take these methodological considera-
tions into account when choosing estimates. The DID estimate might offer a stronger causal 
interpretation and might be more applicable to a subset of green spaces created in 2006–2016 
(as described in Sect. 3.3). The OLS estimate is more prone to endogeneity bias and represents 
the most conservative estimate. The middle-range estimates avoid the higher and lower ends.

The magnitudes of these unit hedonic price estimates seem limited, but the aggregate 
hedonic price estimates are considerable. Even focusing on the most conservative estimate 
and a subset of green spaces in central Beijing, the annual average of the aggregate hedonic 
price is comparable to half a per cent of Beijing’s GDP in 2022. In comparison, the aggre-
gate hedonic price estimated by Nafilyan and Lorenzi (2019) for green space in England 
and Wales in 2016 is about 4% of the UK’s GDP in that year, which is also sizeable.

In communicating our findings to policymakers, several other considerations deserve 
comment. First and foremost, green space provides many valuable ecosystem services that 

Fig. 8   Hedonic price estimates 
(semi-elasticities) from different 
estimation methods. Note: Bars: 
point estimates (white: p < 0.10; 
lighter grey: p < 0.05; darker 
grey: p < 0.01). Capped spikes: 
95% confidence intervals. M1: 
Model 1, regression spline; M2: 
Model 2, parametric covariate 
balancing generalised propensity 
score (CBGPS) matching; M3: 
Model 3, non-parametric CBGPS 
matching; M4: Model 4, differ-
ence-in-differences (sub-sample, 
original estimate divided by the 
average size of green spaces so 
as to be comparable with other 
models’ estimates); M8: Model 
8, ordinary least squares (OLS); 
M9: Model 9, instrumental 
variable; M11: Model 11, OLS 
(sub-sample)
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are not capitalised into housing prices and hence cannot be captured by hedonic prices. 
For instance, in 2022, despite Covid, Beijing accommodated 182 million tourists from 
China and abroad (equivalent to more than half of the US population), who spent CNY 
252 billion ( ∼USD 37 billion) in the city (Beijing Municipal Bureau of Statistics 2023). 
A large proportion of them may have visited the city’s historical parks (such as the Tem-
ple of Heaven Park) and other green amenities (such as the Olympic Park). In that case, 
the recreational value of green space materialised in the form of attracting tourists and 
contributing to tourism revenues. Therefore, the hedonic value of homes may represent 
only a fraction of green spaces’ total value. Second, our dataset only concerns housing 
newly built in 2006–2016. The aggregate hedonic price of green space would be much 
more sizeable had we taken into account all housing in the city. In addition, some benefits 
of green space may be better captured by non-monetary measures, such as subjective resi-
dential satisfaction, as in Ren and Folmer (2017). That said, on account of the abundance 
of green space currently in Beijing, adding more green space may eventually reduce their 
per unit value, due to diminishing marginal utility. In fact, in Model 8, adding the quadratic 
form of the variable ‘Green area 0–1 km’ yields a negative coefficient with a notably low p 
value (0.009), implying the possibility of a diminishing hedonic price if more green space 
is added. Lastly, we caution against literally extrapolating the specific results of this study, 
such as the threshold distance we identified (1 km), to other cases. For example, in a less 
populated city with a more open layout, housing prices may be affected by green space 
outside a 1 km radius.
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