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Abstract
While economists in the past tended to assume that individual preferences, including risk 
preferences, are stable over time, a recent literature has developed and indicates that risk 
preferences respond to shocks, with mixed evidence on the direction of the responses. This 
paper utilizes a natural experiment with covariate (drought) and idiosyncratic shocks in 
combination with an independent field risk experiment. The risk experiment uses a Cer-
tainty Equivalent-Multiple Choice List approach and is played 1–2 years after the subjects 
were (to a varying degree) exposed to a covariate drought shock or idiosyncratic shocks 
for a sample of resource-poor young adults living in a risky semi-arid rural environment 
in Sub-Saharan Africa. The experimental approach facilitates a comprehensive assessment 
of shock effects on experimental risk premiums for risky prospects with varying proba-
bilities of good and bad outcomes. The experiment also facilitates the estimation of the 
utility curvature in an Expected Utility (EU) model and, alternatively, separate estimation 
of probability weighting and utility curvature in three different Rank Dependent Utility 
models with a two-parameter Prelec probability weighting function. Our study is the first 
to comprehensively test the theoretical predictions of Gollier and Pratt (Econom J Econom 
Soc 64:1109–1123, 1996) versus Quiggin (Econ Theor 22(3):607–611, 2003). Gollier and 
Pratt (1996) build on EU theory and state that an increase in background risk will make 
subjects more risk averse while Quiggin (2003) states that an increase in background risk 
can enhance risk-taking in certain types of non-EU models. We find strong evidence that 
such non-EU preferences dominate in our sample.
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1 Introduction

Climate change is associated with more frequent and/or more severe shocks in terms of 
severe droughts, floods, and storms. Whether, how much, and for how long risk preferences 
change as a result of shock exposure in the form of idiosyncratic and covariate shocks are 
still controversial and understudied, and therefore, more and better empirical studies are 
needed and of potential high policy importance given the threats from climate change.

Standard neoclassical economics assumed risk preferences to be stable and not sub-
ject to much change (Stigler and Becker 1977). However, does constant risk preferences 
mean constant absolute risk aversion (CARA) or constant relative risk aversion (CRRA)? 
As noted by Quiggin (2003), risk-neutral preferences are the only class of expected-utility 
preferences displaying constant risk aversion (CARA and CRRA). For risk averse indi-
viduals, more risk reduces welfare. A vulnerability perspective may point towards increas-
ing marginal costs of increasing risk exposure, and it may be rational to become more risk 
averse for one’s own protection. An increase in background risk (more serious shock expo-
sure) may make people more vulnerable and risk averse (Gollier and Pratt 1996; Cameron 
and Shah 2015; Pratt and Zeckhauser 1987). On the other hand, Quiggin (2003) has shown 
that background risk can be a complement rather than a substitute for independent risks for 
certain non-expected utility theories. This implies that increased background risk can make 
subjects less averse to independent risks. This difference in predictions may give an impor-
tant theoretical explanation for the contradictory findings in the literature on how shocks 
affect risk preferences. A near-linear utility function may thus be one explanation for shock 
exposure triggering more risk-taking in independent risk experiments after such a shock. 
Another explanation may be found in Prospect Theory (PT), which proposes that the cur-
vature of the value function is different in the loss domain than in the gains domain, pos-
sibly causing people to take more risk after exposure to a negative shock (causing them to 
be in the loss domain) (Kahneman and Tversky 1979; Tversky and Kahneman 1992). This 
follows from a diminishing sensitivity perspective for deviations from a status quo (before 
a shock) position. Also, when people have little more to lose, they may become desperate 
risk-takers. Such switches could trigger sudden changes in survival strategies, such as des-
perate migration, criminal activity, and social unrest.

The empirical literature on the effects of shocks on risk preferences gives mixed find-
ings. Some studies find that subjects have become more willing to take risks after shock 
exposure in line with Quiggin (2003) and possibly PT (Voors et  al. 2012; Kahsay and 
Osberghaus 2018; Page et  al. 2014; Cavatorta and Groom 2020; Hanaoka et  al. 2018). 
Other studies find the opposite, that subjects have become less risk tolerant after exposure 
to shocks (Cassar et al. 2017; Liebenehm 2018; Guiso et al. 2018; Brown et al. 2019; Bour-
deau-Brien and Kryzanowski 2020; Cameron and Shah 2015; Liebenehm et al. 2023). And 
yet other studies find that risk preferences are stable and unaffected by shocks (Sahm 2012; 
Brunnermeier and Nagel 2008; Drichoutis and Nayga 2021). There are also mixed find-
ings regarding how covariate and idiosyncratic shocks affect risk preferences (Liebenehm 
2018). Some studies show that risk preferences may be affected by fears even though indi-
viduals were not directly affected by the shocks, indicating that the change induced by 
shocks may be an emotional response and those directly exposed may be affected differ-
ently than those who only experience a shock from a distance (Bourdeau-Brien and Kry-
zanowski 2020; Said et al. 2015). Said et al. (2015) find that those who lived in a flood-
exposed area in Pakistan but were not directly affected by the flood themselves became 
more risk averse, while those who were directly affected became less risk averse. Guiso 
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et al. (2018) find that the 2008 financial crisis triggered a substantial increase in risk aver-
sion of bank customers who were not directly affected by the crisis. Few studies investigate 
how persistent or long-lasting such shock effects on risk tolerance can be. Hanaoka et al. 
(2018) find that Japanese men became more risk tolerant after the Great East Japan Earth-
quake, and this effect persisted five years after the earthquake, while no such shift was 
observed for Japanese women. Few earlier studies have looked at how drought shocks may 
affect risk preferences. Voors et al. (2012) studied whether violent conflicts and droughts 
affected the risk preferences related to the civil war in Burundi and found that exposure to 
conflict made people more willing to take risks, while they found no significant effect from 
drought.

We assess whether the 2015–16 severe covariate drought and 2016–17 idiosyncratic 
shocks affected experimental risk-taking behavior in 2017 using an easy-to-understand 
incentivized tool to elicit risk preferences one and two years after shock exposures. We 
used a Certainty Equivalent (CE)-Multiple Choice List (MCL) experiment 1–2 years after 
the shocks that were treated as a natural experiment. With 12 Choice Lists (CLs), we 
elicited 12 risk premiums per subject and could assess whether the risk premiums were 
affected by the covariate and idiosyncratic shocks. Furthermore, this experiment allowed 
the estimation of disaggregated probability weighting using a two-parameter Prelec prob-
ability weighting function (Prelec 1998) and utility curvature based on a Constant Relative 
Risk Aversion (CRRA) utility function. Based on Rank Dependent Utility (RDU) theory 
(Quiggin 1982), the probability weighting and utility functions were jointly estimated 
while assessing their parameter sensitivity to past idiosyncratic and covariate shocks.

The general RDU and the special case dual (Yaari 1987) models predict that subjects 
become more willing to take risks (have lower risk premiums) after the severe covariate 
shock, which represents an increase in background risk. This result contradicts EU theory, 
which predicts that an increase in background risk should increase risk vulnerability and 
make subjects more risk averse (Gollier and Pratt 1996). So far, there has not been any 
rigorous empirical testing of these alternative theoretical explanations as possible explana-
tions for the mixed effects of shocks on risk preferences.

There are reasons to believe that subjects’ risk preferences are more sensitive to covari-
ate than idiosyncratic shocks as insurance mechanisms do not work as well for covariate 
as for idiosyncratic shocks (Dercon et al. 2008). Günther and Harttgen (2009) showed that 
rural households were relatively more severely affected by covariate than by idiosyncratic 
shocks. There are, therefore, good reasons to judge the subjects as having become more 
vulnerable after exposure to a severe covariate shock.

Our paper makes four important contributions to the limited but expanding literature 
on how shocks affect risk preferences in field settings with poor and vulnerable subjects. 
The main types of shocks or disasters studied concerning risk preference stability include 
floods and earthquakes. To our knowledge, we present the first comprehensive study of 
how varying covariate drought shock exposure affects experimental risk premiums at dif-
ferent probability levels for good and bad (non-negative) outcomes. Most earlier studies 
have used simple tools that do not allow the separation of shock effects on utility and prob-
ability weighting. Second, to our knowledge, this is the first paper that disaggregates the 
shock effects on utility curvature and two probability weighting parameters. Third, we pre-
sent the first paper that comprehensively tests the effect of an increase in background risk 
on risk-taking based on the EU risk vulnerability theory of Gollier and Pratt (1996) against 
the non-expected utility theory prediction of Quiggin (2003). Fourth, our study uniquely 
assesses the effects of recent idiosyncratic shock and a covariate climate (drought) shock 
on risk preference parameters in a rural poor and vulnerable population in a semi-arid 
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environment in Sub-Saharan Africa. Such environments and vulnerable populations will 
likely face more severe climate shocks associated with future climate change. Our study 
indicates that subjects exposed to the covariate drought shock have become more willing 
to take risks, in line with non-expected utility theories. This may indicate a willingness to 
adapt to changing climatic conditions even though such shocks make people more vulner-
able. This finding has potentially important policy implications as the frequency and sever-
ity of climate shocks are likely to increase as part of climate change, and climate adaptation 
needs to be carefully addressed by well-informed policy-makers who understand context-
specific behavioral responses to such shocks.

Our paper proceeds as follows. Part 2 elaborates on the sample and survey data, assesses 
attrition, and tests whether we can regard the shock variables as natural experiments. Part 3 
outlines the experimental design and inspects the experimental outcome distributions and 
data quality, including non-parametric assessment of stochastic dominance. Part 4 outlines 
the theoretical framework, the parametric estimation, and identification strategies. Part 5 
presents the results discussed in Part 6 before we conclude in Part 7.

2  Survey, Experimental Design and Data

2.1  Sample and Survey Data

The study is based on a random sample of 120 youth business groups from a census of 
742 such groups in five districts in the semiarid Tigray Region of Ethiopia. Up to 12 mem-
bers were randomly sampled from each group. A baseline survey was implemented in July-
August 2016. The second round of surveys and experiments were conducted in July-August 
2017. The baseline survey covered 1104 subjects with complete information on all the 
variables. Attrition reduced the number of groups to 114 groups and 912 subjects in the 
second experiment in 2017 with complete data.

The business group program was established as a policy initiative to create a comple-
mentary natural resource-based livelihood opportunity for landless and near-landless youth 
and young adults in this risky environment. Eligibility criteria for joining the business 
groups were residence in the community and resource poverty in terms of limited land 
access. The main group production activities they could establish were animal rearing, bee-
keeping, forestry, and irrigation/horticulture. Self-selection into groups was most common 
( 80% of the groups) by the youth in a group typically coming from the same neighborhood. 
It enabled them to continue living in their home community close to their parents. All the 
groups were formed before the severe 2015 drought took place.

The group members also have limited education, with a mean of 5.5 years of completed 
education. About one-third of the subjects were female, see Table 1.

All experiments and survey questions were translated and asked in the local language, 
Tigrinya. Trained experimental and survey enumerators introduced the experiments and 
asked survey questions in the local language. Tablets and CSPro were the digital tools used 
for the data collection. Careful training of enumerators was first conducted in classrooms 
at Mekelle University. They were then trained by doing experiments and interviews with 
each other before they were trained in the field with out-of-sample groups and subjects. 
To minimize within-group spillover effects, the twelve sampled members from each busi-
ness group were interviewed simultaneously by 12 enumerators, using three classrooms 
in a local school (or Farm Training Centres). One enumerator was placed in the corner of 
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each classroom, and the subjects faced them during the experiments and survey interviews. 
Supervisors were used to ensure order and no disturbance. The orthogonal placement of 
enumerators on groups minimizes the risk of enumerator bias in the analyses. In addition, 
the researchers monitored potential enumerator bias during data collection. They had fol-
low-up meetings with the enumerators to identify reasons for observed enumerator bias in 
the data collected and find ways of minimizing such bias. Some poor-performing enumera-
tors were replaced.1

2.1.1  Attrition and Test for Natural Experiment

To a varying degree, the study areas were affected by a severe drought shock in 20152 and 
recall data for the exposure and severity of this shock were collected in the 2016 baseline 
survey. The subjects were asked how severely their parent households were affected by the 
2015 drought shock on a scale from 0 to 3, see Table 2.3 As a measure of covariate risk, 
we constructed a variable that was the mean severity index within business groups. As 
groups have a joint land resource-based business, group members and their families are 
spatially concentrated in a neighborhood. We exploit the spatial variation in the severity 
of the drought shock across groups to generate a covariate shock variable. Its distribution 
in terms of average group severity (on the 0–3 scale) in the full sample and each district 
(woreda) are shown in Fig. 1a. We also show the distribution of the within-group deviation 
in drought shock severity (Fig. 1b), which to a large extent is a mixture of idiosyncratic 
noise in the perception responses and local variation in vulnerability and is therefore not 
included in the analyses.4 We note the substantial within-district variation in the covariate 
shock severity in Fig. 1c. The severity of the 2015 drought is also illustrated by the fact 
that 43% of the families had to sell assets or livestock in response to the shock, and 55% 
received support from the government related to the drought.5

Descriptive statistics are provided for the included survey variables for individual group 
members, their main group production activities, and their parent household and farm 
characteristics. We used group members who were available and participated in the 2016 
survey and the 2017 risk preference experiments. We obtained all variables of interest for 
912 subjects from 114 business groups, see in Table 1. We have rich data and deep knowl-
edge of the study area. We intend to use the group-level measure of drought shock severity 
as an explanatory variable based on the assumption that this group-level drought shock 
severity can be used as a natural experiment. By taking the group mean, we have removed 
within-group variation in vulnerability and noise to get a cleaner measure of the drought 
shock severity (El Nino effect) in a location. In order to critically examine whether the 
shock can be regarded as not only external but also exogenous in an econometric sense 
(Deaton 2010), we need to assess whether there can be spurious correlations between the 

1 This happened before the 2017 risk experiments for which we had a stable and well-trained group of enu-
merators.
2 This drought is associated with the El Nino effect. Such droughts have previously been observed in Ethio-
pia in 1958/59, 1965, 1972/73, 1982/83, 1986, 1992/93, and 1997/98 (Mera 2018).
3 The sample subjects mostly are youth or young adults from resident farm households in their community. 
We include the drought shock severity data for the final sample in Table 1 as well, and we test for potential 
attrition bias. We find no such bias. The test results are presented in Appendix 1, Table 11.
4 Including it in the analyses does not change the results in any significant way.
5 We avoid including these variables in our analyses due to their endogeneity and difficulty finding strong 
and valid instruments for their prediction.
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group-level drought shock severity variable and parent household and farm characteristics 
and business group characteristics. We also need to assess whether the drought may have 
caused migration and attrition that may have caused attrition bias. If we find no such cor-
relations of significance, we go ahead with the natural experiment assumption and con-
sider the relationship between the 2015 and 2016 shocks and the risk preferences elicited 
in independent risk experiments in 2017 for the same subjects to represent causal effects.

One possible threat to our assumption is that the natural experiment in the form of 
the severe drought shock in 2015 may have caused a selection (dropout) of group mem-
bers with systematically different risk preferences in areas more severely affected by 
the drought. We assessed this by using dropout information from each group and group 
member. We regressed it on the 2015 drought severity variable and member and parent 
household characteristics. We found no significant correlation indicating that the drought 
caused such a selection that could bias our results.6 Another potential selection problem 
could be related to whether group member selection and formation were significantly dif-
ferent across more severely drought-affected and other areas. About 80% of the groups 
were formed through the self-selection of eligible members within their community. We 
constructed a dummy variable for self-selected groups, ran a selection model with baseline 
group characteristics, and constructed an Inverse Mills Ratio (IMR) for possible selection 

Table 1  Descriptive statistics for 
shock variables and individual, 
group, and parent household 
characteristics

1 tsimdi is approximately 0.25 ha

Mean sd

Shock variables 
Covariate shock severity 2015–16 1.730 0.420
Deviation in shock severity 2015–16 − 0.003 0.851
Idiosyncratic shock 2016–17, dummy 0.167 0.374
Subject characteristics(2016)
Male, dummy 0.672
Age, years 29.321 9.728
Education, years 5.411 3.956
Married, dummy 0.611
Lives on parents’ farm 0.524
Group business activity
Livestock 0.255
Beekeeping 0.360
Forestry 0.137
Irrigation 0.248
Parent household characteristics
Parents have radio, dummy 0.491
Parents oxen number 0.963 0.613
Parents own land, dummy 0.763
Parents farm size, tsimdi 2.243 2.133
N 912

6 The results are presented in Appendix 1, Table 11. This result is also supported by qualitative informa-
tion about the reasons for dropout and migration. The drought was not given as the reason for dropout and 
migration by any informants.
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bias associated with these groups. We included the predicted self-selection variable and the 
IMR in the attrition model (Appendix 1, Table 11) and used bootstrapping and re-sampling 
groups to correct the standard errors. These variables were not significantly correlated with 
member attrition.

Another potential source of bias is that we relied on the self-reported severity of the 
drought shock. Ideally, one would prefer objective measures, but such objective measures 
of drought, such as rainfall,7 only exist from meteorological stations that are located far 

Table 2  Severity of 2015 shock 
exposure

Initial sample Final sample

Frequency Percent Frequency Percent

Not at all (0) 110 9.9 95 10.4
Somewhat affected (1) 338 30.6 284 31.2
Quite severely affected (2) 370 33.5 308 33.7
Very severely affected (3) 286 25.9 225 24.6
N 1104 100 912 100

Fig. 1  The distribution of the covariate and within-group deviation in shock severity index variable and 
covariate shock severity by district in the N = 912 sample

7 Even the transformation of rainfall to an indicator of the drought severity is a non-trivial task at a specific 
location as this depends on the inter-temporal distribution of rainfall, temperature distribution, soil type, 
slope, slope direction, position in the catena, vegetation, soil type, groundwater level and variation, and 
technologies used.
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apart. They do not capture the large local micro-climatic variation, including rainfall vari-
ation over time and space, associated with the rugged topography in our study districts.8

To further inspect for potential endogeneity associated with the business group-level 
averaged perception-based covariate drought shock, we estimated models (Table 3), mod-
els (1) and (4)), using this covariate drought shock severity (model (1)) and the within-
group deviation in the shock severity (model (4)) as dependent variables. We regressed 
these on the parent household and farm characteristics, including a dummy variable for 
whether the respondents lived on the farm of their parents, and the main business group 
production activity type,9 and district dummies. In model (4) for the within-group devia-
tion in perceived drought shock severity, we also included the predicted group level self-
selection and IMR variables.10

Model (1) in Table 3 shows that none of these parent household characteristics or group 
production types were significantly correlated with the covariate shock variable. Only some 
of the district dummy variables were significant, as could be expected based on the patterns 
observed across districts in Fig. 1. However, the within-district variations in the covariate 
shock severity observed in Fig. 1 are substantial and demonstrate an important variation in 
drought severity that rainfall data from weather stations do not capture. The fact that none 
of the parent household and farm characteristics,11 or group production activities were sig-
nificant indicates that we cannot reject the natural experiment assumption for the covariate 
shock variable. However, we cannot rule out that other confounders can undermine our 
assumption. We follow up with further robustness checks (control function approach) in 
the analysis of how the 2015 group-level covariate and 2016 idiosyncratic shock variables 
affect or are correlated with the estimated risk preference variables with reduced-form and 
structural models based on the EU and RDU theories for our sample.

As a further inspection of the within-group deviation in drought shock severity percep-
tions, see model (4) in Table 3. We found no significant correlation between the predicted 
self-selection dummy and the Inverse Mills Ratio and the deviation in drought severity 
variable and, therefore, no sign of significant selection bias. We also included a dummy 
variable for the youth group members who live on their parents’ farm.12 We see in model 
(4) in Table 3 that the deviation in the drought severity index was significant (at 0.1% level) 
and negatively associated with the parents’ farm size. This may be because more land-poor 
households are more vulnerable to droughts, and therefore, the subjects perceive the shock 
as more severe for their parents. This implies that we, by taking the group means, have 
removed a potentially important source of endogeneity in the covariate drought severity 
perception variable, as farm size is insignificant in model (1). Still, we keep in mind that 

8 We observed that some of our study locations had very low rainfall but good access to groundwater, so 
rainfall was a poor predictor of drought problems there. There was also local variation in access to ground-
water that is unobservable in the data from meteorological stations. This is local knowledge that our per-
ception variable takes advantage of. For the protection of the anonymity of our sample, we are reluctant to 
provide detailed maps of their locations, especially as there has been a civil war in the area after we carried 
out this study, and many youths were victims of violence during the civil war.
9 See Appendix 2, Table 12.
10 These variables cannot be included in model (1) as they do not vary within groups.
11 Appendix 2 provides some further statistics on parent household heterogeneity.
12 Those who live on their parents’ farm may have a closer connection to their parents, and this may have 
affected their drought perceptions. A closer inspection shows that the farm size of the parent households 
for those who live on the farm of their parents is 2.88 tsimdi on average against 1.54 tsimdi for the youth 
not living on the farm of their parents. This variable, therefore, also picks up some of the farm size effects. 
Farm size may be negatively correlated with vulnerability.
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the farm size of parents may be an important additional variable to control for when we 
assess the relationship between the shock variables and risk preferences, as it may reflect 
local variation in vulnerability.

We also regressed the (idiosyncratic) 2016–17 shock dummy on the same variables as 
above; see models (2) and (3) in Table 3. We added model (3) with the two shock severity 
variables from the previous year to inspect the significance of their correlations. Table 3 
shows that the dummy for the youth living on their parent’s farm was negatively correlated 
(significant at 1 % level) with the likelihood of being exposed to such a shock.13 In model 
(3), where we tested for significant correlation between the 2015 and 2016 shock variables, 
we found the covariate shock variable to be significantly and positively correlated with the 
2016 shock dummy.14 The finding that the dummy for the youth group members living on 
the parents’ farm is significant in the idiosyncratic shock models implies that we also will 
include this variable as an important control in the further analysis of how the idiosyncratic 
shock variable may have impacted or is correlated with the risk preference variables. As 
the irrigation group variable was weakly significant in the idiosyncratic shock models, we 
also included the main activity variables as a control in the following analyses. We need to 
be cautious in our causal interpretation of the effect of the idiosyncratic shock variable on 
risk preferences by taking these confounders into account.

3  Experimental Design

3.1  Certainty Equivalent Multiple Choice List (CE‑MCL) Experiment

These experiments were implemented in July-August 2017 in combination with a follow-
up survey of the same business groups and members, we used an MCL approach where the 
subjects answer multiple series of binary questions where they in each CL chose between 
a fixed risky prospect and alternative certain amounts. The advantage of this experiment 
is that it can separately identify the probability weighing function and the utility function, 
as we varied both probabilities and outcome levels (see Table 4 for an overview of the CL 
parameter variation). Table 5 provides an example of one of the CLs. The experimental 
protocol and relevant extracts of the survey instrument are included in the Appendix (Sur-
vey and Experimental Protocols).

The subjects are informed before the experiment is started that they will have to choose 
between a large number of risky prospects and certain amounts and that one of the pros-
pects will be chosen randomly as a real game and for real payout immediately after the 
experiment has been completed. Each subject is allocated to an MCL with a randomized 
order of the CLs. For each CL, the subject is presented with the risky prospect, outlined 
on the desk in front of her/him, with real money for the good and bad outcomes and with 
the 20-sided die to illustrate the probability of winning and losing. It is only the certain 

13 A model without this dummy variable gave a significant negative correlation with farm size. This indi-
cates that those who live on their parents’ farms are less exposed to idiosyncratic risks, which may be 
because their parents are better endowed with land.
14 The Pearson correlation coefficient between the 2015 covariate shock severity variable and the 2016 
shock dummy is 0.0696, which is so low that it is not likely to have any strong mutual statistical influence, 
but we investigated this to be sure. Based on this, we inspected for the effect of alternatively removing one 
of these correlated shock variables. By including the parents’ farm size variable as a control, we further 
investigated the robustness of our results. We cannot rule out that the 2015 covariate shock caused subjects 
to become more vulnerable to idiosyncratic shocks in the following year.
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Table 3  Testing for shock correlations with other variables

Bootstrapped standard errors in models (2)–(4). Cluster-robust standard errors,
Clustering on groups in model (2). Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1

Variables (1) (2) (3) (4)
Covariate Idiosyncratic Idiosyncratic Shock

shock shock shock severity

severity 2016–17 2016–17 deviation

2015–16 dummy dummy 2015–16

Covariate shock severity 0.086**
(0.036)

Shock severity deviation 0.019
(0.015)

Parent household charact.
Own radio − 0.005

(0.025)
0.001
(0.026)

0.002
(0.027)

0.012
(0.061)

Oxen number 0.008
(0.028)

0.000
(0.021)

0.001
(0.022)

− 0.049
(0.046)

Own land, dummy − 0.013
(0.037)

-0.001
(0.037)

-0.002
(0.038)

0.102
(0.070)

Farm size, tsimdi 0.006
(0.006)

− 0.011
(0.007)

− 0.010
(0.007)

− 0.052***
(0.017)

Live on parents’ farm − 0.032
(0.032)

− 0.074***
(0.026)

− 0.072***
(0.028)

− 0.012
(0.056)

Main group prod. act., base = Animal rearing
Beekeeping 0.025

(0.079)
− 0.052
(0.038)

− 0.052
(0.037)

− 0.002
(0.037)

Forestry 0.021
(0.100)

− 0.064
(0.052)

− 0.067*
(0.048)

− 0.013
(0.038)

Irrigation 0.047
(0.087)

− 0.069*
(0.041)

− 0.072*
(0.041)

− 0.051
(0.037)

Self-selection group, pred. − 1.420
(4.481)

− 2.493
(4.400)

0.156
(3.330)

Self-selection, IMR − 0.848
(2.946)

− 1.488
(2.897)

− 0.079
(2.215)

District, base = Raya Azebo
Degua Tembien − 0.294***

(0.081)
− 0.150
(0.093)

− 0.147
(0.096)

0.051
(0.096)

Seharti Samre − 0.124
(0.085)

− 0.057
(0.088)

− 0.047
(0.092)

− 0.006
(0.080)

Kilite Awlalo − 0.349***
(0.104)

− 0.034
(0.084)

− 0.011
(0.092)

− 0.065
(0.091)

Adwa − 0.710***
(0.087)

− 0.054
(0.074)

0.011
(0.084)

−0.013
(0.065)

Constant 2.079*** 1.770 2.672 0.000
(0.080) (4.557) (4.468) (3.344)

Observations 912 912 912 912
R-squared 0.423
Number of groups 114 114 114 114
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amounts that have to be changed to narrow in on the switch point and the CE for the risky 
prospect before the next CL and the risky prospect are outlined.

By holding the risky prospect constant, including the good and bad outcomes and the 
probability of good (bad) outcomes, we limit the required numeracy skills to deciding on 
the preferred choice between the risky prospect and the certain amounts.15 Another advan-
tage of this approach is that it is easy to present the risky prospect with real money in front 
of the subjects and illustrate the probabilities with the 20-sided die. In each CL, a switch 
point is identified as the certain amounts are ordered in decreasing value from the top to 
the bottom of the CL. Table  4 shows the key characteristics of the 12 CLs used in the 
experiment. The order of the CLs was randomized across subjects to allow assessment of 
and control for eventual order bias.

To speed up the identification of the switch point in each CL, a quick narrowing-in 
approach was used. In each CL there is a randomized starting Task row number that iden-
tifies the certain amount that the risky prospect is to first be compared with. The quick 
elicitation approach means that the full CL is not presented to the subjects initially. The 
risky prospect is illustrated with real money in front of them, with the probabilities shown 
with the die. The enumerators ask the subject to indicate their preference for the risky pros-
pect or the certain amount at the random starting row in the CL as the first binary choice. 
The decision at this point identified whether the switch point would be above or below the 
random starting point certain amount. The enumerators were instructed to go to the top or 
the bottom of the list depending on the first choice. If subjects preferred the risky prospect 
at the random starting point, the CE-value of the risky prospect must be higher than the 
certain amount at the starting row. The enumerator, therefore, goes to the top of the list and 
the opposite if the certain amount is preferred at the starting row. At the top of the list, we 
expect the respondents to prefer the certain amount.16 Likewise, at the bottom of the list, 

Table 5  Example of choice list

CL no. Start point Task no. Prob. 
low out-
come

Low out-
come

High out-
come

Choice Certain 
amount

Choice

8 1 2/10 20 100 100
8 2 2/10 20 100 95
8 3 2/10 20 100 90
8 4 2/10 20 100 85
8 5 2/10 20 100 80
8 6 2/10 20 100 75
8 7 2/10 20 100 70
8 8 2/10 20 100 65
8 9 2/10 20 100 60
8 10 2/10 20 100 50

15 The well-known Holt and Laury (2002) is more demanding as it asks respondents to compare two risky 
prospects and at the same time changes the probabilities from row to row within the same CL and thereby 
requiring substantial numeracy skills and frequent recalculations.
16 This may not always be the case, and we then allow “corner solutions” with CLs without any switch 
point. We return to the inspection of such outcomes and the remedies.



978 S. T. Holden, M. Tilahun 

1 3

we expect respondents to prefer the risky prospect. Still, if they preferred this low certain 
amount, we added rows with lower certain amounts till a switch point was detected, mean-
ing that the CE is below the lowest certain amount in the standard CL.17 With a switch in 
the choice from the starting row to the top or bottom rows, a mid-row is chosen between 
the random starting row and the second (top or bottom row) in the CL, as the third decision 
row in the CL. Again, the subject’s choice in this third question is used to quickly narrow in 
towards the switch point as the two rows from where the subject switches from preferring 
the risky prospect to preferring the certain amount.

This bisection approach has several advantages: (a) it reduces the number of questions 
per CL needed to identify the switch point (this reduces boredom and fatigue related to 
having to respond to many similar questions) and is therefore time-saving; (b) the choices 
of random starting point reduces the likelihood of undetectable starting point bias such as 
if questions always start from one end of the CL; (c) the potential bias associated with the 
random starting point can be tested and controlled for in the analysis18; (d) a potential bias 
towards the middle of the CL is avoided as the whole list is not presented to the subjects19; 
(e) the approach identifies only one switch point per CL (unless there is no switch point).

A context-specific design element of the CLs is that the risky prospect has two out-
comes, and the probability of a bad (but non-negative) outcome (instead of a good out-
come) is stated to the subjects as a framing towards negative shocks. This framing is chosen 
as the experiment is intended to be used concerning behavior associated with low-proba-
bility shocks such as droughts. Droughts typically lead to low but non-negative yields.20 
Furthermore, 10 out of the 12 CLs have prob(bad outcome) ≤ 0.5 , see Table 4. This also 
implies that we map most accurately the probability weighting function in the prob(bad 
outcome) range 0.05–0.5, the probability range within which most of the drought shocks 
may be found. The two last CLs include a low probability of winning high-return prospects 
to help us map the w(p) function in this probability region. It is quite rare to have access to 
such business opportunities in our field context. Therefore, cultural norms and experience 
may play less of a role in influencing their decisions in these CLs.

In the end, the random choice of CL and Task row for payout is identified using the 
20-sided die and the underlying MCL. In the randomly identified CL for real payout, one 
task row is randomly identified, and the subject’s choice in this row determines whether 
the respondent will get the preferred certain amount or the preferred risky prospect. If the 
risky prospect was preferred for this row, the die is used to play the lottery and determine 
whether the subject receives a good or a bad outcome. The subject then received the out-
come in cash in an envelope.

17 We dropped two subjects with extreme risk aversion where we failed to detect a switch point as 
extremely small certain amounts were preferred to the risky prospects.
18 This bisection approach has earlier been used in risk and time preference field experiments by Holden 
and Quiggin (2017a, 2017b).
19 Such bias has been an argument for placing the risk-neutral row at the center of the CL but would also 
lead to bias towards risk-neutrality for subjects that are risk averse.
20 In Rank Dependent Utility (RDU), it is usual to sort outcomes from the best to the poorest (with their 
associated probabilities). We do this in our structural model and estimation. Still, we recognize that our 
framing gives higher salience to the negative shocks, which may have affected the responses in the intended 
way (focus on the non-negative bad outcomes and their probabilities).
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3.2  Experimental Outcome Distributions and Data Quality

To assess the data quality of our risk experiments, we carry out stochastic dominance anal-
ysis to assess the consistency of the responses at the aggregate level and the subject level. 
We present the outcome of these stochastic dominance assessments with graphs included 
in Appendix 3. These graphs also allow us to assess the placement of the risk-neutral row 
in each CL versus the distribution of the preferred switch points. The risk-neutral row in 
the CL is where the expected value of the risky prospect is equal to the certain amount.

The cumulative switch point distributions in the 2017 risk CE-MCL experiment are pre-
sented in Appendix 3 with detailed explanations. These graphs are used to assess stochastic 
dominance for comparable CLs. Such stochastic dominance is evident in the cumulative 
graphs and demonstrates rational behavior to changes in probabilities and bad outcome dif-
ferences. We also include stochastic dominance tests at the individual level.21

To summarize our assessment of stochastic dominance violations at the subject level, 
we find that 58.7% of the subjects had no violations, 16.0% had one violation, 11.3% had 
two violations, 6.8% had three violations, 4.9% had four violations, and 2.3% had more 
than four violations. We may compare this with the study of Vieider et  al. (2018), who 
found that 38% of their subjects in a rural sample of household heads from Ethiopia vio-
lated stochastic dominance at least once. This is very similar to our finding of 41% with 
at least one violation, using CLs that are of similar complexity but with larger probability 
differences between the CLs and subjects with a similar level of education and cultural 
background.22

Table 4  CE-multiple choice list 
treatment overview

Choice list Prob (bad 
outcome)

Bad 
outcome 
(ETB)

Good 
outcome 
(ETB)

CE-range
min, max (ETB)

1 1/20 0 100 50,100
2 1/10 0 100 50,100
3 2/10 0 100 50,100
4 3/10 0 100 30,80
5 5/10 0 100 10,60
6 1/20 20 100 50,100
7 1/10 20 100 50,100
8 2/10 20 100 50,100
9 3/10 20 100 30,80
10 5/10 20 100 40,100
11 15/20 20 300 20,90
12 19/20 20 1500 20,90

21 These graphs are also included in an Appendix in Holden and Tilahun (2022) but without the additional 
analysis made here of stochastic dominance violations at the subject level.
22 For interested readers, we provide a further visual picture of the size distribution of the stochastic domi-
nance violations by CL in Appendix 3, Fig. 9. Each figure presents the histogram distributions of the paired 
ΔCE s with the negative values representing the violations.
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4  Theoretical Framework and Estimation Approach

We implemented the assessment of risk preferences and responsiveness to covariate and 
idiosyncratic stochastic shocks, treating these shocks as natural experiments after critically 
examining the statistical basis for this in Part 2. In this section, we outline the estimation 
approaches: first, the reduced form risk premium approach in Sect. 4.1 and then the struc-
tural EU and RDU models in Sect. 4.2. We investigate the potential effects of the lagged 
shocks on experimental outcomes in the 2017 CE-MCL experiment with 12 CLs. The key 
explanatory variables of interest are the covariate and idiosyncratic shock variables from 
2015 and 2016 that may have influenced subject behavior in the risk experiments.

Based on the competing theories of Gollier and Pratt (1996) that shocks affecting vul-
nerable people make them more risk averse, and Quiggin (2003) who shows that back-
ground risk can be a complement to independent risk for subjects with constant risk prefer-
ences. Quiggin (2003) argues that an important special case of constant risk aversion is that 
of rank-dependent preferences with linear utility, first analyzed by Yaari (1987) as a dual 
theory. Such lower sensitivity to risks after shocks may also be associated with the dimin-
ishing sensitivity argument from Prospect Theory. The vulnerability theory of Gollier and 
Pratt (1996) implies that subjects affected by shocks should become more risk averse and, 
therefore, display higher risk premiums in independent risk experiments. If subjects pos-
sess (near) constant risk preferences, background risk should be a complement to inde-
pendent risks such as the experimental risks we expose our subjects to. Subjects exposed to 
a background shock should then display smaller risk premiums than subjects not exposed 
to such shocks.

Based on this, we first develop the framework for analyzing reduced-form models with 
risk premiums. Then, we develop structural models that are used to frame the analysis 
of our comprehensive CE-MCL data such that it allows us to test the EU theory of Gol-
lier and Pratt (1996) against the special-case RDU Yaari (1987) model and more general 
RDU models where we allow both the utility function CRRA parameter and two probabil-
ity weighting parameters to be freely determined in the econometric estimation of shock 
effects.

4.1  Calibration of Risk Premiums and Estimation

We use the CE-MCL experiment first to assess whether and how the idiosyncratic and 
covariate shocks possibly affect the risk premiums in the CE-MCL experiments. With 12 
CLs, we generate 12 risk premiums per subject, assuming w(p) = p.23 We standardize the 
risk premiums across CLs. The risk premium ( RPgim ) for each CL (m) for each subject 
(i) in each business group (g) is calculated as a fraction of the expected value of the risky 
prospect in each CL as follows:

where CEgim is the CL and subject-specific certainty equivalent associated with the switch 
point in the list. It is taken as the average value of the certain amounts for the rows just 

(1)RPgim = −
CEgim − EVm

EVm

23 The risk premium is the difference between the average certain amount in the rows just below and just 
above the switch point in each CL and the risk-neutral (EV) value of the risky prospect, given w(p) = p.
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above and below the switch point. EVm is the expected value for the CL given objective 
probabilities.

We estimate how background risk in the form of lagged shocks may have affected the 
risk premium in the CE-MPL experiment without making any assumptions about how this 
effect may go through the utility or the probability weighting functions of the subjects. 
We use linear panel data models. We start from a parsimonious model with only the two 
shock variables as RHS variables (the lagged idiosyncratic and covariate shock variables 
( ISt−1,CSt−2 ), where t − 1 represents 2016, and t − 2 represents 2015. We assess the robust-
ness of the shock effects by adding additional controls step-wise. The additional controls 
include the random order of the CL, the random starting row in each CL, the risk-neutral 
row number in each CL, the probability of a bad outcome in each CL, or CL fixed effects, 
represented by the vector CLm , and subject-related variables ( zgi.t−1 ) such as sex, age, edu-
cation, and parent characteristics, Zg represents group characteristics in form of main pro-
duction activity, Ed represents enumerator fixed effects, and ii represents subject random 
effects. These different specifications are collapsed into the following general model speci-
fication to save space:

To further investigate systematically whether the shock effects on the risk premiums vary 
across CLs depending on the probabilities of bad and good outcomes in the CLs, we esti-
mate separate models for each probability level. The likelihood of severe covariate climate 
shocks occurring is positive but likely less than 0.5. We have, therefore, concentrated most 
of the CLs in this probability range. We suspect subjects are more inclined to associate 
these CLs with their real-world shock experiences.

4.2  EU and RDU Model Estimation

To allow us to test the Gollier and Pratt (1996) versus the Quiggin (2003) theories and their 
relevance for the shock effects, we develop structural models for each of these theories to 
assess their econometric fit with the data.

Each choice of the subject is between a risky prospect and a certain amount. The risky 
prospect gives a good outcome (x) with probability p and a bad outcome (y) with prob-
ability 1 − p . We call the certain amount s. We place the choice between the risky and safe 
prospect into a Rank Dependent Utility (RDU) framework (Quiggin 1982). The net utility 
return for a specific risky and safe option can then be formulated as follows:

where w(p) is the probability weighting function. The model nests the EU model where 
w(p) = p . In a specific CL x and y are fixed while s varies across the rows with falling 
values from the top. There will be a point where the ΔRDU switches from being negative 
(preference for larger certain amounts s), to becoming positive (preference for the risky 
prospect over smaller certain amounts s). The certainty equivalent (CE) is identified at the 
switch point.

(2)
RPgim = �0 + �1ISgi,t−1 + �2CSg,t−2

(+�3CLm + �4zgi.t−1 + �5Zg + �6Ed) + ii + ugim

(3)ΔRDU = w(p)u(x) + [1 − w(p)]u(y) − u(s)
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The CE-MCL risk experiment included prospects with non-negative outcomes.24 The 
probability weighting function is therefore modeled in the gains domain only with a Prelec 
(1998) 2-parameter weighting function:

where � captures the degree of (inverse) S-shape of the weighting function,25 and the � cap-
tures the elevation of the function, with 𝛽 < 1 giving more elevated (optimistic) and 𝛽 > 1 
giving less elevated (pessimistic) weighting of prospects. The function is strictly increasing 
and continuous within the interval [0, 1] with w(0) = 0 and w(1) = 1 . Most studies of prob-
ability weighting have found that subjects exhibit diminishing sensitivity to small and large 
probabilities and probabilistic insensitivity at medium probabilities, implying an inverse 
S-shaped probability weighting function (Prelec 1998).

The local utility is captured with a Constant Relative Risk Aversion (CRRA) function26:

where r is the CRRA coefficient and bcons is the base consumption or asset integration 
level.27

Noise in the data is captured with a heteroscedastic Fechner (1860) type error ( � ), and 
the prospects are standardized with Wilcox (2008) type contextual utility. According to 
Wilcox the advantage of this approach is that the assessment of choices fits within the theo-
retical idea of capturing stochastically more risk-averse behavior without introducing extra 
parameters.28 Binary choice models are better at measuring ratios of utility differences than 
utility differences. Utility differences need to be judged within their specific context. This 
is a fundamental problem in this kind of structural latent variable discrete choice model. 
Utilities have to be judged against a salient utility difference. Wilcox suggests using the 
utilities of the maximum and minimum possible outcomes in the riskiest prospect. This 
implies that choices are directly weighted by the subjective range of utility outcomes while 
holding marginal utility improvements constant near a maximum (Wilcox 2008).

Contextual heteroscedasticity can be due to error variance increasing with the subjec-
tive utility ranges. Wilcox (2008) argues that the contextual utility model uses the idea 
that the standard deviation of evaluation noise is proportional to the subjective range of 
stimuli, borrowing from the perception of stimuli literature, e.g. Gravetter and Lockhead 
(1973). This implies the assumption that each CL creates its own respondent-specific ‘local 
context’.

The probability of the respondent choosing the risky lottery can then be formulated with 
a probit (standard normal) function:

(4)w(p) = e−𝛽(− ln p)𝛼 , 𝛼 > 0, 𝛽 > 0

(5)u(x) = (1 − r)−1((bcons + x)1−r − 1)

24 There are ethical reasons for not introducing incentivized experiments with negative outcomes to the 
type of poor and vulnerable subjects that are the focus of this study.
25 � = 1 implies w(p) = p , for 𝛼 < 1 the inverse S-shape becomes stronger as � declines.
26 We assume incomplete (no or partial) asset integration based on the finding that prospect amounts have 
much stronger effects on decisions than the respondents’ background wealth (Binswanger 1981).
27 We set the base consumption equal to 0 ETB in most models (no asset integration). We ran robustness 
checks with bcons = 30 ETB, equivalent to a daily wage in the study areas at the time of the study, or the 
triple of this daily wage amount to assess how this potentially affected the shock effects and the estimated 
parameters.
28 Wilcox (2008) shows that the contextual utility model performs better than the random parameter, strict 
and strong utility structural models in out-of-sample predictions of stochastic choice based on the Hey and 
Orme (1994) data.
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Subscripts k represents row numbers in the CLs. The model flexibility allows respond-
ent errors in identifying switch points within CLs. The latent Fechner error ( �gim ) can be 
assessed at the within-subject CL level as a measure of subject response inconsistency 
across CLs as being related to a specified CL-characteristic at a higher structural model 
level and to assess model performance, see below for further details.

The log-likelihood function for the risk experiment is obtained by summing the natural 
logs over the cumulative density functions resulting from Eq. (6) and summing them over 
CLs (subscript m) and subjects:

Ωgi is a vector of subject-specific risk preference parameters ( ri, �i, �i)29 that are modeled as 
linear functions of the lagged idiosyncratic and covariate shock variables ( ISt−n,CSt−2 ) and 
the observable respondent variables ( zi ) such as sex, age, and education.

Equation (8) is used to test the two opposing theories of Gollier and Pratt (1996) and Quig-
gin (2003) to assess whether the lagged shock variables are associated with an increase or 
a reduction in the CRRA-r parameter and changes in the Prelec � and � parameters in RDU 
models. The Fechner error in Eq. (6) is also an important element of the estimation strat-
egy as it is used to separate out noise and assess the extent to which the noise is associated 
with CL characteristics, enumerator, subject, and parent characteristics.

The Fechner error ( �im ) is modeled linearly on the CL characteristics ( CLm).30 Subject 
characteristics can also affect within-subject errors (inconsistencies across CLs), as we saw 
in the non-parametric assessment (Sect. 3.2). Noise is, therefore, also modeled on zgi . A 
vector of enumerator dummy variables ( Ed ) is also included in the error model.31

We estimated the likelihood function with the Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) optimization algorithm32 while clustering errors at the subject level. We use the 

(6)Pr(Risky) = �(
ΔRDUgimk

�gim[u(xm) − u(ym)]
)

(7)
lnL(Ωgi(ISgi,t−n,CSg,t−2, zgi), �gim(cm, zgi,Ed)) =
∑

imk

(lnΘ(ΔRDU) ∣Choiceimk=1) + (lnΘ(1 − ΔRDU) ∣Choiceimk=0)

(8)Ωgi = �0 + �1ISgi,t−n + �2CSg,t−2 + �3zgi + �gi

(9)�gim = �1 + �2CLm + �3zgi + �4Ed + ugim

29 Alternatively, they are the population-averaged parameters in the models without subject and parent 
characteristics.
30 E.g. the order of CLs may affect learning and concentration of subjects, the random starting row in each 
CL may be associated with response errors that influence the identified CE, and the CL-specific range of 
certain amounts and the placement of the risk-neutral row in the CL may influence response errors. To relax 
the linearity assumption for CL characteristics, we included the squared terms for the random starting row 
in each CL and the position of the risk-neutral row in each CL.
31 The ability of enumerators to minimize respondent errors may vary. 12 enumerators were randomly allo-
cated to subjects within groups.
32 This is a second-order optimization algorithm, utilizing the second-order derivatives of an objective 
function and has become one of the most widely used second-order algorithms. We also tested the Newton–
Raphson algorithm for our base model, which was a bit faster, and they produced the same solution.
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estimated parameters in Eq. (7) to predict individual risk preference parameters (Table 10) 
( Ωgi ) to inspect the distributional implications of the shock variables, ceteris paribus.

5  Results

We first present the results from the reduced-form risk premium models (Sect. 5.1). We 
then present the results for the structural models based on EU-theory (Gollier and Pratt 
1996) (Sect. 5.2), the special-case RDU Yaari-model (Sect. 5.3), and finally, the popula-
tion-averaged RDU model and the RDU model that includes subject characteristics as well 
(Sect. 5.4). This allows us to inspect whether and how the alternative models ‘fit with the 
data’ and to assess which theoretical logic is the most compelling.

5.1  Models with Risk Premiums

First, we impose minimal functional form assumptions for utility and probability weight-
ing and assess the total effect of the shocks on risk-taking behavior by regressing the CL-
level risk premiums on the shock variables (Eq. 2). We introduce additional controls in a 
step-wise way for robustness assessment. These models allow us to see whether the shocks 
(background risk) enhance or depress the standardized risk premiums.

Four different models are specified; see Table  6. The first parsimonious specification 
only includes the key shock variables. Controls for CL design characteristics are added 
in the second specification. The third and fourth specifications include CL fixed effects, 
implying that only the randomized CL-level variables can be retained. The last specifica-
tion adds subject and parent characteristics as additional controls to further verify whether 
the natural experiment assumption is reliable.

Table 6 shows that the covariate shock severity variable is highly significant with a neg-
ative sign and a very stable parameter size in all four specifications. This is strong evidence 
in favor of the theory of Quiggin (2003) and is contrary to the theory of Gollier and Pratt 
(1996). The structural models in the next section will allow for a detailed investigation of 
the appropriateness of the alternative models. The standardized risk premiums are reduced 
by a 3.5–3.8 percentage point per unit increase in the covariate shock severity variable. 
It indicates that the subjects whose families were most severely affected by the covariate 
shock had become more willing to take risks in the CE-MCL experiment two years after 
the shock (significant at 0.1% level). Note, however, that the intercepts in the standardized 
risk premium models are all highly significant and with a positive sign. This indicates that 
respondents are risk averse overall, and the size of the intercept is much larger than the 
covariate shock effect. This implies that the subjects remain in the region with positive risk 
premiums also after the shock. The idiosyncratic shock dummy variable for 2016–17 is 
insignificant in all the models and with a positive sign. We, therefore, have no significant 
effect of or correlation between the idiosyncratic shock variable and the risk premiums. 
This may be because these idiosyncratic shocks were less severe than the previous convari-
ate shock and because local insurance mechanisms work better for idiosyncratic risks than 
for covariate risks.
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The first parsimonious model (1) in Table  6 included only the 2015 covariate shock 
severity variable and the 2016 idiosyncratic shock dummy variables.33 Model (2) included 
the CL-related variables, i.e., the probability of a bad outcome, the order of the CL, the 
starting row in each CL, and the position of the risk-neutral row in each CL. Their inclu-
sion resulted in slightly stronger shock effects. In model (3), we instead included CL 
fixed effects, which control for all subject-invariant CL characteristics, while we retained 
the randomized CL-level controls. This had no additional effect on the shock variables. 
In model (4), we added individual and parent controls. This caused a slight reduction in 
the idiosyncratic shock effect or correlation while the covariate shock severity effect was 
enhanced. This enhances our trust in the natural experiment assumption for the covariate 
shock severity variable and therefore our causal interpretation of the effect of the covariate 
shock on risk premiums and the underlying risk preferences.

As a further robustness check, we inspect the shock effects or correlations at different 
probability levels for good and bad outcomes in the different CLs. Note that we had con-
structed the CLs such that we have better coverage in the probability range where such 
shocks are likely to be found (0.5 <  p (good) < 1). The results from separate linear random 
effects models for the standardized risk premiums for each probability level are presented 
in Fig. 2 with 95% confidence intervals, including controls for the random order of the CLs 
and the random starting row in each CL. The figure shows that the covariate shock sever-
ity variable is significant and has a negative effect on the risk premium in all models in 
the probability range of 0.5–1. Only in the case of the low probability of good outcomes 
region, where such shocks are not likely to fall, is the covariate shock effect insignificant. 
We also see that the most recent 2016–17 idiosyncratic shock effect or correlation tends to 
go in the opposite direction (significant in two models), making people more risk-averse or 
indicating that more vulnerable people are more risk-averse. The intercepts indicate that, 
on average, subjects are risk averse at all p(good) levels.

5.2  Shock Effects in the EU Model

In an Expected Utility (EU) model, which is the foundation of the risk vulnerability 
hypothesis of Gollier and Pratt (1996), the risk preferences are captured by the curvature of 
the utility function. We handle the EU model as a special case of the RDU model, where 
w(p) = p.34 In principle, it is similar to the risk premium model as the curvature of the 
utility function determines the risk premium. The risk premium is positive if the utility 
curve is concave. One benefit of the EU model is that we get a translation of the risk pre-
miums into utility curvature parameters, given our CRRA functional form specification.35 
The shock effects or correlations can then also be captured as changes in the utility cur-
vature parameter. Another advantage of the EU model is that it includes a Fechner error 
specification (noise) as an additional control for measurement error. The Fechner error is 
allowed to vary with the order of the CLs, the random starting point in each CL, the posi-
tion (row number) of the risk-neutral row in the CL, the square of these variables (possible 
non-linear effects), and enumerator fixed effects. The population-averaged CRRA utility 

33 Based on the weak positive correlation between these two shock variables and the findings for the 
deviation in shock severity variable in Table 3, we did a robustness assessment for this parsimonious risk 
premium model by using alternative combinations of the three variables. These models are presented in 
Appendix 5. It shows that the results in Table 6, model (1), are robust.
34 This implies that the Prelec probability weighting function parameters are Prelec � = Prelec � = 1.
35 We assume no asset integration in the basic models.
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function can vary only with the two shock variables, the covariate shock severity being 
continuous and the idiosyncratic shock variable being a dummy. The results are presented 
in Table 7. As a robustness check of the model, we have run it for bcons equal to 30 (daily 
wage rate) and 90 ETB as the CRRA-r parameter is sensitive to the degree of asset integra-
tion and asset integration is typically assumed under EU theory (Rabin 2000); see Table 15 
in Appendix E.2.

Table 7 shows that the CRRA-r is significantly (at 0.1% level) reduced for those who 
experienced a more severe covariate shock. The idiosyncratic shock variable is insignifi-
cant. The constant term indicates that the utility function is quite concave with CRRA-r = 
0.564 for those who did not experience a covariate shock in 2015. A covariate shock sever-
ity level of 2 (Fig. 1) reduces the CRRA-r by about 0.146 units, which gives a CRRA-r = 
0.418. This still represents a quite concave utility function. Contrary to the prediction of 
Gollier and Pratt (1996), the respondents have become less sensitive to background risk 
(shock) according to this result. This gives reason to question the functional form assump-
tions in this model.

To further inspect the robustness of the EU model results, we assess the sensitivity to 
changes in the assumption about asset integration by varying the bcons parameter. Table 15 
in Appendix E.2 shows that when we include a bcons = 30 ETB (a daily wage rate), the 
constant term for the CRRA-r = 1.225, while one unit of the covariate shock severity 
reduces the CRRA-r by 0.179 units. An increase to three daily wage rates base consump-
tion increases the constant term to 1.98 and the covariate shock reduction per unit to 0.317. 
This reminds us about the Rabin paradox (Rabin 2000). Higher levels of asset integration 
lead to ridiculously high levels of risk aversion. In all specifications, we see that the covar-
iate shock severity variable is highly significant, and the parameter size effect increases 
with the degree of assumed asset integration. But the covariate shock effect goes in the 
opposite direction of what Gollier and Pratt (1996) proposed.

5.3  RDU Model with Linear Utility Function

To test the relevance of the theory of Quiggin (2003), we first estimate a Yaari model, 
which is a special case RDU model with linear utility that displays constant risk aversion 
(Yaari 1987; Quiggin 2003). We can use the Yaari model to test Quiggin’s (2003) claim 
that the premium for a given risk with this type of model is reduced by independent back-
ground risk or shocks. We estimate a population-averaged Yaari model with a 2-param-
eter Prelec probability weighting function to see how this dual version of the population-
averaged EU model performs. This allows us to assess how the covariate and idiosyncratic 
shock variables have influenced or are correlated with the Prelec parameters. Noise is con-
trolled in the same way as in the EU model. The model results are presented in Table 8.

The estimated Prelec � = 0.5 and � = 1.3 parameters (constant terms in Table 8) imply 
a strong inverse S-shaped function with substantial “pessimism”. The results indicate that 
the covariate shock two years earlier has significantly (at 1 and 5 % levels) and increased the 
Prelec � and reduced the Prelec � parameters. Figure 3 shows the effect of a covariate shock 
severity = 2 versus no covariate shock and indicates a lower level of pessimism (elevated 
w(p) function) after such a shock. In this dual model of Yaari (1987), it is the convexity 
of the w(p) function that captures risk aversion, and the covariate shock has reduced this 
convexity. The covariate shock effect in this model is consistent with the theory of Quiggin 
(2003) that an increase in background risk or shock makes people more willing to take risk.
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We note that the two-parameter Prelec function is more flexible than the one-parameter 
CRRA utility function. It can capture the variation in probabilistic sensitivity, which seems 
to be a dominant behavioral characteristic confounded with risk preferences. Next, we try 
to separate this variation in probabilistic sensitivity from the utility curvature by allow-
ing joint estimation of the CRRA utility function curvature and the two-parameter Prelec 
w(p) in a more general RDU model. This model implicitly allows the population aver-
aged parameters to be optimized in EU or RDU direction with the three parameters being 
allowed to vary with the covariate and idiosyncratic shocks.

5.4  Shock Effects in RDU Models Without and with Subject Characteristics

The results for dis-aggregated risk preference parameters in the parametric population-
averaged RDU model are presented in Table 9. It is noteworthy that the changes in the w(p) 
Prelec � and � intercepts and covariate shock parameters are modest from Tables 8 and 9. 
However, the recent idiosyncratic shock variable becomes significant in the more flexible 
RDU model as the CRRA parameter in the utility function and Prelec � parameters are 
significantly (at 10 and 5 % levels) correlated with the idiosyncratic shock dummy variable. 
The utility function becomes significantly convex after such a recent idiosyncratic shock, 
while it is linear for those unaffected by the shocks. The effect of the recent idiosyncratic 
shock dummy variable on the w(p) function Prelec � parameter goes in the opposite direc-
tion of that of the covariate shock. However, this result is less robust, as seen in Table 10, 
where more control variables have been added. This gives reason to question whether this 
significant idiosyncratic shock result is causal in relation to the Prelec � parameter while it 
appears more robust to the addition of controls in the case of the CRRA-parameter.

Table 10 expands the RDU model by including subject, youth group, and parent house-
hold and farm characteristics in the CRRA utility, Prelec � , and � functions of the model. 
Compared to the previous models, no change is made in the Fechner error (noise) compo-
nent. This allows us to inspect the predicted variation in the parameter estimates across our 
large rural sample.

Table 10 shows that the covariate shock effects on the w(p) parameters are robust and 
remain significant at 1 and 5 % levels. The absolute values of the parameters even increase 
slightly after the inclusion of all controls. This gives no reason to reject the natural experi-
ment assumption in the case of the covariate shock variable. The effect of the recent idi-
osyncratic shock only remains significant at the 10% level for the CRRA utility function 
parameter, while it is insignificant in the w(p) parameter estimates. Only one parent and 
subject characteristics variable is significant in the CRRA utility equation (parents with a 
radio are associated with a more convex function). Age, parents owning a radio, beekeep-
ing, and irrigation groups are associated with significantly lower Prelec � , and the parent 
land-holding dummy is associated with a lower (more optimistic) Prelec � parameter.

From this Table 10 model, we predict the CRRA-r, Prelec � , and � parameters and graph 
the distributions to visualize better how the significant shock variables affected the param-
eter distributions. The graphs are presented in Fig. 4. Figure 4 demonstrates clear shifts 
in the distributions of the three parameters. The utility curvature (CRRA-r) shifts to the 
convex region for most of the subjects that experienced a recent idiosyncratic shock. The 
Prelec � distribution shifts to the right with a more severe covariate shock, and the Prelec � 
distribution shifts to the left, lifting the w(p) function, making it less pessimistic. The shift 
in the w(p) function goes in the same direction and is similar to that shown in Fig. 3.
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Table 6  Shock effects on risk premiums at CL level

Dependent variable: CL-level risk premium. Cluster-robust standard errors, clustered
On business group members. Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1

Variables (1) (2) (3) (4)
rpst1 rpst2 rpst3 rpst4

Covariate shock severity 2015–16 − 0.035***
(0.010)

− 0.036***
(0.011)

− 0.036***
(0.011)

− 0.038***
(0.011)

Idiosyncratic shock 2016–17, dummy 0.018
(0.013)

0.020
(0.013)

0.019
(0.013)

0.017
(0.013)

CL page no 0.001
(0.001)

0.002
(0.001)

0.002*
(0.001)

CL start row 0.032***
(0.005)

0.030***
(0.005)

0.030***
(0.005)

Prob (bad outcome) 0.081***
(0.010)

CL Risk neutral row − 0.028***
(0.001)

Subject characteristics
Male, dummy − 0.001

(0.010)
Education, years − 0.001

(0.001)
Age, years 0.002***

(0.001)
Live on parents’ farm 0.024**

(0.011)
Main group activity
Base: Livestock
Beekeeping 0.016

(0.011)
Forestry − 0.025

(0.016)
Irigation 0.012

(0.012)
Parent characteristics
Radio 0.013

(0.009)
Number of oxen 0.002

(0.008)
Household owns land, dummy − 0.046***

(0.012)
Farm size, tsimdi − 0.008***

(0.002)
CL fixed effects No No Yes Yes
Constant 0.242***

(0.018)
0.283***
(0.019)

0.229***
(0.019)

0.242***
(0.038)

Observations 10,731 10,731 10,731 10,730
Number of subjects 912 912 912 912
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6  Discussion

Our study adds to the literature on how shock exposure influences people’s risk prefer-
ences. In particular, our study shows how a severe covariate drought shock related to the 
2015 El Nino affected poor and vulnerable people living in a semi-arid environment in 
Eastern Africa. Like most other studies of such shock effects, we rely on using a natural 
experiment approach. We tested for and found no evidence that selection can explain the 
results. The covariate shock variable was also not correlated with parent household and 
farm characteristics or the type of business group production activity. We, therefore, dare 
to make a causal interpretation of the covariate shock effect on the risk preferences of our 
study subjects. A recent study by Di Falco and Vieider (2022) found risk preferences cor-
related with average rainfall in the broader Ethiopian highlands. All our study locations 
are in the (semi-arid) lowest rainfall range covered in their study. Their study is a useful 
reference for our study as they found the lowest risk tolerance in this area with the lowest 
average rainfall. Our study shows that it is primarily the overweighting of the low prob-
ability bad outcomes (pessimistic expectations) that causes the low risk tolerance levels in 
this region.

Our main finding is that the covariate drought shock was associated with significantly 
lower risk premiums in aggregate and dis-aggregated reduced-form risk premium mod-
els.36 These results are consistent with the theoretical predictions of Quiggin (2003) that 
a change in background risk (shock) is complementary to independent experimental risks 

Fig. 2  Covariate shock severity and idiosyncratic shock effects or correlations with 95% confidence inter-
vals by probability of good outcome in CLs

36 disaggregated to different probability levels for good and bad outcomes in the risk experiment.
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for certain types of non-expected utility preferences. Our data allowed us to comprehen-
sively run EU versus the dual Yaari (1987) and the more general RDU models to test for 
the nature of risk preferences in our sample population. The results of the Yaari and the 
RDU models with fewer parameter restrictions (allowing the CRRA-r utility curvature 
parameter to be endogenously determined) reveal that the utility curvature is close to lin-
ear. This finding, and the fact that the covariate shock reduced risk premiums, indicate 
that the non-expected utility models best represent the subjects studied, and this finding 
resolves the puzzle that higher background risk leads to more risk-taking in the independ-
ent risk experiments played 2 years after the background covariate shock occurred. We, 
therefore, question the appropriateness of the EU model, which forces the shock effect to 
be captured as a substantial reduction in the concavity of the utility function, which is con-
trary to what is expected for such a concave utility function (Gollier and Pratt 1996). The 
general RDU model that nests the EU and the dual Yaari models as special cases provides 
robust estimates in favor of an inverse S-shaped w(p) function and a near-linear utility 
function. Our results demonstrate that the shock effect is more appropriately modeled as an 
upward shift in the w(p) function, which implies that the covariate shock has made subjects 
less pessimistic in the experimental games played two years later. In other words, a more 
severe covariate shock has made them less sensitive to the risks in these new games. This 
is equivalent to what Quiggin (2003) stated as independent risks being complements rather 
than substitutes.

Table 7  EU-model: shocks and risk preferences ( w(p) = p , � = � = 1 ), bcons = 0

Cluster-robust standard errors in parentheses, clustered on subjects
Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1

Variables (1) (2) (3) (4)
CRRA-r Prelec � Prelec � Noise

Covariate shock severity 2015–16 − 0.075***
(0.020)

Idiosyncratic shock 2016–17, dummy 0.025
(0.024)

CL page no 0.003
(0.005)

CL page no, squared − 0.001
(0.001)

Start point in CL, row 0.022***
(0.003)

Start point in CL, squared − 0.002***
(0.000)

Risk neutral row no − 0.079***
(0.005)

Risk neutral row no, squared 0.008***
(0.000)

Enumerator FE No No No Yes
Constant 0.564***

(0.034)
1.000
(0.000)

1.000
(0.000)

0.320***
(0.014)

Subjects 912
Observations 107,616
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These theoretical explanations for the contradictory findings on how shocks or disas-
ters affect risk preferences have not been carefully tested before our study. Cameron and 
Shah (2015) discuss these alternative theoretical explanations. Still, they only use the 
Binswanger (1980) type of game, which does not vary probabilities and cannot separate 
the estimation of utility and w(p) functions. Another study that reflects on the relevance of 
these theories is Kahsay and Osberghaus (2018), who studied the effects of storms on risk 
preferences based on household panel data from Germany. However, they relied on a sur-
vey instrument where risk preferences were elicited on an 11-point Likert scale and could, 
therefore, also not rigorously test these theories.

Some other studies investigated the responses to low-probability lotteries after shocks. 
Li et al. (2011) used a natural experiment approach after large snow hit and an earthquake 
in 2008 in China to assess how severely affected subjects responded to hypothetical choices 
involving low probability (1 in 1000 chance) positive and negative outcomes and found 
that those affected by these low-probability disaster outcomes were more likely to choose 
the low-probability positive outcomes over sure outcomes in the gains domain after the 
snow hit and the earthquake, and more likely to choose a sure loss in the loss domain 
than a large low-probability loss after the snow hit. The study reveals that people have 
become more sensitive to low-probability events after such low-probability shocks. Page 
et al. (2014) found that a rare flood event along a river in Brisbane, Australia, made those 
directly affected by the flood more likely to prefer a low-probability lottery ticket than a 
safe amount as a reward for participating in a survey related to the flood effects.

Our CE-MCL approach, which exposes the subjects to 12 CLs with different probabili-
ties of good and bad outcomes, allows us to comprehensively assess the possible shock 
effects in different probability regions, especially in the probability region where shocks 
usually occur (low probability risk of bad outcome). While we also included two CLs with 
a low probability of a good outcome (lottery-like), we found no significant shock effect for 
these CLs, unlike for the other CLs that resembled more the real risks that the subjects face 
in their real lives.

The earlier studies of shock effects on risk preferences have, to a limited extent, 
attempted to separate the shock effects into effects on the probability weighting and utility 
curvature representations of risk preferences. This is because most studies have used sim-
ple tools that do not allow for such a separation. Such a separation is the main contribution 
of our paper. After first demonstrating that most of the CLs for most of the subjects are 
associated with positive risk premiums, indicating that most people are risk averse in the 
probability region where the typical covariate and idiosyncratic shocks belong, we show 
that the covariate and idiosyncratic shock effects can be modeled as shifts in the utility 
as well as the probability weighting function at the population-averaged level as well as 
the individual subject level for the utility and w(p) function parameters. We are not aware 
of any other studies that have done this based on such shocks. Our findings from a gen-
eral RDU model reveal that the utility curvature is close to linear and with a shift towards 
the convex region after a recent idiosyncratic shock. At the same time, the w(p) function 
makes an upward shift (subjects becoming less pessimistic) after the covariate shock. The 
latter indicates that an increase in background risk (covariate shock experience) has made 
subjects less sensitive to the independent experimental risk in the games.
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Table 8   Yaari (1987) dual model (linear utility function) and 2-parameter Prelec w(p)

Cluster-robust SEs in parentheses, clustered on subjects. Significance levels: ***p  <  0.01, **p  <  0.05, 
*p < 0.1

Variables (1) (2) (3) (4)
CRRA-r Prelec � Prelec � noise

Covariate shock severity 2015–16 0.049***
(0.015)

− 0.061**
(0.027)

Idiosyncratic shock 2016–17, dummy − 0.027*
(0.016)

0.010
(0.032)

CL page no − 0.009**
(0.003)

CL page no, squared 0.001**
(0.002)

Start point in CL, row 0.019***
(0.000)

Start point in CL, squared − 0.002***
(0.002)

Risk neutral row no − 0.012***
(0.003)

Risk neutral row no, squared 0.003***
(0.000)

Enumerator FE No No No Yes
Constant 0.000

(0.000)
0.499***
(0.025)

1.302***
(0.047)

0.149***
(0.010)

Subjects 912
Observations 107,616

Fig. 3  Covariate shock effect on probability weighting function in Yaari (1987) dual model
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7  Conclusions

We have studied the relationship between the severity of a covariate drought shock and 
idiosyncratic shocks and risk preferences elicited with a lab-in-the-field experiment 1–2 
years after the shocks among poor rural residents belonging to youth business groups in 
northern (semi-arid) Ethiopia. we assess whether the shocks can be regarded as natural 
experiments and, therefore, used to elicit a causal relationship between the shocks and risk 
preferences. We find no evidence that the covariate shock effect is caused by spurious cor-
relations and, therefore, conclude that its effect is causal. The weaker and more recent idi-
osyncratic shock is giving less robust and significant indications of a causal effect on risk 
preferences. We assume that the covariate shock has affected the perceived background 
risk of subjects and use the unaffected or less severely affected subjects as a counterfactual 
to assess whether the independent experimental risks are perceived as substitutes or com-
plements to the background risk shock. We tested the theory of Gollier and Pratt (1996), 
which rests on EU-theory, which predicts that an increase in background risk should make 
risk-averse people more risk averse, against the theory of Quiggin (2003) that an increase 
in background risk or shock can make subjects with a certain type of non-expected utility 
more willing to take risk. Such subjects are represented by a dual (Yaari 1987) model with 
linear utility and a two-parameter probability weighting function and more general RDU 
models that allow the utility curvature and w(p) function parameters to be determined 

Table 9  Population-averaged RDU model with shock variables

Cluster-robust standard errors in parentheses
Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1

Variables (1) (2) (3) (4)
CRRA-r Prelec � Prelec � Noise

Covariate shock severity 2015–16 0.028
(0.037)

0.052***
(0.015)

− 0.081**
(0.040)

Idiosyncratic shock 2016–17, dummy − 0.085*
(0.044)

− 0.036**
(0.017)

0.067
(0.045)

CL page no − 0.009***
(0.003)

CL page no, squared 0.001**
(0.001)

Start point in CL, row 0.019***
(0.002)

Start point in CL, squared − 0.002***
(0.000)

Risk neutral row no − 0.014***
(0.003)

Risk neutral row no, squared 0.003***
(0.000)

Enumerator dummies No No No Yes
Constant − 0.001

(0.065)
0.505***
(0.027)

1.303***
(0.070)

0.154***
(0.010)

Subjects 912
Observations 107,616
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Table 10  Shock effects: RDU model with subject and parent characteristics

Variables (1) (2) (3) (4)
CRRA-r Prelec � Prelec � Noise

Covariate shock severity 2015–16 0.053
(0.042)

0.057***
(0.018)

− 0.100**
(0.045)

Idiosyncratic shock 2016–17, dummy − 0.089*
(0.049)

− 0.027
(0.018)

0.075
(0.046)

Subject characteristics
Male, dummy − 0.013

(0.035)
0.001
(0.015)

0.020
(0.037)

Education, years − 0.003
(0.005)

− 0.003
(0.002)

− 0.004
(0.006)

Age, years − 0.002
(0.002)

− 0.003***
(0.001)

0.002
(0.002)

Live on parents’ farm, dummy 0.042
(0.037)

0.002
(0.016)

0.059
(0.042)

Main group activity
Base: Livestock
Beekeeping − 0.049

(0.042)
− 0.041**
(0.018)

0.044
(0.044)

Forestry 0.009
(0.053)

0.002
(0.024)

− 0.093*
(0.053)

Irrigation 0.005
(0.043)

− 0.048**
(0.019)

− 0.012
(0.047)

Parent characteristics
Parents have radio − 0.068**

(0.035)
− 0.037***
(0.014)

0.060*
(0.036)

Parents oxen number 0.030
(0.026)

0.007
(0.011)

− 0.002
(0.026)

Parents own land 0.063
(0.043)

0.021
(0.019)

− 0.161***
(0.046)

Parents farm size, tsimdi − 0.010
(0.009)

0.007*
(0.004)

− 0.014
(0.008)

CL page no − 0.012***
(0.003)

CL page no, squared 0.002***
(0.000)

Start point in CL, row 0.019***
(0.002)

Start point in CL, square − 0.002***
(0.000)

Risk neutral row no − 0.015***
(0.003)

Risk neutral row no, squared 0.003***
(0.000)

Constant − 0.030
(0.123)

0.606***
(0.053)

1.476***
(0.162)

0.161***
(0.011)

Subjects 912
Observations 107,616
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endogenously. These alternatives claim that shocks make people less (Gollier and Pratt 
1996) or more (Quiggin 2003) risk tolerant. We find strong evidence that the covariate 
drought shock made subjects more risk tolerant. The additional findings from the structural 
models provide additional evidence in favor of the theory of Quiggin (2003) and the RDU 
model over the EU model.

The general RDU model is estimated without and with subject and parent characteris-
tics. The estimated CRRA utility function is found to be close to linear and unaffected by 
the covariate shock. Both in the dual Yaari model and the more general RDU models, the 
covariate shock resulted in a significant upward shift in the probability weighting function. 
This result was very robust to the inclusion of additional controls. The result in a reduced 
form model using a standardized risk premium as the dependent variable also demon-
strated the robustness to additional controls and a more severe covariate shock associated 
with significantly lower risk premiums (Table 6). The effects of the more recent idiosyn-
cratic shock were weaker and less robust across the model specifications.

Our study provides new insights on the importance of eliciting dis-aggregated meas-
ures of risk preferences that take probability weighting into account and may give a deeper 
insight into why shocks in some contexts make people more risk averse in independent 
experiments and other contexts make people more willing to take risks. Our study is the 
first to nail the theoretical predictions of Quiggin (2003) with empirical evidence. Earlier 

Table 10  (continued)
Cluster-robust standard errors in parentheses, clustering on subjects
Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1

Fig. 4  Idiosyncratic and covariate shock effects on utility curvature and probability weighting function
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studies have treated these contradictory findings as a puzzle, and only a few have hinted at 
the possible theoretical reasons without being able to verify them.

Our study contributes to the literature on how recent idiosyncratic and covariate shocks 
affect risk preferences. Our robustness analyses revealed that the covariate drought shock 
had the most significant, robust, and lasting effect, showing up in independent risk experi-
ments two years after the shock, and making subjects more willing to take risks. More 
research is needed to further investigate how long this type of effect can last.

Overall, our findings show that the covariate drought shock has reduced the revealed 
risk premiums of the subjects in the independent CE-MCL experiments. When we estimate 
an EU model versus the Yaari model, the Yaari model captures the shock effects through 
a change in the w(p) function parameters and the w(p) has an inverse S-shape and the two 
Prelec � and � parameters are significantly different from 1 (the assumption of EU-the-
ory). This shape of the w(p) function is confirmed when we estimate the RDU models 
(population-averaged as well as a model with subject characteristics), which also display a 
near-linear CRRA utility function. The fact that the covariate shock reduced risk premiums 
and affected the w(p) function in an upward direction (less pessimistic expectations after a 
shock) indicates that the Yaari model and the RDU models are more appropriate represen-
tations of the preferences of our study subjects than the EU model. Several recent studies 
have revealed that the inverse S-shape of the w(p) function is a dominant characteristic of 
many populations (Vieider et al. 2018, 2019). This indicates that it is high time that empiri-
cal economists who study climate risks and shock effects go beyond EU theory when they 
choose their theoretical frameworks and data collection methods and aim to study the 
behavior of people exposed to such shocks. We suggest it should become standard to con-
sider probability weighting in such studies.

The study of how shocks affect risk preferences is a relatively new area of research with 
apparent contradictory findings that are of high relevance not only from a theoretical per-
spective but also from a policy perspective. More research is needed to better understand 
how preferences adapt to environmental changes in the short and long run. Understanding 
behavior and adaptation to climate change and designing good policies to protect vulner-
able people and enhance welfare are among the most important challenges of our time. 
There is a risk that climate shocks spill over into social unrest through preference change 
unless precautionary measures are taken. A civil war erupted in our study area after our 
field study. We cannot rule out that such a shock can have even larger effects on risk prefer-
ences with consequences for behavioral responses.

Appendix 1: Test for Attrition Bias

We tested for attrition bias related to attrition from the baseline survey in 2016 to the final 
experimental data obtained in 2017. No such attrition bias was found as can be seen in 
Table 11.37

37 Two of the groups refused to participate in the risk experiments in 2017 for religious reasons as they 
did not want to participate in experiments with monetary rewards. The self-selection variables in Table 11 
are for the groups that themselves decided on the member composition. The self-selection variables were 
predicted with a probit model for 742 youth groups based on a census of all existing youth groups in the 
districts at the time of the census (2016).
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Appendix 2: Exploring Parent Household and Farm Heterogeneity

Some additional statistics are provided for parent households in this section. Figure  5 
shows the distribution of farm size and oxen in parent households. About 80% of the youth 
group members have parents that own land but almost all parent households can be clas-
sified as land-poor as only about 10% have more than 1 ha of land. Close to 20% own no 
oxen and just above 10% own more than one ox. Note that a pair of oxen is needed to plow 
the land. This implies that the majority with only one ox will need to team up and share the 
ox with another household that owns an ox to cultivate their land. This illustrates that the 
households are resource-poor but also dependent on agriculture. The same applies to the 
youth business groups in the sample which all have agricultural types of businesses, see 
Table 1.

Business group members typically have a close relationship with their parent house-
holds as long as they are alive. Table  12 shows where they live. 52.3% of the business 
group members live on their parents’ farms. 61% of the members are married. Some of the 

Table 11  Test for attrition bias

Bootstrapped standard errors in parentheses,
Re-sampling groups. Significance levels:
***p < 0.01, **p < 0.05, *p < 0.1

Variables

2015 Drought severity 0.009
(0.012)

Education, years 0.001
(0.003)

Age, years − 0.001
(0.002)

Sex, dummy 0.032
(0.025)

Married, dummy − 0.017
(0.028)

Parents have radio 0.003
(0.023)

Parents’ number of oxen 0.021
(0.022)

Parents own land − 0.038
(0.032)

Parents’ farmsize, tsimdi − 0.002
(0.008)

Self-selection into group, predicted 1.070
(2.894)

Self-selection Inverse Mills Ratio 0.0381
(1.900)

Constant − 0.835
(2.982)

Observations 1104
Number of youth groups 117
Wald chi2(8) 37.15
Prob > chi2 0.001
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group members have been provided a house plot by the community and have been able to 
build their own house there. It is youth coming from more land-scarce parent households 
that are less likely to live on the farm of their parents. The average farm size of parents 
with youth staying on their farm is 2.88 tsimdi compared to 1.54 tsimdi for youth staying 
outside their parents’ farm (Table 13).

Appendix 3: Stochastic Dominance Analysis for the Risk Experiment

The cumulative switch point distributions in the 2017 risk CE-MCL experiment are pre-
sented in Figs. 6, 7, and 8, with CLs 1–3 and CLs 6–8 in Fig. 6.38 The combined CLs in 
Fig. 7 only differ in the probability of a low outcome. The stochastic dominance is very 

Fig. 5  Farm size and oxen endowment distributions for parent households in 2016

Table 12  Main production 
activities of the business groups

Main activity category Freq Percent Cum

Animal rearing 233 25.52 25.52
Beekeeping 328 36.04 61.56
Forestry 125 13.69 75.25
Irrigation 226 24.75 100.00
Total 912 100.00

Table 13  Where the group 
members live

Where do you live? Freq Percent Cum

On farm of and in the house of parents 366 40.09 40.09
Own house on separate place 412 45.24 85.32
Own house on farm of parents 112 12.27 97.59
Live in house of in-laws 6 0.66 98.25
Rented house 16 1.75 100.00
Total 912 100.00

38 These graphs are also included in an Appendix in Holden and Tilahun (2022) but without the additional 
analysis made here of stochastic dominance violations at the subject level.
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clear from the graphs demonstrating that CE falls with an increasing probability of a bad 
outcome. Similarly, Figs.  7 and 8 demonstrate the effect of increasing the bad outcome 
in the risky prospect from 0 to 20 ETB, while all other characteristics are the same in the 
paired CLs. For CL1 versus CL6 (p(bad) = 0.05), CL2 versus CL7 (p(bad) = 0.1), and CL3 
versus CL8 (p(bad) = 0.2), the stochastic dominance for the sorted responses is very clear.

It is noteworthy for CL1 and CL6 that the risk-neutral Task row is row 2 (or very close 
to row 2 for CL6).39 For this low probability of a bad outcome (5% ), close to 90% of the 
subjects are risk averse and prefer the certain amount. For CL2 and CL7 (p(bad) = 0.1), the 
risk-neutral row is row 3 or just below (for CL7), where about 90% of the subjects are risk 
averse and switch for CE < E(y) . For CL3 versus CL8 (p(bad) = 0.2), the risk-neutral rows 
are row 5 and (close to) row 4 (CL8), Fig. 8, the first graph, indicates that 85–90% are risk 
averse at this probability level.

Figure 8, the second graph, shows the cumulative distributions for CL11 and CL12 (low 
probability (0.15 and 0.05) high outcomes (ETB 300 and 1500)). The higher shares of cor-
ner solutions without switch points in CL11 and CL12 indicate a higher willingness to 
take the risk for such low probability high outcomes.40 Only about 70% have CE < E(y) for 
these CLs.

Fig. 6  The distribution of switch points in CL1–CL3 and CL6–CL8

Fig. 7  The distribution of switch points in CL1 versus CL6 and CL2 versus CL7

39 The certain amount offered is 95 in this row.
40 With hindsight, we realize that we should have included higher certain amounts at the top of these CLs.
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To further inspect the data quality we inspect for stochastic dominance violations at 
the subject level. First, our choice lists CL1 versus CL6, CL2 versus CL7, and CL3 versus 
CL8 are particularly suitable for this as they only differ in the bad outcome amount. A clear 
violation of stochastic dominance would be for an individual to have a lower CE for the 
CL with 20 ETB as a bad outcome than the otherwise equivalent CL with 0 ETB as a bad 
outcome. We find that 9.0% of the subjects violate stochastic dominance for CL1 versus 
CL6, 7.0% violate for CL2 versus CL7 and 7.6% violate for CL3 versus CL8. Second, we 
can make within-subject comparisons for CL1 versus CL2 versus CL3 and CL6 versus 
CL7 versus CL8 which only differ in terms of the probabilities of a bad outcome, 0.05 
versus 0.1 versus 0.2. We find 14.5% violations for CL1 versus CL2, 11.2% violations for 
CL2 versus CL3, and 8.3% violations for CL1 versus CL3, and 12.7% violations for CL6 
versus CL7, 11.8% violations for CL7 versus CL8, and 8.8% violations for CL6 versus 
CL8. When we look at the aggregated distribution of stochastic dominance violations in 
our sample based on the assessment above (nine paired comparisons per subject), we find 
that 59.0% had no violations, 15.2% had one violation, 11.5% had two violations, 7.3% had 
three violations, 4.9% had four violations, and 2.2% had more than four violations. We may 
compare this with the study of Vieider et al. (2018), who found that 38% of their subjects 
in a rural sample of household heads from Ethiopia violated stochastic dominance at least 
once. This is very similar to our finding of 41% with at least one violation, using CLs 
that are of similar complexity and subjects with a similar level of education and cultural 
background.

We provide a further visual picture of the size distribution of the stochastic domi-
nance violations by CL in Fig. 9. Each figure presents the histogram distributions of the 
paired ΔCE s with the negative values representing the violations. We see that the major-
ity of the violations also are small in value. Very few are below − 10 ETB. We handle the 
inconsistent responses by introducing models with noise, allowing for response errors, 
rather than dropping subjects with such violations. This is explained in the next section 
on estimation.

Fig. 8  The distribution of switch points in CL3 versus CL8 and CL11 versus CL12
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Appendix 4: Risk Premium Distributions

We calculated the risk premiums by CL for each subject in monetary terms; see Figs. 10 
and 11 for their distributions by CL. We see some variation in the distribution across 
CLs that may indicate design weaknesses we should control for. We address this econo-
metrically below.

Fig. 9  Stochastic dominance assessment with value deviations
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Fig. 10  Risk premium distributions by CL, CLs 1–8
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Appendix 5: Robustness Analyses

E.1 Sensitivity to Dropping Shock Variables in Risk Premium Models

We have tested the robustness of the shock effects on risk premiums by alternatively 
removing one or more of the shock variables and inspecting the coefficients and sig-
nificance of the retained shock variables. The results are presented in Table  14. The 
coefficient and significance for the covariate shock severity variable are very stable 
and highly significant in all specifications. In contrast, the 2016–17 idiosyncratic shock 
dummy variable remains insignificant in all models.

E.2 Sensitivity to Base Consumption in the EU Model

Table  15 presents population-average EU models with different base consumption 
(bcons) levels. A higher level of asset integration (higher bcons) is associated with a 
more concave utility function (the constant term for CRRA-r) and is associated with a 
larger reduction in the CRRA-r parameter due to the covariate shock. The shock effects 
are consistent in direction and significance under different assumptions about the degree 
of asset integration. However, the higher levels of asset integration involve very concave 
utility functions in line with Rabin (2000).

Fig. 11  Risk premium distributions by CL, CLs 9–12
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Table 14  Robustness checks for shock effects on risk premiums

Cluster-robust standard errors in parentheses
Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1

Variables (1) (2) (3) (4)
rpst rpst rpst rpst

Covariate shock severity − 0.035***
(0.010)

− 0.035***
(0.010)

− 0.034***
(0.010)

Idiosyncratic shock dummy 0.018
(0.013)

0.018
(0.013)

0.015
(0.013)

Deviation in shock severity 0.001
(0.005)

Constant 0.242***
(0.018)

0.242***
(0.018)

0.243***
(0.018)

0.181***
(0.005)

Observations 10,616 10,616 10,616 10,616
Number of subjects 912 912 912 912

Table 15  EU model with limited but varying degree of asset integration

Cluster-robust standard errors, clustering at subject level
Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1

Equation Variables (1) (2)
bcons = 30 bcons = 90

CRRA-r Covariate shock severity 2015–16 − 0.182***
(0.052)

− 0.322***
(0.094)

Idiosyncratic shock 2016–17, dummy 0.070
(0.063)

0.127
(0.114)

Constant 1.227***
(0.090)

1.981***
(0.166)

Prelec � Constant 1.000
(0.000)

1.000
(0.000)

Prelec � Constant 1.000
(0.000)

1.000
(0.000)

Noise CL page no 0.012***
(0.004)

0.015***
(0.005)

CL page no, squared − 0.002***
(0.001)

− 0.002***
(0.001)

Start point in CL, row 0.020***
(0.003)

0.024***
(0.003)

Start point in CL, squared − 0.002***
(0.000)

− 0.002***
(0.000)

Risk neutral row no − 0.094***
(0.005)

− 0.097***
(0.006)

Risk neutral row no, squared 0.010***
(0.000)

0.009***
(0.001)

Constant 0.334***
(0.014)

0.354***
(0.016)

Number of subjects 912 912
Observations 107,616 107,616
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Appendix 6: Experimental Protocol

Attached in Supplementary information.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10640- 024- 00850-5.
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