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Abstract
We show that ambiguity aversion and deviations from standard expected time separable 
utility have a major impact on estimates of the willingness to pay to avoid future climate 
change risk. We propose a relatively standard integrated climate/economy model but add 
stochastic climate disasters. The model yields closed form solutions up to solving an inte-
gral, and therefore does not suffer from the curse of dimensionality of most numerical cli-
mate/economy models. We analyze the impact of substitution preferences, risk aversion 
(known probabilities), and ambiguity aversion (unknown probabilities) on the social cost 
of carbon. Introducing ambiguity aversion leads to two offsetting effects on the social cost 
of carbon: a positive direct effect and a negative effect through discounting. Our numeri-
cal results show that for reasonable calibrations, the direct effect dominates the discount 
rate impact, so ambiguity aversion gives substantially higher estimates of the social cost of 
carbon.

Keywords  Social cost of carbon · Ambiguity aversion · Epstein–Zin preferences · Climate 
change

PACS  Q51 · Q54 · G12 · G13

1  Introduction

Climate change is one of the main risks the world will face in the upcoming decades or 
possibly even centuries. But although climate scientists agree on the fact that climate 
change will most likely have dramatic negative consequences for the environment and eco-
nomic growth, there is still much uncertainty surrounding the extent and timing of future 
damages induced by climate change (cf IPCC (2021) for a recent assessment). Despite all 
the uncertainty about the timing and the exact structure and extent of the damages that 
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climate change will cause, we do know that if they are to be avoided policies need to be 
implemented today. This should place the issue of how to discount future uncertain cost of 
climate change back towards today to allow comparison to the costs of today’s policy inter-
ventions, at the center-stage of the climate change debate. And hence the subject of this 
paper, on climate change, risk, ambiguity aversion and Epstein–Zin preferences, and what 
it all implies for the Social Cost of Carbon (SCC).

We focus on the fact that we often do not know the exact parameters of the climate 
model and cannot even assign probabilities to their possible values. There is a fast grow-
ing literature dealing with uncertainty and risk aversion but that literature starts from the 
assumption that we can in fact assign probabilities to specific possible realizations, i.e. that 
literature deals with risk, not with ambiguity, or, in the words of Knight (1921), fundamen-
tal uncertainty. Since so little is known about the exact distribution of uncertain climate 
shocks, we focus predominantly on ambiguity aversion under different assumptions about 
preferences, and its impact on the SCC. A key result we obtain is that ambiguity aver-
sion leads to estimates of the social cost of carbon that are substantially higher than the 
estimates one gets with risk rather than ambiguity (and much higher than what comes out 
without uncertainty at all).

The impact of climate change on the economy is most commonly modeled using com-
bined economy/climate models called Integrated Assessment Models (IAMs). IAMs inte-
grate the knowledge of different domains into one model. In the case of climate change, 
IAMs combine an economic model with a climate model. Three well-known IAMs are 
DICE (Nordhaus, 2014), PAGE (Hope, 2006) and FUND (Tol, 2002).1 These models are, 
among others, used as policy tools for cost-benefit analyses. They provide a conceptual 
framework to better understand the complex problem of climate change by combining dif-
ferent fields and allowing for feedback effects between those fields.

But IAMs also have major drawbacks. To quote Pindyck (2017): “IAM-based analyses 
of climate policy create a perception of knowledge and precision that is illusory...” His 
critique is that the models are (1) very sensitive to the choices of parameters and functional 
forms, especially the discount rate. Besides, we know very little about (2) climate sensitiv-
ity and (3) damage functions. Lastly, (4) IAMs don’t incorporate tail risk. He recommends 
simplifying the problem by focusing on the catastrophic outcomes of climate change, 
instead of modeling the underlying causes. In line with that view we focus on disaster risk 
by modeling climate damages as disasters (Poisson shocks). And our focus on ambiguity 
aversion naturally follows from his observation that we know very little about the precise 
stochastics of climate disasters.

We model emissions, atmospheric carbon concentration and the temperature anomaly. 
In this setup we model climate risk as disaster risk instead of assuming that the damage 
that temperature increases generate occurs gradually. Climate disasters are events that 
occur rarely and take place abruptly (Goosse, 2015). To model this feature, we add a jump 
process to the endowment consumption stream to capture climate disaster risk. The arrival 
rate and the intensity of the disasters is assumed to be increasing in temperature.

A critical link between climate and the economy is conventionally modeled by pos-
tulating a damage function, that summarizes the reduction in output resulting from the 
occurrence of a climate disaster. Since there is so little known about the damage func-
tions, we investigate the impact of both attitudes towards well defined measurable risks and 

1  The references do not contain the most recent versions of the IAMs.
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ambiguity aversion towards unmeasurable uncertainty on the willingness to pay for avoid-
ing climate risk. We thus assume that the agent does not know the exact probability distri-
butions of the arrival rate of climate disasters and the size of the disasters: there is so called 
ambiguity about the characteristics of the jump risk component. And the agent is assumed 
to be averse to this ambiguity or Knightian uncertainty.

Finally we use the continuous time version of Epstein–Zin utility, which allows us to 
separate the elasticity of intertemporal substitution (EIS) from the degree of risk aversion 
� . In the widely used power utility specification, risk aversion and elasticity of intertem-
poral substitution are captured by one parameter: under power utility, they are equal to 
each other’s inverse. There is strong empirical evidence placing the relative degree of risk 
aversion in the range of 5–10 (Cochrane 2009). Using such estimates in combination with 
power utility then results in implied estimates for the EIS much lower than direct empirical 
estimates suggest. But especially for long term problems such as climate change intertem-
poral choices play an important role and restricting parameters such as the EIS is a severe 
limitation. Epstein–Zin preferences make it possible to separate risk aversion and the 
elasticity of intertemporal substitution. We can therefore disentangle risk aversion effects 
(known probabilities), ambiguity aversion effects (unknown probabilities) and substitution 
effects. Our main focus is on the interaction of other preference parameters such as risk 
aversion and the EIS with ambiguity aversion.

We explicitly consider the valuation of climate risk assuming the Business As Usual 
(BAU) scenario: we do not analyse optimal abatement policies in this paper. Optimal 
policy is integrated into the analysis in a companion paper (Olijslagers et al., 2023). The 
rationale for this is that an analysis of the environmental costs of current policies (not cur-
rent plans...) is useful in the climate policy debate. The BAU scenario is also the default 
scenario to calculate the social cost of carbon in Nordhaus (2014).2 The social cost of car-
bon using a baseline scenario can be interpreted as the monetized welfare loss of emitting 
one additional unit of carbon today, given the current global carbon abatement policy sce-
nario under the assumption that no measures will be taken in the future either.

In the first part of the paper we provide analytical solutions. To make that possible we 
simplify the model by assuming that the economy is a pure exchange economy with exoge-
nous stochastic endowments, since linking stochastic emissions to the stochastics of output 
and consumption processes precludes analytical solutions. Of course assuming an exoge-
nous emissions stream is unrealistic, we therefore endogenize emissions in the second part 
of the paper where we conventionally link emissions to output and use numerical methods 
to solve the model. We also demonstrate that the analytical solutions, while derived under 
restrictive conditions on the nature of the emissions process, do provide valuable insights 
that help in interpreting the outcomes of the numerical analysis of the more complex but 
more realistic model of part two of the paper.

Similar to the literature, the SCC in our model is very sensitive to the choice of the input 
parameters. But because we have analytical solutions, we can easily explore the implica-
tions of parameter choices on ambiguity aversion in combination with risk aversion and 
the elasticity of intertemporal substitution (EIS). We show that including ambiguity into 
the analysis gives two offsetting effects. On the one hand, ambiguity aversion increases 
the willingness to pay to avoid climate risk, which pushes up the SCC. On the other hand, 
ambiguity aversion also increases the risk premium and therefore the discount rate, which 

2  Note that not incorporating optimal abatement policies implies that the social cost of carbon derived here 
in our model is not equal to the globally optimal Pigouvian carbon tax.
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lowers the SCC. Our numerical example using best estimates of the various parameters 
shows that the first effect is dominating. The impact of higher risk premia is more than 
offset by the impact of ambiguity aversion on the certainty equivalence estimates that are 
subsequently discounted back to today. Introducing ambiguity aversion in our model yields 
a SCC that is between 65% and 83% higher depending on the structure of climate risk. The 
net impact of higher aversion to ambiguity is to substantially raise the SCC, in particular 
for the realistic case of stochastic emissions which we analyse in the numerical solutions 
section.

Moreover, we highlight that the social cost of carbon is also sensitive to choices about 
time discounting, either via the pure rate of time preference, risk aversion or the elasticity 
of intertemporal substitution, and that all these parameters interact with the cost of ambi-
guity aversion. But the overall conclusion remains: insufficient attention to ambiguity leads 
to substantial underestimation of the SCC.

The plan of the paper is as follows: After the introduction (Sect. 1) we discuss related 
literature in Sect.  2 and introduce the basic model in Sect.  3. In Sect.  3.1 we focus on 
the endowment process and in Sect.  3.2 on modeling climate change and its economic 
impact. Section  3.3 focuses on preference structure and on the consequences of assum-
ing Epstein–Zin preferences. In Sect. 3.4 we outline our approach to ambiguity Aversion 
and what that implies in the current model (Sect. 3.5). In Sect. 4 we present our analyti-
cal results on discount rates, the social cost of carbon and ambiguity aversion. Section 5 
switches to the use of numerical solution methods; we first calibrate our model (Sect. 5.1), 
and use the calibrated version to illustrate our analytical results quantitatively, still assum-
ing deterministic emissions (Sect. 5.2). In Sect. 5.3 we analyse the full model with stochas-
tic emissions. Section 5.4 considers an extension with ambiguity about the climate sensi-
tivity. Section 6 concludes.

2 � Related Literature

This paper is related to two strands of literature. First, several other papers have also 
focused on obtaining analytical results to improve the understanding of what drives the 
social cost of carbon. Second, the paper is related to the climate economics literature that 
takes into account uncertainty.

Most climate economy models are solved using numerical methods. However, since 
it has become clear that the choice of the input parameters has a large influence on the 
results, we think it is useful to know how exactly these parameters influence the outcomes 
and therefore opt for models that allow for analytical solutions in most of our paper. There 
are several papers that also focused on obtaining analytic solutions. Golosov et al. (2014) 
were the first to obtain closed form solutions in an IAM. However, this required quite 
strict assumptions such as logarithmic utility and full depreciation of capital every decade. 
Bretscher and Vinogradova (2018) develop a stylized production-based model where the 
current carbon concentration directly enters the damage function and obtain closed form 
solutions for the optimal abatement policy. Van den Bremer and Van der Ploeg (2021) con-
sider a rich stochastic production-based model with Epstein–Zin preferences, convex dam-
ages, uncertainty in state variables, correlated risks and skewed distributions to capture 
climate feedbacks. Since the model is too complex to obtain exact analytic solutions, they 
obtain closed form approximate solutions using perturbation methods.
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Lastly, Traeger (2023) extends the model of Golosov et al. (2014). Where in other ana-
lytic other models the atmospheric carbon concentration often directly enters the damage 
function (Golosov et al., 2014; Bretscher and Vinogradova, 2018), Traeger (2023) explic-
itly models the carbon cycle and the temperature anomaly while damages are induced by 
an increasing temperature. In an accompanying paper, Traeger (2021) focuses specifically 
on uncertainty. He finds that the SCC’s risk premium is almost 50% in the baseline calibra-
tion. Our SCC formula mainly differs from Traeger (2021) because we do not assume a 
unitary elasticity of intertemporal substitution. When the EIS = 1 , the effective discount 
rate equals the pure rate of time preference and uncertainty does have no impact on the 
discount rate. In our view the effect of preferences, risk and ambiguity on discount rates 
is important and this is one of the mechanisms that we focus on. Our assumption of an 
EIS ≠ 1 is crucial to study this mechanism.

Uncertainty is not part of the best-known integrated assessment model, the DICE model 
(Nordhaus 2017). This model is still deterministic and the representative agent is assumed 
to have power utility. But several papers have recently studied the impact of risk and more 
complex preference structures on the social cost of carbon. Cai (2020) gives an overview of 
the climate economics literature that studies different types of uncertainty.

Barro (2015) extends his economic disaster risk model with environmental disasters. 
He shows that economic disaster risk affects optimal environmental investment through 
discount rates. He does not incorporate a climate model but rather assumes that the disaster 
probability is constant and that it can be reduced by environmental investment. Jensen and 
Traeger (2014) add long-run economic risk and Epstein–Zin preferences to an integrated 
assessment model and show that assumptions about economic risk and preferences are 
important for the social cost of carbon through the discounting channel.

In addition to economic risk, there are also several studies that look at the effect of cli-
mate risk on the social cost of carbon and climate policy. Lemoine and Traeger (2014) and 
Cai et al. (2016) both study different types of tipping points and show that these tipping 
points lead to a higher ex-ante social cost of carbon. Karydas and Xepapadeas (2019) con-
sider a dynamic asset pricing framework with both macroeconomic disasters and climate 
change related disasters and analyze the implications for portfolio allocation. Our approach 
differs from these papers by focusing on the effect of ambiguity aversion on the social cost 
of carbon.

Bansal et al. (2019) also develop a theoretical model with climate risk in the form of 
climate disasters, similar to our specification of climate damages. The predictions of their 
theoretical model are then used to test whether climate risk is already priced into asset 
markets. They show that long-run temperature fluctuations have a positive risk premium in 
equity markets. Additionally, they use information embedded in asset valuations to obtain 
a semi-parametric estimate of the welfare cost of carbon emissions. In contrary, we obtain 
estimates of the social cost of carbon using different utility specifications and using ranges 
of utility parameters from the literature.

Cai and Lontzek (2019) and Hambel et al. (2021) are two important contributions to the 
literature on uncertainty and the SCC. Both studies include Epstein–Zin preferences and cal-
culate the SCC for a large range of combinations of risk aversion and the elasticity of inter-
temporal substitution. Cai and Lontzek (2019) conclude that taking into account economic 
risks shows that the future SCC is highly uncertain and that adding tipping points lead to a 
significantly higher social cost of carbon. The use of the stochastic discount factor in the valu-
ation of climate damages is extensively discussed. Hambel et al. (2021) study uncertainty in 
the carbon concentration, temperate distribution and GDP and additionally consider different 
damage specifications and several parameter combinations. They conclude that the effect of 
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the degree of risk aversion is modest with most damage specifications, but becomes important 
when damages are assumed to be large. And the interaction between different sources of risk 
is highlighted. Our results complement the findings from these numerical models by providing 
additional insights due to the closed form solutions. We for example show that risk aversion 
has two offsetting effects, which can be decomposed using the SCC formula. This gives a bet-
ter understanding of the mechanisms that are mentioned in these papers.

Closest to our paper is the literature that considers the effect of ambiguity or deep uncer-
tainty on the social cost of carbon and optimal climate policy. Berger and Bosetti (2020) con-
clude that policymakers are generally ambiguity averse using a field experiment at the COP21 
conference in Paris. Brock and Hansen (2017) discuss the importance and the challenges of 
including different types of uncertainty in climate models. Rudik (2020) studies uncertainty, 
learning and concerns for misspecification in an integrated assessment model. He finds that 
damage learning can deliver large welfare gains. Millner et al. (2013) study the effect of ambi-
guity in the climate sensitivity on optimal abatement policies and conclude that ambiguity 
aversion could have a large effect on optimal abatement.

In contrary to our findings, Lemoine and Traeger (2016) find only a marginal impact of 
ambiguity aversion on the social cost of carbon. They consider ambiguity with respect to 
which climate regime will prevail from an uncertain arrival date onwards. The different out-
come is probably caused by two differences: 1) we allow for Epstein–Zin preferences instead 
of power utility and 2) in our paper ambiguity directly prevails about the size of climate dam-
ages, while in Lemoine and Traeger (2016) it affects damages in a more indirect way, through 
the climate system.

Barnett et al. (2020) propose a model framework with three components of uncertainty in a 
climate economy model, namely risk, ambiguity and model misspecification. Damages enter 
the utility function directly. In their stylized numerical example, to simplify computations, the 
model misspecification channel is shut down. The analysis shows that uncertainty can be of 
first order importance in a climate change setting. Barnett et al. (2022) build further on the 
analysis of Barnett et al. (2020). They consider a much less stylized setting with three types of 
continuous shocks (climate shocks, damage shocks and technology shocks). Additionally an 
uncertain Poisson event is introduced that changes the damage function steepness. It is shown 
how different forms of uncertainty contribute to the SCC in the presence of ambiguity and 
model misspecification.

Our approach differs at several points from these two contributions. First, both papers use 
the ambiguity approach developed in Hansen and Miao (2018), which extends the smooth 
ambiguity model Klibanoff et al. (2005) by allowing for model misspecification. Instead, we 
use the ambiguity specification of Chen and Epstein (2002), which is a recursive extension of 
the Gilboa-Schmeidler max-min utility. Second, our damages are modeled as climate disasters 
instead of continuous damages with a possible Poisson event that changes the coefficient of 
the continuous damages. Lastly, because of the assumption of a unitary EIS, these papers do 
not focus on the effect of uncertainty on the discount rate. Using our analytical solution and 
non-unitary EIS, we are able to disentangle a direct effect of ambiguity aversion on the SCC 
given discount rates and an indirect effect through its impact on the discount rate.
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3 � The Model

We extend a standard endowment economy by assuming that the stochastic endowment 
stream is subject to climate disasters, where the probability of a climate disaster depends 
on the temperature level. An endowment economy is in our view a suitable starting point 
given our focus on the social cost of carbon and the way it depends on uncertainty and 
ambiguity for given policies. In particular we analyse the SCC in Nordhaus’ Business As 
Usual scenario. In a companion paper (Olijslagers et al., 2023) we endogenize abatement 
policy and analyse the price of carbon under optimal abatement policies and different 
objective functions.

3.1 � The Economy

The aggregate endowment process follows a geometric Brownian motion with an addi-
tional jump component that represents climate disasters:3

In equilibrium, aggregate consumption must equal the aggregate endowment and therefore 
we also refer to the process as the aggregate consumption process. The growth rate � and 
the volatility � are constant. Zt is a standard Brownian motion that captures ’normal’ uncer-
tainty, i.e. non-climate uncertainty. Nt is a Poisson process which represents climate disas-
ters. The arrival rate of a climate disaster equals �t , which we assume to be a function the 
temperature level Tt . Note that this way of modeling climate disasters implies that disasters 
are proportional to consumption.

When a climate disaster strikes at time t, the size of the disaster is controlled by the ran-
dom variable Jt . The distribution of the size of disasters is assumed to be the same for any 
t. We assume that Jt has the density f (x) = �(1 + x)�−1 where −1 < x < 0 . Jt represents the 
percentage loss of aggregate consumption after a disaster. The expected disaster size then 
equals E[Jt] =

−1

�+1
 and the moments E

[
(1 + Jt)

n
]
=

�

�+n
 can be easily calculated. In line 

with the subject of climate disasters, jumps can only be negative.

3.2 � The Climate Model

The arrival rate of disasters is assumed to be temperature dependent. We assume that dam-
ages are linearly increasing in temperature: �t = �TTt . We make this simplifying assump-
tion because we want to focus on other non-linearities in the SCC. However, all our deriva-
tions remain valid for convex specifications of the arrival rate. We discuss this assumption 
in more detail in the calibration section.

In the first part of the paper we make a number of simplifying assumptions to allow for 
analytic solution of the model. The main solvability requirement is that the state variables 
of the climate submodel are deterministic, and this in particular affects the way we model 
emissions. Carbon emissions are the product of the carbon intensity of aggregate output 
and aggregate output itself. We will introduce emissions in this way in the numerical part 
of the paper, but doing so precludes analytical solution. So our main simplification in the 

(1)dCt = �Ctdt + �CtdZt + JtCt−dNt.

3 C
t− denotes aggregate endowment just before a jump ( C

t− = lim
h↓0 Ct−h).
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analytical part of the paper is the assumption that aggregate emissions are driven by an 
independent deterministic process, an unavoidable simplification if one is to obtain ana-
lytical solutions. In Sect. 5.3 we use numerical methods and introduce stochastic emissions 
correlated with output. Making emissions stochastic clearly adds realism and enriches the 
results, but interpreting the numerical results benefits substantially from the additional 
insights obtained from the analytical results obtained earlier.

So assume for the first part of the paper that emissions Et are exogenous. Et is growing 
at a non-stochastic rate gE,t . The growth rate itself moves gradually towards the long-run 
equilibrium gE,∞ at a rate �E . By assuming a high initial growth rate but a negative long 
run rate ( gE,∞ < 0 ), we have growing emissions today; but the growth rate starts declining 
immediately and eventually turns negative because of gE,∞ < 0 , so emissions will go to 
zero eventually. This is a plausible assumption since there is a point where the stock of fos-
sil fuels will be depleted. All this leads to the following process for emissions:

We calibrate this process to match the baseline scenario in Nordhaus (2017).
We use the climate model (carbon cycle and temperature model) discussed in Mattauch 

et al. (2018), which they call the IPCC AR5 impulse-response model. This model is in line 
with recent insights from the climate literature and is also used in IPCC (2013). Specifi-
cally, this climate model incorporates the fact that thermal inertia plays a smaller role than 
commonly assumed in the climate modules in economic models. Climate modules com-
monly used in economic models tend to overstate the time it takes for the earth to warm in 
response to carbon emissions (cf Dietz et al. 2021).

Define by Mt the carbon concentration with respect to pre-industrial emissions Mpre . In 
our model, Mt is the sum of four artificial carbon boxes: Mt =

∑3

i=0
Mi,t . This specification 

can capture that the decay of carbon has multiple time scales and that a fraction of emis-
sions will stay in the atmosphere forever. The dynamics of carbon box i are given by:

�i is the fraction of emissions that ends up in carbon box i, which implies that 
∑3

i=0
�i = 1 . 

�M,i controls the decay rate of carbon in box i. We assume that all carbon that ends up in 
box 0 will permanently stay in the atmosphere, such that �M,0 = 0 . The other three boxes 
have a positive decay rate: 𝛿M,i > 0, i = {1, 2, 3}.

The next step is to model the impact of carbon concentration on temperature. This 
requires modeling what is called radiative forcing: the difference between energy absorbed 
by the earth from sunlight and the energy that is radiated back to space. A higher atmos-
pheric carbon concentration strengthens the greenhouse effect and therefore leads to higher 
radiative forcing. The relation between atmospheric carbon concentration and radiative 
forcing is logarithmic:

� equals the climate sensitivity: the long-run change in temperature due to a doubling of 
the carbon concentration compared to the pre-industrial level. � is a parameter that is also 
part of the temperature module and this parameter will be discussed later.

(2)
dEt = gE,tEtdt,

dgE,t = �E(gE,∞ − gE,t)dt.

(3)dMi,t = �i

(
Et − �M,iMi,t

)
dt.

(4)FM,t = �
�

log(2)
log

(Mt +Mpre

Mpre

)
.
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Finally we also include non-carbon related (exogenous) forcing FE,t , which follows:

Total radiative forcing is the sum of carbon-related radiative forcing and exogenous forc-
ing: Ft = FM,t + FE,t.

The final step moves from Ft to the actual surface temperature Tt . Tt is the difference 
between the actual temperature compared to the pre-industrial temperature level. The 
change in surface temperature is a delayed response to radiative forcing. Call the heat 
capacity of the surface and the upper layers of the ocean � while �oc equals the heat capac-
ity of the deeper layers of the ocean. The parameter � captures the speed of temperature 
transfer between the upper layers and the deep layers of the ocean. The dynamics of tem-
perature are then given by:

From this equation, one can derive a long run equilibrium temperature for a given level of 
radiative forcing Ft:

The parameter � controls the equilibrium temperature response to a given level of forc-
ing. Note that Eq.  (4) tells us that when Mt = 2Mpre , we get that Ft = �� + FE,t and 
T
eq

t = � +
FE,t

�
 . Therefore the parameter � can indeed be interpreted as the equilibrium tem-

perature response to doubling of the carbon concentration.
Using Eq. (7), we can rewrite the first line of Eq. (6) as:

Written this way the equation is more intuitive, since it captures the fact that the tempera-
ture moves towards its equilibrium level at a rate proportional to Teq

t − Tt . The second part 
shows that the oceans are delaying this convergence. It takes time for Toc

t
 to adjust towards 

Tt and this will also delay the convergence of Tt towards the equilibrium level Teq

t  . As speci-
fied earlier, the arrival rate of climate disasters is a linear function of temperature Tt.

3.3 � Preference Specification

The representative agent maximizes utility of consumption over an infinite planning hori-
zon. Because of the different roles played by intertemporal substitution and risk aversion in 
determining risk premia, the safe rate of interest, and therefore also the social cost of car-
bon, we use Epstein–Zin (EZ) preferences (Epstein and Zin 1989); EZ preferences allow us 
to vary the elasticity of intertemporal substitution (EIS) and the coefficient of relative risk 
aversion independently. This is important since both the elasticity of intertemporal substi-
tution (through the discount rate) and risk aversion interact with ambiguity aversion in our 
framework. We use the continuous time version of of Epstein–Zin utility, a special case of 
stochastic differential utility introduced by Duffie and Epstein (1992b).

(5)dFE,t = �F(FE,∞ − FE,t)dt.

(6)
dTt =

1

�

(
Ft − �Tt − �(Tt − Toc

t
)
)
dt,

dToc
t

=
�

�oc
(Tt − Toc

t
)dt.

(7)T
eq

t =
Ft

�

(8)dTt =
1

�

(
�(T

eq

t − Tt) − �(Tt − Toc
t
)
)
.
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The agent’s utility or value function is:

� denotes risk-aversion, � is the elasticity of intertemporal substitution and � equals the 
time preference parameter. We will focus on the more general case where � ≠ 1 . For the 
case � = 1 one can take the limit � → 1 or follow the same derivation but with 
f (C,V) = �(1 − �)V

(
logC −

1

1−�
log

(
(1 − �)V

))
 . Finally if � =

1

�
 , the utility specifica-

tion reduces to standard power utility.

3.4 � Ambiguity

There is much uncertainty regarding the arrival rate and magnitude of climate disasters. 
Pindyck (2017) already stresses that we know very little about the damage functions. And 
where consumption growth and volatility can be estimated accurately from historical data, 
the estimation of the climate disaster parameters will be much harder since climate disas-
ters do not happen that often. It is fair to state that we simply do not know the exact distri-
bution of climate damages. We should therefore account for the possibility that the ‘best 
estimate’ model is not the true model: there is ambiguity. We assume that the representa-
tive agent is ambiguity averse.

It is important to stress the difference between risk and ambiguity. When we are talk-
ing about risk, an agent knows the probabilities and possible outcomes of all events. When 
the agent has to deal with ambiguity, the probabilities attached to particular events are 
unknown. The distinction between risk and ambiguity is already extensively discussed in 
Knight (1921), which is why ambiguity is often referred to as Knightian uncertainty. Ells-
berg (1961) shows using the Ellsberg Paradox that people are ambiguity averse, i.e. they 
prefer known probabilities over unknown probabilities. We follow Chen and Epstein (2002) 
by introducing uncertainty over probability measures by introducing a set of ’plausible’ 
models P ; subjective beliefs over this set can be summarized by a subjective probability �.

We use the recursive multiple priors utility developed in continuous time by Chen and 
Epstein (2002) to model ambiguity aversion. This method selects a discrete set of models 
that are relatively similar. The size of the set depends on the degree of ambiguity aversion. 
In the language of Hansen and Sargent (2001), the decision maker has to make a robust 
decision given the set of reasonable models. In the literature two approaches to that deci-
sion problem are used, the smooth ambiguity approach proposed by Klibanoff et al. (2005) 
and the Maximin approach advocated among others by Gilboa and Schmeidler (1989) and 
used in Chen and Epstein (2002).

To apply the Maximin approach of Chen and Epstein (2002) to modeling ambiguity 
aversion we begin by defining the ‘best estimate’ model or reference model as the agent’s 
most reliable model, with probability measure ℙ . But the agent takes into account that his 

(9)
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reference model may not be the true model and specifies a set of models P� that he also 
considers possible. The alternative models have measure ℚa,b ; the jump arrival rate 
becomes �ℚa,b

t
= a�t and the jump size parameter becomes �ℚa,b

t
= b� . Remember that the 

expected jump size equals −1
�+1

 , i.e. a low b leads to a more negative jump size. Given the set 
of models P� , Chen and Epstein (2002) then assume that the agent optimizes assuming the 
worst case, in line with the axiomatic Minimax approach advocated by Gilboa and Schmei-
dler (1989). In this approach the subjective probability � over the set P of all probability 
measures ℚa,b has no impact on the final outcome: the MiniMax approach advocated by 
Gilboa and Schmeidler (1989) and applied in Chen and Epstein (2002) optimizes assuming 
only the worst measure of the set P (hence the moniker Minimax).

A more general and also often used way to model ambiguity and ambiguity aversion 
is the the smooth ambiguity model proposed by (Klibanoff et  al. 2005). Klibanoff et  al. 
(2005) also start by considering a set of possible measures P , with an associated subjective 
probability � over the set P . In particular, assume that the agent does not know the true 
values of � and � . In this approach the agent first constructs a prior probability distribution 
� that reflects his beliefs on � and � . To incorporate ambiguity aversion, he then transforms 
this distribution using a mapping � to put more weight on the events that give him low util-
ity and less weight on the events that give high utility. This transformation � summarizes 
the representative consumer’s attitude towards uncertainty over what constitutes the "right" 
prior. The concavity of � indicates the degree of ambiguity aversion, in the same way con-
cavity of a standard utility function defined over different realizations (given a measure 
mapping those realizations to probabilities) indicates risk aversion. Ambiguity aversion 
adds as it were another layer to our utility specification. For a given set P the Maximin 
approach advocated by Gilboa and Schmeidler (1989) and Chen and Epstein (2002) is 
in fact the limiting case of the smooth ambiguity approach of Klibanoff et  al. (2005) as 
ambiguity aversion goes from zero to infinity. We opt for the Maximin approach, which of 
course has the main benefits of being simple to apply and easy to interpret.

We assume that all models with a distance smaller than � are in the set P of admissible 
models ℚa,b , so the size of the set of models depends on the ambiguity aversion parameter 
� ; and � can be interpreted as a measure of the extent of ambiguity. We measure distance 
between the reference model ℙ and an alternative model ℚa,b using the concept of rela-
tive entropy, a common metric for the distance between two probability measures (see for 
example Hansen and Sargent (2008)). Relative entropy thus gives information about how 
similar two probability measures are. To obtain our distance measure, we scale relative 
entropy by the arrival rate �t.4 Without this scaling, the optimal a∗ and b∗ would be time-
varying. This would imply that the decision maker is continuously updating a∗ and b∗ . A 
constant a∗ and b∗ are both more intuitive and more tractable.

The distance between the reference and alternative model depends on the param-
eters a and b and can therefore be written as d(a,  b). The distance measure satisfies 
d(a, b) ≥ 0 ∀(a, b) and d(1, 1) = 0 : the distance of the reference model to itself is by defini-
tion equal to 0. If � is large, the agent is very ambiguity averse and thus considers a large 
set of models. The preferences of the agent then become:

4  Liu et al. (2004) and Maenhout (2004) also use a normalisation factor to scale their distance measure in 
order to get tractable results. In an earlier version, which is available on request from the authors, we used 
an unscaled entropy measure. This adds complexity but has a negligible impact on the results.
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Here Vℚa,b

t
 is the value function assuming ℚa,b is the true probability measure. � = 0 implies 

that P� = {ℙ} and the agent only considers one measure, namely the reference measure. 
Thus there is no ambiguity aversion when � = 0 . Where the risk aversion parameter � can 
be seen a parameter that is relevant for any risky bet, the parameter � captures intrinsic 
ambiguity aversion (one person might be more ambiguity averse than another), but it is 
also source dependent. If there is a lot of information and data available about a process, 
� will be smaller and the set of admissible models will be smaller compared to a process 
about which not much is known. But at the same time � also captures aversion to ambiguity 
similar to risk aversion.

In “Appendix A” we derive that the distance measure equals:

It is easy to verify that d(1,1) = 0, the distance between the reference distribution and itself 
is zero. When one or both of the two variables a and b deviate from the reference model, 
d(a, b) increases. Every contour in Fig. 1 gives a set of combinations (a, b) that yields the 
same distance. If for example � = 0.1 , then all (a, b) combinations within that contour line 
are included in the set of admissible models. The worst case probability measure will be 
the probability measure for which either a is large (high arrival rate) and/or b is small, 
since the expectation of the jump size under the alternative measure is inversely related to 
b: Eℚa,b

[Jt] =
−1

b�+1
.

(10)

Vt = min
ℚa,b∈P�

Vℚa,b

t

where Vℚa,b

t
= Eℚa,b

t

[
�

∞

t

f (Cs,V
ℚa,b

s
)ds

]

and P
� = {ℚa,b ∶ d(a, b) ≤ � ∀t}.

(11)d(a, b) = (1 − a) + a
(
log(ab) +

1

b
− 1

)
.

Fig. 1   Distance measure for different values of a and b 
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From the current setup, it is hard to argue what a reasonable value for ambiguity aver-
sion � would be. In order to give more guidance about reasonable values for � , we use the 
concept of detection error probabilities introduced by Anderson et al. (2003).5 Consider 
the following thought experiment. Assume that the representative agent would be able to 
observe the process of consumption over the next N years, and after observing the process 
the agent has to choose which of the two models (the reference model or the worst-case 
model) is most likely. There are two types of errors in this case. The agent could choose the 
reference model while the process was actually generated by the worst-case model and he 
could also make the opposite error. The detection error probability is defined as the average 
of the probability of the two errors. “Appendix B” describes how the detection error prob-
ability is calculated.

The detection error probability depends on N, since when the agent observes the process 
for a longer period, the probability of a mistake will be smaller. The detection error prob-
ability also depends on the ambiguity aversion parameter: when � is small, the reference 
and worst-case model are similar to each other and the probability of a mistake is large. On 
the other hand, when the agent is extremely ambiguity averse (or there is a lot of ambigu-
ity) the reference and worst-case models are very different and the detection error probabil-
ity becomes small. The representative agent wants to make the set of models sufficiently 
large to make a robust decision, but on the other hand does not want to take into account 
implausible models. The detection error probability gives guidance about whether the set 
of admissible models is too small or too large. Since the detection error also depends on 
the other parameters of the model, we come back to the issue of calibrating the ambiguity 
aversion parameter in the calibration section.

3.5 � Optimal a and b

As discussed before, the agent has the following utility function: Vt = min
ℚa,b∈P� Vℚa,b

t
 , 

where P� is the set of all probability measures that satisfy the distance constraint. Since 
every probability measure ℚa,b is uniquely defined by the parameters a and b, minimizing 
over ℚa,b is equivalent to minimizing over the parameters a and b. In “Appendix C” we 
show that this minimization problem boils down to minimizing the following expression:

We start with discussing this minimization problem assuming that the agent would be risk-
neutral ( � = 0 ) but ambiguity averse ( 𝜃 > 0 ). At every time unit, the expected loss equals 
the probability of a disaster times the expected disaster size. Assuming that ℚa,b is the true 
measure, the arrival rate becomes a�t and the expected disaster size equals −1

b�+1
 . The 

expected loss of a climate disaster therefore equals a�t
−1

b�+1
 . The agent then chooses the 

combination of a and b that gives the most negative expected loss while still satisfying the 
distance restriction d(a, b) ≤ � . A higher � allows a larger range of values for a and b that 
satisfy the distance constraint.

In our specification the agent is both risk averse and ambiguity averse. Instead of mini-
mizing the expected loss, the agent minimizes the certainty equivalent of a climate 

(12)min
(a,b)

a�t
−1

b� + 1 − �
s.t. d(a, b) ≤ �.

5  See for example Maenhout (2006) for another application of detection error probabilities.
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disaster: a�t
−1

b�+1−�
 . The certainty equivalent is more negative than the expected loss since 

it contains a correction for risk aversion. The optimal parameters a∗ and b∗ are thus a func-
tion of ambiguity aversion � , the jump size parameter � but also of risk aversion �.

Figure  2 illustrates the optimization problem. Given an ambiguity budget � , one can 
determine the feasible set of (a, b). Figure 1 shows the feasible sets for several budgets. A 
contour plot of the objective function for several (a, b) combinations is given in Fig. 2a. 
Clearly combinations in the bottom right corner (high a, low b) give the lowest value of 
the objective function. The optimization will thus lead to a∗ > 1 and b∗ < 1 since b∗ and the 
disaster size are inversely related. The goal is to minimize this function, given the distance 
constraint. Figure 2b shows how the optimal combination (a∗, b∗) is determined. The point 
where objective function touches the feasible region is the optimal solution. From now on 
we use the following notation for the optimal arrival rate and jump parameter: �∗

t
= a∗�t 

and �∗ = b∗�.

4 � Discounting and the Social Cost of Carbon: Analytical Solutions

We are now ready to address the key questions raised in the introduction, how to discount 
future carbon damages and what that implies for the Social Cost of Carbon (SCC). We 
focus first on the appropriate discount rates.

4.1 � On Discounting

Consider first the risk-free rate and the risk premium; we then derive the growth-adjusted 
consumption discount rate, the rate at which future consumption streams (or their decline) 
need to be discounted towards today, which is used to discount future damages when calcu-
lating the SCC.

In “Appendix D” we derive the expressions for the interest rate, the risk premium and the 
consumption rate of interest from no arbitrage conditions for the valuation of respectively 
a safe asset Bt , aggregate wealth and a synthetic asset paying out a proportion of aggregate 

Fig. 2   Selection of the optimal a and b
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consumption at a specified future time. We label latter the CDRt ; it equals the return on wealth 
r + rp minus a correction for the growth in consumption.

Consider first the expression for the safe rate of interest, derived from the no arbitrage 
condition of a safe asset Bt (cf “Appendix D” for the derivation details):

We return to this expression below in the discussion. The relevant risk premium is the 
excess return on a claim on consumption, or, more precisely, a stock St paying out continu-
ous dividends Ct . The value of the stock can also be interpreted as aggregate wealth, since 
total wealth of the representative agent is equal to the total claim on future consumption. 
Requiring once again the familiar no arbitrage condition gives the expression for the risk 
premium (again cf “Appendix D”):

Without climate risk (the Poisson terms), the risk premium boils down to the well known 
expression: ��2.

Finally we use the results for the safe rate of interest and the risk premium in the deriva-
tion of the expression for the growth-adjusted Consumption Discount Rate CDRt . The con-
sumption discount rate CDRt is the relevant discount rate for discounting climate damages 
when calculating the social cost of carbon, because damages in our setup are proportional 
to consumption. In “Appendix D” we derive the expression for this discount rate using the 
results we obtained so far for rt and rpt . The no-arbitrage condition is applied to a synthetic 
asset Ht paying out a proportion of aggregate consumption at a unique time s > t:

CDRt consists of three terms, labeled I, II and III. Part I is the risk-free rate. But future eco-
nomic growth is uncertain, so we need to add a risk premium since damages are a fraction 
of the economy and thus have an impact on consumption: part II. Lastly, the discount rate 
should be corrected for the growth of the aggregate consumption process (part III). Future 
damages are larger because the future economy is larger, which is why we need to correct 
the discount rate for future growth. On average, consumption grows at a rate 
𝜇 + a∗𝜆t

−1

b∗𝜂+1
< 𝜇 : the average growth rate is smaller than � since climate disasters are 

expected to have a negative impact on consumption.
In the simplest case, without any risk at all, the risk premium is zero and the interest 

rate then reduces to the well-known Ramsey rule (Ramsey, 1928):

which implies a growth corrected discount rate rn,t for the case of (�, �T ) = (0, 0) equal to:
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Clearly a higher value for � implies a lower growth corrected discount rate: a higher will-
ingness to substitute over time implies less discounting of the future. Adding diffusion 
risk ( 𝜎 > 0, 𝜆T = 0 ) leads to well known results: this will both affect the safe interest rate, 
which falls due to a flight to safety effect, and the risk premium, which now becomes ��2:

Adding the risk premium to the risk-free rate and again correcting for the growth rate gives 
the growth-adjusted discount rate, still assuming 𝜎 > 0, 𝜆T = 0:

So the impact on the safe rate and on the risk premium are in opposite directions, as is well 
known from the literature. For � = 1 the two effects cancel out, for 𝜖 > 1 the risk premium 
impact dominates and the overall discount rate increases with risk. For 𝜖 < 1 the opposite 
result is obtained and discount rates will actually go down with higher risk as the flight to 
safety effect dominates the impact on the risk premium. While � determines the relative 
importance of the risk-free rate and risk premium effects, risk aversion � determines their 
magnitude. A high degree of risk aversion amplifies the effect of risk on the discount rate. 
Of course when the agent is risk neutral ( � = 0 ), risk has no effect on the discount rate.

We now introduce climate uncertainty in addition to diffusion risk, and ambiguity 
aversion, the main topic of this paper. Adding climate disaster risk to diffusion risk 
implies: 𝜎 > 0 and 𝜆T > 0 . To set a benchmark we first analyse the case where there 
is no ambiguity aversion ( � = 0 ). This corresponds to a∗ = 1, b∗ = 1 , the optimal and 
the reference case actually coincide when � = 0 . Equation (15) then shows that adding 
climate disaster risk has an effect on both the safe interest rate and the risk premium 
very much like changes in � have. The climate risk term is premultiplied by (1∕� − 1) 
in Eq. (15), so when 𝜖 < 1 the risk free rate effect dominates and adding disasters leads 
to a lower discount rate. But when 𝜖 > 1 , the risk premium effect dominates and adding 
climate disasters actually leads to higher discount rates. Finally when � = 1 , the two 
effects cancel.

In our no-ambiguity-aversion benchmark case a∗ = 1, b∗ = 1 , the climate related term 
in Eq. (15) then becomes:

−1

�+1−�
 equals the certainty equivalent of the climate shock. When � = 0 , the certainty equiv-

alent is equal to the expected value Et[Jt] =
−1

�+1
 . The term scales with the arrival rate �t : 

more frequent disasters have a larger effect on discount rates. Finally a higher � leads to a 
smaller certainty equivalent (i.e. a larger negative shock), since � is substantially larger 
than 1.

Now introduce ambiguity aversion. The climate term in Eq. (15) now equals:

(15b)rn,t = � + (1∕� − 1)�.

(15c)(𝜎 > 0, 𝜆
T
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t
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Including ambiguity aversion leads to a larger worst case arrival rate: a∗ > 1 => a∗𝜆t > 𝜆t 
so one can see from Eq. (17) that ambiguity aversion leads to a larger worst case arrival 
rate. Thus ambiguity aversion amplifies the impact that the arrival rate of climate disasters 
has on discounting. Also, we can see from (17) that ambiguity aversion implies a more 
negative certainty equivalent term since b∗ < 1 ; so once again we find that ambiguity aver-
sion leads to a larger impact of climate risk on discounting. Therefore we can unambigu-
ously conclude that there is AA amplification: ambiguity aversion amplifies the effect of 
climate risk on discounting, both through its impact on the worst case arrival state and on 
the worst case certainty equivalent conditional on arrival.

Whether AA amplification leads to a higher or lower discount rate depends on the value 
of � , much like in the earlier discussion on the impact of (climate) risk on interest rates in 
the absence of ambiguity.

� = 1 : the impact of AA amplification on the safe rate and on the risk premium cancel 
each other out and the discount rate simply becomes � irrespective of climate risk (or for 
that matter any other risk).

𝜖 < 1 : the flight to safety effect of magnification dominates the impact of a higher risk 
premium, so AA amplification actually leads to a lower discount rate.

𝜖 > 1 : we get the presumably more intuitive outcome, with 𝜖 > 1 the risk premium effect 
dominates and AA magnification actually leads to a higher discount rate than obtained 
without AA magnification.

4.2 � The Social Cost of Carbon

With the machinery developed sofar and using the value function from Eq.  (9) we can 
take the next step and calculate the Social Cost of Carbon (SCC). We define the SCC as 
the marginal cost in terms of reduced welfare of increasing carbon emissions by one ton 
carbon scaled by the marginal welfare effect of one additional unit of consumption. This 
gives us the social cost of carbon in terms of the price of time t consumption units terms 
(conventionally referred to as ‘in dollar terms’). In “Appendix E” we derive the following 
expression for the SCC based on this definition:

Equation (18) shows first of all that the social cost of carbon is proportional to Ct , the 
aggregate consumption level: when the current aggregate consumption level Ct doubles, 
the SCC doubles as well. For a given consumption level, the SCC depends on three terms, 
labeled I, II and III respectively in Eq. 18. The social cost of carbon. the marginal wel-
fare loss due to emitting an additional unit of carbon today, is the discounted sum of all 
current and future damages done by emitting one ton of carbon today. The outer integral 
indicates that all future marginal damages are included in the SCC. Future damages are 
discounted with the (cumulative) consumption discount rate (term I). Term II is the change 
in the expected number of disasters between time t and time t + u due to an additional 
unit of emissions today. This change in expected number of disasters is a function of the 
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derivative of future temperature levels with respect to current carbon emissions, because 
the arrival rate is temperate dependent. The marginal changes in the arrival rate are inte-
grated, because the expected number of disasters between time t and time t + u equals the 
integral over the time-varying arrival rates.6 Term III captures the damages when a disaster 
actually takes place. It can be interpreted as a certainty equivalent: the expected value is 
adjusted for risk and ambiguity preferences.

Consider first the impact of risk aversion as measured by � . Term III is clearly increas-
ing in risk aversion. But risk aversion also has an effect on the discount rate CDRt . As 
discussed before, increasing risk aversion increases the discount rate when 𝜖 > 1 . So when 
𝜖 > 1 the discounting effect works in opposite direction of the effect on the certainty equiv-
alent: for 𝜖 > 1 the impact of � on the SCC is therefore ambiguous in general and will 
depend on the specific parameter values chosen (cf the numerical analysis in Sect. 5).

Consider next the impact of � . The elasticity of intertemporal substitution � only plays a 
role in the discount rate. When � increases, the willingness to substitute over time increases 
which leads to lower discount rates. So a higher � unambiguously leads to a higher SCC.

The ambiguity aversion parameter � does not directly show up in the formula for the 
SCC, but its effect works through the choice of a∗ and b∗ . When ambiguity aversion is 
present, i.e. 𝜃 > 0 , a∗ > 1 (higher worst-case arrival rate) and b∗ < 1 (more negative worst-
case jump size). With 𝜃 > 0 , the increase in the probability of a disaster happening (term 
II) is larger because the worst case arrival rate of disasters a∗�t is higher. And term III in 
expression 18, the certainty equivalent damage term conditional on a disaster happening, is 
also higher. So through these two channels ambiguity aversion leads to a higher social cost 
of carbon.

But ambiguity aversion also affects discount rates and the sign again depends on the 
elasticity of intertemporal subtitution � . When 𝜖 < 1 , ambiguity aversion additionally leads 
to a lower discount rate and thus an even higher SCC. When � = 1 , the discount rate is 
simply � and ambiguity has no effect on the discount rate so in that case the SCC increases 
with ambiguity also. Lastly, when 𝜖 > 1 , increasing � leads to higher discount rates. There-
fore increasing ambiguity aversion then has two offsetting effects in this case and the net 
sign of the impact of � on the SCC is in principle ambiguous. Since ambiguity aversion 
always leads to a higher SCC when � ≤ 1 , we mostly focus on the case of 𝜖 > 1 in the 
Numerical Solutions Sect. 5 below.

Summarizing, when considering the effect of ambiguity aversion on the social cost of 
carbon we can identify two effects. First, including ambiguity aversion leads to a higher 
arrival rate and a larger certainty equivalent of expected damages conditional on arrival, 
which unambiguously pushes the social cost of carbon up. We call this effect the direct 
effect of ambiguity aversion. Second, there is a more indirect general equilibrium effect 
through the impact of ambiguity aversion on discount rates. The discount rate that should 
be used to discount future climate disasters is the consumption discount rate. When � ≤ 1 , 
the discount rate goes down as ambiguity aversion increases but when 𝜖 > 1 and the elas-
ticity of substitution is larger than 1, ambiguity aversion leads to a higher consumption 
discount rate. This is an intuitive result: if the representative agent is very ambiguity 
averse about climate disasters, he would rather like to consume today than to postpone 
consumption since the future consumption level is uncertain. Ambiguity aversion therefore 

6  Mathematically: Λ(t, t + u) = ∫ t+u

t
�
s
ds , where Λ(t, t + u) is the expected number of disasters between t 

and t + u.
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increases the consumption discount rate when 𝜖 > 1 . For 𝜖 > 1 it is ultimately a numerical 
issue which of the two effects dominates. We will highlight both effects separately in the 
numerical section and show that for our calibration the first effect dominates. Thus in our 
numerical analysis more ambiguity aversion leads to a higher SCC for all values of �.

5 � Climate Change and the Social Cost of Carbon: Numerical Results

We now move to a quantitative assessment of the theoretical results derived so far. We do 
this in three parts after first discussing our calibration choices (Sect. 5.1). In the first part 
we numerically evaluate our analytical formula and look at the magnitude of the direct and 
discounting effects (Sect.  5.2). In Sect.  5.3 we extend the model with the more realistic 
endogenous stochastic emissions. Last, in Sect.  5.4 we consider the case where also the 
climate senstivity is ambiguous.

There are two reasons for numerically solving the model with exogenous emissions 
before consider the model version with stochastic emissions. First, analyzing both vari-
ants allows us to show what adding endogeneity and thus stochastics to the emission pro-
cess adds to the results on the SCC. But there is a second reason for also analyzing the 
exogenous emissions case: the analytical solution and its quantitative version allow us one 
more insight. Ambiguity aversion has an impact both on the discount rate and on the cer-
tainty equivalents being discounted but the two effects work against each other. Without 
an analytical solution we do not have a separate expression for the discount rate. The full 
model version therefore does not allow for separate assessment of the impact of ambiguity 
aversion on the discount rate and on the certainty equivalent damages being discounted. 
Numerically we can only assess the net impact.

5.1 � Calibration

“Appendix F” gives the full details of the calibration of the climate model. Parameters for 
the growth rate of emissions and the initial level are chosen to match the baseline scenario 
of the DICE-2016 calibration (Nordhaus, 2017). The parameters of the carbon cycle and 
temperature model are taken from Mattauch et al. (2018). In addition, and different from 
Mattauch et al. (2018), we also include a base level of non-carbon related radiative forcing 

Fig. 3   Dynamic temperature response to an instantaneous 100GtC emissions pulse
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and calibrate it to match exogenous forcing in DICE-2016. This calibration leads to a tem-
perature increase of 3.87 ◦ C in 2100.

What in the end matters for the social cost of carbon is the derivative of temperature in 
the future with respect to additional emissions today. To consider the performance of the 
climate model, we therefore consider an instantaneous carbon pulse of 100GtC and look 
at the temperature increase. The result is given in Fig. 3. The temperature response peaks 
after approximately 12 years. After 100 years, the increase is around 0.16 degrees Cel-
sius. By comparing this to Figure 1 in Dietz et al. (2021), it is clear that this temperature 
response is much better in line with climate science models than most climate modules in 
economic models.

As a robustness check, we also calculate the SCC using a simpler climate model in 
which temperature increases are assumed to be a linear function of cumulative emissions. 
This simple model turns out to be quite a good approximation of more complex climate 
models and is for example used in Dietz and Venmans (2019). The linear model would 
imply a flat line in Fig. 3. We take a Transient Climate Response to cumulative emissions 
of 1.75, which is the best estimate value from IPCC (2021). This implies that emitting 1000 
GtC (3667 GtCO2 ) would lead to to a global temperature increase of 1.75 ◦ C. The results 
are given in “Appendix G”. The social cost of carbon is a bit higher using this alternative 
climate model. But the relative increase after adding risk aversion or ambiguity aversion 
does hardly change.

The calibration of the economic parameters is given in Table 1. Since we consider an 
exogenous endowment economy, output and consumption are the same thing in our model. 
That leaves the question open whether we should calibrate the endowment to output or to 
consumption data. The focus of the paper is on the social cost of carbon. What ultimately 
matters for the social cost of carbon is consumption, since utility depends on consumption 
and not on output. To make our results more comparable to other models, we therefore cal-
ibrate endowment to consumption data. The next choice to be made is whether one should 
aggregate output or consumption data using market exchange rates or using purchasing 
power parities (PPP). In line with the DICE-2016 model we use purchasing power parity 
exchange rates. Consumption data is not directly available in PPP. To obtain a proxy for 
world consumption in PPP we first obtain output data in PPP. Then we determine the world 
consumption ratio using market exchange rates. Our proxy for world consumption in PPP 
is then output in PPP multiplied by the world consumption ratio. Real world GDP (PPP) in 

Table 1   Parameters for the 
economic model

Par Description Value

Ct Initial consumption level (PPP, in 
trillion 2015$)

83.07

�T Arrival rate parameter 0.02 / 0.04
� Disaster size parameter 30.25 / 61.5
E[J] Expected disaster size − 0.032 / − 0.016
� Risk aversion 5
� Ambiguity aversion parameter 0.1
a∗ Optimal ambiguity parameter 1.27 / 1.30
b∗ Optimal ambiguity parameter 0.74 / 0.75
� Elasticity of substitution 1.5
CDR0 Consumption discount rate 1.5%
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2015 equals 114.137 trillion 2015$ (IMF World Economic Outlook October 2016). World 
consumption in 2015 using market exchange rates equals 55.167 (in trillion 2010 $), while 
world GDP using market exchange rates equals 75.803 (in trillion 2010 $) (Worldbank 
Database). This yields a consumption-output ratio of 72.78%. Applying this ratio to World 
GDP (PPP) then gives 83.065 (in trillion 2015 $) for aggregate consumption in PPP terms.

The next step is to calibrate the climate disaster distribution, and in particular the 
parameters �T and �.7 Our setup does allow for an arrival rate that is convex in temperature, 
but we do not consider this extension for two reasons. First, we want to keep things simple 
because there are enough other non-linearities in the SCC that we study. Second, it would 
also give another free parameter to calibrate.

Karydas and Xepapadeas (2019) also study a model with climate disasters and assume, 
based on natural disaster data, that for every degree warming the arrival rate increases by 
6%. The disaster size is calibrated to 1.6%. This implies that the expected growth loss due 
to climate change would be 6% × 1.6% = 0.096% per degree global warming. We decide 
to choose �T = 4% , which is smaller than Karydas and Xepapadeas (2019). We choose a 
smaller value for the arrival rate coefficient than Karydas and Xepapadeas (2019), because 
that places our calibration more in the middle of other estimates in the literature that we 
will discuss below. And we pick � = 61.5 which yields Et[Jt] = −1.6% , in line with Kary-
das and Xepapadeas (2019). Additionally, we consider a variant with less frequent but on 
average larger disasters: �T = 2% , and a disaster size parameter � = 30.25 which gives 
Et[Jt] = −3.2% . While both calibrations have on average the same impact, their impact on 
risk premia is very different.

Let us compare these numbers to other studies in the literature. Several studies assume 
that climate damages have a level impact on the economy. In our setup, climate disasters 
have in expectation a growth impact of 4% × 1.6% = 0.064% per degree warming. Hambel 
et  al. (2021) consider both level and a growth impacts of climate damages. They calcu-
late three different growth impact variants. Their first specification is chosen to be similar 
to the damage function of the DICE model (Nordhaus 2017) and gives a loss of 0.026% 
per degree warming. Their second specification 0.0075T3.25

t
 is non-linear and should match 

the damage function proposed by Weitzman (2012). At two degrees warming the growth 
loss is 0.07% , close to our specification. At higher temperature the losses quickly increase 
because of the high convexity. The last specification of Hambel et al. (2021) is again linear 
and is based on estimates from Dell et al. (2012), but the loss of 0.14% per degree is around 
5 times higher than the loss of the DICE-case. Lastly, Bansal et al. (2019) develop a styl-
ized model with climate disasters. Their arrival rate increases linearly with 1% per degree 
Celcius, and their disaster size is assume to be 5%. This gives an expected growth loss of 
0.05% per degree. Our damage calibration fits well within the calibrations of these other 
models.

We now turn to the calibration of risk aversion and ambiguity aversion. We set risk 
aversion equal to 5. This level of risk aversion can be seen as conservative if we compare it 
to common values in the asset pricing literature.8

7  Another option would be to assume that the damage size is a function of temperature instead of the 
arrival rate. However, making the damage size state-dependent would complicate the analysis in two ways. 
First, the damage size is a very non-linear function of the parameter � . There is not a simple equivalent to 
the linear specification that we currently have for the arrival rate. Second, this would also make relative 
entropy state-dependent. We therefore leave such an extension for further research.
8  A coefficient of relative risk aversion between 5 and 10 is common in the asset pricing literature accord-
ing to Cochrane (2009).
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The level of ambiguity aversion is harder to calibrate. To get a feeling for reasonable 
values of ambiguity aversion, we use detection error probabilities. This method can be seen 
as a thought experiment: First, choose a value for the ambiguity aversion parameter. The 
ambiguity aversion parameter � pins down the arrival rate and the expected jump size in 
the worst-case scenario. A higher � leads to a higher worst-case arrival rate and a more 
negative worst-case expected jump size. Then assume that a decision maker observes the 
realisations of the stochastic process for N years, but he does not know whether the process 
is generated by the true or worst case model. He has to choose which of the two models is 
most likely. We can repeat this experiment many times. The detection error probability is 
then the probability of choosing the wrong model (so choosing the reference model ℙ when 
the data was generated by the worst-case model ℚa,b and vice-versa).

For a given level of � , the detection error probability gives information about how simi-
lar the worst-case and the reference model are. It helps in determining whether a value of 
� is high or low. In the case without ambiguity aversion, both models are the same and the 
processes become indistinguishable. Choosing the most likely model becomes a random 
guess and the detection error probability equals 50%. A detection error probability that is 
close to 50% therefore indicates that the level of ambiguity aversion is small, because the 
worst case model is still indistinguishable form the reference model. When � is very high, 
the two models are very different and the probability of making a mistake is close to zero. 
This indicates that the worst-case model is extreme and the ambiguity aversion parameter 
is very high.

We calculate the detection error probability assuming that the consumption process can 
be observed over a period of 100 years. A longer time horizon would have given lower 
detection error probabilities. The ambiguity aversion parameter � is varied between 0 and 
0.5. The results are given in Fig. 4. Detection error probabilities are decreasing in � and are 
higher for a lower �T . This is intuitive, since a lower �T implies that there are less disasters 
over the observed time period and the probability of choosing the wrong model is therefore 
larger. We choose to set � = 0.1 in the base calibration, which gives a detection error prob-
ability of 24.6% for (�T , �) = (0.02, 30.25) and 31.6% for (�T , �) = (0.04, 61.5) (cf Fig. 4). 
This level of ambiguity aversion balances the trade-off between wanting to make a robust 
decision, but not taking into account too extreme models. The detection error probabilities 

Fig. 4   Detection error probabili-
ties as a function of �



705Discounting the Future: On Climate Change, Ambiguity Aversion…

1 3

for � = 0.1 are sufficiently far away from 50% , which implies that the reference model and 
the worst case model are not too similar. On the other hand, the detection error probabili-
ties are also not close to 0, which would indicate an extreme amount of ambiguity aversion. 
However, since this parameter remains hard to calibrate, we do vary � in robustness checks.

For the calibration (�T , �) = (0.04, 61.5) the resulting optimal parameters with � = 0.1 
are: a∗ = 1.30 and b∗ = 0.75 . The arrival rate under the worst-case probability measure is 
30% higher compared to the reference model. And the expected jump size becomes 
−1

b∗�+1
= −2.12% compared to −1.6% in the reference model. The optimal parameters for the 

case (�T , �) = (0.02, 30.25) are quite similar: a∗ = 1.27 and b∗ = 0.74.
The parameters that still have to be calibrated affect the social cost of carbon only indi-

rectly, via the discount rate. Equation (15) shows that one can separate the expression for 
the Consumption Discount Rate (the relevant discount rate for the social cost of carbon) 
CDRt in a time-independent part CDR0 and a part that does depend on time as:

CDR0 is the consumption discount rate in the absence of climate disasters. First, the value 
of the elasticity of intertemporal substitution � determines whether additional risk increases 
or decreases the discount rate. There is no consensus in the profession on whether � is 
greater or smaller than one.

In many applications the EIS is assumed to be smaller than one for an indirect reason: 
econometric evidence uniformly suggests that the rate of risk aversion � is substantially 
larger than one and with the commonly used assumption of power utility that results in 
𝜖 < 1.9 In the asset pricing literature where Epstein–Zin preferences are used, it is often 
estimated that the EIS > 1 (Van Binsbergen et al. 2012; Vissing-Jørgensen and Attanasio 
2003). This is because a high EIS is necessary to obtain low enough equilibrium risk-
free interest rates in an asset pricing model that are similar to observed risk-free interest 
rates. In integrated assessment models, 1/EIS is sometimes interpreted as a measure of 
intergenerational inequality aversion. The idea is that when EIS is small, the representa-
tive agents has a large preference for consumption smoothing. This can then be interpreted 
as a preference for equality between generations. Using this interpretation, an EIS < 1 is 
often assumed. Rezai and Van der Ploeg (2016) for example assume that intergenerational 
inequality aversion IIA = 2 , which gives and EIS of 0.5. And Venmans and Groom (2021) 
estimate IIA > 1 using hypothetical decision tasks related to environmental inequalities 
across space and time.

We follow the asset pricing approach, because we focus on discounting and we want 
our parameter estimates to be in line with empirical evidence in this literature. We there-
fore choose � = 1.5 , which is a common value in the literature on Epstein–Zin preferences 
(see for example Epstein and Zin (1989)). Additionally, we also consider a special case 
with � = 1 . The growth rate � , the volatility � and the pure rate of time preference � only 
affect the social cost of carbon via CDR0 . The calibration of � has been widely discussed in 
the climate change literature. Additionally, we could calibrate � from observed consump-
tion volatility. However, as Mehra and Prescott (1985) point out, the model in that case 

(19)
CDRt = CDR0 + (1∕� − 1)a∗�t

−1

b∗� + 1 − �

CDR0 = � + (1∕� − 1)
(
� −

�

2
�2
)
.

9  Because under the assumption of power utility � = 1

�
.
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would generate a way too low risk premium (the equity premium puzzle). A way to circum-
vent this is to calibrate � to the volatility of stock prices, but this solution is also not very 
satisfactory. There have been several (partial) solutions proposed to the equity premium 
puzzle, for example including economic disaster risk. Solving the equity premium puzzle 
goes beyond the scope of this paper. Since both � and � only affect the SCC via CDR0 , we 
choose to directly calibrate the consumption discount rate in the absence of climate risk. In 
our base calibration, we choose CDR0 = 1.5% , but we show our results for values of CDR0 
between 0.5% and 2.5% . The parameter combinations (�,�, �) = (2.25%, 2.5%, 3%) and 
(�,�, �) = (1.5%, 2.5%, 10%) for example yield a consumption discount rate CDR0 = 1.5% . 
Note that the actual consumption discount rate CDRt is higher because of the impact of 
climate disasters on discounting.

5.2 � The Social Cost of Carbon: The Analytical Model Quantified

Our base calibration yields a social cost of carbon of $599 per ton of carbon ($163 per 
ton CO2 ) with (�T , �) = (0.04, 61.5) and $664 per ton carbon ($181 per ton CO2 ) with 
(�T , �) = (0.02, 30.25).10 Comparing the two cases shows that it matters whether the dis-
asters are frequent but small (large � ) or more infrequent but larger (smaller � ). The two 
sets of assumptions yield the same expected disaster shock, but in the low frequency/large-
shock case risk aversion and ambiguity aversion play a larger role and the social cost of 
carbon is correspondingly higher. In the following sections, we discuss different variants 
to decompose discounting, risk and ambiguity effects. The numerical outcomes are sum-
marized in Table 2.

Risk aversion and ambiguity aversion with a unitary EIS
In the literature authors make widely varying assumptions on whether the EIS is 

smaller, larger or equal to 1. We start with a simple case where we assume that the EIS 
� = 1 . This implies that the consumption discount rate simply equals the pure rate of time 
preference � = 2.25% . Risk and ambiguity have therefore no impact on discounting and 
will only affect the direct valuation of damages. By definition, the SCC is the same for 
both calibrations when risk aversion � and ambiguity aversion � are both 0. In that case 
the expected value of both calibrations is the same and since risk is not priced under those 
assumptions, the SCC is the same for both calibrations. The case without risk aversion and 
ambiguity aversion gives an SCC of 175$ per ton carbon. Adding risk aversion increases 

Table 2   Social cost of carbon 
as function of risk aversion and 
ambiguity aversion

Social cost of carbon (�
T
, �) = (0.04, 61.5) (�

T
, �) = (0.02, 30.25)

� = 1 , � = 0 , � = 0 175 175
� = 1 , � = 5 , � = 0 191 209
� = 1 , � = 5 , � = 0.1 338 381
� = 1.5 , � = 0 , � = 0 363 363
� = 1.5 , � = 5 , � = 0 360 392
� = 1.5 , � = 5 , � = 0.1 599 664

10  We express the social cost of carbon in the rest of this paper in dollars per ton carbon. To convert in dol-
lars per ton CO2 , divide by 3.67.
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the SCC with 9% for the small but frequent disaster case and with 19% for the larger dis-
aster case. Adding ambiguity aversion leads to a much higher increase of 77% and 82% in 
respectively the small and large disaster case. The intuition behind the difference is that 
risk aversion and ambiguity aversion have a larger effect with less frequent but larger disas-
ters. Therefore the relative increase in the SCC due to ambiguity aversion is larger with the 
�T = 0.02 setup than it is with �T = 0.04 setup. This example also suggests that ambiguity 
aversion has a substantially larger effect on the SCC than risk aversion.

Risk aversion and ambiguity aversion when EIS > 1

To clarify the impact of the EIS we now increase the elasticity of intertemporal substitu-
tion to 1.5. A higher willingness to substitute consumption over time yields a lower con-
sumption discount rate. This lower discount rate implies that even in the case without risk 
aversion and ambiguity aversion, the SCC is twice as high compared to the situation with 
EIS = 1 . This directly shows the importance of the discount rate in the SCC. Given the 
long horizon, small changes in the discount rate have large effects on the SCC. At the end 
of Sect. 5.2 we will show more results when varying discount rates.

We are mostly interested in how risk and ambiguity change the SCC. Introducing risk 
aversion with EIS = 1.5 has a negligible effect on the SCC for the frequent disasters with 
low disaster size. Higher risk aversion again lowers the certainty equivalent but it now also 
increases the discount rate. The net effect is even a slight decrease of the SCC from $363 
to $360. This changes when damages are more infrequent but larger. In the alternative cali-
bration with (�T , �) = (0.02, 30.25) , risk aversion does increase the social cost of carbon 
with 8%, from $363 to $392. Either way the impact of risk aversion on the SCC is much 
smaller when compared to the previous case with EIS = 1 . This is because risk aversion 
now also affects the discount rate.

Introducing ambiguity aversion again leads to a significantly higher value of the social 
cost of carbon. When � goes from 0 to 0.1, the SCC increases by 66% and 69% in respec-
tively the small and large disaster case. Again the increase is smaller compared to the situa-
tion where EIS = 1 because of the discounting effect. But in the case of ambiguity aversion 
the direct effect clearly dominates the indirect discounting effect.

We should point out that our claim of a relatively small impact of risk aversion and a 
much larger impact of Ambiguity Aversion on the SCC is influenced by our use of the 
MaxiMin approach to assess the impact of Ambiguity Aversion. An important difference 
between the impact of ambiguity aversion and risk aversion is that under risk aversion the 
physical probability density function and the associated expected values do not change, 
although of course the risk neutral distribution function that matters for valuation of dam-
ages does change. But with higher ambiguity aversion, the physical probability density 
function and the associated expected losses change also. A small impact of risk aversion on 
the SCC is in line with much of the literature, but under our use of the MaxiMin approach 
to ambiguity aversion the likelihood and severity of bad outcomes go up while introducing 
risk aversion leaves the (physical) distribution and associated expected values unchanged.11

Risk aversion and the discounting effect
In this section we dive deeper into the direct and discounting effects when varying the 

level of risk aversion. We can disentangle the direct effect of risk aversion on the certainty 
equivalent and the indirect effect of risk aversion on the discount rate in the social cost of 

11  Note that in the smooth preferences approach associated with Klibanoff et  al. (2005), using MaxiMin 
corresponds to assuming an infinite coefficient of ambiguity aversion. Lowering that coefficient will also 
lower the impact of ambiguity aversion on the SCC.
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carbon. Figure 5 shows that even though the total effect of risk aversion on the social cost 
of carbon is small, the separate effects are not. Increasing risk aversion from 0 to 5 leads to 
an increase in the SCC from $363 to $392 in the case of infrequent but larger disasters. But 
only considering the direct effect would lead to an SCC of $432, while only looking at the 
discounting effect lowers the SCC to $329. Both effects largely cancel out and the resulting 
total effect is therefore small.

The size of the discounting effect is mainly dependent on two parameters. First, it 
depends on the elasticity of intertemporal substitution � . The discounting effect is only 
negative if 𝜖 > 1 . When 𝜖 < 1 , additional risk, or more risk aversion would lower discount 
rates and both the indirect discounting effect and the direct effect of ambiguity aversion 
would have the same sign. From an asset pricing perspective, this leads to counter-intuitive 
effects. It would imply that the valuation of future consumption would increase when the 
volatility of consumption increases. For � = 1 , the consumption discount rate CDRt simply 
equals � and risk, risk aversion and ambiguity aversion do not affect discount rates.

Second, economic volatility plays an important role. The economic volatility does not 
change the distribution of climate disasters and therefore doesn’t change the direct effect. 
But if economic volatility is large, then increasing risk aversion does have a larger effect on 
the discount rate. And the discounting effect will therefore be larger.

These results show that the discount effect is not negligible and this effect can actually 
dominate the direct effect of risk aversion. This can even give the counter-intuitive result 
that increasing risk aversion leads to a lower social cost of carbon.

Ambiguity aversion and the discounting effect
Figure 6 shows for each of the two sets of assumptions on the disaster risk parameters 

the social cost of carbon for different values of � . We saw already from Eq. (19) that ambi-
guity aversion affects both the arrival rate and the certainty equivalent of climate disasters, 
but also the discount rate. In our calibration with 𝜖 = 1.5 > 1 , more ambiguity aversion 
leads to a higher discount rate which means the direct effect via the arrival rate and the cer-
tainly equivalent and the indirect effect via the discount rate have the opposite effect on the 

Fig. 5   Social cost of carbon as a function of risk aversion � . This figure shows the social cost of carbon as a 
function of the risk aversion parameter � . The total effect of risk aversion on the SCC is given by the solid 
line (base). We additionally distinguish two special cases. In the discounting effect only case (dashed line) 
we assume that increasing � does lead to an increase in the discount rate, but does not change the certainty 
equivalent in the SCC formula. In the direct effect only case (dotted line) we look at the opposite case, 
where increasing � is assumed to have an effect on the certainty equivalent, but not on the consumption 
discount rate CDR

t
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SCC. We show the two effects separately and combined in Fig. 6. There we consider the 
indirect discounting only effect, in which we assume ambiguity aversion only affects the 
discount rate CDRt (the dashed line); and the direct effect where we leave the consumption 
discount rate CDRt unchanged, but take into account the direct effect of ambiguity aversion 
on the arrival rate and certainty equivalent of the climate disasters (dotted line) in Fig. 6. 
The two effects are combined in the case labeled "Base" (solid line). Figure 6 clearly indi-
cates that ambiguity aversion increases the discount rate (remember we assume 𝜖 > 1 in 
this set of simulations); but we also see that the direct effect on the SCC dominates, the 
solid line slopes upward. We conclude that even for 𝜖 > 1 ambiguity aversion leads to a 
higher social cost of carbon, and in our calibration actually substantially so.

In contrast to risk aversion, the discounting effect seems to be smaller when increasing 
ambiguity aversion. This happens because we have assumed that ambiguity aversion only 

Fig. 6   Social cost of carbon as a function of � . This figure shows the social cost of carbon as a function of 
the ambiguity aversion parameter � . The total effect of ambiguity aversion on the SCC is given by the solid 
line (base). We additionally distinguish two special cases. In the discounting effect only case (dashed line) 
we assume that increasing � does lead to an increase in the discount rate, but does not change the arrival 
rate and the certainty equivalent in the SCC formula. In the direct effect only case (dotted line) we look 
at the opposite case, where increasing � is assumed to have an effect on the arrival rate and the certainty 
equivalent, but not on the consumption discount rate CDR

t

Fig. 7   Social cost of carbon as a 
function of CDR0
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affects climate disasters. It therefore only has a limited effect on the discount rate. Risk 
aversion on the other hand also changes the way economic risk is valued and it therefore 
has a larger effect on the discount rate.

Discount rates and the SCC
Figure 7 shows the dependence of the SCC on the time-independent part of the con-

sumption discount rate CDR0 , the core discount rate. Note that the actual discount rate that 
is used to discount future damages ( CDRt ) is higher than CDR0 due to the effect of climate 
disasters itself on discounting. When core discount rates are close to zero, the social cost of 
carbon becomes very high. With CDR0 = 0.5% , the SCC is even above $2000, around four 
times higher than in the base calibration. On the other hand, setting CDR0 = 2.5% gives a 
social cost of carbon that is less than half the value in the base calibration. This figure high-
lights the importance of the discount rate when analyzing climate change and in particular 
its impact on the social cost of carbon.

5.3 � The Social Cost of Carbon with Stochastic Emissions

So far we have made the obviously counterfactual assumption that emissions are a non-
stochastic process, since assuming otherwise would preclude analytical solutions. In this 
section we remedy this shortcoming by modeling emissions as an explicitly stochastic pro-
cess correlated to the process generating output. The short answer to the question what this 
brings about is that the main results are still true in this more realistic case. But stochastic 
emission processes add to risk and uncertainty, with as implication that the social cost of 
carbon under risk aversion and ambiguity aversion is slightly higher.

Thus assume now that emissions are the product of carbon intensity �t and aggregate 
endowment Ct : Et = �tCt . We calibrate the stochastic process for �t such that in expec-
tation emissions are similar to what they are in the non-stochastic emissions case. To 
bring this about we postulate that �t declines at the rate �0e

−�� t + �∞(1 − e−�� t) and set 
�
�

0
= −0.6% , ��∞ = −6% and �� = 0.0045 . All other parameters are the same as in the 

exogenous case. The only difference is that future emissions are now also stochastic and 
correlated to output. The solution method is described in “Appendix H”.

The results are given in Table 3. For zero risk aversion and in the absence of ambiguity 
aversion ( � = 0 and � = 0 ) the SCC is slightly smaller compared to the exogenous emis-
sions case, although negligibly so: 352 $∕tC instead of 363 $∕tC . But with endogenous and 
stochastic emissions, both risk and ambiguity aversion have larger effects on the social cost 
of carbon. For the high expected damages parametrization of the climate damages jump 
process (�T , �) = (0.02, 30.25) , column two in Table 3 shows that increasing � from 0 to 5 
leads to a 13 % increase in the SCC (go from the first to the second row in column two of 
Table 3). Adding ambiguity aversion (go from the second to the third row in column two of 
Table 3) leads to a further 69 % increase in the SCC. The combined impact of going from 
no risk/ambiguity aversion to our base case assumptions on the risk and ambiguity aversion 

Table 3   Social cost of carbon 
as function of risk aversion 
and ambiguity aversion with 
stochastic emissions correlated 
to output

Social cost of carbon (�
T
, �) = (0.04, 61.5) (�

T
, �) = (0.02, 30.25)

� = 1.5 , � = 0 , � = 0 352 352
� = 1.5 , � = 5 , � = 0 368 399
� = 1.5 , � = 5 , � = 0.1 609 673
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parameters is a 91% increase in the SCC, up from 83% in the non-stochastic emissions 
case.

For the alternative low-expected-damages case (�T , �) = (0.04, 61.5) , column one in 
Table  3, the impact of increasing � and � is smaller although still sizable. Increasing � 
from 0 to 5 leads to a 5 % increase in the SCC and subsequently increasing � to 0.1 leads 
to a substantially larger increase in the SCC of 65%. The combined impact is in this case a 
somewhat smaller but still large: an increase in the SCC of 73%.

Overall Table  3 shows that our main results remain valid in the more realistic case 
where emissions are a function of aggregate endowment, while the impact of risk aversion 
and ambiguity aversion now is even a bit larger. These results should be intuitive since with 
endogenous emissions there is additional risk within the model: future emissions are now 
also stochastic. Especially risk aversion will therefore have a larger effect.

5.4 � Ambiguity About the Climate Sensitivity Parameter ̨

So far we have assumed that the decision maker is only uncertain about the arrival rate and 
the size distribution of climate disasters and that all parameters in the entire climate system 
were known. In this section we go further and analyze the case where the decision maker is 
also uncertain about the climate sensitivity parameter �.

Like before we follow the multiple prior approach: the decision maker considers alter-
native probability distributions. However now every alternative probability measure is 
characterized by three instead of two parameters: a, b and c. Under the alternative meas-
ure ℚa,b,c , the jump arrival rate and jump size are again given by �ℚa,b,c

t
= a�TT

ℚa,b,c

t
 and 

�ℚ
a,b,c

= b� . However, future temperature levels are now different under alternative meas-
ures because the climate sensitivity is assumed to be unknown. Under the measure ℚa,b,c , 
the temperature sensitivity becomes �ℚa,b,c

= c�.
We next run into a new problem: with ambiguity about the climate sensitivity param-

eter and thus about the future temperature level T, instantaneous relative entropy is not 
a suitable distance measure anymore. We chose it before because of its tractability and 
because the ambiguity parameters directly affected the probability distribution. But ambi-
guity about the climate sensitivity parameter � does not alter the current probability distri-
bution of climate damages, but only future pdf’s after some time through different future 
temperature levels. Instantaneous entropy measures ignore future differences so we switch 
to lifetime entropy as distance measure instead of instantaneous entropy, like in Hansen 
and Sargent (2001).

Let dt(a, b, c) be the instantaneous distance measure that we used in previous sections. 
Lifetime entropy is then given by:

In the old situation with a distance measure that was not time-dependent, using instantane-
ous entropy was actually equivalent to using lifetime entropy. The only difference is that 
the ambiguity aversion parameter with lifetime entropy should be divided by � to make it 
comparable to the parameter with instantaneous entropy. This can be seen by calculating 
the integral of d(a, b, c) when d(a, b, c) does not depend on t. In this case d̃(a, b, c) = d(a,b,c)

𝛽
 . 

We therefore divide the ambiguity parameter � by the time preference parameter � in the 
lifetime constraint to make sure � in the new situation is comparable to the way it was used 
in the previous sections.

(20)d̃(a, b, c) = ∫
∞

0

e−𝛽tdt(a, b, c)dt.
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We again use the minimax approach:

We assume that the decision makers chooses the optimal parameters (a, b, c) only once at 
the beginning of the problem. Previously a constant a∗ and b∗ were an optimal outcome of 
the model, but here we actually restrict the problem to constant parameters. This is neces-
sary to be able to numerically solve the problem, because otherwise the parameters would 
have to be updated continuously. Not reoptimizing could create a time inconsistency prob-
lem which we choose to ignore since there is no clear a priori reason why the parameters 
should change over time given a constant "life time" budget �.

We solve the problem as follows. We show in “Appendix C.2.2” that to find the optimal 
parameters, we need to minimize the following function:

The parameters a and b show up in the last term which is directly related to climate disas-
ters. The parameter c occurs in the optimization problem through radiative forcing Ft . The 
climate sensitivity parameter c only has an indirect effect on damages through temperature, 
which is captured in the first term of the equation. For a given combination of parameters 
(a, b, c), we can use numerical integration to find the unknown function g and after that we 
numerically differentiate g to calculate the derivative with respect to T. We also use numer-
ical integration to evaluate the entropy constraint. We then use a constrained minimization 
solver to find the optimal combination of parameters.

5.4.1 � Results

We first consider a run with the ambiguity aversion parameter � = 0.1 . All other param-
eters are the same as in the default analysis.12 From Table  4 we can see that this gives 
the optimal parameters ( a∗ , b∗ , c∗ ) = (1.05, 0.75, 1.31). We can compare these numbers 
to the default case without an uncertain climate sensitivity. For the comparison with the 
default case we choose the same ambiguity budget: � = 0.1 . The optimal parameters were 
( a∗ , b∗ ) = (1.30, 0.75). So these new values indicate that the optimal b∗ does not change, 
which implies that the worst-case disaster size stays the same. However, the introduction 
of ambiguity in the climate sensitivity does create a trade-off between direct ambiguity in 

(21)
Vt = min

ℚa,b,c∈P𝜃
Vℚa,b,c

t

where P
𝜃 = {ℚa,b,c ∶ d̃(a, b, c) ≤ 𝜃

𝛽
}.

(22)
�gℚ

a,b,c

(Xt)∕�Tt

gℚ
a,b,c (Xt)(1 − �)

1

�

(
Ft(c) − �Tt − �(Tt − Toc

t
)
)
+ a�t

−1

b� + 1 − �
.

Table 4   Social cost of carbon 
with ambiguity about �

Ambiguity aversion � a∗ b∗ c∗ SCC

� = 0.1 1.05 0.75 1.31 631
� = 0.15 1.07 0.71 1.35 697

12  We consider the case with higher frequency and lower damage size ( �
T
, � ) = (0.04, 61.5).
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the arrival rate through a∗ and the indirect ambiguity through the temperature level. The 
optimal a∗ is much lower than before, with as counterpart a higher value of c∗ . The objec-
tive function turns out to be very flat in the a∗, c∗ dimension because both parameters affect 
the arrival rate. This means that many ( a∗ , c∗ ) combinations will give a similar value of the 
objective function.

The social cost of carbon becomes 631 $/tC, which is around 5% larger than in the cor-
responding default case without ambiguity on the climate sensitivity parameter � . Intuition 
behind this results is as follows. We calibrate � = 2.25% , but the effective discount rate in 
the social cost of carbon becomes CDR0 = 1.5% (cf Eq. 19 for the definition of the time 
independent part of the Consumption Discount Rate CDR0 ). The effective discount rate 
is lower since we have assumed that the elasticity of intertemporal substitution 𝜖 > 1 . The 
higher discount rate � is used to discount future instantaneous entropy levels, which gives 
more room for deviations of the probability distributions in the future. Because the climate 
sensitivity alters the arrival rate only in the future, a large discount rate allows for a higher 
level of the climate sensitivity. The higher future damages are then discounted with a rela-
tively lower rate in the social cost of carbon, which yields a higher social cost of carbon.

Additionally we also consider a case with a higher ambiguity budget. The ambiguity 
budget captures ambiguity about all three parameters at the same time. If we actually want 
to allow for additional ambiguity aversion because of the uncertain climate sensitivity, we 
should increase the ambiguity budget � . Increasing � with 50% to 0.15 leads to a social 
cost of carbon of 697$/tC, which is around 10% higher than the social cost of carbon with 
� = 0.1.

Summarizing we can conclude that introducing fundamental uncertainty (ambiguity) on 
the climate sensitivity parameter � increases the social cost of carbon. The increase is small 
if we do not allow for a larger ambiguity budget. If we do allow for more uncertainty by 
increasing the ambiguity budget, then the social cost of carbon increases more.

Our result that b∗ is unaffected is driven by the assumption that the arrival rate depends 
on temperature, but the size of disasters does not. If we would also allow for a tempera-
ture dependent disaster size, then there would be a trade-off between both ( a∗ , c∗ ) and ( a∗ , 
b∗ ). However, we do not expect the results to change qualitatively. Allowing for additional 
ambiguity would anyhow, as we have just seen, probably also lead to a relatively small 
increase in the SCC unless one additionally allows for a higher ambiguity budget �.

6 � Conclusions

Climate change will beyond reasonable doubt have a large impact on the economy in the 
future. However, because of the complex nature of the problem and the lack of data, it 
is not possible yet to accurately estimate the timing and extent of its impact. But we do 
know that potentially large and irreversible consequences are likely to take place unless 
mitigating policies are implemented in time. But these changes will happen possibly far 
into the future, while mitigating policies are (or should be) under consideration right 
now. That discrepancy should put the discussion on discounting at the center of the 
debate about the social cost of carbon and what we should do about climate change: to 
compare uncertain future damages with costs today, those future damages need to be 
discounted back towards today. The debate in the literature has largely zeroed in on the 
rate of time preference; the problem there is that to be consistent with capital market 
data, discount rates must be relatively high which in turn does not leave much once 
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climate change consequences a century out are discounted back towards today (cf Weitz-
man (2007) for a very lucid overview of this debate). In this paper we also focus on the 
discounting question and its implication for the SCC, but we take a different approach. 
Rather than discussing numerical values of certain parameters, we explore alternative 
specifications of preferences with respect to risk and more fundamental uncertainty. We 
explicitly introduce not just risk (i.e. stochastic outcomes with known probability distri-
bution) but also ambiguity (stochastic outcomes with unknown distribution), and show 
the implications for the social cost of carbon of risk and ambiguity aversion under dif-
ferent and independent assumptions about the intertemporal rate of substitution.

To do so we focus on the effect of Epstein–Zin recursive preferences on outcomes 
of the model, and on the impact of unmeasurable risk (ambiguity) and the interac-
tion between those two. Both breaking the link between � and the EIS (by introducing 
Epstein–Zin utility) and introducing ambiguity aversion are conceptually relevant in the 
climate change setting. The first extension is relevant because climate change problems 
have a very long horizon and therefore the elasticity of intertemporal substitution (EIS) 
unavoidably plays an important role. Arbitrarily restricting its value to 1/� is then surely 
unsatisfactory. Second, conceptually ambiguity aversion is a logical extension, since we 
have no accurate estimation of climate damages nor in particular of their probability 
density function in the future. The assumption of unmeasurable risk (“Knightian uncer-
tainty”) then is a natural framework to use. Finally we highlight the sometimes compli-
cated interactions between ambiguity aversion and intertemporal substitution elasticities 
for the value of the Social Cost of Carbon.

To do all this we set up an analytic IAM by extending a disaster risk model with a 
climate change model and a temperature dependent arrival rate. Furthermore, we model 
climate risk as disaster risk instead of assuming that temperature increases generate a 
certain amount of damage every year. The model is transparent because we manage to 
derive closed form solutions for the social cost of carbon. Where stochastic numerical 
IAMs can take hours to be solved, solving our model only requires numerical integra-
tion and is therefore solved within seconds.

Our base calibration generates a substantial social cost of carbon. Most importantly, 
we use our model to highlight how ambiguity aversion changes the social cost of car-
bon. The social cost of carbon including ambiguity aversion is between $599 and $664 
per ton of carbon ($163–$181 per ton CO2 ) with non-stochastic emissions, and slightly 
more for the stochastic case (between $609 and $673 per ton of carbon). Ambiguity 
aversion is responsible for an increase of the SCC with 65% up to 91% depending on the 
model specification.

Analysing the effect of ambiguity aversion on the SCC is not a trivial exercise since 
multiple potentially offsetting effects play a role: we show that ambiguity aversion has both 
a direct effect on the arrival rate and certainty equivalent of disasters for given discount 
rates (more ambiguity aversion leads to a higher certainty equivalent) and an indirect effect 
on the discounting component. The effect of ambiguity aversion on discounting depends on 
the intertemporal rate of substitution � . When 𝜖 < 1 , increasing ambiguity aversion leads 
to a smaller effective discount rate on climate damages, making for a higher SCC since 
both the direct and the indirect effect work in the same direction. For the arguably inter-
esting (because empirically supported) case 𝜖 > 1 , increasing ambiguity aversion has two 
offsetting effects on the SCC, the direct and indirect effects actually work in different direc-
tion. However, we show that even then the direct effect dominates when evaluated numeri-
cally and therefore that the presence of ambiguity aversion leads to a (substantially) higher 
social cost of carbon.
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Lastly, we also show the importance of fully considering the impact of the consumption 
discount rate on the social cost of carbon, not just the impact of the rate of time preference. 
It is of course well known that the social cost of carbon is very sensitive to changes in the 
discount rate, but we stress that analyzing the discount rate impact of climate change involves 
more than a discussion of the pure rate of time preference on the discount rate; a low discount 
rate can also be caused by a high elasticity of intertemporal substitution, and additionally the 
appropriate discount rate depends in elaborate ways on the growth rate of the economy, vola-
tility, risk aversion, climate disaster risk and ambiguity aversion. Disentangling these various 
effects, their interactions and their impact on the SCC is the key contribution of this paper. 
One major theme emerges: proper risk pricing and incorporating ambiguity aversion leads to 
much higher estimates of the Social Cost of Carbon.

Appendix A: Relative Entropy and the Distance Measure

For each a and b we define the measure ℚa,b which is equivalent to ℙ and has Radon–Nikodym 
derivative �a,bt  where �a,bt  follows:

Under the alternative measure ℚa,b the arrival rate equals �ℚa,b

t
= a�t and the jump size 

parameter equals �ℚa,b

= b� . We can calculate in this case the fraction of the two probabil-
ity distributions: f

ℚa,b
(x)

f (x)
= b(1 + x)(b−1)� . Substituting this into (23) gives:

The Radon–Nikodym derivative �a,bt  is the ratio between the alternative measure ℚa,b and 
the reference measure ℙ . The relative entropy between ℚa,b and ℙ over time unit Δ is 
defined as Eℚa,b

t

[
log(

�a,b
t+Δ

�a,bt

)
]
 . Here Eℚa,b

t
 denotes the expectation with respect to the alterna-

tive measure ℚa,b . Then divide by Δ and let Δ → 0 to obtain the instantaneous relative 
entropy: RE(a, b) = limΔ→0

1

Δ
Eℚa,b

t

[
log

(
�a,b
t+Δ

�a,bt

)]
.

Applying Itô’s lemma for jump processes to �a,bt  , we obtain the following dynamics for 
log(�a,bt ):

Using integration by parts we can calculate that Eℚa,b

t
[log(1 + Jt)] = −

1

�ℚ
 . Therefore the 

(instantaneous) relative entropy at time t equals:

Scaling relative entropy by the arrival rate �t yields our distance measure:

(23)d�a,b
t

= (�t − �ℚ
a,b

t
)�a,b

t
dt +

(
�ℚ

a,b

t
fℚ

a,b

(Jt)

�tf (Jt)
− 1

)
�a,b
t−
dNt.

(24)d�a,b
t

= (1 − a)�t�
a,b
t
dt +

(
ab(1 + Jt)

(b−1)� − 1
)
�a,b
t−
dNt.

(25)d log(�a,b
t
) = (1 − a)�tdt +

(
log(ab) + (b − 1)� log(1 + Jt)

)
dNt.

(26)
RE(a, b) = lim

Δ→0

1

Δ
Eℚa,b

t

[
log

(
�a,b
t+Δ

�a,bt

)]

= (1 − a)�t + a�t

(
log(ab) +

1

b
− 1

)
.
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Appendix B: Calculating the Detection Error Probability

After observing the process of consumption over a period N years, what is the probabil-
ity of choosing the wrong model? Let us start with the case that the reference model ℙ 
is the true model and the agent considers the alternative model ℚa,b . Note that the 
Radon–Nikodym derivative informs us about the likelihood ratio of both models. When 
this derivative is larger than one after N years, the worst-case model ℚa,b is the most likely 
and the agent will choose the wrong model. The probability of making this error is equal to 
(see for example Maenhout (2006)):

We calculate this probability by simulating the process of log(�a,bt ) forward. Simulation is 
done via a standard Euler method. Similarly, we can define the opposite mistake where the 
alternative model is actually true and the agent chooses the reference model. We now 
define the inverse Radon–Nikodym derivative: dℙ

dℚa,b
= 𝜉t

a,b where 𝜉t
a,b follows:

Applying Itô’s lemma gives:

The probability of choosing the wrong model when actually the alternative model ℚa,b is 
true equals:

Again this probability can be calculated by simulating the process log(𝜉t) forward. The 
detection error probability is then defined as:

Appendix C: Solving the Model

Appendix C.1: Hamilton–Jacobi–Bellman Equation

We will first derive the Hamilton–Jacobi–Bellman equation for every measure ℚa,b . In the 
next subsection of the appendix we introduce ambiguity.

The value function Vℚa,b

t
= Vℚa,b

(Ct,Xt) is a function of aggregate consumption Ct and 
the vector of climate state variables Xt . Let Vℚa,b

C
 denote the first derivative of the value 

(27)d(a, b) =
RE(a, b)

�t
= (1 − a) + a

(
log(ab) +

1

b
− 1

)
.

(28)P
(
𝜉a,b
N

> 1|ℙ
)
= P

(
log(𝜉a,b

N
) > 0|ℙ

)
.

(29)d𝜉t
a,b

= (a − 1)𝜆t𝜉t
a,b
dt +

(
1

ab
(1 + J)(1−b)𝜂 − 1

)
𝜉t
a,b

−
dNt.

(30)d log(𝜉a,b
t
) = (a − 1)𝜆tdt +

(
− log(ab) + (1 − b)𝜂 log(1 + Jt)

)
dNt.

(31)P
(
𝜉N

a,b
> 1|ℚa,b

)
= P

(
log(𝜉N

a,b
) > 0|ℚa,b

)
.

(32)
1

2
P
(
log(𝜉a,b

N
) > 0|ℙ

)
+

1

2
P
(
log(𝜉N

a,b
) > 0|ℚ

)
.
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function with respect to aggregate consumption, similar notation is used for the second 
derivative. For notational purposes, define the vector of climate state variables:

The vector of state variables then follows: dXt = �X(Xt)dt . Denote by Vℚa,b

X
 the row vector 

of partial derivatives of the value function Vℚa,b

t
 with respect to the vector of state variables 

Xt : Vℚa,b

X
=
[
�Vℚa,b

(Ct ,Xt)

�gE,t
...

�Vℚa,b
(Ct ,Xt)

�Toc
t

]
.

Duffie and Epstein (1992b) show that the HJB-equation for stochastic differential utility 
equals:

Here DV
ℚa,b

 is the drift of the value function. In order to calculate the drift of the value 
function, we will apply Itô’s lemma. By Itô’s lemma for jump processes we have:

Then the drift under ℚa,b equals:

This gives the following Hamilton–Jacobi–Bellman equation:

We conjecture and verify that the value function is of the following form:

where gℚa,b

(Xt) is some function of Xt . Substituting our conjecture Vℚa,b

(Ct,Xt) =
gℚ

a,b
(Xt)C

1−�
t

1−�
 

into f (Ct,Vt) gives:

The partial derivatives of V are given by:

(33)Xt = [gE,t Et M0,t M1,t M2,t M3,t FE,t Tt T
oc
t
]�.

(34)0 = f (Ct,V
ℚa,b

t
) +DV

ℚa,b

.

(35)
dVℚa,b

t
= Vℚa,b

C

(
�Ctdt + �CtdZt

)
+ Vℚa,b

X
�X(Xt)dt +

1

2
Vℚa,b

CC
�2C2

t
dt

+
(
Vℚa,b(

(1 + Jt)Ct−,Xt

)
− Vℚa,b

(Ct−,Xt)
)
dNt.

(36)
DV

ℚa,b

= Vℚa,b

C
�Ct + Vℚa,b

X
�X(Xt) +

1

2
Vℚa,b

CC
�2C2

t

+ �ℚ
a,b

t
Eℚa,b[

Vℚa,b(
(1 + Jt)Ct−,Xt

)
− Vℚa,b

(Ct−,Xt)
]
.

(37)
0 = f (Ct,V

ℚa,b

t
) + Vℚa,b

C
�Ct + Vℚa,b

X
�X(Xt) +

1

2
Vℚa,b

CC
�2C2

t

+ �ℚ
a,b

t
Eℚa,b[

Vℚa,b(
(1 + Jt)Ct−,Xt

)
− Vℚa,b

(Ct−,Xt)
]
.

(38)Vℚa,b

(Ct,Xt) = gℚ
a,b

(Xt)
C
1−�
t

1 − �
,

(39)

f (Ct,V
ℚa,b

(Ct,Xt)) =
�

1 − 1∕�

C
1−1∕�
t −

(
gℚ

a,b

(Xt)C
1−�
t

) 1

�

(
gℚ

a,b (Xt)C
1−�
t

) 1

�
−1

=
�

1 − 1∕�

(
gℚ

a,b

(Xt)
1−

1

� C
1−�
t − gℚ

a,b

(Xt)C
1−�
t

)

= ��
(
gℚ

a,b

(Xt)
−

1

� − 1
)
Vℚa,b

(Ct,Xt).
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Here gℚa,b

X
 denotes the row vector with partial derivatives to each of the state variables, 

similar to Vℚa,b

X
 . Additionally we can calculate the expected impact of a jump on the value 

function:

Substituting f (Ct,V
ℚa,b

(Ct,Xt)) together with the partial derivatives of Vℚa,b

t
 and the expec-

tation into (37) yields the following equation:

Dividing by gℚa,b

(Xt)C
1−�
t  gives:

Appendix C.2: Finding the Ambiguity Aversion Parameters

In this section we show how to derive the ambiguity aversion parameters that correspond to 
the worst case outcome while just staying within the ambiguity budget. We first consider the 
case where there is only ambiguity about the climate shock parameters: there is ambiguity 
about the the arrival rate and magnitude of the climate Poisson shock.

Appendix C.2.1: Optimal a and b

Given a probability measure ℚa,b , we can solve Eq. (43) to find gℚa,b

(Xt) . Now let us return 
to the problem with ambiguity. We are not interested in the solution for every single measure 
ℚa,b . The maxmin procedure advocated by Gilboa and Schmeidler (1989) that we apply in this 
paper requires us to focus on the worst case distribution, which leads to the following minimi-
zation problem:

(40)
Vℚa,b

C
= gℚ

a,b

(Xt)C
−�
t , Vℚa,b

CC
= −�gℚ

a,b

(Xt)C
−�−1
t ,

Vℚa,b

X
=

gℚ
a,b

X
(Xt)C

1−�
t

1 − �
.

(41)

Eℚa,b[
Vℚa,b(

(1 + Jt)Ct−,Xt

)
− Vℚa,b

(Ct−,Xt)
]
=

Eℚa,b[
(1 + Jt)

1−� ] − 1

1 − �
gℚ

a,b

(Xt)C
1−�
t

=

bt�

bt�+1−�
− 1

1 − �
gℚ

a,b

(Xt)C
1−�
t =

−1

bt� + 1 − �
gℚ

a,b

(Xt)C
1−�
t .

(42)

0 =
�

1 − 1∕�

(
gℚ

a,b

(Xt)
−

1

� − 1
)
gℚ

a,b

(Xt)C
1−�
t + �gℚ

a,b

(Xt)C
1−�
t

−
�

2
�2gℚ

a,b

(Xt)C
1−�
t +

gℚ
a,b

X
(Xt)C

1−�
t

1 − �
�X(Xt) + at�t

−1

bt� + 1 − �
gℚ

a,b

(Xt)C
1−�
t .

(43)
0 =

�

1 − 1∕�

(
gℚ

a,b

(Xt)
−

1

� − 1
)
+ � −

�

2
�2 +

gℚ
a,b

X
(Xt)

gℚ
a,b (Xt)(1 − �)

�X(Xt)

+ at�t
−1

bt� + 1 − �
.

(44)Vt = min
ℚa,b∈P�

Vℚa,b

t
.
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And since every probability measure ℚa,b that we consider in our set P� is uniquely defined 
by the parameters a and b, minimizing over ℚa,b is equivalent to minimizing over the 
parameters a and b. So we can replace the global minimization problem of Eq. (44) by an 
instantaneous optimization problem over a and b. The HJB-equation of the problem with 
ambiguity then becomes:

The optimal a and b can thus be found by solving:

We can drop �t and write this problem as a constrained optimization problem with 
Lagrangian:

Here l is the Lagrange multiplier. a∗ and b∗ and the Lagrange-multiplier l are the solutions 
to the following first order conditions:

From now on, we use the notation Vt for the optimal value function ( Vt = Vℚa∗ ,b∗

t
 ). Similar 

notation is used for gt.

Appendix C.2.2: Optimization with Additional Ambiguity About the Climate Sensitivity 
Parameter ̨  : Finding a∗ , b∗ and c∗

In Sect. 5.4 we analyze a setting with ambiguity about the climate sensitivity parameter. The 
HJB-equation for this problem is equal to:

Similar to the two parameter case, we can drop all terms unrelated to a, b and c when 
we solve for the optimal parameters. �X(Xt) is a vector with drifts of all the state vari-
ables. Note that c is part of �X(Xt) because the climate sensitivity determines the change in 

(45)

0 = min
(a,b) s.t. d(a,b)≤�

{ �

1 − 1∕�

(
gℚ

a,b

(Xt)
−

1

� − 1
)
+ � −

�

2
�2

+
gℚ

a,b

X
(Xt)

gℚ
a,b (Xt)(1 − �)

�X(Xt) + a�t
−1

b� + 1 − �

}
.

(46)min
(a,b)

a�t
−1

b� + 1 − �
s.t. d(a, b) ≤ �.

(47)L(a, b, l) = a
−1

b� + 1 − �
− l

(
d(a, b) − �

)
.

(48)

�

�a
L(a, b, l) =

−1

b� + 1 − �
− l

(
log(ab) +

1

b
− 1

)
= 0,

�

�b
L(a, b, l) = a

�

(b� + 1 − �)2
− la

b − 1

b2
= 0,

�

�lt
L(a, b, l) = � − (1 − a) −

(
log(ab) +

1

b
− 1

)
= 0.

(49)

0 = min
(a,b,c) s.t. d̃(a,b,c)≤ 𝜃

𝛽

{
𝛽

1 − 1∕𝜖

(
gℚ

a,b,c

(Xt)
−

1

𝜁 − 1
)
+ 𝜇 −

𝛾

2
𝜎2

+
gℚ

a,b,c

X
(Xt)

gℚ
a,b,c (Xt)(1 − 𝛾)

𝜇X(Xt) + a𝜆t
−1

b𝜂 + 1 − 𝛾

}
.
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temperature in relation to an increasing carbon concentration. The optimal parameters can 
therefore be found by solving the following problem:

Radiative forcing Ft is a function of the climate sensitivity parameter � . It is not possible 
to obtain closed form first order conditions like in the two parameter case. We therefore 
numerically solve for the optimal parameters by minimizing this equation.

Appendix C.3: Solving the Model

It is typically not possible to solve the partial differential equation of the problem with cli-
mate state variables unless one would make the highly restrictive assumption assumption of 
a unit EIS, which we choose not to do. However we are able to obtain exact solutions for the 
value function and the consumption-to-wealth ratio without making restrictive assumptions 
like EIS = 1 , and the consumption-to-wealth ratio is what we need for assessing the SCC. We 
will now sketch our approach.

Duffie and Epstein (1992a) derive that the pricing kernel (or stochastic discount factor) 
with stochastic differential utility equals �t = exp

{ ∫ t

0
fV (Cs,Vs)ds

}
fC(Ct,Vt) . However, the 

pricing kernel has to be adjusted for the ambiguity aversion preferences. Chen and Epstein 
(2002) show that the pricing kernel in the ambiguity setting should be multiplied by the 
Radon–Nikodym derivative �a

∗ ,b∗

t  of the measure corresponding to the optimal a∗ and b∗ . �a,bt  is 
defined in (23). When calculating the pricing kernel, we obtain an expression that depends on 
the unknown function g(Xt) . But by substituting the HJB-equation into the pricing kernel we 
obtain an expression that only depends on known parameters.

As an intermediate step it is helpful to introduce the concept of consumption strips. A con-
sumption strip is an asset that pays a proportion of aggregate consumption Cs at the unique 
time s > t . Call its price at time t: H(Ct,Xt, u) , where u denotes the time to maturity; u = s − t . 
The price of a consumption strip paying out at time s > t equals:

We will refer to CDRt as the consumption discount rate. Now define a stock St that gives a 
claim to consumption and therefore it pays a continuous stream of dividends Ct . The value 
of such a stock then obviously becomes:

In equilibrium aggregate wealth must be equal to the value of the stock. The state-depend-
ent consumption-wealth ratio therefore equals:

(50)

min
(a,b,c) s.t. d̃(a,b,c)≤ 𝜃

𝛽

{
𝜕gℚ

a,b,c

(Xt)∕𝜕Tt

gℚ
a,b,c (Xt)(1 − 𝛾)

1

𝜏

(
Ft − 𝜐Tt − 𝜅(Tt − Toc

t
)
)
+ a𝜆t

−1

b𝜂 + 1 − 𝛾

}
.

(51)

Ht = H(Ct,Xt, u)

= Et

[
�s

�t
Cs

]
= exp

{
−∫

t+u

t

CDRsds

}
Ct.

(52)St = ∫
∞

0

H(Ct,Xt, u)du.

(53)k(Xt) =
Ct

St
=

Ct

∫ ∞

0
H(Ct,Xt, u)du

=

(

�
∞

0

exp
{
− �

t+u

t

CDRsds
}
du

)−1

.
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Using the expression for the consumption-wealth ratio, we can calculate the value function. 
At the optimum (see for example Munk (2015), Ch. 17), we have the envelope condition 
that fC = VS . Furthermore, we derived that V(Ct,Xt) =

g(Xt)C
1−�
t

1−�
 . Using the chain rule we 

get:

Also we have for the intertemporal aggregator:

Together this gives us:

In “Appendix D” we derive an expression for the consumption discount rate CDRt . Given 
the consumption discount rate, we can solve for the consumption-wealth ratio and therefore 
we know the value function.

Appendix D: Discount Rates

Appendix D.1: The Pricing Kernel

Duffie and Epstein (1992a) derive that the pricing kernel with stochastic differential 
utility equals �t = exp

{ ∫ t

0
fV (Cs,Vs)ds

}
fC(Ct,Vt) . However, the pricing kernel has to be 

adjusted for the ambiguity aversion preferences. Chen and Epstein (2002) show that the 
pricing kernel in the ambiguity setting should be multiplied by the Radon–Nikodym 
derivative �a

∗ ,b∗

t  of the measure corresponding to the optimal a∗ and b∗ . �a,bt  is defined in 
(23).

We will start with deriving the explicit stochastic differential equation of the pricing 
kernel. First we calculate the derivatives of f (Ct,Vt) with respect to Ct and Vt:

Substituting Vt = g(Xt)
C
1−�
t

1−�
 into fC(Ct,Vt) and fV (Ct,Vt) we obtain:

This gives:

(54)VS = VC

�C

�S
= VCk(Xt) = g(Xt)C

−�
t k(Xt).

(55)fC = �g(Xt)
1∕�−�

1−� C
−�
t .

(56)g(Xt) =
(k(Xt)

�

)−
1−�

1−1∕�
.

(57)

fC(C,V) =
�C−1∕�

(
(1 − �)V

) 1

�
−1

,

fV (C,V) = ��
{(

1 −
1

�

)(
(1 − �)V

)−
1

�
C1−1∕� − 1

}
.

(58)
fC(Ct,Vt) = �g(Xt)

1−
1

� C
−�
t ,

fV (Ct,Vt) = ��
{
g(Xt)

−
1

�

(
1 −

1

�

)
− 1

}
.
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Take the logarithm and write as a differential equation:

Apply Ito’s lemma to log(Ct) , log(�
a∗ ,b∗

t ) and log
(
g(Xt)

)
 and substitute the results; this leads 

to the following differential equation:

After applying Ito’s lemma to log(�t) we find:

We can now substitute the HJB Eq. (43) into the pricing kernel. Several terms cancel out 
and we are left with:

Appendix D.2: The Interest Rate

Let Bt be the price of a risk-free asset with a return equal to the interest rate. By the no-
arbitrage argument, the interest rate rt should be such that �tBt is a martingale,. Now write 
d�t = ��,t�tdt + ���tdZt + J�,t�t−dNt . The product with Bt then follows:

This is a martingale if rt + �� + �tEt[J�,t] = rt + �� + �t

(
a∗

b∗�

b∗�−�
− 1

)
= 0 . Therefore the 

equilibrium interest rate equals:

(59)�t = �a
∗ ,b∗

t
exp

(

∫
t

0

��

(
g(Xs)

−
1

�

(
1 −

1

�

)
− 1

)
ds

)
�g(Xt)

1−
1

� C
−�
t .

(60)
d log(�t) = ��

(
g(Xt)

−
1

�

(
1 −

1

�

)
− 1

)
dt − �d log(Ct) + d log(�a

∗ ,b∗

t
)

+ (1 −
1

�
)d log

(
g(Xt)

)
.

(61)

d log(�t) =
{
��

(
g(Xt)

−
1

�

(
1 −

1

�

)
− 1

)
− �

(
� −

�2

2

)
+ �t(1 − a∗)

+ (1∕� − �)
gX(Xt)

g(Xt)(1 − �)
�X(Xt)

}
dt

− ��dZt +
(
log(a∗b∗) +

(
(b∗ − 1)� − �

)
log(1 + Jt)

)
dNt.

(62)

d�t =
{
��

(
g(Xt)

−
1

�

(
1 −

1

�

)
− 1

)
− �

(
� − (� + 1)

�2

2

)
+ �t(1 − a∗)

+ (1∕� − �)
gX(Xt)

g(Xt)(1 − �)
�X(Xt)

}
�tdt + −���tdZt

+
(
a∗b∗(1 + Jt)

(b∗−1)�−� − 1
)
�t−dNt.

(63)

d�t =
{
− � −

�

�
+
(
1 +

1

�

)�
2
�2 +

(
� −

1

�

)
�∗
t

−1

b∗� + 1 − �

+ �t(1 − a∗)
}
�tdt − ���tdZt

+
(
a∗b∗(1 + Jt)

(b∗−1)�−� − 1
)
�t−dNt.

(64)d�tBt = (rt + ��,t)�tBtdt + ���tBtdZt + J�,t�t−BtdNt.
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Substituting rt into the pricing kernel gives:

Appendix D.3: The Equity Premium

Consider a stock that pays continuous dividends at a rate Ct and has ex-dividend price St . We 
denote the cum-dividend stock price by Sd

t
 . We use the expression for the consumption-wealth 

ratio in combination with the HJB-equation to derive the risk premium. An alternative deriva-
tion is to apply the no arbitrage condition. Using Eq. (53) we can write St =

Ct

k(Xt)
 . The stock 

price then follows:

From Eq. (67), we know that the drift of the stock equals �S,t = � −
kX (Xt)

k(Xt)
�X(Xt) + k(Xt) . 

From (56) we have: k(Xt) = �g(Xt)
−

1−1∕�

1−�  . This gives: kX (Xt)

k(Xt)
= −

1−1∕�

1−�

gX (Xt)

g(Xt)
 . Rewriting the 

HJB Eq. (43) gives:

Substituting this into �S,t gives:

The risk premium is then equal to the excess return of the stock over the interest rate:

(65)

rt = − �� − �t

(
a∗

b∗�

b∗� − �
− 1

)

= � +
�

�
−
(
1 +

1

�

)�
2
�2 −

(
� −

1

�

)
a∗�t

−1

b∗� + 1 − �

− a∗�t

( b∗�

b∗� − �
− 1

)
.

(66)
d�t =

{
− rt − �t

(
a∗

b∗�

b∗� − �
− 1

)}
�tdt − ���tdZt

+
(
a∗b∗(1 + Jt)

(b∗−1)�−� − 1
)
�t−dNt.

(67)
dSd

t
= dSt + Ctdt =

1

k(Xt)
dCt −

Ct

k(Xt)
2
dk(Xt) + k(Xt)Stdt

=
(
� −

kX(Xt)

k(Xt)
�X(Xt) + k(Xt)

)
Stdt + �StdZt + JtSt−dNt.

(68)

1 − 1∕�

1 − �

gX(Xt)

g(Xt)
�X(Xt) + k(Xt) = � + (1∕� − 1)

(
� −

�

2
�2

+ a∗�t
−1

b∗� + 1 − �

)
.

(69)�S,t = � −
kX(Xt)

k(Xt)
�X(Xt) + k(Xt)

(70)
rpt = �S,t + a∗�t

−1

b∗� + 1
− rt

= ��2 + a∗�t

(
−1

b∗� + 1
−

b∗�

b∗� + 1 − �
+

b∗�

b∗� − �

)
.
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Appendix D.4: Consumption Strips

Let Ht = H(Ct,Xt, s − t) = Et

[
�s

�t
Cs

]
 be the price of an asset that pays out a proportion of 

the aggregate consumption at time s. Ht is also called a consumption strip. Conjecture that 

H(Ct,Xt, u) = exp
{
− ∫ t+u

t
CDRsds

}
Ct . u denotes the time to maturity of the consump-

tion strip. Clearly, H(Ct,Xt, 0) = Ct . Applying Ito’s lemma to Ht gives:

We can calculate both derivatives:

Therefore dHt becomes:

Now define dHt = �H,tHtdt + �HtdZt + JtHt−dNt . By the no arbitrage condition, �tHt must 
be a martingale:

We can calculate the expectation of the jump term:

Therefore �tHt is a martingale if:

Substituting �� , �H and ��� = −��2 gives:

(71)

dHt = HCdCt + HXdXt −
�Ht

�u
dt =

1

Ct

HtdCt

−
�

�Xt

(

∫
t+u

t

CDRsds

)
�X(Xt)Htdt

+
�

�u

(

∫
t+u

t

CDRsds

)
Htdt.

(72)

�

�Xt

(
∫

t+u

t

CDRsds
)
�X(Xt) =

�

�t

(
∫

t+u

t

CDRsds
)

�t

�Xt

�X(Xt)

=
�

�t

(
∫

t+u

t

CDRsds
)
= CDRt+u − CDRt,

(73)
�

�u

(
∫

t+u

t

CDRsds
)
= CDRt+u.

(74)dHt =
(
� + CDRt

)
Htdt + �HtdZt + JtHt−dNt.

(75)
d�tHt = (��,t + �H + ���)�tHtdt + (� + ��)�tHtdZt

+
(
(1 + Jt)(1 + J�,t) − 1

)
�t−Ht−dNt.

(76)
Et[(1 + Jt)(1 + J�,t) − 1] = Et[a

∗b∗(1 + Jt)
(b∗−1)�+1−� − 1]

= a∗
b∗�

b∗� + 1 − �
− 1.

(77)0 = �� + �H + ��� + �t

(
a∗

b∗�

b∗� + 1 − �
− 1

)
.
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Note that this implies that: CDRt = rt + rpt − (� + a∗�t
−1

b∗�+1
) . Lastly, we can substitute rt 

and rpt , which yields:

Appendix E: The Social Cost of Carbon

The Social Cost of Carbon is calculated as the derivative of the value function with respect to 
carbon emissions, scaled by instantaneous marginal utility. With a single carbon box, the mar-
ginal cost of increasing carbon emissions by one unit is the derivative of the value function with 
respect to the carbon concentration Mt : 

�Vt

�Mt

 . However, with multiple carbon boxes, emitting one 
unit of carbon leads to an increase of �i units in box i, i = 0, 1, 2, 3 . We slightly abuse notation 

and define �

�Mt

≡ �0
�

�M0,t

+ �1
�

�M1,t

+ �2
�

�M2,t

+ �3
�

�M3,t

 . In the derivation, we use the following 

relations: g(Xt) =
(

k(Xt)

�

)−�

 , � =
1−�

1−1∕�
 , k(Xt) =

(
∫ ∞

0
exp

{
− ∫ t+u

t
CDRsds

}
du

)−1

 and 

CDRt = � + (1∕� − 1)
(
� −

�

2
�2 + a∗�t

−1

b∗�+1−�

)
 . Differentiation of the value function gives:

(78)
0 = � + CDRt − rt − �t

(
a∗

b∗�

b∗� − �
− 1

)
− ��2

+ �t

(
a∗

b∗�

b∗� + 1 − �
− 1

)
.

(79)CDRt = � + (1∕� − 1)
(
� −

�

2
�2 + a∗�t

−1

b∗� + 1 − �

)
.
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Appendix F: Calibration of Climate Model

See Table 5.

(80)

SCCt = −
�Vt∕�Mt

fC(Ct,Vt)
= −

�
(

g(Xt)C
1−�
t

1−�

)
∕�Mt

�g(Xt)
1−

1

� C
−�
t

= −

�

�Mt

g(Xt)

(1 − �)�g(Xt)
1−

1

�

Ct

= −

�

�Mt

(
k(Xt)

�

)−�

(1 − �)�
(

k(Xt)

�

)1−�
Ct = −

−�
(

k(Xt)

�

)−�−1
�

�Mt

(
k(Xt)

�
)

(1 − �)�
(

k(Xt)

�

)1−�
Ct

=
�

�

�Mt

k(Xt)

(1 − �)�2
(

k(Xt)

�

)2
Ct =

�

�Mt

k(Xt)

(1 − 1∕�)k(Xt)
2
Ct

=

�

�Mt

(
∫ ∞

0
exp

{
− ∫ t+u

t
CDRsds

}
du

)−1

(1 − 1∕�)

(
∫ ∞

0
exp

{
− ∫ t+u

t
CDRsds

}
du

)−2
Ct

=
1

1∕� − 1

�

�Mt
�

∞

0

exp
{
− �

t+u

t

CDRsds
}
du Ct

=
1

1∕� − 1 �
∞

0

�

�Mt

exp
{
− �

t+u

t

CDRsds
}
du Ct

= −
1

1∕� − 1 �
∞

0

exp
{
− �

t+u

t

CDRsds
}

�

�Mt

(
�

t+u

t

CDRsds
)
du Ct

= −
1

1∕� − 1 �
∞

0

exp
{
− �

t+u

t

CDRsds
}
�

t+u

t

�

�Mt

CDRsds du Ct

= −
1

1∕� − 1 �
∞

0

exp
{
− �

t+u

t

CDRsds
}

�
t+u

t

�

�Mt

(1∕� − 1)a∗�TTs
−1

b∗� + 1 − �
ds du Ct

= �
∞

0

exp
{
− �

t+u

t

CDRsds
}
�

t+u

t

a∗�T
�Ts

�Mt

ds
1

b∗� + 1 − �
du Ct.
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Appendix G: Simple Climate Model

Table  6 gives the results for the simple climate model with a Temperature Response to 
cumulative emissions of 1.75 TtC∕◦ C. The SCC is a bit higher with the simple linear cli-
mate model compared to the non-linear climate model, especially in the case with � = 1.5 . 

Table 5   Parameters for the Climate model

Par Description Value

E0 Initial level of total emissions (in GtC, 2015) 10.45
gE
0

Initial growth rate of emissions (2015) 0.017
gE
∞

Long-run growth rate of emissions − 0.02
�gE Speed of convergence of growth rate of emissions 0.0075
M0 Initial carbon concentration compared to pre-industrial (in GtC, 2015) 263
Mpre Pre-industrial atmospheric carbon concentration (in GtC) 588
M0,0 Initial carbon concentration box 0 (in GtC, 2015) 139
M1,0 Initial carbon concentration box 1 (in GtC, 2015) 90
M2,0 Initial carbon concentration box 2 (in GtC, 2015) 29
M3,0 Initial carbon concentration box 3 (in GtC, 2015) 4
�M,0 Decay rate of carbon box 0 0
�M,1 Decay rate of carbon box 1 0.0025
�M,2 Decay rate of carbon box 2 0.027
�M,3 Decay rate of carbon box 3 0.23
�0 Fraction of emissions carbon box 0 0.217
�1 Fraction of emissions carbon box 1 0.224
�2 Fraction of emissions carbon box 2 0.282
�3 Fraction of emissions carbon box 3 0.276
FE
0

Initial level of exogenous forcing (in W/m2 , 2015) 0.5
FE
∞

Long-run level of exogenous forcing (in W/m2) 1
�F Speed of convergence exogenous forcing 0.02
T0 Initial surface temperature compared to pre-industrial (in ◦ C, 2015) 0.85
Toc
0

Initial ocean temperature compared to pre-industrial (in ◦ C, 2015) 0.0068
� Speed of temperature transfer between upper and deep ocean 0.73
� Equilibrium temperature response to radiativeforcing 1.13
� Equilibrium temperature impact of CO2 doubling (in ◦C) 3.05
� Heat capacity of the surface 7.34
�oc Heat capacity of the oceans 105.5

Table 6   Social cost of carbon 
as function of risk aversion and 
ambiguity aversion

Social cost of carbon (�
T
, �) = (0.04, 61.5) (�T , �) = (0.02, 30.25)

� = 1 , � = 0 , � = 0 184 184
� = 1 , � = 5 , � = 0 200 219
� = 1 , � = 5 , � = 0.1 354 400
� = 1.5 , � = 0 , � = 0 419 419
� = 1.5 , � = 5 , � = 0 411 446
� = 1.5 , � = 5 , � = 0.1 680 753
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In the simple climate model, a pulse of emissions today will lead to the same amount of 
warming in any future period. While in the non-linear climate model, the change in tem-
perature because of an emissions pulse will somewhat decline over time due to decay of 
carbon from the atmosphere. Especially with a low discount rate (which is the case with 
� = 1.5 ), the simple model therefore leads to a SCC that is a bit higher.

The relative differences of adding risk aversion and ambiguity aversion are however 
very similar. So the different climate model mostly affects the level of the SCC in the no-
risk and no-ambiguity case. But the increase of the SCC when risk aversion and ambiguity 
aversion are added does not change much.

Appendix H: Stochastic Emissions

The HJB-equation for this problem becomes:

The main difference with the HJB-equation without stochastic emissions is that now, the drift 
of the state variables �X also depends on aggregate endowment Ct . It is therefore not possible 
anymore to substitute out the variable Ct . We thus have to solve a seven dimensional model 
numerically. We use the stochastic grid method to numerically solve the model, as described 
in Olijslagers (2021). Similar to value function iteration, the time step is discretized and the 
problem is solved backwards. The stochastic grid method simulates random grid points every 
time period and uses regressions with basis functions to approximate the value function. The 
main advantage is that this method can handle high-dimensional problems while avoiding the 
curse of dimensionality (computing time growing exponentially along with dimensionality) 
and that derivatives of the value function can be calculated easily. This is useful to calculate 
the social cost of carbon, and also to solve the first order conditions.

The first order conditions for optimal consumption are:
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