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Abstract
This paper examines the impact of climate risk on macroeconomic activity for thirty coun-
tries using over a century of panel time series data. The key innovation of our paper is to 
use a factor stochastic volatility approach to decompose climate change into global and 
country-specific climate risk and to consider their distinct impact upon macroeconomic 
activity. To allow for country heterogeneity, we also differentiate the impact of climate 
risk upon advanced and emerging economies. While the existing literature has focused on 
country based climate risk shocks, our results suggest idiosyncratic or country-specific cli-
mate risk shocks are relatively unimportant. Global climate risk, on the other hand, has a 
negative and relatively more important impact on macroeconomic activity. In particular, 
we find that both advanced and emerging countries are adversely impacted by global cli-
mate risk shocks.
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1  Introduction

Climate change is widely expected to have a significant impact on economic activity for a 
whole host of countries around the world.1 In his Nobel Prize Lecture, Nordhaus (2019) 
summed up the consensus on climate change: global warming is a threat to humankind and 
the natural world. The economic implications of climate change are potentially huge for 
firms, households and government policy. In addition to degradation of both the environ-
ment and ecosystem itself, climate change shall damage the economy by impacting pri-
mary resources, physical and human capital, R &D and productivity. In response, countries 
have implemented policies to tackle climate change in an effort to reduce greenhouse gas 
emissions and abate the adverse economic impact. While a policy consensus has emerged 
on climate change, some research questions remain, see Weitzman (2007), Stern (2008) 
and Pindyck (2021). Stern (2008) summarises effectively the challenges for researchers in 
this context: climate risk is global in its nature and impact; the effects may only reveal 
themselves over the long-term; and economic analysis of climate change should have a 
central role for risk and uncertainty. This paper seeks to add to the literature on the mac-
roeconomic impact of climate change, focusing upon the nature and impact of global and 
country specific climate risk over an extended time period.

As the United Nation’s Intergovernmental Panel on Climate Change (IPCC) noted in 
its Sixth Assessment Report, climate change has one particular critical facet: our climate 
has become more volatile through time, with extreme temperature changes impacting an 
increasing variety of geographic regions (Arias et al. 2021). We observed from an illus-
trative sample of thirty countries that there has been an increase in both average annual 
temperature growth and variability. For our sample of thirty countries for over a century of 
annual data, average annual temperature growth was 0.012 °C, with a standard deviation of 
0.279 °C between 1901 and 1950. From 1950 to 2020 average annual temperature growth 
rose to 0.015 °C, with the standard deviation increasing to 0.292 °C. This increase in cli-
mate variability is important, not least since Alessandri and Mumtaz (2021), Kotz et  al. 
(2021) and Donadelli et al. (2022) present evidence that climate risk in the form of tem-
perature variability can have a detrimental impact upon macroeconomic outcomes. This 
is based upon both empirical and theoretical research, using either realized temperature 
volatility or ex ante stochastic volatility measures of climate risk.2

There are several channels by which climate risk may impact the economy. Investments 
which are irreversible, and have an option value of waiting, may be delayed by firms due to 
uncertainty (Bloom 2009). This may result in decreased expenditures on new business cap-
ital and R &D. Berestycki et al. (2022) document that climate policy uncertainty is linked 
with substantial declines in investment in capital-intensive industries, notably in pollution-
intensive sectors subject to climate policy changes. Extensive research have emphasised 
the urgency of incorporating the physical aspect of climate threats into economic impact 
studies (Donadelli et al. 2017, 2021; Kotz et al. 2021; Pindyck 2021; Donadelli et al. 2022; 

2  See Cascaldi-Garcia et al. (2023) for an extensive discussion of empirical measures of uncertainty and 
risk.

1  Nordhaus and Moffat (2017) considered several existing analyses on the macroeconomic implications of 
climate change using a systematic research synthesis. They found that the damage to income ranged from 
over 2% to over 8%, depending upon whether there was 3 °C or 6 °C warming. See also Weitzman (2007), 
Tol (2009), Burke et al. (2015), Donadelli et al. (2017), Alessandri and Mumtaz (2021), Kotz et al. (2021), 
Kahn et al. (2021), Pindyck (2021), Donadelli et al. (2022), and Kotz et al. (2022).
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Kotz et al. 2022; Sheng et al. 2022). These studies demonstrate that climate risks have a 
negative impact, not only upon labour productivity and capital quality, but also upon R &D 
expenditures, thereby lowering economic growth. In other words, climate risks can directly 
influence both economic production and consumption.

Our paper makes four contributions to the literature on the economic impact of global 
warming. Firstly, we illustrate climate interconnectedness from one country to the next for 
our large sample of countries using generalised temperature spillover indices from Diebold 
and Yilmaz (2012), which is also order invariant. Our evidence suggests that temperature 
changes have experienced spillovers from one country to the next, indicating the intercon-
nectedness of these countries. In essence, connectedness motivates the notion that there are 
common factors in temperature changes. Given this global interconnectedness, it is critical 
to model common factors of climate when assessing its impact on macroeconomic activity.

Our second contribution is to consider the impact of climate variability upon real GDP 
growth by differentiating between the impact of global climate risk and country specific 
climate risk using a factor model. Global climate risk may matter more than idiosyncratic 
climate risk for economic activity, since climate change is a global phenomenon, as sug-
gested by Stern (2008). Factor models are widely used in empirical macro research: see 
Kose et al. (2003), Foerster et al. (2011) and Fernández et al. (2018).3 Related to, but dif-
ferent from our factor approach, Alessandri and Mumtaz (2021) use univariate stochastic 
volatility associated with temperature to examine the long-term impact of climate change 
uncertainty on economic growth.4 However, the potentially distinct impact of global and 
country specific climate uncertainties upon GDP growth have not been considered by the 
literature as far as we are aware. In light of this, the purpose of this present work is to 
extend Alessandri and Mumtaz (2021) by employing factor stochastic volatility, which is 
multivariate, as opposed to stochastic volatility which is univariate, to decompose climate 
uncertainties. Our factor stochastic volatility approach to modeling climate change more 
fully accounts for the global nature of climate risk.

The third contribution of our paper is to consider the impact of climate change over the 
very long term. This also chimes with Stern (2008) who emphasizes that climate change 
can be long term in its nature or impact. We therefore consider around 120 years of data 
when examining the impact of global and country specific climate risk on GDP. This con-
trasts with existing studies which typically consider a more recent sample period. And 
while climate change has become more acute in recent years, climate risk has potentially 
impacted outcomes for an extended period. We also assess whether our results are sensi-
tive to the sample period chosen and whether the effects of climate change have become 
more acute in recent years. Fourthly, our work distinguishes the effects of climate risk 
upon advanced and emerging economies because the effects of climate change may depend 
upon country characteristics. Despite the possibility of cummulative temperature increases 
above pre-industrial levels ranging from 1.5 to 4.5 °C, certain regions may be heterogene-
ously impacted by global warming (see Houghton 1996; O’Brien and Leichenko 2000). We 
consider whether the climate risk experienced by emerging economies is country-specific 
or mainly the result of global spillovers. Both advanced and emerging economies are major 
contributors of greenhouse gas emissions which could substantially affect their economies 

3  Ang et al. (2009) and Herskovic et al. (2016) investigated a common factor in idiosyncratic volatility in 
quantitative asset pricing, as well as high idiosyncratic volatility and low returns.
4  We also differentiate our measure of climate uncertainty from Gavriilidis (2021) and Sheng et al. (2022).
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due to climate risk. Both groups of countries may be heterogeneously impacted by climate 
risk and be more or less able to abate the impact of climate variability.

To preview our result, we established that overall climate risk is substantial and relevant 
for macroeconomic activity, consistent with the earlier literature such as: Dell et al. (2012), 
Donadelli et al. (2017), Alessandri and Mumtaz (2021), Donadelli et al. (2021), Kotz et al. 
(2021), Donadelli et al. (2022), Kotz et al. (2022), Sheng et al. (2022), among others. Sepa-
rating climate risk into global and country-specific elements we make our key contribu-
tions. Country specific climate risk shocks have a relatively less important impact on GDP 
fluctuations. By comparison, global climate risk has a negative and relatively more impor-
tant impact on GDP, and induces more volatility of macroeconomic activity. Our results 
indicate that both advanced and emerging economies are impacted to a greater extent by 
common, rather than the idiosyncratic climate risk, which emphasizes the global dimen-
sion of climate change. In addition, we find evidence of stronger interconnectedness of 
temperature changes among the countries’ in our sample. Most importantly, both tempera-
ture changes and GDP growth depict positive spillover effects from one country to another. 
Our econometric method’s ability to capture cross-sectional heterogeneity and spillovers 
renders our findings robust and substantial.

The rest of the study is divided as follows: the second section briefly discuss existing lit-
erature, the third describes the empirical model and method used in the empirical analysis; 
the four section reports the our empirical results; and the fifth section concludes the study.

2 � Brief Literature Review

Uncertainty is increasingly important for empirical research in several economic applica-
tions, see Cascaldi-Garcia et  al. (2023). In an early study, Bernanke (1983) argues that 
an increase in uncertainty damages the economy’s total demand through a conventional 
channel tied to real option theory. Bloom (2009) suggests that uncertainty influences deci-
sion-making because it increases the option value of waiting. In other words, corporations 
and, in the case of durable products, consumers are more cautious when confronted with 
uncertainty due to the significant costs associated with making poor investment decisions. 
Consequently, investments, hirings, and expenditures are postponed until periods of lesser 
uncertainty. Due to the misallocation of resources across businesses, uncertainty is also 
anticipated to have a negative influence on the supply-side productivity of the economy 
(Bloom et al. 2018). According to Bloom et al. (2018), it is argued that in periods of nor-
mal economic conditions, less efficient companies tend to experience a decrease in size, 
while more productive firms tend to grow, thereby contributing to the overall maintenance 
of high aggregate productivity. In situations characterised by elevated levels of uncertainty, 
businesses tend to impose restrictions on their expansion and contraction activities. This, 
in turn, hampers a substantial portion of the productivity-enhancing reallocation process, 
ultimately resulting in a decline in the evaluated aggregate total factor productivity. The 
main question of this study pertains to whether there exists a correlation between a height-
ened likelihood of encountering greater temperature variations in the future, specifically 
an increase in the conditional volatility of yearly temperatures, and its potential impact on 
economic growth.
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Climate change is a key policy concern. It has the potential to damage household wel-
fare and economic activity (Giglio et al. 2021).5 Two lines of research underpin our study. 
The first line examines the economic implications of climate change. They substantially 
argued on the negative relationship between income and global warming. To assess the 
relationship between climate and economic activity researchers use variety of methods, 
including the general equilibrium model, the integrated assessment model in its reduced 
form.6 The second line of research examines the macroeconomic implications of increases 
in risk and uncertainty associated with climate change. The literature establishes the criti-
cal role of macroeconomic volatility on investment, consumption, and output.7 By examin-
ing the relationship between climate risk, notably climate change uncertainty, and macro-
economic activity, this study aims to bring new and diverse information to inform policy 
direction and academic discussion.

Several papers examine the empirical relationship between economic development and 
weather conditions. For instance, Dell et al. (2012) seek to determine the economic effects 
of climate change for the first time. They accomplish this by tracing the temporal evolution 
of countries’ average temperatures and output growth. According to Dell et al. (2012), ris-
ing temperatures have a greater negative impact on economic growth in developing nations 
than in industrialised nations. Similar to Dell et al. (2012), a study used a panel of nations 
to determine if changes in temperature and precipitation levels are associated with slowed 
economic growth.8 They demonstrate that rising temperatures have a detrimental effect 
on economic growth in warm, developed nations, whereas increased precipitation has a 
beneficial effect on growth, particularly in developed nations with low average precipita-
tion. Meanwhile, Zhao et  al. (2018) contend that the impacts of annual temperature on 
productivity can also vary widely among countries. Using global sub-national short panel 
data, they review the link between temperature and economic growth and demonstrate 
that climate-related negative consequences can differ at the regional level. Donadelli et al. 
(2017) demonstrate empirically that a temperature shock has a substantial, negative, and 
statistically significant effect on total factor productivity, production, and labour produc-
tivity. In contrast, they demonstrate that quicker adaptation to climate shocks is associ-
ated with lower welfare costs. In line with that, welfare benefits increase dramatically when 
the rate of adaptation improves over time. According to Kotz et  al. (2022), a rise in the 
number of rainy days and excessive daily rainfall, as well as a nonlinear reaction to the 
total annual and averaged monthly variations in rainfall, slows economic growth rates. In 
addition, both daily rainfall and total annual rainfall are most detrimental to high-income 
countries and industries, such as services and manufacturing, supporting previous research 

5  Sheng et  al. (2022) demonstrate that volatility in temperature growth decelerates economic activity 
roughly five times more than when temperature growth increases by the same amount in the higher uncer-
tainty-based domain of a nonlinear model.
6  These studies investigated the link between climate change as in temperature, rainfall and precipita-
tion growth on aggregate production and consumption and in general economic productivity or economic 
growth (Hassler et al. 2016; Stern 2016; Nordhaus and Moffat 2017; Alessandri and Mumtaz 2021; Kotz 
et al. 2021, 2022).
7  While Ciccarelli and Marotta (2021), Kahn et al. (2021), Kim et al. (2021), and Sheng et al. (2022) exam-
ined climate risk and uncertainty impact of economic activities in diverse ways.
8  Brenner and Lee (2014) anticipate a substantial increase in the global average temperature in the coming 
decades. They analyse historical temperature and precipitation variations to determine whether changes in 
temperature and precipitation are connected with economic growth declines.
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that emphasised the benefits of greater annual rainfall for low-income, agriculturally-based 
economies.

Apparently, numerous studies have identified connections between overall changes in 
temperature and economic growth either in short or long-term, but data on the relationship 
between within-year temperature variability and macroeconomic variables is scant (Don-
adelli et al. 2022); few studies have suggested that the relationship between climate uncer-
tainty and economic outcomes is significant and very important (Burke et al. 2015; Pindyck 
2021). Other studies are of the view that climate change risks as a result of uncertainty 
leads to output losses and surges in prices. Essentially, the negative effect of climate risks 
or uncertainties emanate from demand-side and supply-side shocks (Batten 2018; Batten 
et al. 2020; Ciccarelli and Marotta 2021; Kiley 2021). Further, Kotz et al. (2022) postulate 
that climate change exacerbate growth such that variability of rainfall respond to economic 
growth non-linearly. It is demonstrated by Sheng et al. (2022) that climate risks have a det-
rimental impact on economic activity to a similar extent regardless of whether the risks are 
caused by changes in temperature growth or volatility. However, when temperature growth 
increases by a similar magnitude in the higher uncertainty-based regime in a nonlinear 
context, the volatility of temperature growth contracts economic activity roughly five times 
more than when temperature growth decreases by a similar amount. Donadelli et al. (2021) 
explore labour productivity, patent obsolescence, and capital quality in their analysis of the 
negative R &D expenditure effect of rising temperatures. According to them, temperature 
shocks are damaging to economic growth due to a decline in investment on research and 
development. It has been found by Donadelli et al. (2022) that richer economies are more 
susceptible to the negative economic consequences of temperature fluctuation shocks. Kotz 
et al. (2021) argue that day-to-day temperature variability is influenced by seasonal differ-
ences and income, resulting in the greatest risks in low-income regions and low-latitudes.

On the contrary, Pretis et  al. (2018) studied uncertain impacts on economic growth 
when stabilizing global temperatures at 1.5 °C or 2 °C warming, and they claim that, aside 
from global nonlinear temperature effects, within-year variability of monthly temperatures 
and precipitation has no impact on economic growth. They also document that temperature 
variations have almost no effect on growth in economies with a yearly average tempera-
ture, but temperature variations appear to have significant consequences in countries with 
extremely high or low average yearly.

The topic of climate spillovers has received limited attention in the existing body of 
research. The existence of this gap becomes apparent when examining multiple facets of 
climate interactions. Prominent instances encompass investigations that delve into the 
direct impacts of climate change, as exemplified in the scholarly contribution of Schleypen 
et al. (2022). Moreover, the examination of spillover effects of regional temperatures, as 
illustrated by Cashin et al. (2017), underscores the insufficient consideration given to this 
complex phenomenon.

Furthermore, scholarly research has increasingly focused on investigating intricate 
aspects of climate spillovers. For instance, Zhao et  al. (2023) have delved into the sys-
temic risk that emerges from the interconnection between coal-supported electricity gen-
eration and weather patterns. The research conducted by Khalfaoui et  al. (2022) and Su 
et al. (2022) demonstrates the growing acknowledgement of the interdependencies between 
climate policy spillovers and their impacts on energy systems. These studies shed light 
on the interconnected nature of climate-related dynamics, both within and between sectors 
and regions.

Significantly, there has been increased attention on indirect climate spillovers, as evi-
denced by research conducted by Zhang et  al. (2023). This study has provided valuable 



661The Macroeconomic Impact of Global and Country‑Specific Climate…

1 3

insights into the complex mechanisms through which climate change can spread across 
interconnected systems, thereby emphasising the necessity for a more holistic comprehen-
sion of the extensive consequences associated with climate spillovers.

Given ongoing investigations, it is apparent that climate spillovers are a multifaceted 
and interconnected phenomenon that warrants increased scholarly focus. The schol-
arly literature emphasises the significance of not only mitigating the immediate impacts 
of climate change but also recognising the complex web of repercussions that can span 
across geographical, sectoral, and policy domains, ultimately influencing the global socio-
economic framework. The available data on climate change and macroeconomic activity 
indicate that an increase in annual average temperature has an effect on macroeconomic 
growth. However, a number of fundamental elements of the economy are affected by devi-
ations in daily temperature from seasonal expectations that are not adequately reflected in 
annual averages.

3 � Empirical Methods

3.1 � Data

Key time series used in this study are measures of climate risk, macroeconomic activity 
and carbon emissions. We use temperature changes as the basis of measuring country-spe-
cific and global climate risk. To model macroeconomic activity, we use the growth rate of 
real GDP. The steady increase in global temperature caused by accumulated carbon dioxide 
in the atmosphere, which raises atmospheric carbon concentration and eventually changes 
temperature, is measured using carbon emissions per capita. Moreover, we use carbon 
emission per capita since this is also important for the relationship between climate risk 
and macroeconomic activity. The data spans from 1901 to 2020 for thirty countries.9

3.1.1 � Climate Data

To construct a measure of climate risk, we source temperature data from World Bank Cli-
mate Knowledge Portal and we focus upon temperature changes. Temperature is derived 
from the Climate Research Unit (CRU) observed dataset. The CRU gridded time series is a 
widely used climate dataset that covers all land domains of the world except Antarctica on 
a 0.5° latitude by 0.5° longitude grid. It is calculated by obtaining climate anomalies from 
large networks of weather stations’ observations within a country. However, a key innova-
tion in this paper is that climate risk is measured by a factor stochastic volatility model 
of average temperature changes. The primary practical and computational benefit of the 
factor stochastic volatility (FSV) model lies in its parsimony. This model effectively repre-
sents the variances and covariances of a vector of time-series by employing a low-dimen-
sional stochastic volatility (SV) structure that is determined by common factors. It is a fre-
quently observed phenomenon that the quantity of common factors among extensive sets 

9  Countries include both advanced and emerging economies. These are Australia, Belgium, Canada, Swit-
zerland, Germany, Denmark, Spain, Finland, France, United Kingdom, Italy, Japan, Netherlands, Portugal, 
Sweden, United States, Norway, Argentina, Bolivia, Brazil, Chile, Colombia, Cuba, Indonesia, India, Sri 
Lanka, Mexico, Peru, Uruguay, and Venezuela. Further details on our data set can be found in Table A3 in 
the appendix.
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of time-series vectors tends to be significantly smaller, typically by one or two orders of 
magnitude. This occurrence has a notable impact on the accuracy of estimation and com-
putational processes.10 Unlike the FSV which uses a multivariate process, previous studies 
modelled climate risk by a standard normal factor model in which both the idiosyncratic 
time series variances and common factors variances are combined as a univariate stochas-
tic volatility process.11

3.1.2 � Macroeconomic Activity

Macroeconomic activity in our study is measured by the real GDP growth rate. The real 
GDP growth rate is calculated by authors using real GDP per capita and population data 
from the Maddison Project and the World Development Indicators. Dell et al. (2012) docu-
ment two possible outcome of temperature impact on economic activity; that is, level of 
output through agricultural yields and productivity growth through investment and insti-
tutional effectiveness. In addition, the authors suggest that warmer temperatures may slow 
growth in developing and underdeveloped countries rather than temporarily lowering out-
put. These growth effects would imply huge repercussions of global warming because even 
minor growth effects have large consequences over time. According to Burke et al. (2015), 
the global climate and economic activity are intertwined. It is essential to note that hot-
ter climates reduce output by reducing investment, lowering worker productivity, worsen-
ing health outcomes, and lowering agricultural and industrial output—thereby, thwarting 
overall macroeconomic activity (Moore and Diaz 2015; Carleton and Hsiang 2016). Some 
recent studies have emphasised the importance of understanding the impact of climate 
uncertainty on macroeconomic growth (Kiley 2021; Kotz et al. 2021; Donadelli et al. 2022; 
Kotz et al. 2022). According to Dell et al. (2012), transient weather shocks that capture lev-
els and growth effects have an impact on the growth rate during the shock’s initial phase. 
This effect eventually goes the other way when weather returns to normalcy. As an illustra-
tion, a temperature shock may result in lower agricultural output, but after the temperature 
returns to normal, agricultural production recovers. Contrarily, the growth effect manifests 
during the weather shock and cannot be reversed: a country’s failure to innovate during one 
era pushes it further behind the curve over the long term.

Climate change distresses the demand and supply side of an economy: from the supply 
side, it disrupts output by adversely affecting prices and hampering future growth through 
extreme weather conditions and natural disasters-and perhaps affect physical capital as a 
demand side effects (Ciccarelli and Marotta 2021). Arguably, the aforementioned effects 
from both demand and supply sides relative to climate change have been identified as 
simple, taking into account the short-term and long-term effects. Therefore, demand side 
adjustments stemming from consumption patterns, disruption to income, exports, changes 
in consumers’ behaviour, investment and infrastructure are possibly and explicitly related 
to climate awareness and migration (Batten et al. 2020).

11  Huber et  al. (2018), Alessandri and Mumtaz (2021) and Sheng et  al. (2022) used Bayesian stochastic 
volatility model to evaluate the long term impact of climate change on economic growth. They follow a uni-
variate stochastic volatility process, in contrast to our factor approach.

10  By contrast, it is linked to a significant computation complexity when the number of dimensions of the 
data is moderate to large, see Kastner et al. (2014). Pitt and Shephard (1999) believe that using models to 
accurately measure VAR is a worthwhile topic.
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3.1.3 � Carbon Emissions

Carbon dioxide emissions are caused by the combustion of fossil fuels, deforestation, agri-
culture, and industrial activities such as the production of cement. They include carbon 
dioxide emitted during the combustion of solid, liquid, and gas fuels, as well as gas flaring. 
Productivity and economic growth have a direct influence on individual well-being. Since 
at least the industrial revolution, global economic growth has been driven by energy from 
fossil fuel, which contributes to greenhouse gas emissions. Carbon emissions cause global 
warming on the long run affecting atmospheric carbon concentration, which alters tem-
peratures and induces climate change (Pindyck 2021).

3.2 � Modelling Climate Risk

Common variation in the unpredictable component of a large variety of economic vari-
ables, is frequently referred to as time-varying macroeconomic uncertainty (Jurado et al. 
2015; Mumtaz and Theodoridis 2017; Beckmann et al. 2019). Commonly used uncertainty 
measures do not capture the long-lasting bursts of activity that seems to correlate with real 
economic activity (Jurado et al. 2015). Nonetheless, Jurado et al. (2015) state that there is 
no objective measure of uncertainty when it comes to assessing macroeconomic activity 
and uncertainty. To this end, the authors develop novel metrics of uncertainty and connect 
them to macroeconomic activity. The objective is to generate reasonable econometric esti-
mates of uncertainty that are decoupled from the structure of specific theoretical models, as 
well as from reliance on any single or limited number of measurable economic indicators. 
Other measures of climate change policy uncertainty and overall economic policy uncer-
tainty have emerged, with these indexes being built against the backdrop of newspapers 
using specific keywords, see Baker et al. (2016), among other.12

In the factor Stochastic Volatility model, Bayesian estimation improves on the univari-
ate Stochastic Volatility implementations and offers multiple options to enhance efficiency 
(Andersen et al. 1999; Hosszejni and Kastner 2021). To circumvent the issue of sluggish 
convergence in high dimensions, our model is estimated with a sampler that uses multiple 
interweaving strategies (Hosszejni and Kastner 2021).13 Several factors are influenced by 
a small number of random sources, which explain how the observations interact with one 
another. In addition, latent factor models provide an effective method for estimating the 
dynamic covariance matrix. They decrease the number of unknowns. In a typical latent 
factor model with r factors, the decomposition is the diagonal matrix, which contains the 
variances of the idiosyncratic errors (Hosszejni and Kastner 2021).

A significant issue with dynamic covariance estimate is the large number of unknowns 
relative to the number of observations. To be precise, a quadratic expression in N have 

12  Gavriilidis (2021) develops an index for climate policy uncertainty to measure the volatility of climate 
change policy and its related implications for the US. Our work is focused upon developing a more broad 
based multi-country measure of climate uncertainty.
13  The efficiency of sampling in Bayesian inference for stochastic volatility models using Markov Chain 
Monte Carlo (MCMC) methods is heavily contingent upon the specific values of the parameters being esti-
mated. The standard centre parameterization of posterior draws is inadequate in cases where the volatility 
of the volatility parameter in the latent state equation is low. Conversely, non-centered versions of the model 
exhibit shortcomings when applied to highly persistent latent variable series. The efficacy of the ancillar-
ity-sufficiency interweaving technique in addressing these challenges across various multilevel models has 
been substantiated (Yu and Meng 2011; Kastner and Frühwirth-Schnatter 2014).
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N(N+1)/2 degrees of freedom which has a corresponding covariance matrix Σt when the 
cross-sectional dimension is N. Using latent factors, one can make Σt appear sparser in 
order to overcome the dimensionality curse. When creating latent factor models, it is essen-
tial to keep in mind that even multidimensional systems can be governed by a limited num-
ber of random sources.

Against this backdrop, this research employed a factor stochastic volatility method to 
measure climate risks in order to assess its impact on macroeconomic activity. In the fac-
tor stochastic model, the covariance matrix of Σt and Σ̃t is representing independent uni-
variate stochastic volatility processes which are both diagonal. Identification issues relative 
to factor stochastic volatility are relevant. Some of the identification assumptions are the 
sign, the order, and the scale of the factors is unidentified. In the factor Stochastic Volatil-
ity model, Bayesian estimation improves on the univariate SV implementations and offers 
multiple options to enhance efficiency. To circumvent the issue of sluggish convergence in 
high dimensions, it is performed with a sampler that employs several ancillarity-sufficiency 
interweaving strategy (ASIS) types.14

In this paper we model global climate risk using a Factor Stochastic Volatility model. 
Temperature changes �it for country i at time t are used to construct a measure of country 
specific and global climate risk. The factor stochastic volatility model for �it is as follows:

where N(� + �f t,�t) denotes the normal distribution for the matrix �it with mean tem-
perature changes represented by � = ( �1,...,�N)⊤ with temperature change factors f t = 
( f1t, ...., frt)⊤ . The factor loadings are � ∈ ℝN×r in Eq. (1). The covariance matrices �t and 
�̃t are both diagonal and can be written as:

The total variance ( �t ) of temperature changes can be decomposed into factor and idi-
osyncratic variance.

where �t consists of variances of the idiosyncratic errors while �̃t = r < N. Equation (3) 
can be modified utilising Eq. (1) to become:

(1)
�it | 𝜷,�, f t,�t ∼ NN(𝜷 + �f t,�t),

f t|�̃t ∼ Nr(0, �̃t),

(2)

�t = diag(exp(hit), ..., exp(hNt)),

�̃t = diag(exp(h̃1t), ..., exp(h̃rt))),

hit ∼ N(𝜇i + 𝜑i(hit−1 − 𝜇i), 𝜎
2

i
, i = 1, ...,N,

h̃jt ∼ N(𝜇̃j + 𝜑̃j(h̃jt−1 − 𝜇̃j), 𝜎̃
2

j
, j = 1, ..., r,

(3)�t = �̃t + �t,

14  The efficiency of sampling in Bayesian inference for stochastic volatility models using Markov Chain 
Monte Carlo (MCMC) methods is heavily contingent upon the specific values of the parameters being esti-
mated. The standard centre parameterization of posterior draws is inadequate in cases where the volatility 
of the volatility parameter in the latent state equation is low. Conversely, non-centered versions of the model 
exhibit shortcomings when applied to highly persistent latent variable series. The efficacy of the ancillar-
ity-sufficiency interweaving technique in addressing these challenges across various multilevel models has 
been substantiated (Yu and Meng 2011; Kastner and Frühwirth-Schnatter 2014).
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In essence, identification issues relative to factor stochastic volatility are relevant at this 
stage. For any generalised permutation matrix P of size r × r , there is some other viable 
decomposition �t = �′ �̃′

t
 (𝚲�)⊤ + �t , where �′ = �P−1 and �̃

′

t
 = P �̃tP

⊤ . However, the 
uncertainty in the scale of the factors is resolved by setting their log-variance level to zero. 
In the second stage of our empirical analysis examining the relationship between macro-
economic activity and climate risk, we denote country-specific climate risk ( �t ) as ��

it
 and 

global climate risk ( ��̃t�
⊤ ) as ��

Ft
.

3.3 � Panel VAR

To examine the relationship between macroeconomic activity, idiosyncratic and global cli-
mate risk, this study uses a Bayesian Panel VAR with a hierarchical prior. This Bayesian 
Panel VAR method was created by Jarociński (2010). It provides a richer approach because 
it treats all parameters as random variables and incorporates them into the estimation pro-
cess. The hierarchical structure of our panel VAR model, which allows for the possibility 
of heterogeneous responses to climate risk shocks across the selected countries, is one of 
the model’s key components. To capture the endogenous relationship between climate risk 
and macroeconomic activity, we define Xit = [ ��

it
 , ��

Ft
 , yit]� with country-specific climate 

risk ( ��

it
 ), global climate risk ( ��

Ft
 ) and yit denotes the growth rate of real GDP. Both cli-

mate risk measures are obtained from the factor stochastic volatility model in Eq. (1) using 
annual temperature changes. In accordance with Jarociński (2010), we assume a panel 
model as follows:

where wt is a vector of common exogenous variable and Xit is a n vector of endogenous 
variables. The subscrpits i = 1, ...,N represents countries, t = 1, ...,T  represents time peri-
ods, and l = 1, ...,L represents the lags. In terms of the Xit−1 and wt coefficients, we define 
an exchangeable prior. The prior is non-informative for the zit coefficients, which may 
contain country-specific constant terms. The vector uit contains N(0,�i) VAR innovations 
which are iid. The variables to which the exchangeable prior applies are collected in a vec-
tor called xit = [X�

it−1
...X�

it−l
,w�

t
]� . In terms of data matrices, the model for country i can be 

obtained by vertically stacking X′
it
, x′

it
 and w′

t
 for all t:

Xi and Ui are T × n . Where �i is T × K , Zi are T ×M , Bi are K × n and �i are M × n . Bi = 
[ B′

i1
, ...,B′

iL
 , b�

i
]� relates the coefficients matrix of Bi to the coefficients of Eq. (5). There-

fore, we can formulate xi = vecXi , � i = vecBi , �i = vec�i.
The data-generating statistical model is assumed to be as follows, in which the probabil-

ity for country i has the form

(4)�t = ��̃t�
⊤ + �t,

(5)Xit =

L∑

l=1

B�
il
Xit−l + b�

i
wt + ��

i
zit + uit

(6)Xi = �iBi + Zi�i + Ui

(7)p(xi|� i, �i,�i) = N((In ⊗�i)� i + (In ⊗ Zi)�i,�i ⊗ IT ))
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Country coefficients on the variables in �i are assumed to be normally distributed with 
a mean of � and a variance of �i which may vary by country:

The prior for �i and � is uniform on the real line and non-informative:

Subsequently, the standard diffuse prior is also applied to the error’s variances:

The Eqs. (7) to (10) define the dynamic models of variables in Xi and exogenous con-
trols in W as particular instances of the unknown underlying model defined by �.

Mumtaz and Sunder-Plassmann (2021) implemented the hierarchical VAR prior to 
threshold and regime switching, demonstrating its robustness given that it permits cross-
sectional heterogeneity. In such circumstance, regularisation is required because the major-
ity of macroeconomic data contain time series with fewer observations. The Bayesian lit-
erature provides several methods for achieving parsimony within the PVAR framework to 
address this issue. One body of research applies shrinkage priors to various regions of the 
parameter space, see Koop and Korobilis (2016, 2019). This method theoretically treats the 
PVAR as a large VAR with asymmetric shrinkage with respect to the coefficients in �i , Bi , 
and the free elements of �i . Canova and Ciccarelli (2004), Canova and Ciccarelli (2009) 
and Jarociński (2010) make use of the observation that domestic macroeconomic dynamics 
are relatively similar across countries, implying that the matrices �i are comparable. How-
ever, interdependencies, whether dynamic or static, are typically disregarded when data 
from multiple countries are combined by averaging �i.

The functional form of the prior, which is standard and motivated by computational 
ease, consists of a normal, uniform, inverted gamma density combined with a degener-
ated inverted Wishart density for �i , making the prior conditionally conjugate. The Bayes 
theorem is used to calculate the posterior density of the model’s parameters, which is a 
normalised product of the likelihood and the prior (Jarociński 2010). Due to the prior’s 
conditional conjugacy, all conditional posterior densities can be conveniently and numeri-
cally analysed using the Gibbs sampler because they are all normal, inverted gamma, or 
inverted Wishart (Gelman et al. 1995).

The estimation procedure employs Gelman et  al. (1995)’s hierarchical linear model 
modified by Jarociński (2010). The concept of similarity is formalised as a Gaussian 
prior for each country’s coefficients that is centred on the countries’ common mean—an 
exchangeable prior. This method offers two distinct benefits: (i) we can estimate the cross-
country average impulse response to climate risk shocks by averaging the coefficients. In 
light of this, there is a greater likelihood of estimation precision when information from a 
panel is utilised as opposed to business cycle dynamics from a single time series. (ii) Since 
our model allows for heterogeneous effects of climate risk shocks across the panel, the 
exchangeable prior, or hierarchical prior, implies that the posterior estimates of country-
specific impulse responses incorporate panel data. It is essential to note that the precision 
of estimates for individual countries could potentially be enhanced (Mumtaz and Sunder-
Plassmann 2021). Above all, it treats all parameters as random variables and incorporates 
them into the estimation process, this method is more flexible [also see Jarociński (2010) 
for details].

(8)p(� i|�,�i) = N(�,�i)

(9)p(�) ∝ p(�i) ∝ 1

(10)p(�i) ∝ |�i|
−

1

2
(n+1)
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3.3.1 � Identification Strategy

In this section we set out the identification scheme we use to operationalise our empiri-
cal model. We utilise impulse response functions based upon the estimated parameters of 
our PVAR model to consider the impact of climate risk shocks on economic activity. We 
are therefore focused upon the effect of a climate risk shock upon GDP. Climate risk can 
have a contemporaneous impact upon economic activity in our model and this is consist-
ent with weather shocks impacting the economy within year. Our model also allows there 
to be a more nuanced and data driven interaction and feedback between climate and GDP 
in the medium to long run. Our panel VAR model therefore allows for a two-way inter-
action between climate and macroeconomic activity: in theory, temperature can influence 
GDP growth and respond endogenously to GDP growth. Against this backdrop, we use a 
recursive identification strategy. Our Choleski factorization of shocks implies macroeco-
nomic activity has no immediate impact on climate change. In computing the orthogonal-
ized impulse response shocks, we typically order climate variables first in bivariate VARs, 
whether they be temperature growth or uncertainty. We order economic activity last, except 
when we also include CO2 in our model.

3.4 � Descriptive Statistics

Graphical evidence of the key variables of interest is provided in Fig.  1: which depicts 
climate risk, temperature changes, temperature levels, and GDP growth rate from 1901 to 
2020. It is clear that temperature levels have risen dramatically on average for the coun-
tries we sample since the beginning of the last century, and especially over the last sixty 
year. For our sample of countries, average temperatures have risen by nearly 2 °C over 
the full sample period. The increase in temperatures is for both advanced and emerging 
economies. Advanced economies have increased by around 2 °C, while emerging econo-
mies have increased 1 °C. Temperature growth has been highly variable over the entire 
sample period, although with more pronounced and frequent spikes later in the second half 
of the sample period. Despite some recessions, GDP growth in both advanced and emerg-
ing economies has been consistent. The results from Diebold and Yilmaz (2012) applied to 
our temperature data are provided in Fig. 2. The key message from this figure is that tem-
peratures in one country are linked to temperatures in other countries. This can be gleaned 
from the sizable spillover percentages in Fig. 2, which are at least 29% and frequently con-
siderably more. We use this preliminary evidence to justify our focus in this paper on the 
macroeconomic impact of global temperature.

Descriptive statistics are presented in Table 1. In addition to mean, standard deviation, 
maximum and minimum statistics, we include Pearson correlations. Economic growth has 
generally be positive over the entire sample period. It is important to note that the cor-
relation between country-specific climate risk ( ��

it
 ) and GDP growth ( yit ) is negative and 

significant, for the entire sample, 1901 to 2020. We find that temperature growth ( �it ) is 
positively correlated with GDP growth ( yit ) but crucially this is not a statistically signifi-
cant relationship. In contrast, there is also a positive correlation between the country-spe-
cific climate risk ( ��

it
 ) and GDP growth ( yit ). However, a negative correlation is observed 

between univariate climate risk ( H�

it
 ) and GDP growth ( yit ) as well as global climate risk 

( ��

Ft
 ) and GDP growth ( yit ). The correlation between global climate risk ( ��

Ft
 ) and GDP 

growth ( yit ), as well as univariate climate risk ( H�

it
 ) and GDP growth ( yit ), are statistically 
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significant at the 5% level. In terms of carbon emissions ( CO2it ), it is clear that there has 
been an increase of 0.85 metric tonnes per capita on average per year between 1901 and 
2020, with a standard deviation of 1.46 metric tonnes per capita.

Fig. 1   Climate risk, temperature and GDP. Notes: This figure presents average time of series of country 
temperature levels, temperature growth and GDP growth rates for the period 1901 to 2020. Unweighted 
averages of all 30 sampled countries. Temperature levels and temperature growth are measured in Degree 
Celsius and GDP growth are in percentages
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The study revealed that there was a discernible pattern of temperature fluctuations, indi-
cating a mean rise of 0.5 °C over the period spanning from 1901 to 2020. Similarly, Ales-
sandri and Mumtaz (2021) find that the volatility in temperature for different economic 
regions ranges from 0.1 to 0.5 °C. What seems to be surprising is the trend in country-
specific and global temperature volatility for our sample. Our evidence suggests that the 
idiosyncratic (country-specific) and global (common) factor have time variation in volatil-
ity. This substantiates the benefit of our approach. There could be heterogeneity. However 

Fig. 2   Generalized spillover index: temperature changes. Notes: The Generalized Directional Spillover 
heatmap represents the estimated contribution to the forecast error variance of country i from innovations to 
country j for temperature using Diebold and Yilmaz (2012). The off-diagonal column sums represent con-
tributions to Others, while the row sums represent contributions from Others; when these are totaled across 
countries, we get the Spillover Index numerator. The figure indicates that there are considerable temperature 
linkages from one country to another in our sample, and that therefore climate is international or global in 
nature. C denotes contribution either from others, to others or to others including own
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we have sought to accommodate that by splitting our sample of countries into advanced 
economies and emerging countries, based upon a demarcation from the World Bank.15 We 
also argue that the Alessandri and Mumtaz (2021)’s approach used in estimating tempera-
ture volatility differ from ours. Since we decomposed the univariate climate risk into coun-
try-specific and global climate risks, our approach uses latent factors that make Σt appear 
sparser in order to overcome the dimensionality curse.

We have temperature change as our underlying measure of climate. Temperature 
changes are more likely to have a constant mean. Formally we test for whether the panel 
time series is non-stationary using panel unit root tests. In particular we use Levin et al. 
(2002) (LLC) and Im et  al. (2003) (IPS) Panel Unit Root tests. These methods applied 
to temperature changes confirm they are I(0) stationary. Both LLC and IPS have a null 
hypothesis of panel unit root. The results in Table  A2 reject the null hypothesis for the 
panel time series temperature change ( �it ) that the data is unit root, since the test statis-
tic is much less than the critical value at the 1% statistical level. Panel unit root tests are 
employed to test whether the underlying temperature change data has panels containing a 
unit root. However, our finding suggests that there is no evidence of unit root.

Table 1   Descriptive statistics and correlation matrixs

This table presents descriptive statistics of the data used in the study. Descriptive statistics are mean, stand-
ard deviation (SD), minimum, maximum and Pearson correlations. This is for temperature changes in °C 
( �it ), idiosyncratic country specific climate risk ( ��

it
 ), global climate risk ( ��

Ft
 ), country carbon emissions 

( CO2it ), and country annual real GDP growth ( yit ). And also univariate climate risk ( H�

it
 ). Global and idi-

osyncratic climate risk are from Eq.   (3). Data period 1901 to 2020 for 30 countries. Asterisk ***, **, * 
denote 1%, 5% and 10% significance levels, respectively

Statistics yit �it ��

it
CO2it H

�

it
��

Ft

Mean 3.079 0.014 −2.234 0.827 0.541 −0.012
SD 2.464 0.287 0.221 0.647 0.284 0.106
Min − 5.666 − 0.699 − 2.430 − 0.334 0.000 − 0.199
Max 14.121 0.781 0.000 1.619 1.363 0.260

Correlations yit �it ��

it
CO2it H

�

it
��

Ft

yit 1
�it 0.007 1
��

it
0.007 − 0.003 1

CO2it 0.015 0.011 0.074*** 1
H

�

it
− 0.038** 0.005 0.324*** 0.477*** 1

��

Ft
− 0.044** 0.011 − 0.007 − 0.034** − 0.033** 1

15  https://​datat​opics.​world​bank.​org/​world-​devel​opment-​indic​ators/​the-​world-​by-​income-​and-​region.​html.

https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html
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Fig. 3   Impact of univariate climate variability on GDP. Notes: This figure presents evidence of the impact 
of univariate climate variability on macroeconomic activity. A measure of risk based upon univari-
ate stochastic volatility comprises idiosyncratic and global climate risk. Specifically the top panel is the 
impulse response function from a shock to temperature change (univariate stochastic) volatility (H�

it
 ) upon 

GDP growth ( yit ) for all countries. Our sample of 30 advanced and emerging economies is between 1901 
and 2020. We use a bivariate Panel VAR, PVAR(H�

it
 , yit ) to produce the impulse responses in this figure. 

The evidence suggests there is a negative impact from 2 to 4 years. The shock is a one standard deviation 
increase in risk. These can be convert to one unit shocks by dividing by the standard deviation of the origi-
nal series. We include the posterior median of the shock (red) and 68% critical band or posterior coverage 
band (grey)
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4 � Empirical Results

4.1 � Climate Risk as Univariate Stochastic Volatility

In this section, we present baseline empirical results of the relationship between climate 
risk and macroeconomic activity.16 To set the scene, we begin by considering the impact 
of univariate country climate risk upon GDP using standard impulse response analysis. 
Climate risk based upon univariate stochastic volatility of temperature changes conflates 
both idiosyncratic and global climate risk. The impact upon GDP of a univariate climate 
variability shock are presented in Fig. 3. We present three panels of impulse response func-
tions based upon the estimated Panel VAR with univariate climate variability (H�

it
 ) and 

GDP growth ( yit).17 We plot 10 year response horizons to these climate variability shocks 
for all 30 countries in our sample. This shall allow us to benchmark the effect of climate 
variability on macroeconomic activity in general. We see from Fig. 3 that climate risk has 
an important and negative effect upon GDP. This is because the median posterior response 
in the top panel of Fig. 3 of economic activity to a univariate climate risk shock for all 
countries is below zero and the response critical interval does not contain the zero axis. 
We also present evidence that for both advanced and emerging economies, in the lower 
panels, climate variability also has a negative effect upon economic activity. After year six, 
there is a relatively small yet positive effect of univariate climate risk upon growth for all 
nations. Consistent with our findings, Donadelli et al. (2017) present evidence that univari-
ate temperature variability has a negative relationship with real economic activities. That 
is, an increase in temperature variability is more likely to reduce overall economic activ-
ity through for example, lower labour productivity. Meanwhile, Kotz et  al. (2021) docu-
ment that due to seasonal differences and income levels, low-income countries are more 
susceptible to greater climate risks. In a separate study, Kotz et al. (2022) confirmed that 
advanced countries are also not spared the economic impact of climate risk. Burke et al. 
(2015) confirmed in their study that temperature uncertainty has a negative impact on over-
all output and increases prices as a result of both supply-side and demand-side shocks. 
Donadelli et  al. (2022) and Sheng et  al. (2022) acknowledge that the impact of climate 
risks on macroeconomic activity is significant and negative. However, the effect is identical 
to both temperature growth and uncertainty.

4.2 � Climate Risk and Factor Stochastic Volatility

4.2.1 � Full Sample

Having considered the impact of univariate climate risk on GDP, we now look to our 
main results, which differentiate global and idiosyncratic climate risk. Figure 4 presents 
the core results of the impact of global and idiosyncratic climate risk on macroeconomic 
activity. We initially focus in Fig. 4 on the impact of country specific risk ( ��

it
 ) in panel 

(i) and global climate risk ( ��

Ft
 ) in panel (ii), delineated by the factor stochastic volatil-

ity model for the full sample period. Evidence from the core results suggests that shocks 

17  See Online Appendix A for the methodology underpinning H �
it
.

16  Further information on the parameters associated with model estimation are reported in Table A5 in the 
online appendix.
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Fig. 4   Global and country specific climate risk impact upon GDP. Notes: This figure presents evidence of the 
impact of global and country specific climate risk on macroeconomic activity. Specifically the left column is the 
impulse response function from a shock to idiosyncratic country climate risk ( ��

it
 ) upon GDP growth ( yit ). The right 

column of panels are global climate risk ( ��

Ft
 ) upon GDP growth ( yit ). Our sample of 30 advanced and emerging 

economies between 1901 and 2020. We use a trivariate Panel VAR, PVAR(��

it
 , ��

Ft
 , yit ). The evidence suggests the 

impact on macroeconomic activity of a country specific climate risk shock is more rapid, negative and short-lived. 
The shock is a one standard deviation increase in risk. Global climate risk, on the other hand, is an important deter-
minant of macroeconomic activity. A global climate risk shock could either impede or promote macroeconomic 
activity. We include the posterior median of the shock (red) and 68% critical band or posterior coverage band 
(grey)
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to country-specific climate risk are relatively less important for macroeconomic activity. 
While the effect of idiosyncratic risk is generally negative, critical intervals are close to 
zero indicating less evidence of a substantial impact. Global climate risk is a relatively 
more important determinant of macroeconomic activity. This is indicated by the larger neg-
ative GDP response to a global risk shock after year three. It takes several years for the full 
effect of a global climate risk shock to feed the way through GDP.

In the past few years, the cross-sectional and distributional ramifications of climate 
change have been debated. It has been argued that rising temperatures may only or largely 
affect impoverished countries that are heavily dependent on agriculture and have low 
capacity for response to climate change (Burke et  al. 2015; Feng and Kao 2021; Kiley 
2021; Kotz et  al. 2022). In line with this argument, we split our sample into advanced 
and emerging countries to investigate the impact of climate risk on these distinct country 
groupings. The outcome for advanced and emerging economies depicted in Fig. 4 as Panel 
(iii), (iv), (v) and (vi). The Fig. 4 emphasizes that both advanced and emerging economies 
are more susceptible to global risk shocks, than to idiosyncratic climate shocks. This is a 
surprising result, since typically poorer countries are considered to be more likely to be 
effected by climate change. But our results would indicate that this distinction within our 
modeling context may have been over emphasized.

4.2.2 � Later Sample

It may be the case that climate change is a more recent phenomenon and its impact is different 
in more recent decades. We examined the exogenous impact therefore of country-specific and 
the global climate risks on GDP growth from 1950 to 2020 in a separate empirical model. 
To comprehend how climate risk has contributed to the overall macroeconomic activities of 
selected countries, we tend to focus on the post-war period. This sample is comparable to 
those from Alessandri and Mumtaz (2021) and Donadelli et al. (2022). Figure 5 illustrates the 
outcome for the post 1950 sample. We find stronger evidence that shocks to country-specific 
climate risk have no effect on GDP growth. We identify an initially negative and important 
impact of the global risk shock on GDP, with a maximum at year four. This is irrespective of 
whether we consider advanced or emerging countries. There does seem to be overshooting of 
GDP after the initial negative shock as additional volatility is induced into GDP by the global 
climate risk shock, which eventually abates as the response returns to zero.

Fig. 5   Impact of climate risk on GDP: post 1950 period. Notes: This figure presents evidence of the impact of 
climate risk on macroeconomic activity. Specifically the left panel is the impulse response function from a shock 
to country climate risk ( ��

it
 ) upon GDP growth ( yit ). The right column of panels are global climate risk ( ��

Ft
 ) upon 

GDP growth ( yit ). Our sample of 30 advanced and emerging economies between 1950 and 2020. We use a trivari-
ate Panel VAR, PVAR(��

it
 , ��

Ft
 , yit ). The evidence suggests the impact on macroeconomic activity of a climate risk 

shock is more rapid, negative and pronounced. The shock is a one standard deviation increase in risk. Global cli-
mate risk, on the other hand, is an important determinant of macroeconomic activity. A global climate risk shock 
could either impede or promote macroeconomic activity. We include the posterior median of the shock (red) and 
68% critical band or posterior coverage band (grey)

▸
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Fig. 6   Robustness/extension. Notes: This figure presents evidence of the impact of climate risk on mac-
roeconomic activity, comparing the impact on GDP per capita and GDP. Specifically the left column of 
panels are the impulse response function from a shock to country climate risk ( ��

it
 ) upon GDP growth ( yit ) 

and GDP per capita ( ypcit ). The right column of panels are global climate risk ( ��

Ft
 ) upon GDP growth ( yit ) 

and GDP per capita ( ypcit ). Our sample of 30 advanced and emerging economies between 1901 and 2020. 
We use a trivariate Panel VAR, PVAR(��

it
 , ��

Ft
 , ypcit ) for panel (i) and (ii). Panel (iii) and (iv) use a four-

variable Panel VAR, PVAR(��

it
 , ��

Ft
 , ypcit , CO2it ). The evidence suggests the impact on GDP per capita of a 

climate risk shock is more rapid, negative and pronounced. Meanwhile, country specific shocks impact on 
GDP growth is not important. The shock is a one standard deviation increase in risk. Global climate risk, on 
the other hand, is an important determinant of macroeconomic activity. A global climate risk shock could 
impede and later promote macroeconomic activity. We include the posterior median of the shock (red) and 
68% critical band or posterior coverage band (grey)
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4.3 � Robustness/Extension

4.3.1 � Climate Risk Impact on GDP Per Capita

From a development standpoint, GDP per capita growth may be more interesting to cap-
ture macroeconomic activity, since it also has implications for average living standards. 
To understand the dynamics of shocks to country-specific climate risk, and the global cli-
mate risk from a development perspective, in the spirit of Dell et al. (2012) and Donadelli 
et al. (2017), we substitute GDP growth with GDP per capita growth in our baseline model. 
According to the findings in Fig. 4, global climate risk is important for macroeconomic 
activity. The short run impact is rapid, sizable and negative. This findings is an indication 
of the robustness of our baseline model with GDP growth (as shown in Fig. 6).

4.3.2 � Climate Risk Impact on GDP Volatility

Higher temperature risks increase growth risks; perhaps a GDP contraction arises from the 
combined impact of higher climatic and economic uncertainty. As a result, the transmis-
sion mechanism is based on risk rather than actual temperature changes.18 In contrast to 
this argument, we show that the impact of shocks on country-specific climate risk is not 
important for GDP growth volatility. It is worth noting that even with our later sample, the 
impact of both country-specific and global climate risk are not important for GDP growth 
volatility. Overall, we find that climate risk impact on GDP growth is homogeneous.

4.3.3 � Climate Risk, Carbon Emissions and GDP Growth

Pindyck (2021) emphasises the importance of carbon emissions as the largest contribu-
tor to greenhouse gas emissions, which cause global warming in the long run by affecting 
atmospheric carbon concentration and influencing temperature through climate change. We 
examined aggregate outcomes directly in our baseline model, ignoring a priori assump-
tions about which mechanisms to include and how they might interact, operate, and com-
bine. Furthermore, we used temperature fluctuations with the intention of isolating their 
effects from time-invariant country characteristics.

We expand our baseline model to include carbon emissions in order to better understand 
the mechanism or transmission channel between climate risk and macroeconomic activity, 
i.e., country-specific climate risk, global climate risk, and GDP growth. We discovered that 
the results of our baseline model do not differ from the results of the extended model with 
carbon emissions. Our findings suggest that country-specific climate risk are unimportant 
for macroeconomic activity, despite a negative impact in the 2 years following the shock. 
Global climate risk, on the other hand, is an important determinant of macroeconomic 
activity. In the initial phase of a global climate risk shock, macroeconomic activity may 
be hindered; however, macroeconomic activity is subsequently boosted as shown in Fig. 6. 
Notably, the timing of the impacts is similar for our full and post-1950 samples in the 
baseline models. Consistently, we have demonstrated that global climate risk is important 

18  Alessandri and Mumtaz (2021) argue that shocks to temperature volatility trigger a positive impact on 
GDP growth volatility.
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and could adversely (positively) impact macroeconomic activity, as suggested by our post 
1950-sample. More robustness and extension analyses are presented in online Appendix B.

4.3.4 � Further Robustness

In this subsection we consider further robustness and extensions of our approach. These 
include using dynamic panel methods robust to endogeneity, controlling for temperature 
levels, and alternative identification of shocks. To account for endogeneity and whether 
our evidence is contingent upon specific empirical methods we can generalise our results 
by using Generalised Methods of Moments (GMM) estimation from Blundell and Bond 
(1998), Blundell et  al. (2001), Blundell and Bond (2000) and Windmeijer (2005). Also 
whilst Bai and Ng (2006, 2008b) and Bai and Ng (2008a) show in linear models that the 
factor estimates can be treated as known if 

√
T∕N → 0 , as in our case, there may be a 

question whether generated regressors drive our results. We go with the grain of Pagan 
(1984) and use GMM to circumnavigate this potential issue to obtain consistent estimates 
of the relationship between climate risk and macroeconomic activity. We find evidence of a 
stronger and more deleterious impact upon macroeconomic activity from the global climate 
risk factor, relative to idiosyncratic results, using dynamic panel systems GMM, including 
with robust standard errors. These results are provided in Online Appendix C. Finally, we 
re-ordered the variables in a benchmark VAR with GDP, idiosyncratic and global climate 
risk to examine whether benchmark results from impulse responses were order invariant. 
We found evidence that our impulse responses were not sensitive to the ordering of the 
variables in the VAR.

5 � Conclusion

Temperature increases have been shown to have an adverse effect on economic growth, 
especially in developing countries (see Dell et al. 2012; Burke et al. 2015; Feng and Kao 
2021; Kotz et al. 2021, among others). This study demonstrates how climate change affects 
macroeconomic activity via a volatility channel. We used the Bayesian Panel VAR with 
hierarchical prior to estimate the VAR coefficients of macroeconomic activity and climate 
risk for 17 advanced and 13 emerging economies for the period 1901 to 2020. No other 
papers as far as we are aware have applied factor stochastic volatility to model global risk, 
consistent with the notion from Stern (2008) that climate change is global in character. Our 
results highlight that there is a powerful negative impact from global climate risk on mac-
roeconomic activity.

To allow for country heterogeneity, we also differentiate the impact of climate risk 
upon advanced and emerging economies. Intriguingly, we discover that both advanced and 
emerging countries are negatively affected by climate risk shocks. Existing literature has 
focused on country-based risk shocks, but our findings indicate that idiosyncratic or coun-
try-specific climate risk shocks are relatively unimportant. On the other hand, global cli-
mate risk has a negative and relatively more important impact on macroeconomic activity. 
Our research illustrates that both advanced and emerging countries are vulnerable to global 
climate risk shocks, which extends the important work of Alessandri and Mumtaz (2021) 
on univariate climate risk to examine the global dimension of climate change. Notably, it 
seems that the common volatility in temperature changes is quantitatively more important 
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for GDP than the idiosyncratic volatility in temperature changes. In accordance with Stern 
(2008), we also find that the impact of climate risk on macroeconomic activity is far-
reaching and potentially long-lasting. It is essential to recognise that countries’ temperature 
changes are interconnected, as evidenced by substantial spillovers. This discovery supports 
and justifies the significance of our findings. In addition, the capability of our econometric 
method to capture cross-sectional heterogeneity and spillovers makes our findings robust 
and noteworthy.

One potential limitation to our research that we do not differentiate various forms of 
shocks. We leave to future research discussion of modelling underpinning shocks to cli-
mate variability and how they can impact GDP depending upon the source of shock. Addi-
tionally, our study fails to consider additional external factors, such as policy responses, 
adaptive strategies, or technological advancements, which have the potential to either miti-
gate or exacerbate the effects of climate risks. Hence, it is plausible that dynamic models 
that effectively capture the dynamic nature of the relationship between climate risk and 
macroeconomic activity, taking into consideration the temporal changes in climate pat-
terns, economic conditions, and policies, may provide valuable insights into this phenom-
enon. This could also encompass the examination of policy measures, international coop-
eration, and their resultant effects.
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