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Abstract
A key concern for property owners about the set up of proximate wind turbines is the 
potential devaluation of their property. However, there is no consensus in the empirical 
hedonic literature estimating this price-distance relationship. It remains unclear if the prox-
imity to wind turbines reduces, increases, or has no significant effect on property values. 
This article addresses this ambiguity, combining 720 estimates from 25 hedonic pricing 
studies in a first comprehensive meta-analysis on this topic. Using Bayesian model averag-
ing techniques and novel publication bias correction methods, I calculate an average of 
the reported estimates that is free from misspecification and publication bias. In economic 
terms, I find an average reduction in property values of −0.68% for properties 1.89 miles 
away, which turns to zero beyond 2.8 miles. Next to publication selection, the studies’ abil-
ity to control for confounding factors such as pre-existing price differentials and spatial 
effects explains the variance in reported effect sizes.

Keywords Meta-analysis · Wind turbines · Property values · Hedonic pricing · Publication 
bias · Bayesian model averaging

1 Introduction

Annual global electricity generation from wind farms has grown steadily over the past 
decade(s) and is expected to continue to grow. For example, the International Energy 
Agency predicts that annual wind capacity additions will reach 210 GW in 2030, up from 
95 GW in 2021 (IEA 2022, 293). Obvious reasons include the low CO

2
 emission compared 

to fossil fuel-based generation, low operating costs, and reduced energy import dependen-
cies from the countries’ perspective. While these advantages can be perceived as valuable 
for society in general, wind farms are simultaneously sources of various negative externali-
ties (Zerrahn 2017; Sovacool et al. 2021). Residents in close proximity may particularly be 
affected by noises, shadow flicker, and visual deterioration of the landscape, which may 
result in negative welfare changes (Mattmann et al. 2016; Onakpoya et al. 2015; Liebich et 
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al. 2021). In this context, many hedonic pricing studies investigate if these externalities 
translate to price variations in property values proximate to wind farms. Notably, the 
empirical evidence is ambiguous, with many studies failing to find a significant (negative) 
effect on property values due to the presence of wind turbines (Parsons and Heintzelman 
2022; Dorrell and Lee 2020; Brinkley and Leach 2019). Furthermore, studies that find a 
significant effect show a large variance in its magnitude, mostly between −10% and 10% , 
but also with estimates well beyond this range. Given this ambiguity, it is of great interest 
for researchers, decision-makers, and property owners to understand whether and under 
which conditions wind turbines significantly affect local property values.

I address this open question by combining 720 estimates from 25 hedonic pricing stud-
ies estimating price-distance relationships for wind turbines and residential properties in 
the first comprehensive meta-analysis on this topic. Bayesian Model Averaging (BMA) 
techniques are used to identify sources of heterogeneity attributable to the data characteris-
tics of the primary studies and their ability to control for confounding factors. In addition, 
I apply a series of novel tests for publication selection bias that allow the calculation of a 
bias-corrected mean effect size.

Some authors contributing to this literature have already speculated about reasons for 
the significant differences across studies in terms of reported effect sizes. In particular, 
Hoen and Atkinson-Palombo (2016) argue that insignificant findings may reflect under-
powered studies, having access to only small samples of truly affected properties, i.e., 
few observations close to wind turbines. Accordingly, for a small effect size, the respec-
tive study would be unable to identify such an effect if it exists. There is also suggestive 
evidence that site conditions such as local opposition (Heintzelman et  al. 2017), degree 
of visibility (Sunak and Madlener 2016) or the number of turbines in proximity (Dröes 
and Koster 2016) can partly explain the studies’ differing findings. In excellent reviews, 
Parsons and Heintzelman (2022) and Möllney (2022) show that the econometric specifi-
cation (e.g., avoidance of omitted variables bias, treatment of endogeneity problems) and 
data characteristics (e.g., distance of treated properties, type of analysed property prices) 
differ across studies, potentially leading to contrasting results. Similarly, Möllney (2022) 
acknowledges the difficulties in comparing the empirical findings due to the diversity of 
employed metrics to measure wind turbine impacts. Parsons and Heintzelman (2022) also 
conduct what they call a “mini meta-analysis” as part of their qualitative review. That is, 
they calculate the simple mean effect size for different wind-turbine-to-property distances 
using 18 observations. They document −4.5% devaluation for houses at 1 km of distance, 
with the effect fading out after 4.5 kms. However, this finding should be interpreted with 
caution since they do not (i) correct for publication bias, (ii) include other control vari-
ables, (iii) give more weight to more precise estimates, and (iv) use only a subset of the 
available estimates. I address all of these issues in the methodological setup of this meta-
analysis, thus allowing to systematically investigate the existence of price effects of wind 
turbines on property values at the aggregate level. Building upon these lines of argumenta-
tion, I contribute to this literature (i) with a systematic assessment of the causes for effect 
size heterogeneity and (ii) by calculating an average effect size corrected for publication 
and misspecification bias.

The results do not confirm a substantial effect of the presence of wind turbines on resi-
dential property values. In fact, after correcting for publication and misspecification bias, 
the resulting effect size corresponds to a reduction of property values of −0.68% for prop-
erties 1.89 miles away, which turns zero beyond 2.8 miles of distance. The simple aver-
age of reported effect size instead would have indicated a decrease of property values by 
2.14% . Selective under-reporting of significant positive findings is responsible for a 22% 
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overestimation of the effect (based on the preferred publication bias correction method, 
RoBMA-PSMA, suggested by Bartoš et al. (2023)). Important study characteristics to avoid 
misspecification bias are, e.g., the accuracy of the distance calculation, usage of spatial 
controls, and reliance on a difference-in-difference estimation design.

The remainder of the paper is structured as follows. Section 2 summarizes the data col-
lection process and gives an overview of the resulting sample. Section 3 assesses the sever-
ity of publication selection bias. Section  4 explores the heterogeneity-explaining factors 
relying on BMA and presents the results. Section 5 discusses the findings and concludes. 
The study selection process and coding decisions are explained in detail in the appen-
dix. Finally, model diagnostics for BMA and results for alternative specifications are also 
reported in the appendix.

2  Data

The strategy to identify relevant studies followed the current guidelines for meta-analyses 
in economics (Havránek et al. 2020). I used a predefined search query with placeholders 
for “property values”, “wind turbines” and “hedonic pricing” to find relevant studies. I 
complemented the list with a forward- and backward search using citations and reference 
lists of already identified studies, respectively (see Table 4 for a list of search terms). For 
consideration, studies must use the hedonic pricing method to estimate a price-distance 
relationship for residential properties and wind turbines. Accordingly, I refrain from com-
bining estimates with different (i) underlying welfare measures (e.g., contingent valuation 
and hedonic pricing studies), (ii) wind turbine impact metrics (e.g., distance and view), 
or (iii) property types (e.g., residential properties and farmlands). In the appendix, I out-
line in more detail that these study selection criteria ensure a consistent set of effect size 
estimates that can reasonably be meta-analysed. There, I also summarize the study selec-
tion process (Fig. 6) and list the included studies (Table 5) with their details (Table 6) and 
excluded studies by reason for exclusion (Table 7). The resulting final dataset consists of 
720 observations from 25 studies. The search was conducted in December 2021 and docu-
mented using the reference management software Citavi. The data and code are avail-
able  via https:// doi. org/ 10. 17605/ OSF. IO/ UB37W.

All included studies rely on a semi-logarithmic functional form to elicit the price-dis-
tance relationship such that the reported distance coefficients represent semi-elasticities. 
Accordingly, these semi-elasticities serve as the dependent variable. They can be inter-
preted as the percentage change of residential property values at the average distance of a 
treated house.1

Figure 1 shows the distribution of estimates. Most estimates are negative but small in 
magnitude, with a mean of −2.15% and a median of −1.67% . Still, the range of estimates 
is substantial, with a minimum and maximum of −66% and +109% , respectively. Given 
the large variation, I exclude three outliers exceeding +100% and −50% . These are at the 

1 Here, the average distance of a treated house is 1.89 miles. Note, however, that the definition of treatment 
varies across studies. Some studies consider the announcement of a wind turbine as treatment, while others 
use the construction date (or both points in time). Similarly, the distance from a wind turbine, at which a 
house is no longer considered as treated, differs. These aspects are reflected in the selection of moderators, 
introduced in Sect. 4.1.

https://doi.org/10.17605/OSF.IO/UB37W


4 M. Schütt 

1 3

extreme ends of the effect size distribution, well beyond all other observations.2 The main 
results are not affected by using different outlier criteria or no outlier criterion at all, see 
Sect. 4.4. This discrepancy is also reflected in Fig. 2, in which the effect size estimates of 
each study are summarized in boxplots, ordered by the studies’ publication year. Clearly, 
the estimates vary considerably, both across and within studies. Additionally, there seems 
to be a trend toward more negative findings and more narrow confidence intervals over 
time. This might indicate, e.g., better data availability or more refined methodological 
choices in more recent studies (Hoen and Atkinson-Palombo 2016; Parsons and Heintzel-
man 2022).

3  Publication Bias

Publication selection bias commonly describes the distortion of a field of literature due to 
journals’ selection of studies or researchers’ selection of findings based on statistical preci-
sion, magnitude, direction of effect, or any combination thereof (Stanley and Doucouliagos 
2012). Accordingly, if researchers or editors expect the presence of wind turbines to either 
reduce or not affect property values, significantly positive estimates may not be selected 
for publication, leading to a distorted picture of the literature. Figure 3 shows a funnel plot 
where the effect size (horizontal axis) is set in relation to its precision = 1

SE
 (vertical axis).3 

With no publication bias present, the most precise estimates at the top should mirror the 
genuine magnitude of the effect. A symmetric dispersion around this true mean should 
result in lower precision levels. Here, the most precise observations have a corresponding 
effect size close to zero. There is a tendency for relatively more negative results to be found 
for more imprecise estimates, i.e., moving down the inverted funnel. This is a first indica-
tion that significant positive findings of wind turbine effects on property values may be 
under-represented due to publication bias.4

Next to visual tools, many more formal methods exist designed to detect and correct 
publication bias. Simulation studies show that there is no single best method, but instead 
indicate that the performance of these methods depends on the magnitude of the effect 
size, level of heterogeneity in the literature as well as severity and type of publication bias 
(Alinaghi and Reed 2018; Hong and Reed 2021). Here, I employ the recently developed 
R package RoBMA-PSMA that combines the competing techniques (Bartoš  et al. 2023). 
This method is beneficial for two main reasons. First, it aims for objectivity by testing 36 
competing models simultaneously, weighting the result by the fit to the data using BMA. 
Second, it captures uncertainty about the publication selection mechanism by includ-
ing models assuming reporting based on p-values (so-called selection models) and those 
assuming selection based on significance and effect magnitude. Bartoš et al. (2023) show 

2 This changes the mean and median only little ( −2.14% and −1.58%).
3 There are several options for the choice of precision measure used on the vertical axis, as well as the 
style of the funnel plot (e.g., including pseudo 95% confidence intervals, using contour-enhanced funnel 
plots), see Sterne and Egger (2001) for a detailed discussion. Here, 1

SE
 is used because the resulting funnel 

plot gives a clear visual impression of the relationship between effect size and precision. An alternative 
contour-enhanced funnel plot using SE as the precision measure gives a similar impression (see Fig. 9 in the 
appendix).
4 This interpretation is supported by a histogram of t-values shown in Fig. 8, which shows a sharp decrease 
in the number of reported estimates in the significant positive range.
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that their approach outperforms most conventional techniques but also advise to comple-
menting their method with other concepts. Accordingly, I also employ other techniques 
shown to perform well under conditions frequently met in empirical economic settings, i.e., 
multiple estimates per study, omitted variables bias, or a continuous dependent variable 
(Alinaghi and Reed 2018; Bom and Rachinger 2019). This encompasses the Endogenous 
Kink method introduced by Bom and Rachinger (2019),5 the selection model advocated by 
Andrews and Kasy (2019) and the p-uniform* method by van Aert and van Assen (2023). 
Finally, I also consider methods that only use a subset of the available observations to cal-
culate a bias-corrected mean effect size (and are hence not covered by the RoBMA-PSMA 
framework). This includes the stem-based method introduced by Furukawa (2019) that is 
based on the funnel plot logic and the “Top Ten”, which uses only the ten percent most 
precise observations (Stanley et al. 2010).

The results of the tests for publication bias are summarized in Table 1. Regardless of the 
chosen method, the corrected effect size is considerably smaller (in absolute terms) than 
the unweighted mean (OLS estimate) ( −0.06 to −1.76 vs. −2.14 ), confirming publication 
bias. This is also in line with the visual impression gained from the funnel plot depicted 
in Fig. 3. Stanley and Doucouliagos (2015) show that with publication bias present, the 
unrestricted weighted least squares (WLS) estimator, i.e., using inverse-variance weights, 
gives a more realistic representation of the true unconditional mean and I report it for com-
pleteness. Indeed, with −0.38 this simple estimator is within the range of bias-corrected 
means. With RoBMA-PSMA, the corrected mean effect size is −1.67 . This corresponds to 
an absolute reduction in effect size magnitude by about 22% compared to the unweighted 
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Fig. 1  Histogram of effect size estimates after removing three outliers exceeding +100% and −50% , respec-
tively. The solid vertical line depicts the sample mean

5 The Endogenous Kink method is a non-linear extension to the popular PET-PEESE framework, which 
formalizes the funnel plot relationship introduced by Stanley and Doucouliagos (2012). Since it reduces to 
the PET-PEESE method as a special case, I do not consider the latter technique individually.
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Westlund & Wilhelmsson (2022), N=54
Westlund & Wilhelmsson (2021), N=23

Joly & De Jaeger (2021), N=59
Jarvis (2021), N=40

Eichholtz et al. (2021), N=20
Dröes & Koster (2021), N=11

Guzman (2020), N=2
Skenteris et al. (2019), N=4
Frondel et al. (2019), N=63

Vyn (2018), N=73
Sunak & Madlener (2017), N=15

Carr (2017), N=18
Hoen & Atkinson-Palombo (2016), N=26

Dröes & Koster (2016), N=47
Hoen et al. (2015), N=32

Vyn & McCullough (2014), N=3
Lang et al. (2014), N=76

Gorelick (2014), N=20
Atkinson-Palombo & Hoen (2014), N=2

Heintzelman & Tuttle (2012), N=38
Camplair (2012), N=12

Hoen et al. (2011), N=36
Carter (2011), N=12

Hinman (2010), N=18
Hoen et al. (2009), N=13

Fig. 2  Boxplots of effect sizes estimates for every primary study after removing three outliers exceeding 
+100% and −50% , respectively. Studies are sorted in ascending order by publication year. The boxes denote 
the inter-quartile range (P75–P25), with the mean shown as a solid vertical line. Whiskers indicate the dis-
tance up until 1.5 times the IQR starting from the P25 and P75, if applicable. Dots reflect outlying observa-
tions within a study. The solid vertical line depicts the sample mean
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Fig. 3  Funnel plot  relating effect size estimates to their reported precision ( 1
SE

 ). Without publication bias 
the plot should take the shape of an inverted funnel. The most precise estimates are omitted for the ease of 
exposition but included in all calculations
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mean.6 Turning to the other methods, the p-uniform* estimate is of similar magnitude 
( −1.76 ), while the Andrews and Kasy (2019) and the Endogenous Kink method correct 
more strongly ( −0.29 and −0.16).7 The remaining methods that only use small subsets of 
the most precise observations similarly induce a strong correction of the mean effect size 
(“Top Ten”: −1.03 ; Furukawa: −0.06 ). This is no surprise, considering that the most pre-
cise estimates are clustered around zero in this case.

This section confirms that publication bias is present in the hedonic literature on wind 
turbines and proximate property values. The unweighted mean of −2.14% is inflated, and 
the bias-corrected effect size is likely around −1.67%.

In economic terms, the range of estimates translates to a slight decrease in property 
values on average if a wind turbine is present. None of the estimates, however, take into 
account the large differences in reported effect size magnitude within and across studies. 
This could be problematic for two main reasons. First, other sources of bias linked to meas-
urement error or misspecification in the primary studies could systematically influence the 
magnitude of the reported effect. This could lead to an over- or underestimated mean effect 
size if only publication bias is corrected. Second, if study design choices are systematically 
related to the likelihood of publication or the precision of the estimates, the supposed pres-
ence of publication bias could, in fact, mirror true heterogeneity. Accordingly, I explore the 
drivers of the observed heterogeneity in the next section.

4  Heterogeneity

The goals of this section are threefold: first, to find elements of study design that are 
accountable for the observed effect size heterogeneity; second, to establish if publication 
bias can still be confirmed even with other controls for study differences in place; and third, 
to calculate the expected effect of wind turbines on property values corrected for misspeci-
fication and publication bias.

Table 1  Mean effect size without and with correction for publication bias

***, ** and * denote statistical significance at the 0.01, 0.05 and 0.1 level, respectively

No correction Correction with full sample Correction with 
reduced sample

OLS WLS RoBMA A&K p-uniform* End. Kink Furukawa Top Ten

Mean effect
size

−2.14*** −0.38*** −1.67*** −0.29*** −1.76** −0.16** −0.06 −1.03***
(0.37) (0.06) (0.30) (0.21) (0.83) (0.06) (0.35) (0.17)

N 717 717 717 717 717 717 27 72

6 The RoBMA-PSMA package does not calculate significance levels but Bayes factors in determining the 
likelihood of the effect being different from zero. Here, with BF = 206 there is a strong indication of the 
presence of an effect, following the classification of Lee and Wagenmakers (2014, 105).
7 When applying the Andrews and Kasy (2019) approach, researchers have some degrees of freedom. 
Here, I assume a one-sided selection, i.e., under-reporting of significant positive findings that would signal 
increases in property values. Assuming a two-sided selection, i.e., underreporting of insignificant findings, 
changes the effect size estimate to −1.34 , which is close to the RoBMA-PSMA estimate.
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4.1  Moderator Selection

A rich set of 42 moderators was coded to identify relevant dimensions in which the selected 
studies differ. The selection of moderators is based on recommendations in the general 
meta-analytic literature (Stanley and Doucouliagos 2012; Havránek et al. 2020), existing 
reviews (Parsons and Heintzelman 2022; Möllney 2022; Brinkley and Leach 2019) and 
study differences becoming apparent during the data-coding process.8 The moderators are 
grouped into four categories reflecting the primary studies’ (1) data characteristics, (2) 
control variables, (3) specification of the wind turbine impact, and (4) publication-related 
information. I summarize the variables in Table 2.

4.1.1  Data Characteristics

The primary studies included in the analysis examine very different samples of properties 
and wind turbines to estimate the wind turbine effect. Accordingly, I define ten variables 
controlling for data characteristics. For an accurate calculation of the distance between 
wind turbine(s) and properties, exact coordinates are required. Two variables control if 
more coarse data, e.g., using wind farm or postcode centroids lead to significantly different 
results in the reported effect size (Wind coordinates, Property coordinates). Similarly, I 
include a variable reflecting the reported mean distance of treated properties from the wind 
turbine site to test if the price-distance relationship experiences a distance decay (Dis-
tance). Turning to the sampled properties, some studies have access to actual sales trans-
action data, while others rely on asking- or assessed prices. Likewise, while most studies 
analyse effects on already built properties, some focus on residential land. The dummies 
Sales and Res. land reflect these differences. Next, I control for the sample size and the 
time span of the sampling period (Sample size, Sample duration). Finally, three moderators 
reflect the general context in which the data were sampled, i.e., a dummy controls if the 
study was conducted in the USA or elsewhere (USA), and two variables reflect the share 
of wind energy (Share wind) and share of renewables (Share renewables) in the respective 
country’s electricity mix at the midpoint of the studies’ sampling period, respectively.

4.1.2  Control Variables

Although the hedonic pricing framework does not define any exact set of variables to be 
included in the analysis, omission of relevant control variables may lead to misspecified 
models and, in turn, to biases in the reported effect sizes (Wooldridge 2010; Phaneuf and 
Requate 2016). Consequently, the dummy variables Structure var, Neighbourhood var, 
Access and Demoecon capture if studies control for characteristics of the sampled houses 
(e.g., age, number of rooms), the neighbourhood (e.g., road noise, prison presence), access 
options (e.g., distance to central business district or highway), or socio-economic factors 
(e.g., income levels, crime rate, population density), respectively. Similarly, the estimated 
wind turbine effect may differ for studies that control for other proximate (dis-)amenities 
(e.g., distance to a park, beach, industrial facility or landfill). The dummies Oth amen and 

8 Following the guidelines referred to in Havránek et al. (2020), a second coder separately coded a sub-
stantial proportion of the final dataset, i.e., 12 studies or about 50% . Reassuringly, coding ambiguities were 
attributable to the varying levels of reporting detail in the primary studies and were reconciled.



9Wind Turbines and Property Values: A Meta-Regression Analysis  

1 3

Ta
bl

e 
2 

 D
efi

ni
tio

n 
an

d 
su

m
m

ar
y 

st
at

ist
ic

s o
f v

ar
ia

bl
es

M
od

er
at

or
s

D
efi

ni
tio

n
N

M
ea

n
SD

M
in

M
ax

W
in

d 
eff

ec
t

C
ha

ng
e 

in
 p

ro
pe

rty
 v

al
ue

 (%
)

71
7

−
2.

14
9.

99
−

45
.6

6
54

.5
0

D
at

a 
ch

ar
ac

te
ri

st
ic

s
 

W
in

d 
co

or
di

na
te

s
=

1 
if 

ex
ac

t c
oo

rd
in

at
es

 o
f w

in
d 

tu
rb

in
es

 a
re

 u
se

d 
to

 c
al

cu
la

te
 d

ist
an

ce
s, 

0 
el

se
71

7
0.

98
0.

15
0

1
 

Pr
op

er
ty

 c
oo

rd
in

at
es

=
1 

if 
ex

ac
t c

oo
rd

in
at

es
 o

f t
he

 p
ro

pe
rti

es
 a

re
 u

se
d 

to
 c

al
cu

la
te

 th
e 

di
st

an
ce

, 0
 e

ls
e

71
7

0.
90

0.
30

0
1

 
Sa

le
s

=
1 

if 
ac

tu
al

 sa
le

s p
ric

e 
da

ta
 w

er
e 

us
ed

, 0
 e

ls
e

71
7

0.
90

0.
30

0
1

 
Re

s. 
la

nd
=

1 
if 

th
e 

an
al

ys
ed

 p
ric

e 
re

fe
rs

 to
 th

e 
la

nd
 p

ar
ce

l w
ith

ou
t t

he
 b

ui
ld

in
g,

 0
 e

ls
e

71
7

0.
02

0.
14

0
1

 
D

ist
an

ce
M

ea
n 

di
st

an
ce

 o
f t

re
at

ed
 p

ro
pe

rti
es

 in
 m

ile
s

71
7

1.
90

1.
93

0.
13

10
.5

6
 

Sa
m

pl
e 

du
ra

tio
n

C
ou

nt
 o

f y
ea

rs
 th

e 
stu

dy
’s

 sa
m

pl
e 

sp
an

s
71

7
12

.7
2

7.
37

0
34

.0
0

 
Sa

m
pl

e 
to

ta
l

To
ta

l n
um

be
r o

f o
bs

er
va

tio
ns

 in
 th

e 
es

tim
at

e’
s c

or
re

sp
on

di
ng

 re
gr

es
si

on
 (i

n 
lo

gs
)

71
7

10
.6

7
2.

65
3.

22
15

.9
2

 
Sa

m
pl

e 
st

ag
e*

N
um

be
r o

f o
bs

er
va

tio
ns

 a
t t

he
 c

on
str

uc
tio

n 
st

ag
e 

to
 w

hi
ch

 th
e 

es
tim

at
e 

re
fe

rs
 (i

n 
lo

gs
)

45
7

9.
00

2.
64

3.
22

13
.8

5
 

Sa
m

pl
e 

tre
at

ed
*

N
um

be
r o

f t
re

at
ed

 o
bs

er
va

tio
ns

 to
 w

hi
ch

 th
e 

es
tim

at
e 

re
fe

rs
 (i

n 
lo

gs
)

39
3

6.
57

3.
40

0.
69

12
.5

8
 

Sa
m

pl
e 

1 
m

ile
*

To
ta

l n
um

be
r o

f o
bs

er
va

tio
ns

 w
ith

in
 1

 m
ile

 o
f a

 tu
rb

in
e 

in
 th

e 
stu

dy
 (i

n 
lo

gs
)

57
0

8.
11

3.
13

2.
08

13
.2

1
 

PC
 1

 m
ile

*
N

um
be

r o
f o

bs
er

va
tio

ns
 w

ith
in

 1
 m

ile
 a

nd
 a

fte
r c

on
str

uc
tio

n 
(in

 lo
gs

)
46

2
7.

39
2.

85
2.

40
12

.2
2

 
Tu

rb
in

es
*

N
um

be
r o

f w
in

d 
tu

rb
in

es
59

6
53

91
.3

6
10

43
9.

34
1

40
,0

00
 

H
ei

gh
t*

A
ve

ra
ge

 h
ub

 h
ei

gh
t o

f t
he

 tu
rb

in
e(

s)
 in

 m
et

er
s

42
1

80
.1

9
14

.7
1

59
.5

0
10

4.
55

 
C

ap
ac

ity
*

A
ve

ra
ge

 in
st

al
le

d 
ca

pa
ci

ty
 o

f t
he

 tu
rb

in
e(

s)
 in

 M
W

44
9

1.
56

0.
67

0.
76

3.
00

 
Fa

rm
s*

N
um

be
r o

f d
ist

in
ct

 w
in

d 
fa

rm
s

46
1

18
0.

30
49

4.
07

1
17

75
 

N
at

io
na

l*
=

1 
if 

th
e 

stu
di

ed
 p

ro
pe

rti
es

 a
re

 d
ist

rib
ut

ed
 n

at
io

nw
id

e,
 0

 e
ls

e
71

7
0.

49
0.

50
0

1
 

U
SA

=
1 

if 
stu

di
ed

 p
ro

pe
rti

es
 a

re
 lo

ca
te

d 
in

 th
e 

U
SA

, 0
 e

ls
e

71
7

0.
11

0.
31

0
1

 
Sh

ar
e 

re
ne

w
ab

le
s

Sh
ar

e 
of

 re
ne

w
ab

le
s i

n 
na

tio
na

l e
le

ct
ric

ity
 g

en
er

at
io

n 
(%

) i
n 

th
e 

m
id

-y
ea

r o
f t

he
 st

ud
y’

s d
at

a
71

7
19

.4
5

20
.5

9
1.

13
59

.8
8

 
Sh

ar
e 

w
in

d
Sh

ar
e 

of
 w

in
d 

en
er

gy
 in

 n
at

io
na

l e
le

ct
ric

ity
 g

en
er

at
io

n 
(%

) i
n 

th
e 

m
id

-y
ea

r o
f t

he
 st

ud
y’

s d
at

a
71

7
2.

30
3.

06
0.

08
9.

91
C

on
tro

l v
ar

ia
bl

es
 

St
ru

ct
ur

e 
va

r
=

1 
if 

str
uc

tu
ra

l p
ro

pe
rty

 c
ha

ra
ct

er
ist

ic
s a

re
 u

se
d,

 0
 e

ls
e

71
7

0.
94

0.
24

0
1

 
N

ei
gh

bo
ur

ho
od

 v
ar

=
1 

if 
ne

ig
hb

ou
rh

oo
d-

re
la

te
d 

pr
op

er
ty

 c
ha

ra
ct

er
ist

ic
s a

re
 u

se
d,

 0
 e

ls
e

71
7

0.
82

0.
38

0
1

 
A

cc
es

s
=

1 
if 

ac
ce

ss
 o

pt
io

ns
 (e

.g
., 

hi
gh

w
ay

, c
en

tra
l b

us
in

es
s d

ist
ric

t) 
ar

e 
co

nt
ro

lle
d 

fo
r, 

0 
el

se
71

7
0.

54
0.

50
0

1
 

O
th

 d
is

am
en

=
1 

if 
ot

he
r d

is
am

en
iti

es
 a

re
 c

on
si

de
re

d 
in

 th
e 

re
gr

es
si

on
 (e

.g
., 

in
du

str
ia

l f
ac

ili
ty

, l
an

dfi
ll)

, 0
 e

ls
e

71
7

0.
33

0.
47

0
1

 
O

th
 a

m
en

=
1 

if 
ot

he
r a

m
en

iti
es

 a
re

 c
on

si
de

re
d 

in
 th

e 
re

gr
es

si
on

, (
e.

g.
, p

ar
k,

 b
ea

ch
), 

0 
el

se
71

7
0.

47
0.

50
0

1
 

D
em

oe
co

n
=

1 
if 

so
ci

o-
ec

on
om

ic
 fa

ct
or

s (
e.

g.
, i

nc
om

e,
 p

ov
er

ty
, c

rim
e 

ra
te

) a
re

 c
on

tro
lle

d 
fo

r, 
0 

el
se

71
7

0.
09

0.
29

0
1

 
H

PI
=

1 
if 

a 
ho

us
in

g 
pr

ic
e 

in
de

x 
is

 u
se

d 
to

 a
cc

ou
nt

 fo
r t

im
e 

tre
nd

s, 
0 

el
se

71
7

0.
07

0.
26

0
1



10 M. Schütt 

1 3

SD
 st

an
da

rd
 d

ev
ia

tio
n.

 *
D

en
ot

es
 v

ar
ia

bl
es

 th
at

 a
re

 o
nl

y 
us

ed
 in

 ro
bu

stn
es

s c
he

ck
s

Ta
bl

e 
2 

 (c
on

tin
ue

d)

M
od

er
at

or
s

D
efi

ni
tio

n
N

M
ea

n
SD

M
in

M
ax

 
Ti

m
e 

du
m

m
y

=
1 

if 
a 

du
m

m
y 

is
 u

se
d 

to
 a

cc
ou

nt
 fo

r t
im

e 
tre

nd
s, 

0 
el

se
71

7
0.

53
0.

50
0

1
 

O
ne

 p
er

io
d

=
1 

if 
no

 c
on

tro
l f

or
 ti

m
e 

co
nt

ro
l i

s n
ee

de
d 

(o
ne

-p
er

io
d 

da
ta

), 
0 

el
se

71
7

0.
01

0.
12

0
1

 
D

ID
=

1 
if 

a 
di

ffe
re

nc
e-

in
-d

iff
er

en
ce

 d
es

ig
n 

is
 u

se
d,

 0
 e

ls
e

71
7

0.
65

0.
48

0
1

 
Sp

at
ia

l
=

1 
if 

a 
co

nt
ro

l f
or

 u
no

bs
er

ve
d 

sp
at

ia
l f

ac
to

rs
 is

 in
cl

ud
ed

 (e
.g

., 
sp

at
ia

l fi
xe

d 
eff

ec
ts

, r
ep

ea
t s

al
es

 a
pp

ro
ac

h)
, 0

 e
ls

e
71

7
0.

97
0.

16
0

1
 

O
LS

=
1 

if 
O

LS
 is

 u
se

d 
fo

r e
sti

m
at

io
n,

 0
 e

ls
e

71
7

0.
74

0.
44

0
1

W
in

d 
tu

rb
in

e 
im

pa
ct

 
D

ist
 b

in
ar

y
=

1 
if 

di
st

an
ce

 v
ar

ia
bl

e 
is

 b
in

ar
y 

in
ste

ad
 o

f c
at

eg
or

ic
al

, 0
 e

ls
e

71
7

0.
24

0.
43

0
1

 
O

th
er

 w
in

d
=

1 
if 

ot
he

r w
in

d 
tu

rb
in

e 
re

la
te

d 
va

ria
bl

es
 a

re
 u

se
d 

(e
.g

., 
vi

ew
, n

um
be

r o
f t

ur
bi

ne
s)

, 0
 e

ls
e

71
7

0.
25

0.
43

0
1

 
A

nn
ou

nc
em

en
t e

ffe
ct

=
1 

if 
w

in
d 

tu
rb

in
e 

an
no

un
ce

m
en

t i
ns

te
ad

 o
f c

on
str

uc
tio

n 
is

 c
on

si
de

re
d,

 0
 e

ls
e

71
7

0.
28

0.
45

0
1

 
A

E 
an

d 
C

E
=

1 
if 

an
tic

ip
at

io
n 

an
d 

co
ns

tru
ct

io
n 

eff
ec

t a
re

 b
ot

h 
co

nt
ro

lle
d 

fo
r i

n 
th

e 
sa

m
e 

re
gr

es
si

on
, 0

 e
ls

e
71

7
0.

53
0.

50
0

1
 

A
dj

us
tm

en
t c

on
tro

l
=

1 
if 

pr
ic

e 
ad

ju
stm

en
t o

ve
r t

im
e 

af
te

r c
on

str
uc

tio
n 

is
 c

on
tro

lle
d 

fo
r i

n 
th

e 
sa

m
e 

re
gr

es
si

on
, 0

 e
ls

e
71

7
0.

06
0.

23
0

1
 

Po
ol

ed
=

1 
if 

w
in

d 
tu

rb
in

es
 si

te
s a

re
 p

oo
le

d 
in

to
 o

ne
 im

pa
ct

 v
ar

ia
bl

e,
 0

 e
ls

e
71

7
0.

93
0.

25
0

1
 

O
ne

 si
te

=
1 

if 
on

ly
 o

ne
 w

in
d 

tu
rb

in
e 

si
te

 is
 a

na
ly

se
d,

 0
 e

ls
e

71
7

0.
06

0.
23

0
1

Pu
bl

ic
at

io
n

 
SE

St
an

da
rd

 e
rr

or
 o

f e
ffe

ct
 si

ze
71

7
4.

29
6.

82
0.

02
76

.5
4

 
Si

g
=

1 
if 

’ß
’ i

s s
ig

ni
fic

an
t (

up
 to

 a
 p

-v
al

ue
 o

f 0
.1

), 
0 

el
se

71
7

0.
47

0.
50

0
1

 
Re

vi
ew

ed
=

1 
if 

pu
bl

is
he

d 
in

 a
 p

ee
r-r

ev
ie

w
ed

 jo
ur

na
l, 

0 
el

se
71

7
0.

65
0.

48
0

1
 

C
ita

tio
ns

*
M

ea
n 

of
 a

nn
ua

l c
ita

tio
ns

 (i
n 

lo
gs

)
71

7
1.

26
1.

72
−

4.
09

3.
12

 
Im

pa
ct

*
Re

cu
rs

iv
e 

di
sc

ou
nt

ed
 R

eP
Ec

 im
pa

ct
 fa

ct
or

 o
f t

he
 jo

ur
na

l o
r s

er
ie

s
71

7
0.

12
0.

17
0

0.
70

 
Ye

ar
 p

ub
lis

h
Ye

ar
 in

 w
hi

ch
 th

e 
stu

dy
 w

as
 p

ub
lis

he
d

71
7

20
16

.8
4

3.
73

20
09

20
22

 
Pr

ec
is

io
n 

se
t

=
1 

if 
pr

ec
is

io
n 

w
as

 se
t b

y 
m

et
a-

an
al

ys
t, 

0 
el

se
71

7
0.

15
0.

35
0

1



11Wind Turbines and Property Values: A Meta-Regression Analysis  

1 3

Oth disamen reflect this possibility. Furthermore, some studies can address the endogeneity 
problem using a difference-in-difference design (Kuminoff et al. 2010; Bishop et al. 2020; 
Greenstone and Gayer 2009), i.e., taking advantage of the information on prices before and 
after treatment (temporal variation) as well as on prices of proximate and distant properties 
(spatial variation). This type of study can account for pre-existing price differentials and 
frequently interpret the estimated coefficient as a causal price change due to the presence of 
proximate wind turbines. Accordingly, I include the dummy DID to differentiate DID stud-
ies from those with a standard hedonic pricing framework.9 Moreover, the hedonic pric-
ing literature has a consensus that time-invariant unobservable spatial effects should be 
reflected in the econometric specification for proper identification (Parsons and Heintzel-
man 2022). Accordingly, I control if the omission of spatial controls results in changes in 
reported effect sizes using the dummy variable Spatial. Finally, the moderator OLS distin-
guishes studies using ordinary least squares from those with other estimation approaches 
(e.g., instrumental variables or maximum likelihood).

4.1.3  Specification of Wind Turbine Impact

The chosen econometric specification of the wind turbine impact may influence the effect 
size. Accordingly, I distinguish specifications with one treatment zone from those with sev-
eral (Dist binary). Similarly, I test if the consideration of additional wind-turbine-impact 
variables, such as the number of turbines or the degree of visibility next to the distance 
variable leads to differences in the estimated effect (Other wind). Furthermore, three dum-
mies test the influence of differences in the definition of the treatment period. First, I dis-
tinguish if the estimated effect size refers to the announcement or the construction date of 
a wind turbine (Announcement effect). Second, some studies consider both announcement 
and construction date in their econometric specification, while others define treatment for 
only one point in time (AE and CE). Finally, in a few cases, authors test if the effect size 
adjusts over time, mirroring a habituation effect (Adjustment control).

4.1.4  Publication

Taking the presence of publication bias into account, I include three variables to test 
if it can still be confirmed when the controls for heterogeneity introduced above are in 
place. This includes the standard error of the reported coefficient (SE), a dummy signal-
ling its significance (Sig), and a variable reflecting peer-review status in a scientific jour-
nal (Reviewed). Including the standard error formalizes the funnel plot logic on which the 
methods by Furukawa (2019) and Bom and Rachinger (2019) are based. The significance 
dummy mirrors selection based on p-values (Andrews and Kasy 2019; van Aert and van 
Assen 2023). The peer-review control captures two aspects. First, it should reflect some 

9 Parsons and Heintzelman (2022) note that concerns about biases in estimating treatment effects have been 
raised when treatments are staggered over time (de Chaisemartin and D’Haultfoeuille 2020, 2022; Steiger-
wald et  al. 2021). Since most sampled studies pool observations from different wind farms with varying 
corresponding construction dates, treatments are clearly staggered over time in this literature. I am aware of 
only one study (Möllney 2022) that explicitly considers this methodological aspect. However, this Master’s 
thesis could not be considered for the meta-sample as distance coefficients were not estimated. Jarvis (2021) 
and Dröes and Koster (2016) are the only included studies that approach this issue using an event study 
design. Jarvis (2021) states, however, that this is only a partial solution to the problem of staggered treat-
ments.
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particularities of the studies linked to their quality not captured by the variables introduced 
above. Second, since the peer-review process critically examines, e.g., the methodological 
choices or econometric specification and other decisions made by the respective authors, 
this process may have induced changes in the reported results. Thus, this dummy mod-
erator measures the magnitude of another potential facet of publication selection. Next, 
I include the publication year to account for time-trend effects (Year publish). Finally, in 
some cases, the standard error was not reported. If other precision measures were available 
instead (e.g., t-value or p-value), they were converted accordingly (see also the detailed 
explanation on the standardization of the precision measure in the appendix and Fig. 7). In 
other cases, however, only information on the significance level of an estimate was given. 
For these estimates, I set the precision at a conservative level. The dummy Precision set is 
included to assess the influence of this coding decision.

These moderators reflect the most prominent aspects of the included studies and, thus, 
account for key differences in data and methodology. Additional moderators, e.g., the 
level of urbanity in the area of the sampled properties, the degree of turbine visibility, or 
the presence of local opposition, were initially considered but dismissed. These variables 
were inconsistently defined and could, therefore, not be used in a comprehensive com-
parison across studies.10 Additionally, I tested the added value of finer-grained categori-
cal moderators instead of dummies (e.g., using different significance levels instead of a 
significance dummy). If there were no changes to the results, I opted for model parsimony 
using a dummy specification (see the code available via https:// doi. org/ 10. 17605/ OSF. IO/ 
UB37W  for details). Finally, for another subset of moderator candidates (i.e., wind tur-
bine and additional sample size characteristics), information was missing for several stud-
ies. I include these variables in Table 2 for completeness (marked with an asterisk). How-
ever, to conserve sample size, I conduct separate analyses with this type of moderator, see 
Sect. 4.4.

4.2  Estimation

The choice of the correct meta-analytic model is a context-specific and data-driven issue, 
which involves (at least) decisions on treating publication bias as well as meta-model 
and moderator selection. Publication bias has clearly been confirmed, and I subsequently 
defined several relevant variables that can be considered to address this issue in a regres-
sion framework. Regarding model selection, I adopt a standard multivariate meta-regres-
sion model in the baseline specification. That is

where each reported effect size i is put in relation to a set of k study characteristics used as 
moderators Mk,i , with �i reflecting unobserved heterogeneity assumed to be �i ∼ N(0, �2) 
and �i ∼ N(0, �̂2

i
) representing the error term. Equation 1 is estimated using WLS with ran-

dom effects weights, i.e., wi =
1

�̂2

i
+�2

=
1

ŜE2

i
+�2

 , where SEi is the standard error correspond-

ing to the reported effect size i. This gives greater weight to more precise observations in 

(1)wind effecti = �
0
+

K
∑

k=1

�k ∗ Mk,i + �i + �i i = 1, ...,N

10 One reviewer suggested a dummy moderator reflecting the market extent of the data and a journal qual-
ity indicator as additional moderators. However, due to coding ambiguities for these moderators, I refrain 
from using them in the main specification and instead report them in separate extensions to the baseline 
regression, see Table 12. For completeness, I include these moderators in Table 2.

https://doi.org/10.17605/OSF.IO/UB37W
https://doi.org/10.17605/OSF.IO/UB37W
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the dataset and addresses heteroscedasticity in the error term, which naturally occurs when 
combining estimates with different variances from several studies.11 I assess the effect of 
choosing this baseline specification on the results using a series of robustness checks, 
including different assumptions on the error term, weighting schemes, and data depend-
ency. The main results are unaffected by the model selection, as discussed in Sect. 4.4.

Finally, while all moderators introduced above may systematically influence the effect 
size, using all of them jointly in the regression may obscure true data patterns since some 
moderators will prove collinear in explaining wind turbine effects on property values. 
Accordingly, I use BMA to address model ambiguity. This technique does not require 
selecting one particular specification for the meta-regression.12 BMA has become a fre-
quently used tool in economics in general (Steel 2020) and meta-analysis in particular 
(Havranek et al. 2015; Matousek et al. 2022) to address model uncertainty. For a recent 
overview, see Steel (2020). The following brief description covers the basics of this tech-
nique and introduces relevant terms needed for inference in the subsequent analysis.

In BMA, all possible combinations of moderators are estimated in individual regres-
sions, and a weighted average of these models is constructed. The weights correspond to 
the posterior model probabilities. This measure reflects the model fit of individual speci-
fications conditional on the data and model parsimony, analogous to adjusted R2 in a fre-
quentist setting. The importance of each moderator is measured in terms of posterior inclu-
sion probability (PIP), i.e., the sum of all posterior model probabilities for all regressions 
that include the specific variable. This corresponds to statistical significance in frequentist 
econometrics (Steel 2020). Here, with 34 potential moderators with full observations 234 
models could be estimated. To reduce computational complexity, I follow common prac-
tice and rely on the Markov Chain Monte Carlo algorithm included in the bms package for 
R (Zeugner and Feldkircher 2015), which considers only the most promising models, i.e., 
those with the highest posterior model probabilities.13

BMA requires the selection of priors for the model space and regression coefficients (so-
called g-prior). Without sufficient knowledge about the coefficients’ magnitude, I choose 
the popular unit information prior as g-prior in the baseline specification, which performs 
well in simulations (Eicher et al. 2011). This prior assumes a zero mean for all coefficients 
and has about the same information content as one observation. For the model space, I use 
the uniform model prior (Eicher et al. 2011), which gives each model the same probabil-
ity. I assess the sensitivity of results using other common choices for the prior structure in 
robustness checks, see Sect. 4.4.

11 Note that there is some controversy regarding the decision for or against random effects weights in the 
literature. Stanley and Doucouliagos (2017) show in simulations that fixed effects estimation with inverse-
variance weights is, in general, preferable to random effects estimation if publication bias is present. In this 
study, however, the reported standard errors differ substantially in magnitude, resulting in excessive influ-
ence of very precise observations and barely any weight for imprecise ones in the fixed effects WLS frame-
work. Moreover, Irsova  et al. (2023) show that exaggerated precision of observations entering the meta-
sample leads to biases in fixed effects WLS estimation. Even excluding the most precise observations does 
not address the weighting problem adequately. Additionally, there are many observations with high and low 
precision simultaneously with no clear cut-off point. Accordingly, I decided to use the WLS-RE framework 
in the baseline setting, which offers more evenly distributed weights due to adding the parameter �2.
12 Another popular option is to follow a general-to-specific approach, which includes a step-wise exclusion 
of moderators that fail to fall within a certain significance threshold. While commonly applied, this tech-
nique is not statistically valid and may lead to omitting relevant moderators (Havranek et al. 2015).
13 I employ 50 million iterations and 10 million burn-ins to ensure convergence.
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4.3  Results

Figure 4 illustrates the results of BMA. The columns represent individual regression mod-
els sorted by their posterior model probability starting with the best model on the left. The 
vertical axis lists the variables in descending order, sorted by posterior inclusion probabil-
ity indicating importance. A blank cell indicates the variable is not included in the respec-
tive model. The red colour implies that the corresponding regression coefficient is positive, 
while a blue cell signals the negative sign of the coefficient. The best model in terms of 
posterior probabilities on the left includes twelve out of the 34 variables used in the analy-
sis. These variables are also the only ones with a posterior inclusion probability above 0.5. 
This threshold signals a non-negligible effect of these variables on the effect size in the 
classification of Kass and Raftery (1995). According to this rule of thumb, the moderators 
have a weak, positive, strong, or decisive impact of the effect size if the PIP lies between 
0.5 and 0.75, 0.75 and 0.95, 0.95 and 0.99, or 0.99 and 1, respectively. All other variables 
do not systematically influence the magnitude of the estimated effect.

Table 3 gives the corresponding numerical results of BMA14. The left panel reports the 
posterior mean, posterior standard deviation, and posterior inclusion probability for each 
explanatory variable’s regression coefficient. The right panel shows the results of a fre-
quentist WLS check, including the twelve variables with a posterior inclusion probability 
of 0.5 and higher. The estimated coefficients in both panels have the same sign and similar 
magnitudes as well as the same statistical importance (posterior inclusion probability in 
the BMA setting and its frequentist equivalent, p-value). Accordingly, the results of the 
frequentist check are consistent with the baseline BMA. In the following, I present results 
by moderator category.

4.3.1  Data Characteristics

The type and quality of the analysed data are central determinants of the estimated effect 
size. In particular, using exact wind turbine coordinates for the distance calculation seems 
essential to estimate the price-distance relationship reliably. Relying instead on, e.g., wind 
farm centroids induces imprecise estimation of this price-distance relationship, reflected 
in the large coefficient for this variable.15 Moreover, the type of analysed property price 
seems to be an important dimension of effect size variance. Using actual sales data instead 
of asking prices or assessed values is associated with significantly more positive findings 
of about 3.26 percentage points. One possible interpretation for this finding is that residents 
who decide to offer their property include a price discount in their asking price, mirroring 
the (subjectively perceived) lower value due to wind turbine presence. Similarly, assessors 
seem to devalue properties with a proximate wind turbine on average. Apparently, both 
types of property prices (asking and assessed) lead to inflated negative estimates of the 
effect of wind turbines compared to actual sales prices.16 The type of analysed property 
also seems to affect the effect size. Investigating the price effect on undeveloped residential 

14 The corresponding posterior model size distribution and convergence are shown in Fig. 10.
15 Note, however, that only 16 observations from two studies do not rely on exact wind turbine coordinates. 
Even though the finding is robust to including study-level fixed effects, see Sect. 4.4, I caution against gen-
eralizing this finding accordingly.
16 While this finding is robust in almost all sensitivity analyses, note that including study-level fixed effects 
leads to a loss in significance for this variable, see Sect. 4.4.
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land instead of residential buildings leads to more negative estimates on average ( −9.54 
percentage points). This may be due to the increased visibility of wind turbines when 
no structure has been built yet. Note, however, that only one study (Sunak and Madlener 
2017) contributing 15 observations relies on residential land values. Accordingly, I caution 
against generalizing this finding even though it remains robust to the inclusion of study-
level fixed effects. In line with expectations, I find that the values of properties that are 
located at greater distances from a wind turbine are less affected, i.e., for each additional 
mile of distance from a wind turbine, property values increase by 0.73 percentage points, 
ceteris paribus. Additionally, for countries with a comparatively higher share of wind 
power in their electricity mix (or renewable energies in general) when the respective study 
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Fig. 4  Model inclusion probability of moderators.  The response variable is the estimated price-distance 
coefficient relating wind turbines and property values. The columns represent individual models sorted by 
posterior model probability. The variables are depicted on the vertical axis, ordered by posterior inclusion 
probability in a descending array. A blue (red) cell indicates the inclusion of the variable in the model and 
that the estimated sign is positive (negative). A blank cell indicates that the variable is not included in the 
model. The uniform model prior and the unit information prior (Eicher et al. 2011) are used for the model 
space and the coefficients, respectively. Corresponding numerical results are presented in Table 3
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Table 3  Bayesian model averaging results

The response variable is the estimated price-distance coefficient relating wind turbines and property values. 
On the left, the BMA results are presented relying on the uniform model prior and the unit information 
prior (Eicher et al. 2011). The results for a frequentist WLS regression with the most important variables 
(PIP > 0.5 ) identified by BMA are shown on the right
SD standard deviation, PIP posterior inclusion probability, SE standard error

Moderators Bayesian model averaging Frequentist check (WLS)

Post. mean Post. SD PIP Coef SE p-value

Data characteristics
 Wind coordinates −14.956 2.803 1.000 −11.605 2.603 0.000
 Property coordinates 0.398 0.873 0.227
 Sales 3.262 1.153 0.955 3.543 0.817 0.000
 Res. land −9.541 3.924 0.931 −10.470 2.859 0.000
 Distance 0.730 0.089 1.000 0.721 0.083 0.000
 Sample duration −0.005 0.020 0.089
 Sample total 0.006 0.051 0.050
 USA 0.020 0.233 0.048
 Share renewables −0.059 0.013 0.997 −0.052 0.010 0.000
 Share wind −0.265 0.189 0.753 −0.301 0.100 0.003
Control variables
 Structure var −0.002 0.148 0.027
 Neighbourhood var 0.007 0.119 0.033
 Access 0.060 0.258 0.081
 Oth disamen 0.013 0.133 0.038
 Oth amen −0.728 0.756 0.550 −1.046 0.440 0.018
 Demoecon 4.651 0.775 1.000 5.068 0.697 0.000
 HPI 0.022 0.259 0.042
 Time dummy −0.012 0.170 0.042
 One period −0.296 2.196 0.040
 DID 2.429 0.826 0.963 2.327 0.538 0.000
 Spatial 11.365 1.075 1.000 11.172 1.058 0.000
 OLS −0.163 0.453 0.152
Wind turbine impact
 Dist binary 0.002 0.084 0.029
 Other wind 0.002 0.100 0.031
 Announcement effect −0.761 0.657 0.649 −1.050 0.398 0.009
 AE and CE −0.058 0.301 0.068
 Adjustment control −0.010 0.151 0.032
 Pooled −0.002 0.369 0.032
 One site −0.029 0.414 0.032
Publication
 SE 0.001 0.004 0.076
 Sig −2.459 0.371 1.000 −2.560 0.356 0.000
 Reviewed −0.133 0.437 0.119
 Year publish −0.001 0.001 0.206
 Precision set 0.008 0.168 0.035
Constant −0.063 1.000 −4.559 2.683 0.090

R
2 0.669

N 717 717
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took place, corresponding estimates document more negative effects on property values on 
average. One possible explanation might be that with an increased share, wind turbines are 
built closer to residential areas since more remote areas have already been used. Finally, 
neither the sampling duration, sample size nor the USA dummy influence the reported 
effect size systematically.

4.3.2  Control Variables

Using adequate control variables proves essential to disentangle the wind turbine effect 
from other price-influencing factors. In particular, studies lacking sufficient data to control 
for unobserved local price differentials using, e.g., spatial fixed effects or a repeat sales 
approach (Spatial), report more negative effect sizes (about eleven percentage points). 
Additionally, studies unable to control for pre-existing price-differentials via a difference-
in-difference design (DID) generally report more negative effect sizes, as expected (about 
−2.43 percentage points).17 Similarly studies accounting for socio-economic factors like 
income levels or population density (Demoecon) document less adverse wind turbine 
effects. Additionally, if other amenities like a park or beach are present, the estimated wind 
turbine effect is more negative on average (Oth amen). Apparently, having a living-quality 
enhancing element in close vicinity worsens the effect of wind turbines.18 Other modera-
tors reflecting the inclusion of control variables for house-structure characteristics, neigh-
bourhood aspects, infrastructure access options, or the presence of other disamenities do 
not systematically influence the wind turbine effect. Similarly, using estimation approaches 
different from OLS or the choice of approaches to control for time trends are not affecting 
the reported wind turbine impact systematically.

4.3.3  Specification of Wind Turbine Impact

Studies differ to a great extent in the way the wind turbine impact is specified. However, 
the reported effect size is largely unaffected by design choices in this dimension. The only 
exception is the dummy Announcement effect, which shows that choosing the announce-
ment date of a wind turbine as treatment results in more negative estimates compared to 
using the construction date.19 Using one treatment zone (Dist binary), i.e., a binary dis-
tance specification, does not lead to significantly different findings compared to categorical 
specifications with multiple treatment zones. In the same vein, controlling for announce-
ment and construction effect simultaneously (AE and CE) or for a potential habituation 
effect (Adjustment control) does not change the effect size systematically. Additionally, 
the standard approach to pool observations from different sites to increase sample size 
(Pooled) does not alter the reported estimates. Surprisingly, studies using other wind tur-
bine controls next to the distance variable (e.g., view, number of turbines) do not report 
estimates smaller in absolute terms, i.e., more positive price-distance effect sizes. This 
would be expected, assuming that other wind turbine controls take on some of the effect. 
Apparently, other moderators prove more important in explaining the effect size variance.

17 This finding is in line with an average location effect, i.e., a pre-existing price-differential, of −3.01% , 
which could be calculated for a subset of studies included in this meta-sample that reported this value.
18 Note, however, that this moderator loses importance if other prior settings are considered, see Sect. 4.4.
19 It is worth noting, however, that this dummy loses importance using other model priors, see Sect. 4.4.
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4.3.4  Publication

The combined findings for three variables show the existence and type of publication bias: 
First, I find that significant estimates of wind turbine effects (Sig) are more negative on 
average ( −2.46  percentage points). Second, the standard error (SE) is not a systematic fac-
tor in explaining the heterogeneity, i.e., selection does not take place based on effect size 
magnitude and its significance. Finally, studies that are published in peer-reviewed jour-
nals do not differ systematically in terms of effect size magnitude compared to unpublished 
manuscripts. Linking these findings, I conclude that publication bias is still confirmed with 
heterogeneity-explaining factors in place. The type of publication bias is a one-sided selec-
tion that disfavours significantly positive estimates of the impact of wind turbines on prop-
erty values.20 The publication year is not affecting the effect size. Reassuringly, the coding 
decision to set the precision level at specific values in cases when this metric is reported 
imprecisely (see again Fig. 7 for details) does not affect the estimated mean effect size.

4.4  Robustness Checks

The robustness of the results is assessed from several perspectives. First, I change the 
BMA prior settings: This includes (i) substituting the uniform model prior with the dilution 
prior, which allows for collinear moderators in each particular model (George 2010), (ii) 
combining the benchmark g-prior with the beta-binominal model prior (Fernandez et al. 
2001; Ley and Steel 2009), which implies equal prior probability for each model size. I 
compare the results in terms of variable importance in Fig. 5. I conclude that the results are 
largely insensitive to the selection of priors with the exceptions mentioned above for the 
dummies Announcement effect and Oth amen, which lose importance using the alternative 
priors. The corresponding numerical results are summarized in Table 8. They confirm the 
main findings.

Next, I run a series of frequentist robustness checks based on the set of moderators 
identified by the baseline BMA summarized in Table 3 with a PIP > 0.5 . I document the 
findings in the appendix. First, several moderators with missing observations that were not 
considered in the main specification are added in separate regressions, respectively. These 
moderators reflect wind turbine characteristics (average turbine height, installed capacity, 
number of turbines, number of wind farms) as well as additional aspects related to the 
property sample used in the respective primary study (number of treated properties, num-
ber of properties at the construction stage of the wind turbine(s) to which the coefficient 
refers, number of properties within one mile of a turbine, number of properties within one 
mile of a turbine after turbine construction). Both types of variables are suspected to influ-
ence the effect of wind turbines on property values, e.g., multiple turbines are presum-
ably related to more negative effects due to the increased likelihood of visual impacts or 
noises (Jensen et al. 2014; Jensen et al. 2018). At the aggregate level, however, these fac-
tors do not translate to economically significant changes in the reported effect size, see 
Table 9.21 Only one of the additionally included moderators is statistically significant, i.e., 
a larger number of treated properties analysed by the primary studies is associated with 

20 See also again the histogram of t-values shown in Fig. 8 that supports this interpretation.
21 The same pattern of insignificant changes is observed for the additional moderators with ambiguous cod-
ing (market extent of the primary data, journal quality indicator), see Table 12.
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more negative findings. Most of the other moderators are robust, with only minor changes 
that can be attributed to the reduced number of observations considered for these subsam-
ple regressions (717 in the baseline specification vs. 393 if the number of treated properties 
is included as moderator).

In a second set of specifications, I investigate the effect of different definitions of outli-
ers see Table 10. These cover the range from no outlier to the omission of 89 observa-
tions using the inter-quartile range criterion following Tukey (1977). The results are robust 
to changes in this dimension. Finally, in Table  11, I document the sensitivity of results 
to modifications of the meta-analytic model. This includes (i) changes to the estimation 
(using heteroscedasticity-robust standard errors and standard errors clustered at the study-
level), (ii) adding study-level fixed effects and, (iii) changing the weighting scheme to 
inverse-variance weights (WLS-FE), or using no weights (OLS) (reported for complete-
ness). While the main findings are confirmed, some points are worth noting. Altering the 
assumptions for calculating the error term does not change the results. Using OLS reduces 
the explanatory power as expected ( R2 drops from 0.669 to 0.218) and several variables 
lose significance. This again demonstrates the need to rely on WLS estimation in meta-
regression analysis. Instead, the choice of weights (fixed or random effects) is less critical, 
with only minor changes documented in the WLS-FE framework due to the unbalanced 
weighting scheme.

Finally, when study-level fixed effects are added, the dummies Sales and Oth amen lose 
significance. This is probably due to the fact that only a few studies do not use sales data 
and Oth amen already found to be less robust in other BMA settings. The change in sign 
and significance of Share renewables is due to the high share of renewables in Sweden of 
about 60% in the study period of Westlund and Wilhelmsson (2021, 2022). This is sig-
nificantly higher than the average of 19.45% in this meta-dataset. Omitting these observa-
tions results in coefficients similar to those in the baseline specification, but with a loss 
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of significance for Share renewables. I therefore caution against generalising the findings 
related to this variable.

4.5  Implied Effect Size

As the final step of the analysis, I compute the wind turbine impact on residential property 
values conditional on the absence of publication and misspecification bias. To this end, I 
calculate an average effect size that can be expected for a hypothetical study that follows 
“best practice” regarding methodology and data quality. Specifically, I use the results from 
the baseline BMA analysis and compute fitted values of the effect size when specific values 
for the variables with PIP > 0.5 are used. While arguably certain aspects of study design 
are preferable to others, any best-practice specification remains subjective by design. In 
order to increase plausibility, I follow a conservative calculation approach: When there is 
good reason to prefer a particular type of study design, I use the preferred value (e.g., I use 
1 for the dummy variable corresponding to DID design); otherwise, I use the respective 
study mean to reflect my indifference.

To permit an accurate distance calculation, I prefer exact wind turbine coordinates. Sim-
ilarly, I consider estimates from actual sales prices to reflect wind turbine impacts more 
realistically. For the distance of treated properties as well as Share wind and Share renew-
ables, I consider the respective study means (1.89 miles, 19.45% and 2.29% ). Similarly, 
I multiply the Res. land coefficient by 0.5 to reflect my indifference. In terms of control 
variables, I prefer rich data sets allowing to control for socioeconomic factors (Demoecon) 
and unobserved spatial factors (Spatial) and the application of a DID design (DID), which 
- all - may lead to misspecification bias if not accounted for. Instead, the presence of other 
amenities is not a study quality dimension, so I remain agnostic regarding this moderator. 
Finally, to correct for publication bias, I set the significance dummy to 0.

The calculated conditional effect size for this best practice specification is −0.68% . 
This is considerably smaller than the unconditional and only publication bias corrected 
mean effect size of −1.67% identified with RoBMA-PSMA in Table 1. This underlines the 
importance of correcting for misspecification bias to obtain a realistic effect size estimate. 
This conditional effect size is by definition sensitive to changes in the best practice speci-
fication. For example, setting the distance to a hypothetical value of 0 changes the effect 
size to −2.04% . For a distance of one mile, a reduction in property values of 1.31% can 
be expected. The effect becomes zero at a distance of 2.8 miles (i.e., 4.5 kms). This cor-
responds to a cut-off point often used in primary studies, beyond which no effect of wind 
turbines is suspected, and is identical to the result of the so-called “mini-meta-analysis” by 
Parsons and Heintzelman (2022). The effect of closer distances on the conditional effect 
size is also reflected in the subsample regressions shown in Table  12 that only include 
observations with a maximum distance of two and one mile, respectively.22 While the main 
results remain largely unaffected, the conditional effect size is more negative (but insignifi-
cant) at a distance of one mile.23

22 I would like to thank an anonymous reviewer for suggesting that the analysis be restricted to observa-
tions at small distances.
23 Two words of caution about these subsample results are in order. For very close distances, e.g. less than 
a mile, the number of available property transactions in the primary studies is often limited. For example, 
Carter (2011), Heintzelman and Tuttle (2012)  and Skenteris et  al. (2019) report fewer than 50 observa-
tions within this distance ring. While this is to be expected, it limits the reliability of the resulting price-
distance estimates. This limitation is then transferred to the meta-regression results. In addition, the sub-
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5  Discussion and Conclusion

This meta-study is the first to systematically assess the hedonic literature on the price-dis-
tance relationship between wind turbines and property values. It addresses the considerable 
ambiguity in empirical findings investigating its existence and magnitude. Combining 720 
observations from 25 studies using BMA and novel publication bias correction methods, I 
identify the most essential moderators explaining the observed heterogeneity and calculate 
an average effect size for this relationship.

Three main conclusions emerge from this study. First, selective under-reporting of sig-
nificant positive findings is responsible for overestimating the effect size by about 22% in 
absolute terms (correcting the unconditional mean effect size from −2.14% to −1.67%).24  
This is in line with ubiquitous publication bias in large parts of the economic literature 
(Bartoš et al. 2022). Second, next to selective reporting, various data characteristics (e.g., 
accuracy of the distance calculation, the distance of treated properties, type of property 
price data) as well as the ability to control for confounding factors, i.e., using a DID frame-
work for accounting for pre-existing price differentials and inclusion of appropriate con-
trols for socio-economic and unobservable spatial factors explain the considerable variation 
in empirical findings. Third, conditional on the absence of misspecification and publication 
bias, the effect size is −0.68% for properties 1.89 miles away when calculating a (subjec-
tive) best-practice average. For distances greater than 2.8 miles, there is no evidence of a 
wind turbine effect. These results are robust to changes in the BMA setup, meta-model 
specification, and outlier treatment.

These findings can inform future research and policymakers in at least three ways. First, 
future hedonic pricing studies on this subject should rely on a proper identification strategy 
using a DID design and a rich dataset with sufficient control variables. This ensures that 
pre-existing price differentials and other confounding factors are not wrongly attributed to 
the presence of wind turbines. Since the effect is small, studies should also rely on many 
observations, especially in close vicinity to wind turbines, to have enough statistical power 
to detect an effect if it exists in the respective setting. In addition, recent methodologi-
cal advances that reflect the staggered nature of the treatment, i.e., the fact that observa-
tions from different wind farms with different corresponding construction dates are pooled, 
should be adopted (de Chaisemartin and D’Haultfoeuille 2022, 2020; Steigerwald et  al. 
2021).

Second, future meta-analyses on this topic could construct alternative effect size vari-
ables from other impact measures used in this literature (e.g., view, continuous distance, 
or number of turbines within a certain distance) that could not be used in this study to 
ensure comparability. This would help to better understand what drives the occasionally 
documented negative effects of wind turbines on property values. In addition, future meta-
analyses focusing on other energy generation facilities (e.g. nuclear power plants or solar 
farms) could help to place the results of this study in the general context of the effects of 

24 Conversion of the effect size into monetary values would be informative, but is not feasible. This 
requires information on the average prices of the properties analysed in the primary studies and the base 
year to which these prices were converted for comparability. This type of information was only available for 
a small subset of observations, so calculating the effect size in monetary terms is not meaningful.

sample regression is based on a smaller set of observations, as fewer estimates are available at these closer 
distances.

Footnote 23 (continued)
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disamenities on property values. Compared to the few existing meta-analyses that consider 
other types of disamenity and focus on price-distance relationships, the effects of wind tur-
bines are in the lower range of estimates. Schütt (2021), for example, documents that prop-
erty values increase on average between 1.5% and 2.9% per mile of increased distance from 
waste sites. Lipscomb et al. (2013) report an increase in value of 6.1% per mile of increased 
distance for properties close to contaminated water bodies.

Finally, for policy makers, the aggregated evidence from the literature could indicate the 
appropriateness of financial compensation for homeowners with properties very close to 
wind turbines. Although the effect size is small on average, payments could be appropriate 
to acknowledge the “local cost, global benefit” (Frondel et al. 2019) situation of localised 
externalities from wind turbines. In addition, the calculated effect sizes for different dis-
tances can now be used by policy makers to make informed decisions about distance rules 
for wind turbines and residential areas that are appropriate to the individual context. As 
the announcement of future wind turbines appears to have a more negative effect than the 
actual construction, the results could also be used for early communication with local resi-
dents during the wind turbine siting process to reduce concerns. This early communication 
is also consistent with the results of a related meta-analysis on the non-market valuation of 
externalities of wind energy, which documents that visual deterioration in particular leads 
to welfare losses (Mattmann et al. 2016). Given the expected continued growth in global 
electricity generation from wind farms (IEA 2022), it is clearly in the general interest to 
increase public acceptance of wind turbines.

Appendix

Study Selection

For inclusion, studies had to fulfil the following requirements: First, I only considered stud-
ies that use the hedonic pricing method to estimate the relationship between property val-
ues and wind turbines. This excludes studies that investigate simple sales-date and sales-
price relationships (e.g., Sterzinger et  al. (2003); Baker (2021); Dupont and Etherington 
(2009)) as well as surveys (e.g., Khatri (2004); Hoen (2019)). Second, I restricted the 
meta-sample to studies using the price of residential properties as the dependent variable. 
This thus excluded studies investigating the impact on farmland values (e.g., Sampson et al. 
(2020); Pates et al. (2020)), which presumably benefit from the presence of wind turbines 
due to land lease payments. Third, the wind turbine impact must be measured in terms of 
distance from the respective properties. Distance is a reasonable proxy for wind turbine 
impact (Parsons and Heintzelman 2022) and is the most frequently used metric. Accord-
ingly, this excludes studies using other impact measures, e.g., view, number of turbines, 
installed capacity, or turbine density (Dong and Lang 2022; Gibbons 2015; Jensen et al. 
2018; Sunak and Madlener 2016)25. Fourth, the distance of properties from a wind turbine 
has to be defined in discrete terms, i.e., using one or more distance zones for segmentation. 

25 Different impact metrics cannot be standardized unless one uses a non-economic, dimensionless effect 
size such as the partial correlation coefficient (for applications see Doucouliagos and Ulubaşoğlu (2008); de 
Linde et al. (2014)). Here, I choose economic interpretability over sample size and include only those stud-
ies that report a price-distance relationship. This excludes twelve studies.
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I thus omit studies using continuous distance-variable definitions.26 Fifth, studies are 
required to report the respective regression coefficient and its measure of precision. This 
excludes cases for which this essential information was unavailable despite contact (efforts) 
with the respective author(s) (e.g., Heblich  et al. (2016); Sims and Dent (2007)). Using 
these study selection criteria ensures a consistent set of effect size estimates that can rea-
sonably be meta-analysed.27 More formally, the study selection criteria ensure that studies 
included in the meta-sample report results from a variant of the following stylized hedonic 
pricing specification (omitting indices for simplicity):

with P reflecting the price of residential properties, DIST the distance to a wind turbine, X 
a set of control variables and u a common error term. The coefficient of interest is β, which 
serves as the dependent variable in the subsequent analysis. To arrive at the selection of 
studies, I use a predefined search query, which I document in Table 4 below, followed by 
the PRISMA statement (Fig.  6), the list of included studies (Table  5) with their details 
(Table 6) and the list of excluded studies, ordered by reason for exclusion (Table 7).

Standardization

The precision measures for the included effect size estimates differ in metric (e.g., standard 
errors, t-values, or p-values) and in accuracy, i.e., exact numbers versus reporting of signif-
icance levels. The corresponding standardization process to standard errors is summarized 
in Fig. 7 below following Schütt (2021). If standard errors are reported, they are considered 
at face value as a precision measure without further standardization being needed. T-values 
are converted to standard errors using the relation SE =

�

t
 , with SE representing the stand-

ard error of the reported regression coefficient � . To convert p-values, I use the t.inv2s 
function from Microsoft Excel in conjunction with the reported sample size. If only 
significance levels are reported, I use the lowest precision as a conservative threshold (e.g., 
setting p = 0.05 or a five percent significance level). If only its insignificance is known for 
a coefficient, I set p = 0.3 . In rare cases, the p-value is reported to be 0.000, in which case 
I set the value to 0.0001, allowing further calculations. This procedure enables the applica-
tion of common meta-analytic methods that require the standard error (e.g., correcting for 
publication bias and using inverse-variance weights), as outlined in Sect. 4.2.

(2)P = � + � ∗ DIST + � ∗ X + u

26 Studies with continuous distance measures cannot be combined with studies using a discrete distance 
measure without the loss of information or the introduction of measurement error in the meta-analysis (see 
the discussions in Guignet et al. (2022), Schütt (2021), Ready (2010) and Debrezion et al. (2007)). Here, 
most studies use a discrete distance measure leading to its selection as the required metric. Accordingly, 
nine studies with only continuous distance definitions are dropped.
27 See also the discussion on consistency in meta-analyses in Vedogbeton and Johnston (2020) and Schütt 
(2021).
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Table 4  Search query

Search term categories are interconnected via the Boolean operator “AND”

Search category Synonyms / wildcards

Residential property (“Real estate*” OR residential* OR propert* OR 
hous* OR apartment OR building OR condo* 
OR dwllin* OR home OR residence OR man-
sion* OR domicile OR flat)

Hedonic price model (Hedonic* OR “repeat sale*” OR “Diff*in*Diff*”)
Price (Price* OR price* OR value* OR benfi* OR cost 

OR premium OR worth OR compensat* OR 
damag* OR pay* OR sum)

Wind turbine (Wind* OR turbine)

Fig. 6  PRISMA diagram. The PRISMA diagram (Moher et  al. 2009) shows the study selection process 
from initial screening to full-text-level assessment
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Table 5  Included studies (N=25)

C. Atkinson-Palombo and B. Hoen (2014). Relationship between wind turbines and residential property 
values in Massachusetts. University of Connecticut

N. Camplair (2012). “Does Proximity to Wind Farms Affect the Value of Nearby Residential Properties? 
Evidence from Washington and New York States”. Macalester College. url: https:// digit alcom mons. 
macal ester. edu/ econa ward/ 13

E. W. Carr (2017). “Three Essays on Environmental Valuation. The Social Value of Carbon Storage in 
Wetlands, the Impact of Wind Turbines on Home Prices, and the Effect of Flood Risk on Home Prices”. 
Dissertation. University of Delaware. url: http:// udspa ce. udel. edu/ handle/ 19716/ 23533

J. Carter (2011). “The effect of wind farms on residential property values in Lee County, Illinois”. Illinois 
State University

M. I. Dröes and H. R. Koster (2016). “Renewable energy and negative externalities. The effect of wind 
turbines on house prices”. In: Journal of Urban Economics 96, pp. 121–141. doi: https:// doi. org/ 10. 
1016/j. jue. 2016. 09. 001

M. I. Dröes and H. R. Koster (2021). “Wind turbines, solar farms, and house prices”. In: Energy Policy 
155, p. 112327. doi: https:// doi. org/ 10. 1016/j. enpol. 2021. 112327

P. Eichholtz et al. (2021). “Clean electricity, dirty electricity: the effect on local house prices”. In: The 
Journal of Real Estate Finance and Economics, pp. 1–35. doi: https:// doi. org/ 10. 1007/ s11146- 021- 
09878-6

M. Frondel et al. (2019). “Local cost for global benefit: The case of wind turbines”. In: Ruhr Economic 
Papers 791. doi: https:// doi. org/ 10. 4419/ 86788 919

S. S. Gorelick (2014). “The effect of lake water quality and wind turbines on Rhode Island property sales 
price”. Dissertation. University of Rhode Island. url: https:// doi. org/ 10. 23860/ diss- gorel ick- susan- 2014

N. Guzman (2020). “Wind Turbines and Housing Prices. Valuing the Impact of Wind Farms on Transac-
tions”. Undergraduate Thesis. Bringham Young University. url: https:// schol arsar chive. byu. edu/ stude 
ntpub_ uht/ 139

M. D. Heintzelman and C. M. Tuttle (2012). “Values in the Wind: A Hedonic Analysis of Wind Power 
Facilities”. In: Land Economics 88.3, pp. 571–588. doi: https:// doi. org/ 10. 3368/ le. 88.3. 571

J. L. Hinman (2010). “Wind farm proximity and property values. A pooled hedonic regression analysis of 
property values in central Illinois”. Graduate thesis. Illinois State University

B. Hoen and C. Atkinson-Palombo (2016). “Wind Turbines, Amenities and Disamenitites. A study of 
Home Value Impacts in Densely Populated Massachusetts”. In: Journal of Real Estate Research, pp. 
473–504. doi: https:// doi. org/ 10. 1080/ 10835 547. 2016. 12091 454 

B. Hoen et al. (2015). “Spatial Hedonic Analysis of the Effects of US Wind Energy Facilities on Sur-
rounding Property Values”. In: The Journal of Real Estate Finance and Economics 51.1, pp. 22–51. doi: 
https:// doi. org/ 10. 1007/ s11146- 014- 9477-9

B. Hoen et al. (2009). The Impact of Wind Power Projects on Residential Property Values in the United 
States. A Multi-Site Hedonic Analysis. doi: https:// doi. org/ 10. 2172/ 978870

B. Hoen et al. (2011). “Wind Energy Facilities and Residential Properties. The Effect of Proximity and 
View on Sales Prices”. In: Journal of Real Estate Research 33.3, pp. 279–316. doi: https:// doi. org/ 10. 
1080/ 10835 547. 2011. 12091 307

S. Jarvis (2021). The Economic Costs of NIMBYism-Evidence From Renewable Energy Projects. url: 
https:// eprin ts. lse. ac. uk/ 113653/

M. Joly and S. de Jaeger (2021). “Not in my backyard. A hedonic approach to the construction timeline of 
wind turbines in Flanders, Belgium”. In: Land Use Policy 108. doi: https:// doi. org/ 10. 1016/j. landu sepol. 
2021. 105527 27

C. Lang et al. (2014). “The Windy City. Property Value Impacts of Wind Turbines in an Urban Setting”. 
In: Energy Economics 44, pp. 413–421. doi: https:// doi. org/ 10. 1016/j. eneco. 2014. 05. 010

K. Skenteris et al. (2019). “Implementing hedonic pricing models for valuing the visual impact of wind 
farms in Greece”. In: Economic Analysis and Policy 64, pp. 248–258. doi: https:// doi. org/ 10. 1016/j. eap. 
2019. 09. 004

Y. Sunak and R. Madlener (2017). “The impact of wind farms on property values. A locally weighted 
hedonic pricing model”. In: Papers in Regional Science 96.2, pp. 423–444. doi: https:// doi. org/ 10. 1111/ 
pirs. 12197

https://digitalcommons.macalester.edu/econaward/13
https://digitalcommons.macalester.edu/econaward/13
http://udspace.udel.edu/handle/19716/23533
https://doi.org/10.1016/j.jue.2016.09.001
https://doi.org/10.1016/j.jue.2016.09.001
https://doi.org/10.1016/j.enpol.2021.112327
https://doi.org/10.1007/s11146-021-09878-6
https://doi.org/10.1007/s11146-021-09878-6
https://doi.org/10.4419/86788919
https://doi.org/10.23860/diss-gorelick-susan-2014
https://scholarsarchive.byu.edu/studentpub_uht/139
https://scholarsarchive.byu.edu/studentpub_uht/139
https://doi.org/10.3368/le.88.3.571
https://doi.org/10.1080/10835547.2016.12091454
https://doi.org/10.1007/s11146-014-9477-9
https://doi.org/10.2172/978870
https://doi.org/10.1080/10835547.2011.12091307
https://doi.org/10.1080/10835547.2011.12091307
https://eprints.lse.ac.uk/113653/
https://doi.org/10.1016/j.landusepol.2021.105527
https://doi.org/10.1016/j.landusepol.2021.105527
https://doi.org/10.1016/j.eneco.2014.05.010
https://doi.org/10.1016/j.eap.2019.09.004
https://doi.org/10.1016/j.eap.2019.09.004
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27 Nine observations were dropped from this study since the sign of the reported effect size and its corre-
sponding t-statistic did not fit. Moreover, 15 estimates of effects from pre-existing turbines were not consid-
ered to ensure comparability across studies

Table 5  (continued)

R. J. Vyn (2018). “Property Value Impacts of Wind Turbines and the Influence of Attitudes toward Wind 
Energy”. In: Land Economics 94.4, pp. 496–516. doi: https:// doi. org/ 10. 3368/ le. 94.4. 496

R. J. Vyn and R. M. McCullough (2014). “The Effects of Wind Turbines on Property Values in Ontario: 
Does Public Perception Match Empirical Evidence?” In: Canadian Journal of Agricultural Economics 
62.3, pp. 365–392. doi: https:// doi. org/ 10. 1111/ cjag. 12030

H. Westlund and M. Wilhelmsson (2021). “The Socio-Economic Cost of Wind Turbines: A Swedish Case 
Study”. In: Sustainability 13.12, p. 6892. doi: https:// doi. org/ 10. 3390/ su131 26892

H. Westlund and M. Wilhelmsson (2022). Valuating the negative externality of wind turbines: traditional 
hedonic and difference-in-difference approaches. KTH Royal Institute of Technology

https://doi.org/10.3368/le.94.4.496
https://doi.org/10.1111/cjag.12030
https://doi.org/10.3390/su13126892
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Table 7  Excluded studies sorted by reason for exclusion (N=58)

Not hedonic pricing method (N=15)
M. Alem et al. (2020). “Qualitative meta-analysis of the socioeconomic impacts of offshore wind farms”. In: Sustinere: 

Journal of Environment and Sustainability 4.3, pp. 155.171. doi: https:// doi. org/ 10. 22515/ susti nere. jes. v4i3. 121
C. E. Baker (2021). “The Impact of Wind Turbines on Agricultural Land Values in West Texas”. Master’s Thesis. Texas 

Tech University. url: https:// hdl. handle. net/ 2346/ 87469
J. Dorrell and K. Lee (2020). “The Cost of Wind. Negative Economic Effects of Global Wind Energy Development”. In: 

Energies 13.14, p. 3667. doi: https:// doi. org/ 10. 3390/ en131 43667
R. R. Dupont and J. Etherington (2009). Preliminary assessment of the impact of wind farms on surrounding land values 

in Australia. Preston Rowe Paterson Newcastle and Central Coast. url: https:// www. value rgene ral. nsw. gov. au/__ data/ 
assets/ pdf_ file/ 0006/ 195315/ Preli minary_ asses sment_ impact_ of_ wind_ farms_ on_ surro unding_ land_ values_ in_ Austr 
alia. pdf

P. Haan and M. Simmler (2018). “Wind electricity subsidies.A windfall for landowners? Evidence from a feed-in tariff in 
Germany”. In: Journal of Public Economics 159, pp. 16.32. doi: https:// doi. org/ 10. 1016/j. jpube co. 2018. 01. 011

B. Hoen et al. (2019). “Attitudes of U.S. Wind Turbine Neighbors: Analysis of a Nationwide Survey”. In: Energy Policy 
134, p. 110981. doi: https:// doi. org/ 10. 1016/j. enpol. 2019. 110981

J. Jordal-Jorgensen (1996). Social Assessment of Wind Power: Visual Effect and Noise from Windmills-Quantifying and 
Valuation. Copenhagen, Denmark: Institute of Local Government Studies

M. Khatri (2004). Impact of wind farms on the value of residential property and agricultural land. London, UK: Royal 
Insitute of Chartered Surveyors

P. Lehmann et al. (2021). Optimal siting of onshore wind turbines: Local disamenities matter. UFZ Discussion Paper. 
Leipzig. url: http:// hdl. handle. net/ 10419/ 240195

J. Persson and F. Fernqvist (2016). Socioekonomiska konsekvenser av vindkraftsetablering och tillämpningen av vind-
bonus. En kunskapssammanställning. Vol. 2016:4. Landskapsarkitektur trädgård växtproduktionsvetenskap. Alnarp: 
Fakulteten för landskapsarkitektur, trädgårds- och växtproduktionsvetenskap, Sveriges lantbruksuniversitet. isbn: 
978-91-576-8924-5

J. Rand and B. Hoen (2017). “Thirty years of North American wind energy acceptance research: What have we learned?” 
In: Energy Research and Social Science 29, pp. 135.148. doi: https:// doi. org/ 10. 1016/j. erss. 2017. 05. 019

B. K. Sovacool et al. (2021). “The hidden costs of energy and mobility: A global meta-analysis and research synthesis of 
electricity and transport externalities”. In: Energy Research and Social Science 72, p. 101885. doi: https:// doi. org/ 10. 
1016/j. erss. 2020. 101885

G. Sterzinger et al. (2003). The Effect of Wind Development on Local Property Values (Washington, DC: Renewable 
Energy Policy Project). url: http:// www. repp. org/ artic les/ static/ 1/ binar ies/ wind_ online_ final. pdf

M. Torzewski (2016). “The Impact of Wind Farms on the Prices of Nearby Houses in Poland: A Review and Synthesis”. 
In: Real Estate Management and Valuation 24.2, pp. 13–24. doi: https:// doi. org/ 10. 1515/ remav- 2016- 0010

C. Wen et al. (2018). “Valuing the visual impact of wind farms: A calculus method for synthesizing choice experiments 
studies”. In: The Science of the total environment 637-638, pp. 58–68. doi: https:// doi. org/ 10. 1016/j. scito tenv. 2018. 04. 
430

No wind turbine impact measure (N=5)
P. M. Anglin and R. Gencay (1996). “Semiparametric Estimation of a Hedonic Price Function”. In: Journal of Applied 

Econometrics 11.6, pp. 633–648. doi: https:// doi. org/ 10. 1002/ (SICI) 1099- 1255(199611) 11: 6< 633:: AIDJA E414>3. 0. 
CO;2-T

W. Athukorala et al. (2019). “Valuing bushfire risk to homeowners. Hedonic property values study in Queensland, Aus-
tralia”. In: Economic Analysis and Policy 63, pp. 44–56. doi: https:// doi. org/ 10. 1016/j. eap. 2019. 04. 013

L. Chakraborti et al. (2016). Are Land Values Related to Ambiet Air Pollution Levels? Hedonic Evidence from Mexico 
City. CIDE, División de Economía

S. Krumholz (2020). “Three Essays in Applied Microeconomics”
J. M. Ross et al. (2011). “Inconsistency in Welfare Inferences from Distance Variables in Hedonic Regressions”. In: The 

Journal of Real Estate Finance and Economics 43.3. PII: 9221, pp. 385–400. doi: https:// doi. org/ 10. 1007/ s11146- 009- 
9221-z

https://doi.org/10.22515/sustinere.jes.v4i3.121
https://hdl.handle.net/2346/87469
https://doi.org/10.3390/en13143667
https://www.valuergeneral.nsw.gov.au/__data/assets/pdf_file/0006/195315/Preliminary_assessment_impact_of_wind_farms_on_surrounding_land_values_in_Australia.pdf
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https://doi.org/10.1016/j.jpubeco.2018.01.011
https://doi.org/10.1016/j.enpol.2019.110981
http://hdl.handle.net/10419/240195
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https://doi.org/10.1016/j.scitotenv.2018.04.430
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https://doi.org/10.1016/j.eap.2019.04.013
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Table 7  (continued)
Impact measure is not distance (N=13)
G. Canning and L. J. Simmons (2010). Wind Energy Study-Effect on Real Estate Values in the Municipality of Chatham-

Kent, Ontario
M. Daams and F. Sijtsma (2019). Windparken en Woningprijzen in Groningen en Drenthe. Rapportage in Opdracht van 

RTV Noord en RTV Drenthe. University of Groningen
L. Dong and C. Lang (2022). “Do views of offshore wind energy detract? A hedonic price analysis of the Block Island 

wind farm in Rhode Island”. In: Energy Policy 167, p. 113060. doi: https:// doi. org/ 10. 1016/j. enpol. 2022. 113060
W. Feilmayr et al. (2018). Windkraftnutzung und der Einfluss auf Grundstückspreise in Österreich. Preisentwicklung von 

Grundstückspreisen in Österreichs Windkraftgemeinden (1999–2017). Department für Raumplanung, TU Wien
S. Gibbons (2015). “Gone with the wind. Valuing the visual impacts of wind turbines through house prices”. In: Journal 

of Environmental Economics and Management 72.4, pp. 177–196. doi: https:// doi. org/ 10. 1016/j. jeem. 2015. 04. 00628

J. Grib (2019). “Wind Turbines and Residential Property Values”. Undergraduate Thesis. UC Santa Barbare. url: https:// 
escho larsh ip. org/ uc/ item/ 0z84b 44m

C. U. Jensen et al. (2018). “The impact of on-shore and off-shore wind turbine farms on property prices”. In: Energy 
Policy 116, pp. 50–59. doi: https:// doi. org/ 10. 1016/j. enpol. 2018. 01. 046

S. Laposa and A. Mueller (2010). “Wind Farm Announcements and Rural Home Prices. Maxwell Ranch and Rural 
Northern Colorado”. In: Journal of Sustainable Real Estate 2.1, pp. 383–402. doi: https:// doi. org/ 10. 1080/ 10835 547. 
2010. 12091 798

I. McCarthy and H. O. Balli (2014). “Windfarms and residential property values”. In: International Journal of Strategic 
Property Management 18.2, pp. 116–124. doi: https:// doi. org/ 10. 3846/ 16487 15X. 2014. 889770

T. Möllney (2022). “Investigating the Causal Impact of Wind Turbines on Housing Prices in Germany”. Master’s Thesis. 
Kiel University

O. Myrna et al. (2019). “The Influence of Wind Energy and Biogas on Farmland Prices”. In: Land 8.1, p. 19. doi: https:// 
doi. org/ 10. 3390/ land8 010019

M. Ritter et al. (2015). “Der Einfluss von Windkraftanlagen auf landwirtschaftliche Bodenpreise”. In: Berichte über 
Landwirtschaft-Zeitschrift für Agrarpolitik und Landwirtschaft 93.3. doi: https:// doi. org/ 10. 12767/ buel. v93i3. 83

Y. Sunak and R. Madlener (2016). “The impact of wind farm visibility on property values. A spatial difference-in-differ-
ences analysis”. In: Energy Economics 55, pp. 79–91. doi: https:// doi. org/ 10. 1016/j. eneco. 2015. 12. 025

Distance is continuous (N=10)
C. Krekel and A. Zerrahn (2017). “Does the presence of wind turbines have negative externalities for people in their 

surroundings? Evidence from well-being data”. In: Journal of Environmental Economics and Management 82, pp. 
221–238

B. Castleberry and J. S. Greene (2018). “Wind power and real estate prices in Oklahoma”. In: International Journal of 
Housing Markets and Analysis 11.5, pp. 808–827. doi: https:// doi. org/ 10. 1108/ IJHMA- 02- 2018- 0010

A. Fonnesbech-Wulf et al. (2011). Welfare impacts of landscape dis-amenities. Comparative hedonic approaches
M. D. Heintzelman et al. (2017). “Understanding the Amenity Impacts of Wind Development on an International Bor-

der”. In: Ecological Economics 137.C, pp. 195–206. doi: https:// doi. org/ 10. 1016/j. ecole con. 2017. 03. 008
B. Hoen (2006). “Impacts of windmill visibility on property values in Madison County, New York”. Master’s Thesis. 

Bard College. url: https:// www. bcsd. org/ site/ handl ers/ filed ownlo ad. ashx? modul einst anceid= 1829& dataid= 8961& 
FileN ame= prop_ value1. pdf

C. U. Jensen et al. (2014). “The Vindication of Don Quixote. The Impact of Noise and Visual Pollution from Wind 
Turbines”. In: Land Economics 90.4, pp. 668–682. doi: https:// doi. org/ 10. 3368/ le. 90.4. 668

O. Joalland and T. Rambonilaza (2017a). Assessing the impact of renewable energy infrastructure on the “tourist value” 
in rural landscapes. A spatial hedonic approach. Groupe de Recherche en Economie Théorique et Appliquée (GRE-
ThA). url: http:// cahie rsdug retha.u- borde aux. fr/ 2017/ 2017- 10. pdf

O. Joalland and T. Rambonilaza (2017b). “Valeur touristique des amenites environnementales et nuisances associees aux 
infrastructures d’energie renouvelable. Une approche hedonique spatiale. (Tourist Value of Environmental Amenities 
and Nuisances Due to Renewable Energy Infrastructure: A Spatial Hedonic Approach. With English summary.)” In: 
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Table 7  (continued)
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Robustness: Figures

Fig. 7  Standardization of precision measure
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Fig. 8  T-value distribution. The histogram shows the distribution of t-values corresponding to the effect 
size estimates from the primary studies. The dashed lines indicate the threshold for statistical significance at 
the 5%-level
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Robustness: Bayesian Model Averaging
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Fig. 9  Contour-enhanced funnel plot relating effect size estimates to their reported standard error (SE). With-
out publication bias the plot should take the shape of an inverted funnel. If an observation is within one of 
the shaded areas, the hypothesis of a null effect can be rejected at the corresponding significance level
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size distribution and the posterior model probabilities of the baseline BMA specification reported in Table 3
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Table 8  Bayesian model averaging - changing the priors

The response variable is the estimated price-distance coefficient relating wind turbines and property values. 
SD standard deviation, PIP posterior inclusion probability, UIP and dilution Unit information prior and 
dilution model prior (Eicher et al. 2011; George 2010). BRIC and Random = Benchmark g-prior for coef-
ficients (Fernandez et al. 2001) combined with the beta-binominal model prior (Ley and Steel 2009)

UIP and dilution BRIC and random

Moderators Post Mean Post. SD PIP Post. Mean Post SD PIP

Data characteristics
 Wind coordinates −15.301 2.899 0.998 −15.597 2.874 0.998
 Property coordinates 0.154 0.576 0.095 0.094 0.451 0.063
 Sales 3.356 1.186 0.945 3.429 1.129 0.955
 Res. land −8.518 4.734 0.831 −8.039 4.980 0.786
 Distance 0.718 0.087 1.000 0.714 0.087 1.000
 Sample duration −0.002 0.012 0.038 −0.001 0.009 0.027
 Sample total 0.003 0.041 0.037 0.002 0.034 0.027
 USA 0.025 0.225 0.037 0.011 0.137 0.021
 Share renewables −0.063 0.013 0.997 −0.065 0.013 0.997
 Share wind −0.160 0.189 0.485 −0.119 0.174 0.377
Control variables
 Structure var −0.000 0.144 0.024 −0.000 0.123 0.018
 Neighbourhood var 0.001 0.090 0.022 −0.001 0.069 0.016
 Access 0.019 0.154 0.037 0.012 0.123 0.026
 Oth disamen 0.005 0.102 0.026 0.003 0.081 0.018
 Oth amen −0.367 0.637 0.290 −0.259 0.555 0.207
 Demoecon 4.514 0.759 0.999 4.474 0.749 0.999
 HPI 0.023 0.245 0.034 0.023 0.221 0.028
 Time dummy −0.004 0.137 0.031 −0.003 0.117 0.020
 One period −0.214 1.892 0.030 −0.138 1.530 0.020
 DID 2.545 0.789 0.967 2.620 0.716 0.980
 Spatial 11.421 1.079 1.000 11.435 1.078 1.000
 OLS −0.127 0.419 0.110 −0.094 0.367 0.080
Wind turbine impact
 Dist binary 0.003 0.077 0.023 0.003 0.060 0.016
 Other wind 0.004 0.091 0.024 0.003 0.076 0.017
 Announcement effect −0.435 0.607 0.389 −0.324 0.550 0.295
 AE and CE −0.035 0.252 0.044 −0.012 0.148 0.023
 Adjustment control −0.008 0.127 0.023 −0.004 0.096 0.016
 Pooled −0.001 0.380 0.026 −0.002 0.325 0.019
 One site −0.030 0.422 0.027 −0.025 0.374 0.020
Publication
 SE 0.001 0.004 0.057 0.001 0.004 0.047
 Sig −2.462 0.368 1.000 −2.472 0.365 1.000
 Reviewed −0.062 0.302 0.063 −0.042 0.247 0.043
 Year publish −0.001 0.002 0.197 −0.001 0.001 0.179
 Precision set 0.003 0.135 0.024 0.002 0.124 0.020
Constant −0.090 1.000 −0.101 1.000
N 717 717
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Table 10  Robustness regressions - different outlier specifications

The table displays the sensitivity of results to changes in the outlier specification, with the baseline WLS 
specification from Table  3 displaying on the left for the ease of comparison. No outlier No observation 
excluded, Win 2.5% Observations winsorized at the 2.5% level, P 1% Observations excluded based on the 
1% percentile, P 2.5% Observations excluded based on the 2.5% percentile, IQR Observations excluded 
based on the interquartile range (Tukey 1977). ***, ** and * denote statistical significance at the 0.01, 0.05 
and 0.1 level, respectively

Baseline Outlier criterion

(1) (2) (3) (4) (5) (6)

No outlier Win. 2.5% P 1% P 2.5% IQR

Data characteristics
 Wind coordinates −11.61*** −11.61*** −9.65*** −10.39*** −6.43** −4.02*

(2.60) (2.61) (2.47) (2.61) (2.52) (2.31)
 Sales 3.54*** 3.54*** 3.42*** 3.52*** 3.12*** 2.71***

(0.82) (0.82) (0.76) (0.81) (0.74) (0.60)
 Res. land −10.47*** −10.47*** −10.36*** −10.57*** −9.28*** −5.98

(2.86) (2.87) (2.77) (2.82) (2.87) (4.02)
 Distance 0.72*** 0.72*** 0.70*** 0.72*** 0.65*** 0.52***

(0.08) (0.08) (0.08) (0.08) (0.07) (0.06)
 Share renewables −0.05*** −0.05*** −0.05*** −0.05*** −0.05*** −0.05***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
 Share wind −0.30*** −0.30*** −0.29*** −0.30*** −0.25*** −0.24***

(0.10) (0.10) (0.09) (0.10) (0.09) (0.07)
Control variables
 Demoecon 5.07*** 5.07*** 4.90*** 5.01*** 4.57*** 4.08***

(0.70) (0.70) (0.65) (0.69) (0.63) (0.51)
 Oth amen −1.05** −1.06** −0.96** −0.97** −0.84** −0.70**

(0.44) (0.44) (0.41) (0.43) (0.40) (0.33)
 DID 2.33*** 2.32*** 2.25*** 2.28*** 2.23*** 1.27***

(0.54) (0.54) (0.51) (0.53) (0.49) (0.41)
 Spatial 11.17*** 11.17*** 9.93*** 11.11*** 7.04*** 2.90**

(1.06) (1.06) (0.99) (1.05) (1.09) (1.18)
Wind turbine impact
 Announcement effect −1.05*** −1.05*** −1.04*** −1.05*** −1.01*** −0.76**

(0.40) (0.40) (0.37) (0.39) (0.36) (0.30)
Publication
 Sig −2.56*** −2.56*** −2.57*** −2.55*** −2.65*** −2.40***

(0.36) (0.36) (0.33) (0.35) (0.32) (0.26)
Constant −4.56* −4.55* −5.10** −5.66** −5.14** −2.24

(2.68) (2.69) (2.55) (2.68) (2.54) (2.23)
N 717 720 720 706 684 631
R
2 0.669 0.669 0.669 0.668 0.598 0.565
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Table 11  Robustness regressions - alternative model specifications

The table displays the sensitivity of results to changes in the model specification, with the baseline WLS 
specification from Table  3 displaying on the left for ease of comparison. Robust SE Standard errors are 
robust to heteroscedasticity, Cluster SE Standard errors are clustered at the study level, Study FE Study-
level fixed effects are included, WLS-FE Inverse-variance weights are used, OLS Ordinary least squares. 
***, ** and * denote statistical significance at the 0.01, 0.05 and 0.1 level, respectively

RE weights FE weights No weight

(1) (2) (3) (4) (5) (6)

Baseline Robust SE Cluster SE Study FE WLS-FE OLS

Data characteristics
 Wind coordinates −11.61*** −11.61*** −11.61*** −16.61*** −12.06*** −14.72***

(2.60) (3.40) (2.80) (3.75) (4.43) (5.21)
 Sales 3.54*** 3.54*** 3.54*** −10.22 4.49*** 1.79

(0.82) (1.09) (1.24) (27.56) (0.59) (2.71)
 Res. land −10.47*** −10.47*** −10.47*** −7.57** −12.48 −10.95***

(2.86) (1.58) (0.61) (3.36) (8.39) (2.37)
 Distance 0.72*** 0.72*** 0.72*** 0.83*** 0.25*** 0.59***

(0.08) (0.09) (0.20) (0.09) (0.03) (0.16)
 Share renewables −0.05*** −0.05*** −0.05*** 0.59** 0.00 −0.06***

(0.01) (0.01) (0.01) (0.25) (0.00) (0.02)
 Share wind −0.30*** −0.30*** −0.30* −1.48*** −0.75*** −0.40*

(0.10) (0.10) (0.16) (0.50) (0.09) (0.22)
Control variables
 Demoecon 5.07*** 5.07*** 5.07*** 5.01*** 6.24*** 3.46*

(0.70) (0.96) (0.73) (0.99) (0.49) (1.79)
 Oth amen −1.05** −1.05*** −1.05* −0.93 −0.99*** −1.23

(0.44) (0.37) (0.52) (1.01) (0.30) (1.05)
 DID 2.33*** 2.33*** 2.33*** 3.40*** −0.39 2.50

(0.54) (0.54) (0.81) (1.30) (0.31) (1.62)
 Spatial 11.17*** 11.17*** 11.17*** 11.85*** 8.13*** 14.91***

(1.06) (2.27) (3.15) (1.18) (0.55) (2.66)
Wind turbine impact
 Announcement 

effect
−1.05*** −1.05*** −1.05* −1.17** −0.45 −0.81

(0.40) (0.29) (0.52) (0.47) (0.29) (0.89)
Publication
 Sig −2.56*** −2.56*** −2.56*** −2.43*** −0.61*** −1.28

(0.36) (0.28) (0.60) (0.38) (0.10) (0.97)
Constant −4.56* −4.56 −4.56** 8.12 0.20 −3.23

(2.68) (3.21) (2.06) (27.73) (4.50) (5.12)
R
2 0.669 0.598 0.598 0.689 0.684 0.218

N 717 717 717 717 717 717
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Table 12  Robustness regressions - additional moderators and distance subsamples

The table displays the sensitivity of results to the inclusion of additional moderators and for distance subsamples, 
with the baseline WLS specification from Table 3 displaying on the left for ease of comparison. “ ≤ 2 miles” and 
“ ≤ 1 miles” refer to subsamples of observations with a distance to wind turbines of no more than two and one 
mile(s), respectively. ***, ** and * denote statistical significance at the 0.01, 0.05 and 0.1 level, respectively

Additional moderators Distance subsamples

(1) (2) (3) (4) (5) (6)

Baseline Market extent Citations Impact factor ≤ 2 miles ≤ 1 mile

Data characteristics
 Wind coordinates −11.61*** −11.84*** −11.77*** −11.59*** −15.57*** −10.74*

(2.60) (2.63) (2.60) (2.61) (2.73) (6.24)
 Sales 3.54*** 3.49*** 3.12*** 3.53*** 2.37** 2.47*

(0.82) (0.82) (0.86) (0.83) (1.20) (1.36)
 Res. land −10.47*** −10.42*** −10.39*** −10.47*** −11.36*** −11.27***

(2.86) (2.86) (2.86) (2.86) (3.71) (4.28)
 Distance 0.72*** 0.72*** 0.73*** 0.72*** 0.91** −0.95

(0.08) (0.08) (0.08) (0.08) (0.38) (0.92)
 Share renewables −0.05*** −0.05*** −0.05*** −0.05*** −0.07*** −0.07***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
 Share wind −0.30*** −0.34*** −0.34*** −0.30*** −0.48*** −0.52***

(0.10) (0.11) (0.10) (0.10) (0.12) (0.14)
Control variables
 Demoecon 5.07*** 5.10*** 4.89*** 5.07*** 5.27*** 7.06***

(0.70) (0.70) (0.71) (0.70) (0.91) (1.04)
 Oth amen −1.05** −0.73 −1.11** −1.05** −0.83* −0.89*

(0.44) (0.65) (0.44) (0.45) (0.49) (0.51)
 DID 2.33*** 2.18*** 2.41*** 2.33*** 3.67*** 4.84***

(0.54) (0.58) (0.54) (0.54) (0.72) (0.88)
 Spatial 11.17*** 11.18*** 11.28*** 11.17*** 14.11*** 13.42***

(1.06) (1.06) (1.06) (1.06) (1.52) (1.61)
Wind turbine impact
 Announcement effect −1.05*** −0.97** −1.01** −1.05*** −0.78* −0.41

(0.40) (0.41) (0.40) (0.40) (0.47) (0.50)
Publication
 Sig −2.56*** −2.60*** −2.62*** −2.56*** −1.92*** −1.63***

(0.36) (0.36) (0.36) (0.36) (0.45) (0.47)
Additional moderators
 National 0.51

(0.77)
 Citations −0.18

(0.12)
 Impact −0.06

(0.87)
Constant −4.56* −4.57* −3.73 −4.54* −3.72 −8.13

(2.68) (2.68) (2.73) (2.71) (2.86) (6.26)
R
2 0.669 0.669 0.671 0.668 0.755 0.788

N 717 717 717 717 491 351
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