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Abstract
We document non-linear stock effects in the relationship linking emerging technology 
adoption and network infrastructure increments. We exploit 2010–2017 data covering nas-
cent to mature electric vehicle (EV) markets across 422 Norwegian municipalities together 
with two complementary identification strategies: control function regressions of EV sales 
on flexible polynomials in the stock of charging stations and charging points, and synthetic 
control methods to quantify the impact of initial infrastructure provision in municipalities 
that previously had none. Our results are consistent with indirect network effects and the 
behavioral bias called “range anxiety,” and support policies targeting early infrastructure 
provision to incentivize EV adoption.
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1  Introduction

The demand for personal mobility is associated with significant local and global externali-
ties, and many countries consider electrification as the future of on-road transportation.1 
Even in the presence of externality-correcting taxes, however, indirect network effects 
hamper decisions to purchase an electric vehicle (EV) at the individual level (Greaker and 
Midttomme 2016). In particular, the benefit of EV adoption depends on the size of charg-
ing infrastructure, whereas providers of charging stations will not invest in infrastructure 
provision when the base of EVs in circulation is small. In the presence of unpriced benefits 
to consumers (e.g. lower search costs), the private deployment of network infrastructure 
is likely suboptimal (Farrell and Saloner 1986; Katz and Shapiro 1986; Cabral 2011). In 
turn, policies supporting the early provision of public charging infrastructure can alleviate 
a chicken and egg dilemma between EV consumers and charging station providers.

In this setting, the objective of this paper is to provide novel evidence about how incre-
ments to charging infrastructure affect EV adoption decisions, and study how consumers 
respond to charger installations at early and developed market stages. We employ data 
for all 422 Norwegian municipalities from 2010 (the first year of comprehensive charger 
data availability) to 2017, with quarterly information on EV registrations (both battery-
only electric vehicles—BEV—and plug-in hybrid vehicles—PHEV) by make and model, 
and the number of available charging stations, together with the number of charging points 
within these. Figure 1a illustrates how registrations of new EVs increased from around 90 
in Q2 2010 to around 23,000 in Q4 2017, the latter representing 49% of all new car reg-
istrations (OFV 2018), the world’s highest rate of EV use (International Energy Agency 
2019). Over the same period, the number of charging stations increased from around 640 in 
Q2 2010 to 2194 by the end of 2017 (Fig. 1b). Charging points follow a similar trend, rising 
from around 2,600 to 10,240 over the period. Note that EVs can sometimes be recharged at 
home, however potential adopters still derive utility from the availability of public charging 
infrastructure. Particularly, Norwegian geographical specificities make a public charging 
network important (eg. large distances, cold weather, mountainous terrain—see Springel 
(2021) for a discussion). This issue is especially important for battery-only EVs (BEVs), 
but plug-in hybrids (PHEVs) can also benefit from public charging stations once they run 
out of electricity.

Norway has implemented a range of incentive schemes to promote EVs, including 
subsidies for charging infrastructure, financial incentives such as exemptions from regis-
tration tax and VAT, the free use of toll roads, public parking spaces and bus lanes, and 
discounted ferry tickets. The Bjerkan et al. (2016) survey, for example, showed that these 
incentives have varying importance to consumers and differing impacts on uptake, but 
financial incentives are by far the most critical for purchasing decisions.2 For a small sub-
set of the population, however, non-financial incentives, particularly free toll road and bus 
lane use, were ‘critically important’ for their EV purchase decision. We emphasize that 

2  Note Bjerkan et al. (2016) did not address charging stations.

1  The transport sector is responsible for about 25% of GHG emissions globally (International Energy 
Agency 2019), 57% of Nitrous Oxides, and 20% of particulate matter 2.5 (European Environmental Agency 
2018). See International Energy Agency (2019) for projected trends in EV adoption. Importantly, Holland 
et  al. (2016) emphasize regional heterogeneity in the benefits associated with the electrification of trans-
ports in relation to the use of alternative electricity generation technologies. Norway produces around 98% 
of its electricity from hydro and wind sources (SSB 2018).



633Technology Adoption and Early Network Infrastructure Provision…

1 3

these policies were mostly implemented nationally before 2010 (Norwegian EV Associa-
tion 2021; Fevang t al. 2020), have limited within-municipality temporal variation, and are 
controlled for in our estimation strategy. Our objective is to isolate exogenous variation in 
charging infrastructure and quantify its impact on EV purchase.

We use two complementary strategies to identify the impact of charging infrastructure 
on EV adoption from the emergence of the market in 2010 to a more mature market in 
2017. First, we regress the log of new EV registrations on the log of charging stations avail-
able in a given municipality-quarter, and thereby estimate the elasticity of EV purchases 
with respect to incremental charging infrastructure. The primary issue with this analysis, 
however, is endogeneity in the municipality-level availability of charging infrastructure (Li 
et al. 2017). In particular, demand for EVs and the availability of charging infrastructure 
are potentially jointly affected by unobserved factors such as environmental preferences 
and associated government policies (e.g. subsidies for local charging infrastructure). More-
over, indirect network effects imply a reverse causality problem whereby greater EV reg-
istrations lead to more charger installations, for example through higher expected financial 
returns.

To isolate the impact of incremental charging infrastructure on EV adoption, we fol-
low Li et al. (2017) and construct a Bartik (1991) instrument based on the stock of public 
parking spaces available in each municipality and the nation-wide trend of charger instal-
lations.3 In this context, identification rests on two assumptions: (i) more abundant parking 
space isolates plausibly exogenous variation in the opportunity to supply charging infra-
structure, and (ii) municipalities with more parking space are more likely to respond to a 
nation-wide trend in EV adoption.4 Importantly, these assumptions are conditional on a 
set of control variables capturing differential changes in prices and income, among other 
things, as well as quarter fixed effects (capturing national technology trends and policy 
incentives for EVs), and municipality-model fixed effects (controlling for time invariant 
EV attributes and within-municipality preferences, as well as municipality characteristics, 
such as proximity to workplaces and urban centres, commuting routes, and toll road, bus 
lane and ferry prevalence). This instrumental variable (IV) approach limits any potential 
omitted variable bias.

Based on this, the first contribution of this paper is to exploit the development of the EV 
market in Norway to investigate how the pre-existing stock of installed charging stations 
affects the charger-elasticity of EV demand. We use a set of control function (CF) regres-
sions (Wooldridge 2015) in which residuals from the first stage are included in the second 
stage, allowing us to estimate flexible polynomial specifications in the size of the charging 
infrastructure.5 Our results show that charger-elasticity estimates increase with the stock 
of charging stations, which suggests that incremental charger installations are subject to 
increasing returns from network externalities. We further show that the largest impact of 
incremental charging infrastructure occurs when there is little to no pre-existing charger 
network. As discussed in Meunier and Ponssard (2020), this is consistent with declining 

3  In this we include all registered public parking spaces (SSB 2018) such as government-controlled on- and 
off-street parking, schools, churches, sports facilities, and other parking lots.
4  Not all charging stations must be on public parking places, especially fast chargers, however, we exploit 
the correlation between the two, given the existing use of public spaces. Li et al. (2017), for example, show 
the use of private (grocery store) parking spaces, however in Norway these data are lacking.
5  This approach is based on Hausman (1978) and Heckman and Robb (1985), as described by Wooldridge 
(2015). It is similar to Terza et al. (2008)’s otherwise named two-stage residual inclusion procedure.



634	 J. van Dijk et al.

1 3

marginal benefits associated with charging infrastructure as the size of the network grows 
(e.g. through declining disutility associated with locating and reaching a charging point). 
From a policy perspective, this suggests that subsidizing early infrastructure provision in 
small EV markets can mitigate the associated inefficiencies and therefore complement 
other instruments tackling transport externalities (e.g. a carbon tax).

Quantitatively, we estimate that a 10% increase in charging stations causes a rise in EV 
registrations by around 2.2% at the mean of our sample.6 We further provide suggestive 
evidence that consumers respond differently to the provision of charging points, with a 
corresponding estimate of 1.2%. A higher elasticity for the provision of stations versus 
points is consistent with existing empirical evidence documenting a behavioral bias called 
“range anxiety”, whereby drivers tend to systematically over-estimate their required driv-
ing range.7 See for example DeShazo et al. (2017) and Dimitropoulos et al. (2016). This 
behavioral effect magnifies the network externality problem, and suggests that expanding 
the network of infrastructure with charging stations with a single or few charging point(s) 
delivers the greatest benefits to consumers.

The second empirical strategy is geared towards the role of initial infrastructure provi-
sion. We focus on a subset of 64 Norwegian municipalities with a base of zero charging 
stations in 2010 and for which we observe either just one station being installed (one-sta-
tion group) or multiple stations installed within a window of 4 consecutive quarters (multi-
station group). To quantify the impact of this one-off infrastructure provision on EV reg-
istrations, we employ the synthetic control method (SCM—Abadie and Gardeazabal 2003; 
Abadie et  al. 2010).8 In this approach, a synthetic municipality is constructed by giving 
weights to all those in a set of potential control units (the donor pool), which we take to 
be all municipalities that never installed any charging stations over the entire observation 
period. The weights attributed to each municipality in the donor pool are selected so as to 

(a) New registrations of electric vehicles
(source: OFV, 2018 )
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(b) Cumulative charging stations/points
(source: NOBIL, 2018 )
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Fig. 1   Electric vehicle registrations and charging stations/points in Norway, 2010–2017

7  The average daily distance travelled in Norway is around 47 km (Hjorthol et al. 2014).
8  The SCM is a quantitative tool for case study analysis which can be applied in situations where there is 
no clear, observed counterfactual for comparison. See for example Moser (2005), Mideksa (2013), Barone 
and Mocetti (2014), Andersson (2019) and Clinton and Steinberg (2019).

6  We note, however, that our results do not account for second-order feedback effects from EV purchases to 
charging station installation. These elasticities can therefore be interpreted as lower bound estimates.
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minimize pre-treatment differences in cumulative EV sales between a given treated unit 
and the synthetic municipality. For this purpose, we implement the ridge-augmented SCM 
(Ben-Michael et al. 2018), which adds a bias-correction term to the original SCM weights 
and allows for the use of negative weights in the construction of the synthetic control unit 
(see also Abadie and Imbens 2011).

Building on an absence of difference in EV registrations for pairs of treated and syn-
thetic municipalities during the pre-treatment period, the trajectory for the synthetic munic-
ipality can be interpreted as a counterfactual trajectory for EV adoption in the absence of 
treatment. Consequently, a comparison of the treated municipalities and their respective 
synthetic municipalities quantifies the impact of initial infrastructure provision on cumu-
lative EV purchases. Overall, our results suggest a positive impact of the first charging 
stations. One year after the installation the cumulative EV sales in treated municipalities 
increases on average by 5.4% for one-station group and 8.0% for multi-station group rela-
tive to control. The average treatment effect increases with time, and 2 years post-treatment 
we estimate 21.7 and 46.2% increases in the one-station and multi-station groups respec-
tively. These results confirm large (unpriced) consumer benefits associated with early infra-
structure provision, so that policy intervention in nascent markets can significantly contrib-
ute to initiate adoption dynamics.

These results contribute to a broad literature on indirect network effects and two-sided 
markets in relation to early technology adoption (see Caillaud and Jullien 2003; Armstrong 
2006; Rochet and Tirole 2006). For example, Gandal et al. (2000) studies the adoption of 
CDs and how this depends on and affects the diffusion of CD player hardware, so that both 
sides of the market await developments in the other before making a commitment. Rysman 
(2004) demonstrates a positive network effect in the two-sided Yellow Pages market, and 
Rochet and Tirole (2002) analyze the interaction between payment card users (consumers) 
and merchants’ acceptance of such cards. Lee (2013) investigates the feedback between 
consumer demand for video game hardware and software, and software demand for various 
hardware platforms, demonstrating the negative impact of incompatibility. In our context, 
these network effects hinder the effect of policies targeting externalities associated with 
mobility, and therefore call for a policy intervention.

Our work also contributes to a growing literature focusing on the adoption of EVs.9 In 
particular, our work is closely related to Li et al. (2017), who study the early development 
of the U.S. market for EVs based on 2011 to 2013 data for 353 metropolitical statistical 
areas (MSA) with significant EV sales. They employ a Bartik-style instrument based on the 
number of local supermarkets to generate exogenous variation in the provision of charg-
ing stations, which also uses an assumption that more abundant parking areas facilitate the 
installation of EV chargers without affecting the trade-off between EVs and standard vehi-
cles. They report an elasticity of around 0.8, which is significantly larger than our central 
estimate (0.22). Our results suggest, however, that part of this difference can be attributed 
to the size of the stock of charging infrastructure in MSAs considered in their analysis: 
22.13 in Li et al. (2017), and only 3.09 in our data. Using our polynomial specification, we 
find that the elasticity corresponding to a stock of stations of 22 in our data is 0.54, which 

9  A related literature studies the adoption of alternative-fuel vehicles and the provision of fueling infra-
structure. For example, Corts (2010) and Shriver (2015) provide empirical evidence that fueling stations 
supplying ethanol increase the adoption of ethanol-compatible vehicles in the U.S., and discuss the provi-
sion of subsidies to fuel retailers.
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illustrates the importance of studying early infrastructure provision in the design of poli-
cies supporting EV adoption.

Related evidence focuses on the role of policy incentives for the adoption of EVs. For 
example, Clinton and Steinberg (2019) uses 2011 to 2015 data for the U.S. to quantify the 
impact of direct financial incentives in Texas and Massachusetts on EV adoption.10 Using 
both panel data and SCM, they show that subsidies increase adoption, although they sug-
gest that the net welfare effect of direct EV subsidies is negative. Similarly, Springel (2021) 
uses 2010 to 2015 data for 19 Norwegian counties to study subsidies for EVs and charg-
ing stations.11 She estimates a structural demand model for EVs, showing that subsidiz-
ing charging stations is more efficient than directly subsidizing EVs. Relative to these two 
studies, we provide a first set of empirical results suggesting that indirect network effects 
are large when the stock of charging stations is small, which provides novel insights for 
optimal policy targeting charging infrastructure provision in nascent EV markets (Meunier 
and Ponssard 2020).

Finally, our research is related to the non-monetary and psychological barriers to adop-
tion of new energy technologies demonstrated by Fowlie et  al. (2015). Jaffe and Stavins 
(1994) argue that a lack of uptake of energy efficient technologies is due to factors such as 
incomplete information and unobserved costs, while Heutel and Muehlegger (2015) shows 
that consumer learning about the practical use and attributes of new technologies increases 
adoption. Other papers demonstrate the effect of community and personal environmental 
preferences on the adoption of traditional hybrid vehicles (Kahn 2007; Kahn and Vaughn 
2009), for which we account in our analysis.

One question we do not directly address is different charger speeds (fast vs. slow) and 
their relative benefits in varied use-cases. In theory, slow chargers may be better suited 
to urban areas and locals charging as a supplement to or replacement of home-charging. 
Fast chargers could be more beneficial on long-distance driving routes, leisure destinations, 
and therefore, potentially, rural areas. As Greaker (2021) discusses, fast charger availability 
has been given as an important factor for EV adoption, particularly as an enabler of long-
distance and leisure trips. Their theoretical model finds that fast charger standardisation 
and infrastructure roll-out would increase EV purchases and consumer welfare. Our paper 
somewhat abstracts from these differences, using overall charger numbers. However, on 
average, 85% of charging stations in our data are slow chargers. This, along with our analy-
sis of within-municipality network and EV purchase variations, gives us confidence that we 
are analysing the local effects of nearby charger installations on EV adoption.

This paper proceeds as follows. Section 2 outlines our empirical strategy, first by pro-
viding our data and laying out summary statistics, and second by detailing our panel data 
and SCM approaches. Section 3 then reports our empirical results. Finally, Sect. 4 provides 
concluding comments.

11  While the purpose of our work is different, our data is closely related to Springel (2021), with a few dif-
ferences. First, we work at a more disaggregated municipality-level, with 422 cross-sectional units instead 
of 19 counties. Second, our analysis includes 2016 and 2017, and during 3 years EV sales increased by 
more than 80%, charging stations rose by a quarter, and charging points grew by around 40% (see Fig. 1). 
Lastly, our data covers both charging stations and charging points.

10  On the impact of direct financial incentives on EV and hybrid purchases, see also DeShazo et al. (2017), 
Sallee (2011), Beresteanu and Li (2011), Chandra et al. (2010), Gallagher and Muehlegger (2011), and Dia-
mond (2009).
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2 � Empirical Strategy

In this section we first give a summary of our data, and then present our two complemen-
tary empirical approaches to identify the impact of charging infrastructure on EV demand.

2.1 � Data Overview

Our dataset covers all of Norway’s 422 municipalities for each quarter from Q3 2010 to 
Q4 2017 ( T = 30 ). The data includes the quantity of newly registered EVs by car model, 
month and municipality, and the prices for each car (OFV 2018). Car models here refer to 
the broadest classification thereof (e.g. Tesla Model S or Nissan Leaf). We obtain data on 
every publicly accessible EV charging station across Norway from the Norwegian Charg-
ing Station Database (NOBIL 2018), including its location, opening date and number of 
charging points.12 ,13 Other variables capturing municipality-level characteristics originate 
from Statistics Norway (SSB 2018).

Table 1 summarizes our data. The average quantity of each EV model sold per quarter 
in each municipality is 0.56, and the total number of EVs sold of all models per municipal-
ity per quarter is over 16 on average. Note that, since EV models enter and exit the Norwe-
gian car market over the period considered, we have an unbalanced panel. In 2010 there are 
only 4 models available, and this rose progressively to reach 50 in 2017.

The number of charging stations available per municipality and quarter ranges between 
0 and 376, with an average of 3.09. These values indicate large differences in charging 
infrastructure between municipalities and over time. Moreover, while the average number 
of charging points available is over 13, many charging stations only provide 1 or 2 points. 
Although the average municipal-level number of points per station goes up to 40 points.

We further use the number of parking places per municipality in 2017 as part of our 
instrument, which averages 570 and also has a large range. As additional control variables 
we use the car price, household income, the number of hybrid vehicles per municipality 
in 2008, population size, the proportion of households in a municipality that are detached 
houses or duplexes (as a proxy for level of urbanisation), and, separately, the categorical 
degree of urbanisation (urban/city, suburban/town, rural). The proportion of municipali-
ties classified as urban is 2.8%, while 22.3% are sub-urban, and 74.9% rural. The number 
of traditional (ICE-) hybrid vehicles is used as an indicator of municipal green preferences 
before the mass-introduction of EVs, and willingness to buy new, green car technologies.

One remarkable feature of the data is that, despite the relatively large market share of 
EVs, there are still many Norwegian municipalities that have either no or very few charg-
ing station installations over our observation period. We exploit this feature of the data 
with a SCM strategy. First, 110 municipalities had zero charging stations over the entire 
period (donor municipalities). Second, we observe 47 municipalities that installed a single 
charging station in 1 quarter between Q1 2011 and Q1 2017, with no installations before 
or after (one-station municipalities). Third, we additionally observe 17 municipalities that 
installed multiple stations over a period of up to 4 consecutive quarters, however that had 

12  Note that we do not differentiate chargers by speed, connector type, owning company, or access and 
usage fees. This includes both so-called ‘fast’ (level 3) and ‘slow’ (level 2) chargers, the majority of which 
(85% on average) are the latter (see Li (2019) for a discussion of charger types and compatibility, and 
Greaker (2021) on fast charger standardisation).
13  The NOBIL database is only available from 2010 and thus limits our panel’s time range.
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zero stations prior to Q1 2011 and no more after their 4-quarter installation period (multi-
station municipalities). In this group, between 2 and 13 stations were installed over the 
installation period, with an average of 2.94.

Table 2 shows the difference in the outcome and treatment variables (EV numbers and 
charging stations available, respectively) between these 3 municipality groups across the 
entire observation period.14 Aside from differences in charging stations, cumulated EV reg-
istrations is higher in the two treatment groups than in the donor group. We further observe 
that the municipalities in these three groups are similar in terms of their population size, 
wealth, and urban density. In particular, while the mean donor population is lower than 
those of the treated groups, it is less than two-thirds of a standard deviation smaller. We 
observe that the support of observables for all three groups overlap.

2.2 � Panel Data Approach

The objective of our panel data strategy is to estimate the non-linear impacts of EV charg-
ing infrastructure on the number of EVs purchased. Our main outcome variable is the 
quantity of new cars registered, at the car model-level m, and across municipalities i, and 
quarters t. Our treatment variable is the number of charging stations (or alternatively charg-
ing points) available in a given municipality i and at a given time t.

Formally, our baseline panel data specification is given by:

where ln(EV)mit is the log of new cars registered by model, municipality and quarter, 
ln(chargers)it is the natural log of publicly accessible EV charging stations (or charging 
points).15 Xmit is a set of control variables including the log of a municipality’s mean house-
hold income and the gross list price of each car.16 We also further include two trend varia-
bles. First, we interact household income with a time-trend to allow for the income effect to 
change over time as the EV market becomes more mature. Second, we interact the quantity 
of hybrid vehicles registered in 2008 (before our sample period) with a time-trend to proxy 
for environmental preferences in each municipality. Next, we include municipality-model 
fixed effects �mi , which capture model-specific preference heterogeneity across municipali-
ties due to availability of certain brands, or practicality of certain car characteristics such as 
including battery range or different car styles. This further controls for municipality char-
acteristics that are time-invariant and could affect EV demand, such as degree of urbanisa-
tion, toll road or bus lane prevalence, commuting behaviours, average driving distances, 
technological hesitancy, etc. Quarter fixed effects �t capture country-wide trends, includ-
ing technological improvements in EV models (e.g. increased battery range) and changing 
competition environment across the country. Lastly, �mit is a random error term.

One conceptual issue with equation (1) is the potential endogeneity of charging infra-
structure. As discussed above, demand for EVs can be affected by various factors that vary 

(1)ln(EV)mit = � + � ln(chargers)it + � Xmit + �mi + �t + �mit ,

15  We deal with values of zero EVs, charging stations/points, and parking places by adding one before log-
transforming the data. A comparison to conducting an inverse hyperbolic sine transformation (Bellemare 
and Wichman 2020) generates no significant difference in estimated coefficients.
16  Note that this specification is very similar to structural models for market shares (Berry 1994), although 
for our purpose a linear specification makes the elasticity interpretation more transparent. See Li et  al. 
(2017) for further discussion of this issue.

14  “Appendix 1” lists the names of these 3 groups of municipalities, and provides the quarters of charger 
installation.
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Table 1   Descriptive statistics for all 422 Norwegian municipalities

Data sources are OFV (2018), NOBIL (2018), and SSB (2018). Car price and mean municipal household 
income are measured in 2015 Norwegian kroner (NOK), with 1 USD approx. 8 NOK in 2015. Detached 
houses is measured as the percentage of all households that are detached or duplex

Mean Std. Dev. Min Max

New EVs per model 0.56 5.44 0 528
Total of new EVs 16.07 93.54 0 3815
EV models available 28.93 14.64 4 50
Charging stations 3.09 14.36 0 376
Charging points 13.46 78.77 0 2331
Points per station 3.63 2.48 1.00 40.33
Parking spaces 570.06 1472.56 0 19,719
Car price 547,575.60 395,827.50 124,108.30 2,027,016.00
Mean household income 385,606.10 40,471.95 285,091.80 841,848.80
Hybrids 2008 10.11 46.09 0 736
Population 121,000.97 37,064.02 196 672,062
Detached houses 85.52 12.37 14.61 100

Table 2   Descriptive statistics for municipalities included in the synthetic control analysis

Data sources are OFV (2018), NOBIL (2018), and SSB (2018). Mean municipal household income is 
measured in 2015 NOK, with 1 USD approx. 8 NOK in 2015. Detached houses is measured as the percent-
age of all households that are detached or duplex

Mean Median Std. Dev. Min Max

One-station municipalities
Cumulative EVs 23.51 2 62.98 0 654
Charging stations 0.38 0 0.49 0 1
Population 4756.27 3549 3411.46 346 18,709
Household income 382,723.20 373,923.30 43,237.82 300,324.10 541,030.90
Detached houses 90.30 92.24 6.37 67.23 98.36

Multi-station municipalities
Cumulative EVs 12.52 1 25.37 0 151
Charging stations 0.90 0 2.28 0 13
Population 4781.40 4060 3222.24 1003 11,723
Household income 374,043.80 373,378.30 28,878.90 303,889.10 461,981.80
Detached houses 87.03 90.04 10.14 58.06 97.25

Donor municipalities
Cumulative EVs 10.51 1 35.84 0 395
Charging stations 0 0 0 0 0
Population 2879.55 2016 2879.07 196 18,850
Household income 370,738.70 367,781.60 36,625.30 285,091.80 841,848.80
Detached houses 92.04 93.85 5.56 68.83 100



640	 J. van Dijk et al.

1 3

across time and municipalities, and that also influence investments in chargers and there-
fore their quantity. Additionally, through reverse causality, a greater number of EVs in cir-
culation could lead to more investments in EV charging stations.

In an attempt to address this problem, we exploit plausibly exogenous variation in the 
availability of public parking places in each municipality as part of an instrumental vari-
able strategy. The first stage model is driven by the fact that public charging infrastructure 
generally requires space to park electric vehicles, so that available publicly regulated park-
ing areas in a municipality increase the probability and level of treatment by providing 
locations for charger installations.

We further argue that the exclusion restriction, which requires that our instrument 
Zit affects EV purchases in any given municipality-quarter only through the variable 
ln(chargers)it , is plausible. First, municipality fixed effects control for any time-invariant 
individual municipality effects. Second, we use the number of parking places in a fixed 
year, 2017, and specify a Bartik-type instrument (Bartik 1991) to generate exogenous tem-
poral variation:

where the first part of Zit is the log of publicly regulated parking places in municipality 
i, and the second is the lagged log of charging stations (or points) installed in all other 
municipalities. This yields the following first stage equation:

where the notation follows from above and �mit is a random error term.
This identification strategy is close to Li et al. (2017), who interact the log of the num-

ber of grocery stores with the lagged log of charging stations in other MSAs. Similarly, our 
instrument in Eq. 2 captures the exogenous national trend in charger installations, account-
ing for all national subsidies and incentives, as well as national-level shocks to costs, 
technologies, culture and policies, and interacts the municipal potential for installations. 
Intuitively, national-level trends affect municipalities differently based on their local char-
acteristics, and municipalities with more abundant parking spaces are expected to be more 
likely to install charging infrastructure in response to national trends or shocks.

In order to document non-linearities presumably associated with network effects, we 
estimate a set of specifications using polynomial forms of the instrumented charger vari-
able. For this purpose, we implement the CF approach discussed in Wooldridge (2015), 
whereby residuals from the first stage regression 𝜇̂mit are included in the second stage to 
control for variability that is not associated with the instrumental variable:

where f (⋅) is a quadratic or cubic function.17

Finally, we also carry out the following robustness checks. First, we drop the car price 
from the estimation, so as to document concerns that endogeneity in this variable may 

(2)Zit = ln(car parksi) × ln

(

∑

j,j≠i

chargersj,t−1

)

,

(3)ln(chargers)it = � + �Zit + �Xmit + �mi + �t + �mit ,

(4)ln(EV)mit = 𝛼 + f (chargers) + 𝛾 Xmit + 𝛿mi + 𝜃t + 𝜌 𝜇̂mit + emit ,

17  Bootstrapped standard errors are estimated based on 500 replications.
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affect our estimated elasticities.18 Second, we use the number of parking spaces in 2015 
rather than 2017 to construct an alternative instrument and test it’s robustness to an alterna-
tive measure in the number of parking places.19 Third, we construct an alternative instru-
ment that excludes neighboring municipalities, addressing potential concerns associated 
with regional effects. Fourth, we interact the treatment variable with a dummy for BEVs, 
and test for differences in the provision of charging infrastructure as compared to plug-in 
hybrids. Fifth, we add further control variables, namely municipal-level population, and 
level of urbanization. Sixth, we estimate a separate treatment elasticity for ‘early’ and ‘late’ 
periods of our sample, splitting between observations in 2010–2013 and 2014–2017.

Lastly, we separate treatment elasticity by the municipality’s degree of urbanisation—
urban/city, suburban/town or rural. The fixed effects above capture time-invariant munici-
pality differences such as access to toll roads and bus lanes, commuting methods, and over-
all EV preferences. However, some factors could lead to varied EV adoption responses to 
charger installation. For example, if acceptance of the new technology is lower in rural 
areas and evolves over time at a slower rate to in cities, this would not be captured by 
fixed effects. Furthermore, denser urban environments lend themselves to greater peer and 
network effects through proximity and ease of observation. Finally, the base of installed 
charging infrastructure varies considerably across degree of urbanisation. Thus if the above 
non-linear elasticity estimates are significant, this would directly follow through to mean 
treatment elasticity values in municipalities with greatly differing charger numbers.

2.3 � Synthetic Control Method

We now discuss the SCM approach, which allows us to estimate the impact of provid-
ing charging infrastructure in municipalities that previously had none. Specifically, we 
focus on 47 one-station municipalities that installed a single charging station, and on 17 
multi-station municipalities that installed more than one station. For each treated unit, we 
construct a counterfactual “synthetic” unit by estimating a set of weights applied to the 
110 municipalities with zero charging stations included in the donor pool. Intuitively, the 
weights are selected so as to minimize the distance between the pre-treatment outcome of 
the treated unit and that of the synthetic unit, and the latter is used as a counterfactual to 
quantify post-treatment differences with the treated unit.

Formally, in the SCM approach derived from Abadie and Gardeazabal (2003) and 
Abadie et al. (2010), for each treated municipality j (either in the one-station and multi-
station groups) the outcome is the cumulative number of EV purchases EV jt . We define a 
synthetic municipality as a weighted sum of the cumulative number of EV purchases EVit 
in all municipalities i of the donor pool:

(5)EVSCM
jt

=
∑

i

�jiEVit ,

18  As discussed in Berry (1994) and Berry et al. (1995), the price variable is likely endogenous because of 
unobserved quality attributes. In our setting, however, our focus is on identification of the coefficient associ-
ated with charging infrastructure, and our IV strategy implies that we do not necessarily need to control for 
car prices.
19  Note that, ideally, we would want to consider parking space data before 2010, but 2015 is the first year 
for statistics on parking spaces were collected.
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where �ji is the weight attributed for municipality i in constructing a synthetic control for 
treated municipality j. The weights result from minimization of the squared-sum of pre-
treatment differences in our outcome variable, cumulative EV sales, between each syn-
thetic and treated municipality—the mean squared prediction error (MSPE):

where T0 is last quarter before treatment. Note that the quarter of treatment differs for 
each municipality, and thus the number of periods before and after treatment also varies 
(see “Appendix 1”). We therefore use a staggered design, where the analysis time-points 
are centred around each municipality’s period of treatment ( T0 + 1 ). We restrict our treated 
municipalities to those with at least 4 quarters pre-treatment and at least 4 post-treatment 
to allow for sufficient matching and comparison dimensions. The matching period is then 
the entire observed pre-treatment period available, ranging from 4 to 26 periods, with an 
average of 18.8. Having a relatively long matching period is desirable to minimise potential 
bias and the MSPE, while we simultaneously maintain maximum model sparsity through 
fitting only on the outcome variable (Abadie 2021).

Before treatment, the difference between observed cumulative EVs, EVjt , and the coun-
terfactual synthetic outcome EVSCM

jt
 should be as close as possible to 0. Post-treatment, the 

difference between EVjt and EVSCM
jt

 , denoted �t , measures the treatment effect. Formally 
we calculate:

where Dt is the post-treatment period indicator. We repeat the above for every treated 
municipality in the 2 treatment groups, and show the variation in impacts between these, as 
well as the overall trend and average treatment effects.

Abadie and Imbens (2011) show, however, that the SCM is subject to a version of the 
curse of dimensionality, whereby the probability that the weights assigned achieve a perfect 
match between the synthetic and treated unit decreases with the dimension of the match-
ing. This can lead to a bias in the estimated treatment effect. To overcome this the ridge-
augmented SCM approach adds a bias-correction term derived from a ridge regression of 
post-treatment outcomes for donor units on pre-treatment outcome values. The estimated 
ridge regression coefficients, 𝜂̂ , are then introduced into the model as the bias correction 
(see Ben-Michael et al. 2018).20 Formally, the ridge-augmented SCM weights are derived 
from:

where Y is the vector of pre-treatment cumulative EVs, and (Yj −
∑

i �jiYi) is an estimate of 
the SCM bias. Importantly, the ridge-augmented SCM weights �RASCM

ji
 are not constrained 

(6)
min
�ji

T0
∑

t=0

(

EVjt −
∑

i

�jiEVit

)2

s.t.
∑

i

�ji = 1 , �ji ≥ 0 ,

(7)EVjt = �tDt + EVSCM
jt

,

(8)EVRASCM
jt

=
∑

i

𝜔RASCM
ji

EVit +

(

Yj −
∑

i

𝜔RASCM
ji

Yi

)

⋅ 𝜂̂

20  See also Abadie (2021) for a discussion of SCM extensions and bias-correction methods.



643Technology Adoption and Early Network Infrastructure Provision…

1 3

to be positive, which provides additional flexibility for fitting pre-treatment outcomes. Ben-
Michael et al. (2018) show that the ridge-augmented SCM achieves smaller pre-treatment 
residuals, and in turn generates a more accurate estimate of the treatment effect. In our 
results, we focus primarily on the ridge-augmented SCM results and report the standard 
SCM results in “Appendix 3” for comparison.

We further conduct extensive robustness analysis of our ridge-augmented SCM results. 
Consistent with the SCM literature, these take the form of placebo tests where certain 
aspects of treatment assignment are changed in order to rule out spurious effects (Abadie 
and Gardeazabal 2003). First, we carry out a spatial placebo analysis, where observed 
treatment interventions are iteratively reassigned to every untreated municipality in the 
donor pool, generating placebo treatment corresponding to the treatment dates among 
treated municipalities. From this we are able to compute p-values for our original estimates 
(see also Abadie et al. 2015; Andersson 2019). Specifically, the p-value is calculated as the 
proportion of placebo estimates that are at least as large as the average treatment effect esti-
mated for treated municipalities.21

As a second robustness check, we conduct a set of temporal placebo tests (Abadie et al. 
2015), based on Heckman and Hotz (1989) and Bertrand et al. (2004). Specifically, for each 
treated municipality we shift the treatment period a year (4 quarters) earlier and estimate 
the ridge-augmented SCM weights. In other words, the pre-treatment matching period is 
reduced by four quarters in order to check that the estimated effect is not spurious. If we 
observe systematic, sizeable differences between treated and synthetic outcomes after the 
artificial treatment period, this would provide evidence against the ridge-augmented SCM 
estimates.

Finally, we conduct a version of the “leave-one-out” test (Abadie et al. 2015; Anders-
son 2019) to assess the potential influence of urban-proximate municipalities in the donor 
pool. Specifically, we remove any donor group municipalities that have a weekday morning 
driving-time proximity to cities and urban municipalities, based on the SSB (2018) clas-
sification, and repeat the ridge-augmented SCM analysis to remove potential bias from EV 
adoption incentives in these untreated units due to commuting ties, toll road use, or simi-
lar. If we observe large differences in the estimated treatment effects, we would potentially 
be concerned about bias in our primary results by not explicitly accounting for such non-
charger incentives. Such a bias, though, would theoretically reduce our treatment effect 
estimations, meaning we originally underestimate or find a lower-bound estimate.

3 � Estimation Results

This section reports our empirical results. First, we present the panel data analysis, doc-
umenting non-linear impacts of EV charging infrastructure on the number of EVs pur-
chased. Second, we discuss results from the ridge-augmented SCM, and document the 
impact of initial charging infrastructure provision on cumulative EV sales.

21  Following Andersson (2019), we restrict the analysis of placebo results to municipalities in the donor 
pool for which a good synthetic unit can be found. In particular, we consider only those units with a MSPE 
smaller or equal to the worse fit achieved in our set of treated units. This focuses the comparison among 
units for which the fit of the SCM approach is similar.
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3.1 � Panel Data Results

We start by estimating a set of linear specifications (Eq. 1), which closely align with the 
work of Li et al. (2017). Next, we consider non-linear specifications based on polynomial 
function of charging stations (Eq. 4). Lastly, we report robustness results.

3.1.1 � Linear Specifications

Our estimation results from the linear models are reported in Table 3. In columns (1), we 
report OLS estimates for a regression of the log of EV registrations on the log of charg-
ing stations. In column (2) we report results for the same function estimated with 2-stage 
least squares (2SLS). Columns (3) and (4) repeat this sequence, with charging points as 
the treatment variable instead of charging stations. All models include quarter and munic-
ipality-model fixed effects, and standard errors are clustered at the municipality level and 
reported in parentheses. First-stage results for the 2SLS specifications are provided in 
“Appendix 2”, Table 12.

OLS results in column (1) indicate no statistically significant effect of charging sta-
tions on EV purchases. Comparing this to the 2SLS specification in column (2), suggests 
a negative endogeneity bias. Our IV specification in column (2) shows a highly signifi-
cant estimated elasticity of charging stations on EVs of 0.126. Furthermore, our instru-
ment interacting parking spaces with trends in national charger availability has significant 
explanatory power over the quantity of charging stations available in a given municipality-
quarter, with a first-stage F-statistic associated with the instrument of 19.01. A comparison 
of columns (3) and (4) confirms a downward bias associated with OLS estimation, with the 
2SLS estimate for the elasticity of charging points on EVs of 0.074. The F-statistic associ-
ated with the instrument for charging points in the first-stage regression is 25.54.

Our results show that the elasticity with respect to charging points is almost half the 
magnitude of the elasticity for charging stations. This suggests that consumers respond 
more on average to the simple visual presence of stations than to the specific number of 
plugs available. That is, ceteris paribus, constructing more EV charging stations with fewer 
points each would tend to engender more EV purchases than installing fewer stations with 
more points each. This is consistent with a psychological reassurance effect that the charg-
ing station network provides to curbing drivers’ range anxiety.

3.1.2 � Non‑linear Specifications

Table 4 reports results from the polynomial forms using a CF approach (Eq. 4). Columns 
(1) to (3) respectively provide linear, quadratic, and cubic model estimates with charging 
stations as the treatment variable. Columns (4) to (6) repeat the same sequence of estima-
tions but using charging points as the treatment variable. In all models we additionally 
include quarter and municipality-model fixed effects. Standard errors are clustered at the 
municipality level, bootstrapped with 500 replications, and reported in parentheses.22

22  Note that results in column (1) and (4) correspond to Table 3, column (2) and (4) respectively, illustrat-
ing that 2SLS and CF procedures generate the same coefficient estimates whereas bootstrapped standard 
errors differ slightly. First-stage results remain the same and are reported in “Appendix 2” Table 12.
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Based on the overall model fit, our preferred model for charging stations is the cubic 
form (column 3), and we illustrate the implied schedule for elasticity estimates in 
Fig. 2a (panel a). At low values for the installed stock of charging stations, the elastic-
ity of chargers on EV purchases is similar across specifications (e.g. at the sample mean 
of 3.09 charging stations the cubic specification gives an elasticity of 0.22). However, 
cubic polynomial results indicate a significant increase in the elasticity of charging sta-
tions on EV purchases as the stock of installed stations rises. At around 100 charging 
stations available, the elasticity is approximately unity, although the rise in elasticity for 
each additional installed station quickly diminishes.

Interestingly, our non-linear results also provide a rejoinder with the elasticity esti-
mates of about 0.8 reported in Li et al. (2017), which refer to 353 MSAs with relatively 
significant EV sales over the period from 2011 to 2013. These MSAs also feature a 
stock of installed chargers of 22.13, which is significantly larger than what we have in 
our sample. Evaluating the polynomial function for a stock of installed chargers of 22, 
we obtain an elasticity of 0.54.

Table 3   Baseline results from 
panel data estimation

In all columns, the dependent variable is the log of new electric vehi-
cle registrations ( ln(EV)mit ). Columns (1) and (2) consider charging 
stations as the treatment variable, and columns (3) and (4) instead use 
charging points. All specifications include quarter and municipality-
model fixed effects. The 1st stage partial F-statistic for the instrumen-
tal variable (columns (2) and (4)) are derived from first-stage regres-
sion reported in “Appendix 2”, Table 12. Standard errors clustered at 
the municipality level reported in parentheses
*, ** and *** respectively denote significance at 10%, 5% and 1% levels

Charging stations Charging points

OLS 2SLS OLS 2SLS

(1) (2) (3) (4)

ln(charging stations) − 0.008 0.126** – –
(0.006) (0.054)

ln(charging points) – – − 0.004 0.074***
(0.003) (0.026)

ln(car price) 0.108*** 0.110*** 0.108*** 0.110***
(0.008) (0.008) (0.008) (0.008)

ln(income) − 0.007 − 0.036 − 0.007 − 0.025
(0.092) (0.109) (0.092) (0.110)

ln(income) × time − 0.0002 0.0001 − 0.0003 − 0.0001
(0.005) (0.005) (0.005) (0.005)

ln(hybrids) × time 0.008*** 0.008*** 0.008*** 0.008***
(0.001) (0.001) (0.001) (0.001)

Constant − 1.298 − 1.370 − 1.290 − 1.348
(1.090) (1.314) (1.089) (1.334)

N 367,984 366,296 367,984 366,296
Within-R2 0.0779 0.0675 0.0779 0.0646
1st-stage partial F-stat. – 19.01 – 25.54
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Results for charging points (Table 4 columns (4) to (6) and Fig. 2b also support an 
increasing elasticity schedule as the number of available charging points rises, although 
at a declining rate. In our preferred cubic specification (column 6), the elasticity evalu-
ated at the mean value of charging point availability (13.46) is 0.12. At 200 charging 
points, the elasticity is around 0.57, and surpasses unity for a stock of around 800. Over-
all, the consumer reaction to a marginal increase in charging points is smaller compared 

Table 4   Results from control function estimation

In all columns, the dependent variable is the log of new electric vehicle registrations ( ln(EV)mit ). Col-
umns (1)–(3) consider charging stations as the treatment variable, and columns (4)–(6) instead use charg-
ing points. All specifications include quarter and municipality-model fixed effects. The 1st stage partial 
F-statistic for the instrumental variable is derived from first-stage regression results reported in “Appendix 
2”, Table  12. Standard errors bootstrapped with 500 replications and clustered at the municipality level 
reported in parentheses
*, ** and *** respectively denote significance at 10%, 5% and 1% levels

Charging stations Charging points

Linear Quadratic Cubic Linear Quadratic Cubic

(1) (2) (3) (4) (5) (6)

ln(charging stations) 0.126*** 0.043 0.131*** – – –
(0.045) (0.041) (0.046)

ln(charging stations)2 – 0.046*** − 0.036 – – –
(0.008) (0.029)

ln(charging stations)3 – – 0.018** – – –
(0.009)

ln(charging points) – – – 0.074*** 0.025 0.132***
(0.021) (0.020) (0.021)

ln(charging points)2 – – – – 0.015*** − 0.055***
(0.003) (0.094)

ln(charging points)3 – – – – – 0.012***
(0.002)

ln(car price) 0.110*** 0.110*** 0.110*** 0.110*** 0.110*** 0.110***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

ln(income) − 0.036 − 0.099 − 0.130 − 0.025 − 0.057 − 0.108
(0.100) (0.087) (0.080) (0.103) (0.091) (0.077)

ln(income) × time 0.0006 0.002 0.003 − 0.0001 0.001 0.002
(0.005) (0.005) (0.004) (0.005) (0.005) (0.004)

ln(hybrids) × time 0.008*** 0.006*** 0.006*** 0.008*** 0.007*** 0.006***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.0005)

First stage residuals − 0.137*** − 0.127*** − 0.136*** − 0.080*** − 0.071*** − 0.079***
(0.046) (0.039) (0.038) (0.021) (0.019) (0.018)

Constant − 1.370 − 1.288 − 1.062 − 1.348 − 1.389 − 1.118
(1.214) (1.256) (1.127) (1.211) (1.201) (1.033)

N 366,296 366,296 366,296 366,296 366,296 366,296
Adjusted within-R2 0.0778 0.0796 0.0817 0.0779 0.0790 0.0826
1st-stage partial F-stat. 19.01 19.01 19.01 25.54 25.54 25.54
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to an increase in charging stations, which further supports the behavioral bias discussed 
previously.

Implications of cubic specifications are further illustrated in Fig. 3, which reports the 
impact of a 1-station increment (panel a) and a 1-point increment (panel b) on EV regis-
trations across varying levels of existing infrastructure and EV purchasing. This shows 
that the largest impact from installing an additional charging station is at a low level of 
existing infrastructure, and that the impact increases with the number of EVs purchased 
in the quarter just before installation. As the existing stock of stations grows, the addi-
tional EVs generated by further incremental installations diminishes. The pattern for 
charging points is similar, although the consumer reaction declines more rapidly than 
for charging stations, which is in line with a behavioral difference between charging sta-
tions and points discussed above.

(a) Elasticity schedule for charging stations
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(b) Elasticity schedule for charging points
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Fig. 2   Elasticity of electric vehicle registrations as a function of the charging infrastructure. Notes: Based 
on the model estimates shown in Table  4. The graphed lines provide point elasticity estimates, and the 
shaded areas cover the 95% confidence intervals
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1

50

100

150

200

Q
ua

rt
er

ly
 E

V
 p

ur
ch

as
es

1 10 20 30 40 50 60 70
Existing charging points

20.00-27.00

10.00-19.99

9.50-9.99

9.00-9.49

8.50-8.99

8.00-8.49

7.50-7.99

7.00-7.49

6.50-6.99

6.00-6.49

5.50-5.99

5.00-5.49

4.50-4.99

4.00-4.49

3.50-3.99

3.00-3.49

2.50-2.99

2.00-2.49

1.50-1.99

1.00-1.49

0.50-0.99

0.00-0.49

A
dditional E

V
s purchased

Fig. 3   Electric vehicle registrations associated with incremental charging infrastructure. Notes: Based on 
the cubic model estimates shown in Table 4. This shows the number of new EVs registered after the instal-
lation of a single charging station (a) or point (b), across varying levels of existing infrastructure and previ-
ous EV purchases. “Quarterly EV purchases” refers to the quantity in the period before the charger installa-
tion
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3.1.3 � Robustness Checks for Panel Data Estimation

Next, we report robustness checks for charging stations (Table 5) and points (Table 6). In 
both tables, column (1) reports results excluding the car price variable; column (2) uses 
2015 parking spaces to construct the instrument instead of 2017; in column (3) the instru-
ment excludes each municipality’s neighbors; column (4) adds the interaction between 
chargers and BEVs; column (5) adds extra control variables; column (6) allows the treat-
ment elasticity to vary between early and late periods in our dataset; and column (7) esti-
mates different treatment elasticities for urban, suburban or rural areas. For simplicity and 
ease of interpretation we focus on linear specifications, and provide estimates of our pre-
ferred cubic specifications in appendix Table 13 and Table 14.23 All models are estimated 
with a CF procedure and bootstrapped standard errors (500 replications) clustered at the 
municipality level are reported in parentheses. First stage results for all specifications are 
reported in Tables 15 and 16 of “Appendix 2” for charging stations and points, respectively. 

Starting with results for charging stations (Table 5), we find that the elasticity estimates 
remain close to our primary linear elasticity estimate of 0.126, and the partial F-statistics 
associated with the instrument are also very similar across specifications. This suggests 
that endogeneity in the car price variable does not influence our elasticity of interest (col-
umn 1). Using parking space data for 2015 (column 2) or removing neighboring munici-
palities from the instrument (column 3) have only minor effects on the elasticity estimates, 
which reinforces our confidence in the instrument. Similarly, changing the set of controls 
(column 5) also has very little impact on the elasticity estimates, and population and urban-
ization are not statistically significant at conventional levels. This suggests that our control 
strategy, which closely follows Li et al. (2017), already captures these potential drivers of 
EV purchases. Interacting the treatment variable with an indicator for BEVs (column 4) 
suggests that the elasticity for BEVs is slightly larger (p-value <0.05). Column (6) suggests 
no significant difference in the treatment effect for early and late time periods.

We finally find the treatment effect does vary significantly with urbanisation. Rural 
areas, accounting for three quarters of observations, have a similar elasticity estimate to 
the main specification, with intermediate regions (towns or suburbs) slightly more elastic. 
Cities and urban areas, under 3% of observations, display a significantly greater reaction 
to new charging stations, with a more than doubled treatment elasticity of 0.289. This is 
directly related to the level of charging infrastructure available in each municipality group, 
as demonstrated in our previous non-polynomial model. As discussed above, our charger 
elasticities increase the larger the base of installed stations. Urban municipalities have a 
mean of 41 charging stations in our sample, compared to 5 and 1 in intermediate and rural 
municipalities, respectively. This means that, as per our polynomial findings, the urban-
rural elasticities will also vary along with their respective stages of charging infrastructure 
build-up. The varied responses to charger installations could further be indicative of behav-
iors and preferences that are not captured in the municipality fixed effects, such as an over-
all hesitancy towards the technology that dampens reactions to incentives such as charger 
installations, a lesser importance of public chargers due to more prevalent home charging 
ability, or a relatively greater impact of visibility, and peer and network effects in denser, 
urban environments.

23  It suffices to note here that robustness results for the cubic specifications do not substantially differ from 
the primary results in Table 4, and that explanations for linear robustness checks in Tables 5 and 6 apply to 
the cubic specifications, too.
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Table 5   Alternative panel data specifications—charging stations

No price 2015 park-
ing

No neigh-
bours

Chargers x 
BEV

Additional 
controls

Chargers × 
time

Chargers × 
urban

(1) (2) (3) (4) (5) (6) (7)

ln(charging sta-
tions)

0.126*** 0.139** 0.140*** 0.121*** 0.131*** – –
(0.046) (0.055) (0.048) (0.046) (0.045)

ln(charging sta-
tions) × BEV

– – – 0.011** – – –
(0.005)

ln(charging sta-
tions) × early

– – – – – 0.130*** –
(0.046)

ln(charging sta-
tions) × late

– – – – – 0.128*** –
(0.045)

ln(charging sta-
tions) × urban

– – – – – – 0.289**
(0.125)

ln(charging sta-
tions) × town

– – – – – – 0.146***
(0.047)

ln(charging sta-
tions) × rural

– – – – – – 0.124***
(0.042)

ln(car price) – 0.110*** 0.110*** 0.108*** 0.110*** 0.110*** 0.110***
(0.008) (0.008) (0.007) (0.008) (0.008) (0.009)

ln(income) − 0.036 − 0.038 − 0.039 − 0.036 − 0.065 − 0.035 − 0.003
(0.096) (0.095) (0.089) (0.095) (0.098) (0.095) (0.099)

ln(income) × time 0.001 0.001 0.001 0.001 0.002 0.001 − 0.001
(0.005) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

ln(hybrids) × time 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.007***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ln(population) – – – – − 0.034 – –
(0.122)

Proportion of 
detached and 
duplex dwell-
ings

– – – – 0.003 – –
(0.003)

First stage residual − 0.137*** − 0.149*** − 0.150*** − 0.136*** − 0.142*** − 0.139*** − 0.140***

(0.046) (0.055) (0.048) (0.046) (0.045) (0.045) (0.042)
Constant 0.051 − 1.382 − 1.383 − 1.346 − 1.368 − 1.139 − 1.108

(1.190) (1.163) (1.169) (1.232) (1.631) (1.269) (1.218)
N 366,296 366,296 366,296 366,296 366,296 366,296 366,296
Adjusted within-

R2

0.0767 0.0778 0.0779 0.0779 0.0779 0.0778 0.0778

1st-stage partial 
F-stat.

18.32 11.29 16.80 19.01 19.51 19.01 19.01

In all columns, the dependent variable is the log of new electric vehicle registrations ( ln(EV)mit ). Column 
(1) omits the car price variable. Column (2) uses the number of parking spaces in 2015 to construct the 
instrument. Column (3) excludes neighboring municipalities to construct the instrument. In column (4), we 
interact the treatment variable with a dummy for battery-only EVs. Column (5) includes further control 
variables. In column (6), we estimate separate elasticities for observations in 2010–2013 and 2014–2017. 
Column (7) estimates separate elasticities by municipal degree of urbanisation—urban/city, town/suburban, 
rural. All specifications are estimated with a control function approach and include quarter and municipal-
ity-model fixed effects. The 1st stage partial F-statistic for the instrumental variable is derived from first-
stage regression results reported in “Appendix 2”, Table 15. Standard errors bootstrapped with 500 replica-
tions and clustered at the municipality level reported in parentheses
*, **, *** respectively denote significance at 10%, 5% and 1% levels
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Table 6   Alternative panel data specifications—charging points

No price 2015 parking No neigh-
bours

Chargers x 
BEV

Additional 
controls

Chargers × 
time

Chargers × 
urban

(1) (2) (3) (4) (5) (6) (7)

ln(charging points) 0.074*** 0.087*** 0.079*** 0.072*** 0.077*** – –
(0.020) (0.026) (0.022) (0.021) (0.022)

ln(charging points) 
× BEV

– – – 0.005* – – –
(0.003)

ln(charging points) 
× early

– – – – – 0.081*** –
(0.023)

ln(charging points) 
× late

– – – – – 0.076*** –
(0.022)

ln(charging points) 
× urban

– – – – – – 0.134
(0.146)

ln(charging points) 
× town

– – – – – – 0.083***
(0.026)

ln(charging points) 
× rural

– – – – – – 0.073***
(0.022)

ln(car price) – 0.110*** 0.110*** 0.108*** 0.110*** 0.110*** 0.110***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.006)

ln(income) − 0.025 − 0.029 − 0.027 − 0.025 − 0.059 − 0.025 − 0.019
(0.097) (0.100) (0.099) (0.097) (0.103) (0.098) (0.098)

ln(income) × time − 0.0001 − 0.0002 − 0.0002 − 0.0001 0.001 − 0.0003 − 0.000
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

ln(hybrids) × time 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ln(population) – – – – − 0.049 – –
(0.124)

Proportion of 
detached and 
duplex dwellings

– – – – 0.003 – –
(0.002)

First stage residual − 0.080*** − 0.093*** − 0.085*** − 0.080*** − 0.083*** − 0.083*** − 0.080***

(0.020) (0.026) (0.022) (0.021) (0.022) (0.022) (0.021)
Constant 0.074 − 1.364 − 1.355 − 1.326 − 1.259 − 1.427 − 1.329

(1.234) (1.170) (1.186) (1.166) (1.577) (1.220) (1.180)
N 366,296 366,296 366,296 366,296 366,296 366,296 366,296

Adjusted within-R2 0.0768 0.0779 0.0780 0.0780 0.0780 0.0780 0.0780

1st-stage partial 
F-stat.

24.57 14.17 23.73 25.54 23.04 25.54 25.54

In all columns, the dependent variable is the log of new electric vehicle registrations ( ln(EV)mit ). Column 
(1) omits the car price variable. Column (2) uses the number of parking spaces in 2015 to construct the 
instrument. Column (3) excludes neighboring municipalities to construct the instrument. In column (4), we 
interact the treatment variable with a dummy for battery-only EVs. Column (5) includes further control 
variables. In column (6), we estimate separate elasticities for observations in 2010–2013 and 2014–2017. 
Column (7) estimates separate elasticities by municipal degree of urbanisation—urban/city, town/suburban, 
rural. All specifications are estimated with a control function approach and include quarter and municipal-
ity-model fixed effects. The 1st stage partial F-statistic for the instrumental variable is derived from first-
stage regression results reported in “Appendix 2”, Table 16. Standard errors bootstrapped with 500 replica-
tions and clustered at the municipality level reported in parentheses
*, **, *** respectively denote significance at 10%, 5% and 1% levels
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Results for charging points (Table  6) follow the same logic, and elasticity estimates 
from alternative specifications do not part significantly from the primary linear model’s 
0.074. Column (1) suggests that results do not suffer from otherwise unaccounted endoge-
neity through the vehicle price, and columns (2) and (3) show that our instrument stands up 
to changes in both halves of the Bartik construction. We also observe insignificant changes 
when we add an interaction term for BEVs (column 4), control variables (column 5), and 
check for differences between early-period and late-period elasticities (column 6). Rural 
and sub-urban areas follow the same pattern as for stations, given greater mean charging 
point numbers the more urban the municipality classification (respectively 209, 20 and 4 
points in urban, sub-urban and rural areas). However the treatment elasticity for charging 
points in urban areas, while also larger, cannot be precisely estimated (column 7). Overall, 
each of these alternative specifications supports our primary estimations and the strength 
of our instrument.

3.2 � Synthetic Control Results

We now report results from the SCM approach, quantifying how cumulative EV purchases 
respond to the installations of the first charging station(s). We focus on results from the 
ridge-augmented SCM, which tends to generate smaller pre-treatment residuals, and report 
results for the traditional SCM approach in “Appendix 3”. We then follow with a set of pla-
cebo tests to document robustness of the analysis.

3.2.1 � Pre‑treatment Matching and Treatment Effect Estimates

Figure 4a, b, present our ridge-augmented SCM estimation results for pre-treatment match-
ing periods for the one-station treatment group and multi-station treatment group, respec-
tively. These show that, for both treatment groups, the differences between the numbers of 
EVs registered in each treated and its synthetic municipality prior to the charger installa-
tion shock is close to zero across the pre-treatment periods. This suggests that synthetic 
control units precisely track EV registrations in the pre-treatment period, and provides con-
fidence that synthetic municipalities provide credible counter-factual information for each 
treated municipality in the absence of charging infrastructure.24  

In Fig. 4c, d, we report post-treatment quarterly differences between numbers of EVs in 
a treated municipality and the corresponding number for the estimated synthetic munici-
pality, for the one-station and multi-station treatment groups, respectively. We also plot 
the average treatment effect across treated municipalities as a dashed line, and provide the 
mean and median differences between treated and synthetic municipalities for each post-
treatment quarter in Table 7.25

Overall, results suggest that the provision of an initial charging station has a posi-
tive impact on EV registrations. Quantitatively, we estimate a one-station average treat-
ment effect of 1.7 extra EVs registered four quarters post-installation. Eight quarters 

24  As expected, the ridge augmented SCM provides a more precise matching relative to the traditional 
SCM, as shown in  Fig 8a, b. Treatment effects, discussed next, are however consistent across the two 
approaches.
25  Due to the differing dates of charging station installation across treated units, the number of post-treat-
ment periods varies across municipalities. One implication, shown in Table 7, is that the number of treated-
synthetic municipality pairs declines over time from the initial provision of charging infrastructure.
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post-treatment, the estimated difference rises to 8.0 more EVs than would otherwise be reg-
istered. This is equal to 5.4 and 21.7% more EVs than would otherwise have been bought 
after one and two years, respectively. Evidence further suggests that the impact increases 
with the size of the shock—the multi-station average treatment effect is larger. Four quar-
ters after the first installation, this group had on average 1.9 additional EVs registered. We 
also observe an upward trend in the treatment effect, as the average difference between 
treated and synthetic units increases to 13.8 extra EVs 2 years post-treatment. The positive 
treatment effect associated with multi-station installations amounts to about 8.0 and 46.1% 
more EVs on average, respectively.

These results also match the panel data findings above in Sect. 3.1.2, where we see the 
immediate impact of the first charging infrastructure is low when there are few EVs previ-
ously registered. Applying the single-increment results from Sect. 3.1.2 and Fig. 3 to the 
two SCM municipality groups, we find that the installation of the first charging station in 
the one-station group generated approximately 0.39 new EVs, on average, directly in the 
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Fig. 4   Gap in cumulative EV stock between treated municipalities and synthetic controls. Notes: The solid 
gray lines represent the ridge-augmented SCM estimated differences between each treated municipality and 
its synthetic counterpart. The black dashed lines present the mean differences across treated units
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period of installation. For the multi-station group, an average of 3 charging stations were 
installed in the initial phase, and we therefore find that this lead to an average of around 
0.78 additional EVs being purchased in the initial treatment period. Moreover, we find that 
when there is no existing charging infrastructure, the installation of the first charging point 
has a similar impact to that of the first station. Fundamentally, we see it takes time for the 
network dynamics to play out and the full benefits of early charger provision to be seen.

3.2.2 � Robustness: Placebo Tests for Synthetic Control Results

We now we present the results of placebo tests to document robustness of our SCM 
findings. As described above, we first conduct a set of spatial placebo tests, with results 

Table 7   Summary of post-
treatment synthetic control 
results

This table summarizes results for the post-treatment gap in cumulative 
EV stock between treated municipalities and synthetic controls. Mean 
and median reported refer to the distribution of treatment effects esti-
mated from the ridge-augmented SCM

Quarter 
post-treat-
ment

One-station municipalities Multi-station munici-
palities

Obs. Mean Median Obs. Mean Median

1 47 0.20 −0.08 17 0.01 −0.05
2 47 0.18 0.04 17 0.64 −0.14
3 47 0.74 0.50 17 0.82 0.59
4 47 1.68 0.52 17 1.85 −0.58
5 46 3.50 0.66 13 2.07 −0.93
6 38 5.31 1.88 10 8.12 6.45
7 36 7.19 3.83 8 8.86 10.06
8 35 7.96 3.65 8 13.81 10.53
9 33 9.15 4.97 7 20.22 16.71
10 30 12.81 5.99 7 25.99 22.60
11 26 17.85 6.63 7 31.23 24.80
12 24 22.08 9.95 5 55.53 65.42
13 20 31.31 12.09 4 62.40 58.28
14 18 29.67 8.80 4 69.68 63.26
15 17 34.91 4.98 2 34.80 34.80
16 14 43.66 9.40 1 65.60 65.60
17 13 54.09 14.25 1 74.20 74.20
18 8 20.64 12.37
19 7 14.25 11.76
20 6 10.20 5.88
21 4 24.31 29.82
22 3 35.81 52.23
23 1 85.06 85.06
24 1 100.16 100.16
25 1 117.87 117.87
26 1 153.76 153.76
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shown in Fig.  5 for one-station municipalities (Fig.  5a) and multi-station municipalities 
(Fig. 5b). In both panels, individual placebo estimates of EV number differences are dis-
played in gray, while the dashed-dotted line shows the average placebo ‘treatment effect’ 
for comparison to the black dashed line with the average treatment effect of our treated 
municipalities.26

The estimated placebo differences in EV purchases exhibit significant heterogeneity, 
although the average placebo treatment effect for both one-station and multi-station is esti-
mated to be consistently close to 0. This is also shown in Table  8, which provides per 
period average and median spatial placebo estimates for each group. We also report an 
estimate of the p-value associated with the average treatment effect reported in Table 7, 
each period, as measured by the share of placebo estimates that are larger than the average 
treatment effect estimated on treated municipalities.

Results generally indicate that the significance of our average treatment effect increases 
over time. For one-station municipalities, the treatment effect estimates for treated munici-
palities are marginally significant, and we find that it is below a 10% threshold between 
the 11th and the 18th quarters.27 Results for multi-station municipalities provide further 
evidence for the greater impact of a larger treatment, as the p-value for the multi-station 
average treatment effect falls under 0.10 in the 6th quarter post-treatment, and below the 
0.05 threshold after 2 years.
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Fig. 5   Synthetic control results for the spatial placebo tests. Notes: This figure shows the results for the 
spatial placebo tests, comparing average gap in cumulative EV stock between treated municipalities and 
synthetic controls with placebo gaps for the control municipalities. The solid grey lines represent the pla-
cebo difference estimates for donor pool municipalities. The black dashed lines provide the mean difference 
estimates for the treated municipalities from Fig. 4. The dashed-dotted lines give the means of the placebo 
estimates. See Appendix C, Table C2, for the underlying data

26  Placebo tests include only estimates for which pre-treatment MSPE is at least as good as the largest 
MPSE obtained for treated units. This leads us to exclude 7 municipalities from the one-station group (out 
of 2200) and 134 municipalities from the multi-station group (out of 990).
27  The p-value for the average treatment effect estimate is also below 10% after the 23rd quarter, although it 
refers to only one municipality. See Table 7.
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Results for the second placebo test are reported in Fig. 6, which shows our temporal 
placebo results. The solid grey lines present the individual placebo estimates generated by 
giving each municipality an artificial treatment 4 quarters prior to the observed one. The 
dashed-dotted line shows the mean placebo differences, and the black dashed line the origi-
nal SCM average treatment effect estimates. Table 18 in the appendix provides the means 
and medians of the temporal placebo estimates for the two treatment groups.

Results suggest that the mean placebo differences remain close 0 in the initial 4 placebo 
treatment periods. After the true treatment period, the temporal placebo average closely 
follows our average treatment effect estimates. The small differences from the original esti-
mates can be explained by the use of a shorter matching period, which implies slightly 

Table 8   Summary results for spatial placebo tests

This table summarizes results for the post-treatment gap in cumulative EV stock for non-treated munici-
palities subject to placebo treatments corresponding to the treatment dates among treated municipalities, 
and synthetic controls. We report mean and median placebo treatment effects. The p-values represent the 
proportion of placebo difference estimates that are at least as large as the average treatment effect for treated 
municipalities

Quarter post-
treatment

One-station municipalities Multi-station municipalities

Obs. Mean Median p-value Obs. Mean Median p-value

1 2193 0.02 − 0.08 0.244 856 − 0.06 − 0.11 0.293
2 2193 0.04 − 0.15 0.311 856 − 0.11 − 0.30 0.263
3 2193 0.08 − 0.23 0.255 856 − 0.18 − 0.40 0.251
4 2193 0.14 − 0.28 0.204 856 − 0.27 − 0.43 0.189
5 2086 0.23 − 0.34 0.150 773 − 0.38 − 0.34 0.189
6 1977 0.29 − 0.47 0.123 688 − 0.48 − 0.48 0.063
7 1867 0.38 − 0.66 0.111 598 − 0.44 − 0.74 0.074
8 1757 0.47 − 0.65 0.118 598 − 0.51 − 0.87 0.050
9 1648 0.51 − 0.94 0.126 509 − 0.74 − 1.17 0.037
10 1539 0.51 − 1.21 0.110 509 − 0.75 − 1.54 0.033
11 1430 0.54 − 1.81 0.092 509 − 0.83 − 1.64 0.033
12 1320 0.47 − 2.16 0.084 411 − 0.99 − 2.03 0.024
13 1210 0.49 − 2.83 0.069 312 − 0.95 − 1.92 0.029
14 1100 0.40 − 2.86 0.080 312 − 0.98 − 2.27 0.029
15 990 0.23 − 3.59 0.085 211 0.59 − 3.07 0.076
16 880 − 0.44 − 4.82 0.076 107 − 0.17 − 5.15 0.056
17 770 − 0.03 − 5.69 0.075 107 − 0.04 − 5.57 0.056
18 660 − 0.05 − 6.57 0.155
19 550 0.49 − 7.40 0.187
20 440 0.71 − 8.13 0.209
21 330 1.29 − 8.98 0.148
22 220 1.34 − 9.36 0.118
23 110 1.15 − 9.38 0.082
24 110 1.24 − 10.91 0.055
25 110 1.37 − 10.65 0.064
26 110 1.62 − 12.02 0.055
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different weights attributed to donor municipalities. This provides further confidence 
that our estimated difference in EV purchases can be attributed to the early installation of 
charging infrastructure at observed dates.

The results of the final robustness check, the “leave-one-out” tests that omit certain 
urban-proximate municipalities, are shown in Fig. 7. This provides little evidence that our 
main results are sensitive to the presence of urban-proximate municipalities in the donor 
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Fig. 6   Synthetic control results for the temporal placebo tests. Notes: This figure shows the results for the 
temporal placebo tests, comparing average gap in cumulative EV stock between treated municipalities and 
synthetic controls with those derived with an artificial 4-quarter earlier treatment. The solid grey lines rep-
resent the estimated differences between each treated municipality and its synthetic counterpart, with a 
placebo installation of charging stations 4 quarters prior to the actual installation. The black dashed lines 
provide the mean difference estimates for the treated municipalities from Fig. 4. The dashed-dotted lines 
present the means of the placebo estimates. See “Appendix 3”, Table 18, for the underlying data
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Fig. 7   Synthetic control results for “leave-one-out” tests. Notes: This figure shows the results for the “leave-
one-out” test. This is a repeat of Fig. 4c, d, excluding six city-proximate donor group municipalities 19. The 
solid gray lines represent the ridge-augmented SCM estimated differences between each treated municipal-
ity and its synthetic counterpart. The black dashed lines present the mean differences across treated units
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pool. We find six donor group municipalities that are less than a one hour drive to a city 
or urban municipality (see Table 19).28 The exclusion of these units from the donor pool 
does not greatly impact the estimations except for the one-station estimated differences 
between periods 18 and 22, where the treatment estimate is larger, and then from period 
23, where only one treated municipality remains, with a much larger estimated difference. 
Specifically, at the mean, we estimate here 0.9 and 5.7 more EVs purchased by periods 
quarters 4 and 8, respectively, in the one-station group. This is slightly lower than the origi-
nal estimates, though the medians remain almost identical. For the multi-station treatment 
group, we estimate an effect of 1.5 and 12.9 EVs by quarters 4 and 8, respectively. This is 
very close to the original estimates. Again, the medians remain similar. We provide the full 
“leave-one-out” estimates in Table 20.

4 � Discussion and Conclusions

In this study, we have provided novel empirical evidence on the impact of EV charging 
infrastructure on the adoption of EVs, focusing on how the size of the infrastructure net-
work affects the response of consumers. Our work is based on fine-scale temporal and geo-
graphical data for Norway, from the emergence of the market and the early movers of 2010 
to the mature market with large market share by 2017.

Our results provide a first account of consumer response to infrastructure in locations 
that previously had none. We show that the very first charging station installations initially 
induce a small response by consumers, although a one-off shock has a lasting, increasing 
impact over time after installation. We have also shown that the size of the initial instal-
lation shock matters, as providing multiple charging stations leads to a larger response by 
consumers. Beyond initial charging infrastructure, we have identified a non-linear rela-
tionship between the adoption of emerging EV technology and the size of the associated 
charging infrastructure network. Our results imply that the greatest effect of incremental 
infrastructure on EV purchases is when little to no pre-existing infrastructure exists, and 
when EV sales are already substantial. This is consistent with indirect network effects, and 
suggests an initial hurdle to the adoption of EVs. Moreover, the response by consumers 
gradually declines as the pre-existing network infrastructure expands.

Taken together, a low consumer response when existing EV purchases are small and a 
decreasing marginal installation impact trend can lead to a stand-off between initial EV 
purchases and charger investments. Once some EVs have been purchased, however, fur-
ther charger installations do imply indirect network effects, fostering growth in both sides 
of the market. As the charging network grows, incremental charging infrastructure have a 
declining impact on EV sales, suggesting declining marginal benefits to consumers. This 
indicates that unpriced benefits to consumers are largest at the initial stage of the market, 
suggesting that early government interventions such as subsidies for charging infrastructure 
deployment have the largest impact on market inefficiencies and EV adoption rate.

Our results further support the view that a behavioral bias magnifies indirect network 
effects on the market for EVs, as the impact of charging points on EV registrations is con-
sistently lower than that of stations. The fact that consumers respond more to additional 

28  Specifically, we calculate the driving time on a representative weekday morning between the population-
weighted geographical centre-points of each donor and urban municipality using the georoute Stata package 
(Weber and Péclat 2017).
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installations of charging stations than they do to the addition of more charging points, cet-
eris paribus, supports the view that consumers’ behavioral response is in part driven by 
range anxiety. This makes the number of charging points potentially less relevant than the 
physical presence of a charging station. Furthermore, the evidence that charging stations 
have a significantly greater effect on EV purchases in urban regions relative to rural or less-
urban could indicate potential greater visibility and proximity effects, or hesitancy in rural 
areas that dampens reactions to new infrastructure. That said, this result further supports 
our non-linear approach, demonstrating a higher treatment elasticity in municipalities with 
a larger installed base of chargers (eg. urban, compared to rural).

While our paper contributes to an active research agenda on electric vehicles, we close 
by emphasizing that much remains to be done. Our analysis does not account for feedback 
effects from EV purchases to charging station installation, so that our estimate can be seen 
as a lower bound of the impact of charging infrastructure on EV adoption. Future research 
may consider how such feedback loops are affected by the pre-existing stock of charging 
infrastructure.

Appendix 1: Municipalities Used for Synthetic Control Estimation

See Tables 9, 10, and 11.
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Table 9   Group of one-station 
municipalities

Munici-
pality 
code

Municipality name County Treatment quarter

135 Råde Østfold Q4 2016
227 Fet Akershus Q4 2013
239 Hurdal Akershus Q4 2015
418 Nord-Odal Hedmark Q4 2012
423 Grue Hedmark Q4 2014
425 Åsnes Hedmark Q4 2013
436 Tolga Hedmark Q1 2013
514 Lom Oppland Q3 2015
522 Gausdal Oppland Q4 2015
536 Søndre Land Oppland Q4 2013
619 Ål Buskerud Q1 2013
633 Nore og Uvdal Buskerud Q3 2012
814 Bamble Telemark Q4 2014
817 Drangedal Telemark Q4 2015
831 Fyresdal Telemark Q1 2017
833 Tokke Telemark Q2 2014
937 Evje og Hornnes Aust-Agder Q3 2015
1021 Marnardal Vest-Agder Q1 2014
1037 Kvinesdal Vest-Agder Q3 2013
1114 Bjerkreim Rogaland Q4 2016
1121 Time Rogaland Q4 2013
1127 Randaberg Rogaland Q3 2011
1135 Sauda Rogaland Q1 2016
1141 Finnøy Rogaland Q3 2015
1142 Rennesøy Rogaland Q4 2016
1222 Fitjar Hordaland Q4 2013
1231 Ullensvang Hordaland Q2 2016
1252 Modalen Hordaland Q1 2016
1264 Austrheim Hordaland Q2 2013
1417 Vik Sogn og Fjordane Q4 2016
1426 Luster Sogn og Fjordane Q3 2014
1516 Ulstein Møre og Romsdal Q2 2015
1535 Vestnes Møre og Romsdal Q4 2016
1551 Eide Møre og Romsdal Q2 2014
1822 Leirfjord Nordland Q3 2016
1828 Nesna Nordland Q4 2016
1850 Tysfjord Nordland Q4 2016
1860 Vestvågøy Nordland Q3 2016
1871 Andøy Nordland Q1 2015
1913 Skånland Troms Q4 2016
2017 Kvalsund Finnmark Q3 2015
2019 Nordkapp Finnmark Q2 2014
5014 Frøya Trøndelag Q2 2015
5015 Ørland Trøndelag Q3 2012
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This table lists all municipalities included in the group of one-station 
municipalities. These have initially no charging infrastructure, until 
they installed a single charging station during the treatment quarter. 
After that, no more charging infrastructure is installed

Table 9   (continued) Munici-
pality 
code

Municipality name County Treatment quarter

5022 Rennebu Trøndelag Q1 2015
5025 Røros Trøndelag Q1 2015
5026 Holtålen Trøndelag Q1 2013

Table 10   Group of multi-station 
municipalities

This table lists all municipalities included in the group of multi-sta-
tion municipalities. These have initially no charging infrastructure, 
until they installed two or more charging station over a period of four 
consecutive quarters. In the table, treatment quarter refers to the first 
of the up to four consecutive quarters where charging stations are 
installed

Munici-
pality 
code

Municipality name County Treatment quarter

429 Åmot Hedmark Q1 2016
432 Rendalen Hedmark Q4 2016
515 Vågå Oppland Q1 2017
540 Sør-Aurdal Oppland Q4 2016
716 Re Vestfold Q2 2015
830 Nissedal Telemark Q1 2017
938 Bygland Aust-Agder Q2 2015
1211 Etne Hordaland Q4 2013
1228 Odda Hordaland Q3 2014
1422 Lærdal Sogn og Fjordane Q3 2016
1515 Herøy Møre og Romsdal Q3 2016
1524 Norddal Møre og Romsdal Q2 2014
1865 Vågan Nordland Q3 2014
1920 Lavangen Troms Q1 2017
1924 Målselv Troms Q1 2017
1931 Lenvik Troms Q1 2015
5011 Hemne Trøndelag Q4 2016
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Table 11   Municipalities included 
in the donor pool

Municipality 
code

Municipality name County

121 Rømskog Østfold
234 Gjerdrum Akershus
434 Engerdal Hedmark
441 Os Hedmark
541 Etnedal Oppland
621 Sigdal Buskerud
628 Hurum Buskerud
632 Rollag Buskerud
711 Svelvik Vestfold
811 Siljan Telemark
822 Sauherad Telemark
827 Hjartdal Telemark
912 Vegårshei Aust-Agder
919 Froland Aust-Agder
928 Birkenes Aust-Agder
935 Iveland Aust-Agder
1027 Audnedal Vest-Agder
1029 Lindesnes Vest-Agder
1034 Hægebostad Vest-Agder
1111 Sokndal Rogaland
1119 Hå Rogaland
1129 Forsand Rogaland
1130 Strand Rogaland
1133 Hjelmeland Rogaland
1144 Kvitsøy Rogaland
1145 Bokn Rogaland
1151 Utsira Rogaland
1234 Granvin Hordaland
1265 Fedje Hordaland
1418 Balestrand Sogn og Fjordane
1424 Årdal Sogn og Fjordane
1428 Askvoll Sogn og Fjordane
1438 Bremanger Sogn og Fjordane
1441 Selje Sogn og Fjordane
1511 Vanylven Møre og Romsdal
1514 Sande Møre og Romsdal
1526 Stordal Møre og Romsdal
1529 Skodje Møre og Romsdal
1531 Sula Møre og Romsdal
1534 Haram Møre og Romsdal
1543 Nesset Møre og Romsdal
1545 Midsund Møre og Romsdal
1546 Sandøy Møre og Romsdal
1547 Aukra Møre og Romsdal
1548 Fræna Møre og Romsdal
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Table 11   (continued) Municipality 
code

Municipality name County

1567 Rindal Møre og Romsdal
1576 Aure Møre og Romsdal
1811 Bindal Nordland
1812 Sømna Nordland
1815 Vega Nordland
1816 Vevelstad Nordland
1818 Herøy Nordland
1827 Dønna Nordland
1834 Lurøy Nordland
1835 Træna Nordland
1836 Rødøy Nordland
1837 Meløy Nordland
1838 Gildeskål Nordland
1839 Beiarn Nordland
1848 Steigen Nordland
1851 Lødingen Nordland
1852 Tjeldsund Nordland
1856 Røst Nordland
1857 Værøy Nordland
1859 Flakstad Nordland
1866 Hadsel Nordland
1867 Bø Nordland
1868 Øksnes Nordland
1874 Moskenes Nordland
1911 Kvæfjord Troms
1917 Ibestad Troms
1919 Gratangen Troms
1923 Salangen Troms
1925 Sørreisa Troms
1926 Dyrøy Troms
1927 Tranøy Troms
1928 Torsken Troms
1929 Berg Troms
1936 Karlsøy Troms
1938 Lyngen Troms
1940 Gáivuotna Kåfjord Troms
1941 Skjervøy Troms
1943 Kvænangen Troms
2002 Vardø Finnmark
2003 Vadsø Finnmark
2011 Guovdageaidnu Kautokeino Finnmark
2014 Loppa Finnmark
2015 Hasvik Finnmark
2021 Karasjohka Karasjok Finnmark
2022 Lebesby Finnmark
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Table 11   (continued) Municipality 
code

Municipality name County

2023 Gamvik Finnmark
2024 Berlevåg Finnmark
2025 Deatnu Tana Finnmark
2027 Unjargga Nesseby Finnmark
2028 Båtsfjord Finnmark
5012 Snillfjord Trøndelag
5013 Hitra Trøndelag
5019 Roan Trøndelag
5020 Osen Trøndelag
5029 Skaun Trøndelag
5032 Selbu Trøndelag
5038 Verdal Trøndelag
5039 Verran Trøndelag
5040 Namdalseid Trøndelag
5043 Røyrvik Trøndelag
5046 Høylandet Trøndelag
5048 Fosnes Trøndelag
5049 Flatanger Trøndelag
5050 Vikna Trøndelag
5052 Leka Trøndelag

This table lists all municipalities included in the donor pool. These 
have no charging infrastructure over the entire observation period
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Appendix 2: Control Function Estimation Supplements

See Tables 12, 13, 14, 15, and 16.

Table 12   First-stage results for 
charging stations and charging 
points

This table reports first stage regression results for 2SLS and CF proce-
dures. In column (1), the dependent variable is ln(chargingstations)mit . 
In column (2), the dependent variable is ln(chargingpoints)mit . See 
Eq. (2) for the definition of the instrumental variable (IV). All specifi-
cations include quarter and municipality-model fixed effects. Standard 
errors clustered at the municipality level reported in parentheses
*, **, *** respectively denote significance at 10%, 5% and 1% levels

Charging stations Charging points
(1) (2)

IV 0.058*** 0.111***
(0.013) (0.022)

ln(car price) − 3.01E−12 − 9.54E−13
(9.06E−12) (1.58E−11)

ln(income) 0.196 0.189
(0.388) (0.643)

ln(income) × time − 0.004 0.001
(0.016) (0.027)

ln(hybrids) × time 0.003** − 0.0003
(0.001) (0.002)

Constant − 2.206 − 5.958
(4.575) (8.603)

N 366,296 366,296
Adjusted within-R2 0.393 0.355
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Appendix 3: Synthetic Control Method Supplements

As outlined in Sect. 2.3, the ridge-augmented SCM from Ben-Michael et al. (2018) offers 
an improvement in SCM case study analysis by allowing for a more precise matching and 
hence lower MSPE. In Fig. 8, we compare a traditional SCM matching algorithm (Abadie 
and Gardeazabal 2003; Abadie et al. 2010) to the ridge-augmented SCM results presented 
in the main text.

Results suggest that the pre-treatment residuals (Fig. 8a, b) are significantly larger and 
display more variability as compared to our main results. This lower fit of the synthetic 
municipalities confirms that the ridge-augmented SCM approach provides a more accurate 
estimate of the counterfactual, and in turn the treatment effects.

Nevertheless, Fig. 8c, d show that the estimated post-treatment differences are qualita-
tively similar using both approach. As expected, larger MPSE implies additional variabil-
ity in early post-treatment quarters. However, overall, the average treatment effect is very 

(a) One-station municipalities: matching periods
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(c) One-station municipalities: treatment effect
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Fig. 8   Results from the traditional synthetic control method. Notes: The solid gray lines represent the SCM 
estimated differences between each treated municipality and its synthetic counterpart. The dashed-dotted 
lines present the mean differences across treated units. The dashed lines provide the mean difference esti-
mated from the ridge-augmented SCM approach reported in Fig. 4
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similar with both approaches. This is also illustrated in Table 17, which provides the mean 
and median treatment effect for each quarter associated with a traditional SCM (Tables 18, 
19, and 20).

Table 17   Summary results for 
the traditional synthetic control 
method

This table summarizes results for the post-treatment gap in cumulative 
EV stock between treated municipalities and synthetic controls. Mean 
and median reported refer to the distribution of treatment effects esti-
mated from the traditional SCM

Quarter 
post-treat-
ment

One-station municipalities Multi-station munici-
palities

Obs. Mean Median Obs. Mean Median

1 47 0.87 − 0.06 17 0.04 − 0.08
2 47 0.84 0.04 17 0.28 − 0.27
3 47 1.14 0.50 17 0.35 − 0.10
4 47 1.89 0.52 17 1.19 − 0.58
5 46 3.68 0.86 13 1.08 − 0.93
6 38 5.42 2.64 10 6.28 6.44
7 36 7.19 4.16 8 6.76 10.05
8 35 8.14 4.02 8 11.17 10.52
9 33 9.24 5.64 7 16.68 16.70
10 30 12.79 7.07 7 21.71 22.60
11 26 15.96 6.61 7 26.52 24.80
12 24 19.67 7.40 5 55.52 65.40
13 20 27.57 8.55 4 62.39 58.27
14 18 24.88 6.26 4 69.67 63.25
15 17 28.89 4.98 2 34.80 34.80
16 14 45.15 18.62 1 65.60 65.60
17 13 55.89 29.49 1 74.20 74.20
18 8 23.84 20.11
19 7 18.28 11.76
20 6 15.28 5.88
21 4 32.51 30.62
22 3 47.48 52.23
23 1 123.00 123.00
24 1 141.00 141.00
25 1 162.00 162.00
26 1 202.00 202.00
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Table 18   Summary results for 
the temporal placebo tests

This table summarizes results for the post-treatment gap in cumulative 
EV stock for non-treated municipalities subject to placebo treatments 
4-quarter before treatment, and synthetic controls. We report mean and 
median placebo treatment effects

Quarter post-
treatment

One-station municipalities Multi-station municipali-
ties

Obs. Mean Median Obs. Mean Median

1 46 0.61 − 0.06 16 0.47 0.10
2 46 0.69 − 0.04 16 0.17 − 0.18
3 46 0.54 − 0.10 16 0.99 1.03
4 46 0.78 − 0.13 16 1.08 1.31
5 46 0.83 0.18 16 1.31 1.67
6 46 0.68 0.52 16 2.03 1.81
7 46 1.50 0.48 16 2.85 1.93
8 46 2.22 0.48 16 4.69 2.59
9 45 4.09 0.89 12 4.59 2.65
10 37 8.69 2.34 9 11.94 8.86
11 35 11.18 7.57 7 14.19 16.22
12 34 12.83 6.55 7 19.18 16.10
13 32 15.40 9.18 6 24.80 19.32
14 29 18.88 4.50 6 29.81 28.98
15 25 20.64 13.05 6 36.77 36.16
16 23 28.24 21.22 5 54.30 63.63
17 19 31.63 21.89 4 60.49 59.13
18 17 29.05 4.67 4 66.55 63.09
19 16 32.85 4.63 2 30.39 30.39
20 13 45.06 10.50 1 65.80 65.80
21 12 53.21 8.97 1 74.45 74.45
22 7 20.05 5.67
23 6 8.88 2.18
24 5 2.36 − 6.30
25 3 16.17 13.58
26 2 22.11 22.11

Table 19   City-proximate donor 
pool municipalities

This table lists all municipalities included in the donor pool that have 
been calculated to have a one hour or less driving time from their pop-
ulation-weighted geographical centre to that of a city or urban munici-
pality

Municipality code Municipality name County

234 Gjerdrum Akershus
711 Svelvik Vestfold
1119 Hå Rogaland
1129 Forsand Rogaland
1130 Strand Rogaland
5029 Skaun Trøndelag
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Table 20   Summary of post-
treatment synthetic control 
results under “leave-one-out” test

This table summarizes results for the post-treatment gap in cumulative 
EV stock between treated municipalities and synthetic controls under 
the “leave-one-out” test. Mean and median reported refer to the distri-
bution of treatment effects estimated from the ridge-augmented SCM

Quarter 
post-treat-
ment

One-station municipalities Multi-station munici-
palities

Obs. Mean Median Obs. Mean Median

1 47 − 0.34 − 0.15 17 0.00 − 0.01
2 47 − 0.30 − 0.09 17 0.36 − 0.05
3 47 0.10 0.36 17 0.50 − 0.10
4 47 0.88 0.52 17 1.49 − 0.14
5 46 2.57 0.71 13 1.62 − 0.17
6 38 3.61 1.56 10 7.20 6.08
7 36 5.27 4.22 8 8.00 9.38
8 35 5.74 3.61 8 12.88 9.63
9 33 7.29 5.64 7 18.55 14.28
10 30 10.26 4.94 7 24.03 22.60
11 26 14.92 6.63 7 29.58 24.80
12 24 19.15 10.71 5 54.68 60.80
13 20 27.76 14.90 4 62.61 60.89
14 18 25.17 12.83 4 69.51 66.17
15 17 29.08 12.91 2 34.80 34.80
16 14 39.69 18.75 1 65.60 65.60
17 13 48.35 29.78 1 74.20 74.20
18 8 39.62 20.11
19 7 38.67 11.76
20 6 39.94 5.88
21 4 71.59 30.62
22 3 103.16 52.23
23 1 298.83 298.83
24 1 316.45 316.45
25 1 356.75 356.75
26 1 414.40 414.40
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