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Abstract
We investigate the problem of endogeneity and measurement bias arising from incorpo‑
rating indicator variables (e.g., measures of attitudes) into discrete choice models. We 
demonstrate that although a hybrid choice framework can resolve both endogeneity and 
measurement problems, the former requires explicit accounting for in the model, which has 
not typically been done in applied studies to date. By conducting a Monte Carlo experi‑
ment, we demonstrate the extent of the bias resulting from measurement and endogeneity 
problems. We propose two novel solutions to address the endogeneity problem: explicitly 
accounting for correlation between structural and discrete choice component error terms 
(or with random parameters in a utility function), or introducing additional latent variables. 
Using simulated data, we demonstrate that these approaches work as expected, i.e. they 
successfully recover the true values of all model parameters.

Keywords Attitudinal variables · Endogeneity · Hybrid choice models · Indicator 
variables · Measurement error

JEL Classification C35 · C51 · Q51 · R41

1 Introduction

A hybrid choice (HC) model is a flexible tool that incorporates perceptions and cognitive 
processes into a random utility framework commonly used to model individuals’ choices. 
Indicator variables used to measure psychological or sociological constructs enter the 
model through latent variables, rather than being directly interacted with choice attributes. 
The HC model can therefore be viewed as a combination of a classical discrete choice 
model, such as the mixed logit model (MXL, Revelt and Train 1998), with a Multiple 
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Indicators, Multiple Causes (MIMIC) model (Jöreskog and Goldberger 1975). The former 
links some assumed decision process (e.g., utility maximization) and observed explanatory 
variables (attributes of alternatives, socio‑demographics) with observed choices, whereas 
the latter identifies latent factors linked with observed indicator variables, for example, 
answers to attitudinal survey questions.

The HC framework has been extensively used over the last decade to better understand 
the attitudes and psychological factors that drive individuals’ preferences toward non‑mar‑
ket goods and policies. In the environmental context, applications include stated preference 
studies on individuals’ choices regarding coastal water quality improvements, land‑use pol‑
icies, conservation policies, and recycling rules (Hess and Beharry‑Borg 2012; Hoyos et al. 
2015; Lundhede et  al. 2015; Mariel et  al. 2015; Bartczak et  al. 2016; Czajkowski et  al. 
2017b; Boyce et al. 2019; Zawojska et al. 2019). The latent factors can represent a wide 
range of psychological measures, such as attitudes toward chargeable policy, awareness of 
consequences, outcome uncertainty, risk preferences, social norms, morals, personality, 
and perceived survey consequentiality.

The popularity of the HC model stems from the fact that including indicator variables 
directly in a choice model is considered methodologically flawed because of the lack of 
causality, dependence on survey question framing (Ben‑Akiva et  al. 2002), as well as 
potential measurement error and endogeneity (Guevara 2015). With regard to endogeneity, 
the usually acknowledged cause of this issue is that responses to attitudinal questions are 
likely correlated with other unobserved factors, which, if not accounted for, will end up in 
the error term of the random utility model (Daly et al. 2012; Hess and Beharry‑Borg 2012; 
Kløjgaard and Hess 2014; Hoyos et  al. 2015). It is widely believed that the HC model 
resolves both issues – measurement error and endogeneity (Daly et  al. 2012; Hess et  al. 
2013; Hess and Stathopoulos 2013; Kløjgaard and Hess 2014; Bello and Abdulai 2015). 
We show that while HC models do indeed account for measurement error, endogeneity can 
arise from other sources (e.g., omitted variables, simultaneous determination) and requires 
explicit accounting for in the specification of the model – something that has not typically 
been addressed in the applied choice modeling literature.

Endogeneity arises when explanatory variables in the model are not independent of the 
stochastic term, which leads to biased parameter estimates. Incorporating indicator vari‑
ables directly into the choice model, may lead to the correlation of explanatory variables 
and the stochastic term, because indicator variables are usually not direct measures of 
latent constructs but rather their functions (Guevara 2015). Walker et al. (2010) and Vij and 
Walker (2016) show that measurement error, leading to endogeneity, can be accounted for 
in a straightforward way by using the HC framework and incorporating measurement errors 
directly into the measurement equation (see also the equation (4) in Sect. 2.2). Campbell 
and Sandorf (2020) employ simulations to further investigate the performance of HC mod‑
els while controlling for different strengths of relationship between latent factors, indicator 
variables, and choices. They find that if these relationships are weak then the advantage of 
using HC models is greatly diminished. In some cases, putting indicator variables directly 
into the choice model works just as well, measurement errors notwithstanding.

However, endogeneity of indicator variables can also arise from other sources than 
measurement error. For example, Ben‑Akiva et al. (2002) and Guevara (2015) show that 
endogeneity and inconsistent estimates in HC models may be caused by the omission of 
important attitudes or explanatory variables. Guevara and Polanco (2016) discuss the endo‑
geneity of indicator variables caused by missing covariates and simultaneous determina‑
tion. Chorus and Kroesen (2014) list reasons why attitudes or perceptions can be rendered 
endogenous (other than indicator variables) and discuss the implications for the practical 
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use of HC models. In what follows we investigate whether the HC framework can address 
such issues by accounting for correlations between error terms in different parts of the 
model. For clarity, we use the term endogeneity – in line with the general tenor of the 
literature – to refer to the impact of factors other than measurement error (such as omitted 
variables).

Previous studies have utilized HC models to address the issue of omitted variables and 
the endogeneity that arises because of it. The usual example given is the case of the endog‑
enous price of a good when the quality attribute is missing (Palma et al. 2016). The useful‑
ness of the HC framework in such cases was also demonstrated by simulations reported 
by Vij and Walker (2016). However, the setting studied in this paper is different. In the 
example above, the price is endogenous, and the HC framework is used to solve the endo‑
geneity by imputing the missing attribute (quality) as a latent factor. The latent factor is 
nevertheless assumed to be exogenous. In the current paper, we analyze the situation where 
the latent factor, or the indicators that are used to measure it, are endogenous. We, there‑
fore, address the concerns raised by Chorus and Kroesen (2014). Our focus in this study 
also differs from Campbell and Sandorf (2020). Rather than evaluating the performance of 
the HC model with data of varying quality (for example, indicators that are weakly corre‑
lated with a latent factor), we assume that the data are well fitted for the application of the 
HC framework – that is the latent variable strongly affects individuals’ choices, the latent 
variable is well measured by the indicator variables, and there is sufficient data for reliable 
estimation. We investigate how HC models are affected by the endogeneity bias under such 
conditions.

Overall, our study contributes to the current literature by analyzing the problem of the 
endogeneity of indicator variables in HC models. We present a Monte Carlo simulation 
to demonstrate how different types and sources of endogeneity and measurement errors 
are, or are not, accounted for in a typical HC model and how this affects the results (bias). 
We show that unless a correlation of the error terms is explicitly accounted for, the HC 
framework by itself does not solve the problem of the endogeneity of indicator variables 
(or latent factors) caused by omitted variables, and the resulting estimates are biased. We 
then propose two methods of accounting for endogeneity in HC models and demonstrate 
that they successfully recover the true values of the coefficients. We also contribute to the 
non‑market valuation literature that utilizes the HC framework to investigate how certain 
attitudes or perceptions affect individuals’ willingness to pay (WTP) for a given policy 
approach. We show that accounting for measurement error and unobserved heterogene‑
ity is important for the estimation of mean WTP. We also confirm the results of previ‑
ous research indicating that HC models can account for measurement error.1 In addition, 
we demonstrate that identifying the true relationship between latent variables and WTP 
requires the endogeneity problem to be addressed. Overall, our results are important for 
applied studies which use HC models to discover how psychological factors such as social 
norms, consequentiality, and environmental attitudes affect welfare measures and policy 
support.

1 In contrast to previous research (Walker et al. 2010, Vij and Walker 2016), we employ a specification that 
is more common in environmental economics, in which latent variables are interacted with choice attrib‑
utes. Previous studies have considered latent factors which could be treated as attributes (e.g., travel costs). 
Furthermore, we show that measurement error cannot be accounted for by incorporating unobserved prefer‑
ence heterogeneity (i.e. random parameters).
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The remainder of the paper is structured as follows. Section  2 presents the general 
econometric framework of the hybrid choice model. Section 3 describes the design of our 
Monte Carlo experiment, the data generating process (DGP), the models we compare, and 
the methodology of comparisons. Next, the results are presented and interpreted in detail. 
The last section provides a summary and discussion, acknowledges the limitations of our 
study, and concludes with recommendations for future research. In addition, the software 
codes and supplementary materials are available online to make the use of hybrid choice 
models for empirical studies easier and to facilitate future research.

2  The Hybrid Choice Model Framework

HC models (Ben‑Akiva et  al. 2002) can consist of up to three parts: a discrete choice 
model, measurement component, and structural component. We describe each part in detail 
to set the scene for the empirical illustration that follows.

2.1  Discrete Choice Model

The discrete choice component of the HC describes individuals’ decision processes when mak‑
ing a choice. It is usually based on random utility theory, although other decision processes are 
proposed in the literature, such as random regret (Kim et al. 2017) or a mixture of random regret 
and random utility (Hess and Stathopoulos 2013). In what follows we employ the random utility 
model, as it is the most common approach. The utility (V) gained by individual i from choosing 
alternative j in choice situation t depends on the vector of observed characteristics (�) and unob‑
served idiosyncrasies, represented by the stochastic component e:

where βi denotes a vector of individual‑specific parameters, thus allowing for heterogene‑
ous preferences amongst respondents and leading to a mixed logit model.2 The stochastic 
component of the utility function ( eijt ) is assumed to follow an i.i.d. type I extreme value 
distribution with constant variance  var(eijt) = �2∕6 . This normalization of the variance 
term is required for identification.

The HC model allows random parameters to be a function of individual‑specific latent 
variables, denoted by LVi (e.g., pro‑environmental attitude), socio‑demographic (e.g., 
income) or other directly observable variables (such as information treatments in the sur‑
vey) collected in the vector SDi.3 For a normally distributed βi, this dependence can be 
specified in the following way:

(1)Vijt = Xijt�� + eijt,

2 Is it typically assumed that individual parameters follow a particular distribution (possibly multivariate 
distribution allowing for non‑zero correlation of model parameters), rather than being separately estimated 
for each parameter. The distributions can be continuous, leading to a known random parameter model, or 
discrete, resulting in a latent class model. Assuming instead that parameters are the same for all respondents 
implies homogenous preferences and leads to a multinomial logit model (MNL) as a special case.
3 There are other possible specifications, in which latent variables enter the choice model differently. For 
example, they can explain class probabilities in the latent class model or a variance of the error term (scale). 
We use this specification as we find it to be the most straightforward way of connecting attitudes with indi‑
viduals’ tastes.
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where γ and φ are matrices of estimable coefficients and �∗
�
 has a multivariate normal dis‑

tribution with a vector of means and a covariance matrix to be estimated.4 As a result, the 
conditional probability of individual i making choices yi, for all Ti choice tasks, is given by:

2.2  Measurement Component

The main purpose of including latent variables in an HC model is the belief that they are 
describing some behavioral or other factors, which cannot be measured directly (unlike, 
e.g., age or gender). Instead, various indicators are used, which are assumed to be deter‑
mined by the latent variables. The choice of the model for the indicator variables depends 
on the particular application. The measurement equations could be linear, ordered, binary, 
multinomial, or count regressions, whatever best fits the interpretation of each indicator. 
Throughout the simulation that follows, we will use continuous indicator variables and 
therefore we assume a linear specification of the form:

where Ii is a vector of indicator variables, �Mea
i

 is a vector of additional variables that influ‑
ence indicator variables, but not through the latent variable itself (Ben‑Akiva et al. 2002),5 
� and � are matrices of coefficients and ηi denotes a vector of error terms assumed to come 
from a multivariate normal distribution with 0 means. Essentially, we assume that indicators 
Ii are driven by (and hence used to measure) unobserved latent variables LVi and poten‑
tially also by some other observed individual‑specific characteristics �Mea

i
 while allowing 

for measurement errors, represented by the error component ηi.

2.3  Structural Component

Latent variables can also directly depend on exogenous factors, such as socio‑demographic 
variables, which are stacked in the vector �str

i
 . This relationship is described by the follow‑

ing structural equation:

with a matrix of coefficients ψ and error terms ξi, which are typically assumed to come 
from a multivariate normal distribution. The vector �str

i
 should overlap with vectors SDi 

(2)�i = �∗
i
+ ��i� + ��i�,

(3)
P
�
�i��i, �

∗
i
,��i, �,�

�
=

Ti�
t=1

exp
�
�ijt�i

�
C∑
k=1

exp
�
�ikt�i

� .

(4)�i = ��i� + �Mea
i

� + �i,

(5)��i = �str
i
� + �i,

4 In the simulation that follows we assume that the coefficient for cost follows log‑normal distribution, 
namely �i = −exp(�∗

i
+ ��i� + ��i�) . This is a standard assumption in studies which calculate willingness 

to pay.
5 For example, some individuals may have a tendency to overstate (or understate) their real attitudes.
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and �Mea
i

 to account for direct and indirect (i.e. through latent factors) effects of socio‑
demographic variables on individuals’ choices and indicators.

2.4  Identification

In order to make an identification of hybrid choice models possible, the scale of latent 
variables needs to be normalized (Daly et al. 2012). This can be done by normalizing vari‑
ances of the error terms in structural equations or by normalizing some coefficients in the 
Γ matrix for each latent variable (Raveau et al. 2012). In this study, we adopt the former 
approach. In contrast to most studies conducted to date, we do not normalize the variance 
of ξi to one. Instead, we use normalization to ensure that the (unconditional) variance of 
every latent variable in LVi is equal to one. Although such an approach introduces addi‑
tional nonlinearities into the model, it is quite useful. As all latent variables now have the 
same scale, assessing their relative importance in the choice model and measurement equa‑
tions is straightforward. Furthermore, as the scale of the latent factor is fixed at 1 even 
with socio‑demographic variables in structural equations, the effect of the latent variable 
on preferences should remain stable when covariates are added to, or removed from, the 
structural equation. We find this convenient for testing the robustness of the HC model 
specification in practical applications. We have not observed any additional issues with 
convergence due to this normalization.

We formally define ��∗
i
= �str

i
�∗ + �∗

i
 , with �∗ being a matrix of parameters to be 

estimated and �∗
i
 being a vector of independent normally distributed variables with mean 

zero and unit standard deviation. For ��∗
∙k

 , representing a vector of values of the k‑th non‑
normalized latent variable for all individuals and �k = std(��∗

∙k
) representing its standard 

deviations, we have ��∙k = ��∗
∙k
∕�k , �k = �∗

k
∕�k and �∙k = �∗

∙k
∕�k.6

Unfortunately, the exact conditions for the identification of the HC model are not yet 
known; they depend on the number of latent variables and measurement equations (Baha‑
monde‑Birke et  al. 2015) and need to be analyzed on a case‑by‑case basis (Ben‑Akiva 
et  al. 2002). We follow Bollen and Davis (2009) to ensure that the necessary condition 
for the identification of structural equation models holds; our specifications satisfy the 
“2 + emitted paths rule” (we assume that each latent variable has two unique indicators in 
the measurement component and is interacted with three attributes in the discrete choice 
component).7

2.5  Estimation

Finally, we combine the discrete choice model specified in (3), the measurement equa‑
tions defined in (4), and structural equations described in (5) to obtain the full‑informa‑
tion likelihood function for the HC model (for ease of exposition, we stack the parameters 
�,�,�,�,� , as well as parameters of the assumed distribution of (�∗

i
, �∗

i
) denoted by θ, 

into �):

7 One exception is Model 9 (see below), which uses two latent variables and two indicators. In this case we 
have also used simulation to confirm that the model is identified and produces stable results.

6 ψk denotes k‑th row of ψ matrix, and �∙k denotes stacked values of the random term in the k‑th structural 
equation for all individuals.
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As random disturbances of �∗
i
 and (non‑normalized) error terms in structural equations 

�∗
i
 are not directly observed, they must be integrated out of the conditional likelihood. This 

multidimensional integral can be approximated using a simulated maximum likelihood 
approach. As can be seen, we use one‑step estimation. This approach has two main advan‑
tages over a two‑step (or multi‑step) method. First, the two‑step method can lead to inef‑
ficient or even inconsistent estimates. In order to obtain consistent estimates, researchers 
would need to account for measurement error and integrate the choice probability over its 
distribution (Ben‑Akiva et al. 2002). Second, one‑step estimation allows for the identifica‑
tion of more flexible specifications because it has more degrees of freedom.

3  The Setup of the Monte Carlo Investigation into the Effects 
of Endogeneity

In this section, we first describe the Monte Carlo simulation employed in the study. We 
then illustrate how endogeneity and measurement bias can arise when utilizing indicators 
or latent factors in the choice model using our data generating process as an example. This 
ties directly into the model’s specifications which we will compare using simulated data to 
investigate the extent of measurement and endogeneity bias. Lastly, we describe the meth‑
ods used to compare the results of different model specifications.

3.1  Data Generating Process

The DGP we selected is relatively simple and mimics the usual settings of stated prefer‑
ence‑based discrete choice data. The discrete choice consists of three choice alternatives 
and six choice tasks per respondent. It includes three attributes: a binary variable SQijt rep‑
resenting an alternative specific constant for the first (status quo) alternative, and two con‑
tinuous attributes Qualityijt and Costijt, assumed to always equal 0 for the status quo alter‑
native, and distributed (independently) uniformly between 0 and 2. Each artificial sample 
consists of 1,000 individuals. The individual‑specific explanatory variables XSD

i
 and XMiss

i
 

were assumed to have a standard normal distribution. Table 1 describes the details of the 
DGP.

We assume that the preference heterogeneity is driven by the latent factor and the indi‑
vidual‑specific XMiss

i
 variable. We did not include additional unobserved heterogeneity in 

the form of random parameters for two reasons. First, it helps to demonstrate that incorpo‑
rating unobserved heterogeneity helps neither with measurement bias nor with endogene‑
ity. Second, it facilitates the simulation, as the benchmark model can be estimated in less 
time.

In our simulation, endogeneity is caused by omitting the XMiss
i

 variable, which causes 
the error terms to become correlated. Specifically, because XMiss

i
 enters not only the choice 

model but also the structural component of the latent variable, excluding it causes the error 
terms of structural and discrete choice components to become correlated (cor(�∗

i
, e∗

ijt
) ≠ 0)

(6)Li = ∫ P
(
�i|�i,�

str
i
, �∗

i
, �∗

i
,�

)
P
(
Ii|�str

i
, �∗

i
,�Mea

i
,�

)
f
(
�∗
i
, �∗

i
|�)d(�∗

i
, �∗

i

)
.



612 W. Budziński, M. Czajkowski 

1 3

.8 Note that even though for convenience we use missing variables to cause endogeneity 
and analyze its effects, our results are not limited to this scenario. The results would be 
qualitatively the same in cases where there are other reasons for the correlation of these 
error terms.

To investigate the effects of endogeneity under various model specifications we designed 
and conducted a Monte Carlo simulation. Essentially, for the DGP presented in Table 1 we 
simulated artificial data and investigated how well different model specifications perform 
in terms of recovering the original parameters. The process was repeated multiple times to 
make sure the results were not coincidental. This exercise allowed us to clearly illustrate 
the theory and demonstrate that some specifications suffer from the endogeneity problem 
(and hence result in biased estimates). We were also able to demonstrate how the problem 
can be controlled for.

The literature is not always clear on what exactly is meant by the endogeneity of indica‑
tor variables. Studies that consider the endogeneity of indicator variables rarely discuss the 
underlying latent factors. A notable exception is Chorus and Kroesen (2014), who consider 
underlying attitudes or perceptions, rather than the indicator variables themselves, to be 
endogeneous. This is also a framework that we follow in the current study. To highlight the 
fact that in our simulations the latent factor is the source of endogeneity, we label it as “LV‑
endogeneity,” which means that LV is correlated with an error term in the choice model. 
Furthermore, as noted in the Introduction, in what follows we consider endogeneity caused 
by a measurement error as a separate case. Clearly, this arises only when using indicator 
variables directly in the choice model and is distinct from the LV‑endogeneity induced by 

Table 1  Description of the data‑generating process used for Monte Carlo simulations

Choice model

Utility function Vijt =�1iSQijt + �2iQualityijt − �3iCostijt + eijt �1i = �11 + �12LVi + �13X
Miss
i

SQijt ∈ {0, 1} �2i = �21 + �22LVi + �23X
Miss
i

Qualityijt ∼ U(0, 2) �3i = exp(�31 + �32LVi + �33X
Miss
i

)

Costijt ∼ U(0, 2) XMiss
I

∼ N(0, 1)

eijt ∼ EVI(0, 1)

Latent variable (structural 
component)

Indicator variables (measurement component)

LV∗
i
= �61X

SD
i

+ �62X
Miss
i

+ �i Ii1 = �41 + �42LVi + �43�i1

�i ∼ N(0, 1) Ii2 = �51 + �52LVi + �53�i2

XSD
i

∼ N(0, 1) �i1 ∼ N(0, 1)

�i2 ∼ N(0, 1)

8 In what follows, unless stated otherwise, we denote error terms in models with a missing variable by add‑
ing a star.
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some omitted variables.9 The measurement errors should be accounted for by use of the 
HC framework, however LV‑endogeneity could still cause estimates to be biased.

There is also another way in which omitted variables could cause the HC model to be 
endogenous. Specifically, if an omitted variable entered the measurement equations instead 
of the structural equation (as in Table 1), it would cause the error terms in the measurement 
equations to be correlated with the error terms in the discrete choice model. We denote 
this as M‑endogeneity. It occurs when the same unobserved factor influences measurement 
errors and individual choices. For example, in stated preference studies “yea‑saying” could 
make individuals overstate their real attitudes (whether the indicator questions are framed 
positively or negatively) as well as make individuals more likely to choose costly improve‑
ment alternatives. To streamline the argument we limit the presentation of the results in the 
main text to LV‑endogeneity. We suspect that LV‑endogeneity may be more prevalent in 
practice, and therefore we make it the focus of the current study. Nonetheless, the question 
of how often M‑endogeneity occurs in applied research is of course empirical and beyond 
the scope of this study. For this reason, we report the results and conclusions for M‑endo‑
geneity in Appendix C.

Finally, we note that our study relates to endogeneity caused by indicator variables or 
latent factors. If we were to estimate a regular discrete choice model with no indicators 
and latent factors (such as mixed logit), it would result in unbiased estimates of preferences 
and welfare measures (e.g., mean WTP). Such a model would constitute a reduced form 
specification of the DGP presented in Table 1. It would, however, have the limitation of not 
allowing us to determine the effect of the latent variables under consideration on individu‑
als’ preferences and choices.

3.2  Endogeneity and Measurement Bias in Indicator and Latent Variables

We use different model specifications to examine whether the presence of endogeneity 
affects results and to what extent this can be controlled for. Table 2 below provides a sum‑
mary of the model specifications that we consider. In what follows we describe each model 
in more detail and provide some intuition behind the expected biases. We provide a full 
mathematical formulation of each model specification in Appendix A.

The first model (Model 1) reflects the data‑generating process presented in Table 1 with 
no missing variables. It is used to test if we are able to correctly recover the parameters 
when there is no endogeneity present and measurement error is accounted for by the HC 
framework.

Model 2 is a simple multinomial logit (MNL) intended to capture the effect of measure‑
ment error on parameter estimates. Measurement error arises when the measurement of a 
certain independent variable is not exact. Consider the data generating process presented in 
Table 1 as an example. There, the true variable of interest is a latent variable, LVi, which 
affects the marginal utilities of the choice attributes. Indicator variables, Ii1 and Ii2, can be 
considered approximations of this latent factor, although they contain measurement errors, 

9 Chorus and Kroesen (2014) list missing variables that influence both latent variables and an individual’s 
choices as one of the most probable causes of endogeneity in latent variables. Other causes include learning 
effects, which may cause a bi‑directional dependence between experience with attributes and their percep‑
tions, and the aligning of individuals’ attitudes with their actual choices in order to appear consistent (Ari‑
ely, Loewenstein and Prelec, 2003). Furthermore, simultaneous determination and model misspecification 
may also render a variable endogenous.
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ηi1 and ηi2. Due to these errors, imputing Ii1 and/or Ii2 into the model instead of LVi would 
result in biased parameter estimates. For Model 2 we consider the following simple choice 
model with an indicator variable put directly in the utility function:

In (7), the error term e∗
ijt
(�i1) becomes a function of the measurement error to accommo‑

date it in the model.10 As both Ii1 and e∗
ijt

 contain ηi1, they become correlated, which leads 
to endogeneity. In such a setting the measurement error will lead to incorrect coefficient 
estimates in Model 2. We primarily expect coefficients α12, α22, and α32 to be biased, as 
they control for the effect of the latent factor on marginal utilities. Nonetheless, as choice 
models are highly nonlinear, and the indicator variable enters the model as an interaction 
with choice attributes, all the coefficients could be biased due to endogeneity. Our simula‑
tion allows us to investigate which coefficients of the model are actually affected.

Model 3 is an extension of Model 2, in which we add random parameters for all attrib‑
utes, with a full correlation matrix.11 A mixed logit (MXL) model like this has become 
state‑of‑the‑practice in the choice modeling literature, it is therefore of interest to investi‑
gate whether it could be used to control for measurement bias that arises upon incorporat‑
ing indicator variables directly into the model.

In Models 4 – 9 we omit XMiss
i

 as if it was unobserved, and hence we induce LV‑endo‑
geneity. Model 4 is then MNL analogous to Model 2 considered in (7) but with XMiss

i
 miss‑

ing. It, therefore, suffers from both measurement and endogeneity bias. Comparison with 
Model 2 will allow us to observe how endogeneity affects the results when measurement 
error is present. Model 5 adds fully correlated random parameters for all attributes which 
can capture some of the measurement error as in Model 3, but the model can also capture 
unobserved preference heterogeneity caused by the omitted XMiss

i
 variable.

The next four models that we consider account for measurement errors by directly 
incorporating them into measurement equations in the HC framework (see equation (4)). 
Because of that, we expect that they will not suffer from the endogeneity bias caused by 
measurement errors (Walker et al. 2010).

Model 6 is an HC model which suffers from endogeneity due to a missing variable. The 
specification is the same as in Model 1, but without the XMiss

i
 variable:

(7)

⎧
⎪⎪⎨⎪⎪⎩

Vijt = �1iSQijt + �2iQualityijt − �3iCostijt + e∗
ijt
(�i1)

�1i = �11 + �12Ii1 + �13X
Miss
i

�2i = �21 + �22Ii1 + �23X
Miss
i

�3i = exp(�31 + �32Ii1 + �33X
Miss
i

)

.

(8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Vijt = �1iSQijt + �2iQualityijt − �3iCostijt + e∗∗
ijt
(XMiss

i
)

�1i = �11 + �12LVi

�2i = �21 + �22LVi

�3i = exp(�31 + �32LVi)

LVi = �61X
SD
i

+ �∗
i
(XMiss

i
)

.

10 Because the coefficient for Cost is nonlinear function of the latent factor (cf. Table 1), e∗
ijt
(�i1) will also 

be a nonlinear function of the measurement error.
11 In all models with random parameters, the random parameters for SQ and Quality follow normal distri‑
bution, whereas the parameter for Cost follows log‑normal distribution.
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Because of the missing covariate, error terms e∗∗
ijt
(XMiss

i
) and �∗

i
(XMiss

i
) will become 

functions of XMiss
i

 , which will cause them to become correlated. As �∗
i
(XMiss

i
) enters the 

structural equations for the latent variable, the latent factor will become correlated with 
e∗∗
ijt

 , which will make it endogenous in the model. Again, we expect the coefficients which 
account for the effect of latent factor (α12, α22, and α32) to be the most affected, but because 
of the nonlinearity of the choice model, it is likely that we will also be unable to recover 
the true values for some other coefficients.

Model 7 is an extension of Model 6, with fully correlated random parameters added for 
each attribute. As in Model 5, random parameters can capture unobserved preference het‑
erogeneity caused by the missing variable. We note that Model 7 is probably the most com‑
mon specification of the HC models that are used in applied studies, as it combines latent 
factors with random parameters.

The last two specifications represent different ways to control for endogeneity and show 
that if the correlation of the error terms is accounted for, the HC model can recover the 
true values of the parameters even where there is unobserved XMiss

i
.12 Model 8 is the hybrid 

MXL that allows for estimable correlation between the error term in the structural compo‑
nent (�∗∗

i
) and the random parameters for the attributes (β1i, β2i and β3i). Consider again the 

specification in Table 1, with the XMiss
i

 variable missing. With Model 8 we would estimate 
the following set of equations:

Table 2  Overview of model 
specifications used to investigate 
endogeneity bias in controlled 
and uncontrolled cases

Model 1 corresponds to the DGP presented in Table 1

Model type Measurement error LV‑endogeneity

Model 1 Hybrid MNL Controlled No
Model 2 MNL Yes No
Model 3 MXL Yes No
Model 4 MNL Yes Yes
Model 5 MXL Yes Yes
Model 6 Hybrid MNL Controlled Yes
Model 7 Hybrid MXL Controlled Yes
Model 8 Hybrid MXL Controlled Controlled
Model 9 Hybrid MNL Controlled Controlled

12 We note that in those models XSD
i

 affects the latent variable only through the structural equation, and 
does not have a direct effect on the random utility. This exclusion restriction works in much the same way 
here as it does in the instrumental variables and sample selection models. From our auxiliary simulations 
we found that without XSD

i
 , Model 8 provides estimates that are closer to the true values, but still biased, 

whereas Model 9 leads to estimates which are not significantly different from the true values, but standard 
errors increase by about 100%. We therefore recommend having such a variable in the structural equation 
for better identification.
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where β1i
*, β2i

* and β3i
* are random parameters with zero mean, such that they are fully cor‑

related with each other, but also with �∗∗
i

 . These random parameters account for the unob‑
served heterogeneity caused by XMiss

i
 (as in Model 7). In this way XMiss

i
 does not enter the 

error term of the choice model (eijt) as it did in the example in (8). By additionally mod‑
eling the correlation with the error term in the structural equation of the latent variable, 
it recognizes that XMiss

i
 is also present in the �∗∗

i
 . We expect this model to recover the true 

values of all the coefficients.
Model 9 is a hybrid MNL that uses a different approach to control for endogeneity. It 

does not employ random parameters to account for unobserved heterogeneity caused by 
the missing covariate, but instead, it assumes there exists an additional latent variable that 
enters both measurement equations. By using this additional latent variable, we impute the 
unobserved XMiss

i
 variable into the model. To see how this model works in the case of LV‑

endogeneity, consider that the two specifications below are equivalent.

Specification (A) on the left is the same as in Table 1. In specification (B), XMiss
i

 was 
taken out of the structural equation, and instead put in both the utility function and the 
measurement equation, such that �∗

j3
= �j3 + �j2�62∕

√
1 + �2

61
+ �2

62
 , for j ∈ {1, 2, 3} , and 

�∗
j4
= �j2�62∕

√
1 + �2

61
+ �2

62
 , for j ∈ {4, 5}.13 Model 9 is based on specification (B). Spe‑

cifically, if we treat XMiss
i

 as a missing variable causing endogeneity, then Model 9 accounts 
for it by estimating

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Vijt = �1iSQijt + �2iQualityijt − �3iCostijt + eijt

�1i = �11 + �12LVi + �∗
1i

�2i = �21 + �22LVi + �∗
2i

�3i = exp(�31 + �32LVi + �∗
3i
)

LVi = �61X
SD
i

+ �∗∗
i

,

(A)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Vijt = �1iSQijt + �2iQualityijt − �3iCostijt + eijt

�1i = �11 + �12LVi + �13X
Miss
i

�2i = �21 + �22LVi + �23X
Miss
i

�3i = exp
�
�31 + �32LVi + �33X

Miss
i

�
LVi = �61X

SD
i

+ �62X
Miss
i

+ �i

Ii1 = �41 + �42LVi + �43�i1

Ii2 = �51 + �52LVi + �53�i2

(B)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Vijt = �1iSQijt + �2iQualityijt − �3iCostijt + eijt

�1i = �11 + �12LVi + �∗
13
XMiss
i

�2i = �21 + �22LVi + �∗
23
XMiss
i

�3i = exp
�
�31 + �32LVi + �∗

33
XMiss
i

�
LVi = �61X

SD
i

+ �i

Ii1 = �41 + �42LVi + �∗
44
XMiss
i

+ �43�i1

Ii2 = �51 + �52LVi + �∗
54
XMiss
i

+ �53�i2

13 The denominators in the formulas for �∗
23

 and �∗
43

 are based on normalization of the error term in the 
structural equation. See Sect. 2.4 and Appendix B for more detailed discussion on normalization.
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where LV2,i is an additional latent factor, which accounts for both the unobserved prefer‑
ence heterogeneity in the choice model and the effect of the unobserved XMiss

i
 on the indi‑

cator variables.
Neither of the proposed specifications (8 and 9) has been used in applied research. 

Model 8 requires the correlation of the respective error terms to be explicitly accounted for, 
while Model 9 only requires an additional latent variable that enters the same measurement 
equations as the latent variable suspected of endogeneity. To the best of our knowledge, 
previous studies have always used at least one measurement equation with a single latent 
variable, which simplifies both identification and interpretation.

In summary, we expect that Model 1 will recover the DGP parameters correctly, while 
the estimates of Models 2–7 will be biased due to measurement error and/or endogeneity. 
Models 8 and 9 should be able to control for both of these issues. A summary of the speci‑
fications we used is presented in Table 2.

3.3  Methodology of the Comparisons

To compare the estimates derived from the different models to the true values, we require a 
method that not only looks at the expected values but also penalizes for variance. Consider 
the usual case when one tests if xi is statistically equal to its true value xtrue (e.g., using the 
standard t‑test). The larger the variance associated with xi, the more difficult it is to reject 
the equality hypothesis. As a result, models that result in a high variation of the estimates 
(high standard errors) make it easier to falsely conclude that an estimate is not statistically 
significantly different from its true value.

To address this problem, we base our comparisons on equivalence tests (Hauck and 
Anderson 1984; Kristofersson and Navrud 2005). Equivalence tests reverse the null 
hypothesis and the alternative hypothesis; instead of testing if xi is equal to xtrue, we test 
if the absolute difference between them is higher than an a priori defined “acceptable” 
level. Czajkowski and Ščasný (2010) and Czajkowski et al. (2017a) argue that equivalence 
tests can be operationalized by a Minimum Tolerance Level (MTL) , that is, the minimum 
“acceptable” difference that allows us to conclude that two values are equivalent at the 
required level of statistical significance.

For a random variable � , MTL is formally defined as the minimum � ≥ 0 that satisfies:

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Vijt = �1iSQijt + �2iQualityijt − �3iCostijt + eijt

�1i = �11 + �12LVi + �*
13
LV2,i

�2i = �21 + �22LVi + �*
23
LV2,i

�3i = exp(�31 + �32LVi + �*
33
LV2,i)

LVi = �61X
SD
i

+ �i

Ii1 = �41 + �42LVi + �∗
44
LV2,i + �43�i1

Ii2 = �51 + �52LVi + �∗
54
LV2,i + �53�i2

,
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where α is the required significance level (e.g., 0.05). In our case,14 the probability can be 
evaluated using Two One‑Sided T‑Tests, while MTL can be found as:

MTL has an intuitive interpretation. For example, MTL0.05 = 0.01 means that, with 95% 
probability, the deviation of the estimated coefficients from the true values will not be 
larger than 1%.

4  Results

We generated 1,000 datasets following the DGP described in Table  1. For each dataset, 
we estimated nine models introduced in Sect.  3.2.15 For each model, we use the MTL 
approach to test if the estimates obtained are different from the true (DGP) parameters (or 
their rescaled equivalent – see Appendix B for details). In Appendix C we present parallel 
results for M‑endogeneity.

Table  3 presents average parameter estimates for the nine models. To save the space 
we limited the presentation to the parameters of the utility function, as they are usually of 
most interest to researchers.16 For reference, the third column reports the true values of 
the coefficients, as assumed in the DGP. The results of Model 1 indicate that our modeling 
framework works well. If there are no missing variables and an HC model is used, the true 
parameter values are recovered with satisfactory precision.17

If indicator variables are used directly as interactions with choice attributes (Model 2 
and Model 3), we observe that parameter estimates are substantially different from the true 
values due to measurement error, even though no variables are missing.18 It seems that 
these effects are underestimated by roughly 30%. We do not observe significant changes 

(9)P
(||𝜔 − 𝜔true

|| > 𝜃 ⋅ ||𝜔true
||
)
= 𝛼,

(10)MTL𝛼 = argmin
𝜃∈[0,+∞)

{𝜃}s.t.P
(||𝜔 − 𝜔true

|| > 𝜃 ⋅ ||𝜔true
||
) ≤ 𝛼.

14 A collection of MATLAB functions that are useful for calculating MTL is available at https:// github. 
com/ czaj.
15 The models were estimated using maximum simulated likelihood techniques, using 1,000 scrambled 
Sobol draws (Czajkowski and Budziński 2019). The software used here (estimation package for DCE data) 
was developed in Matlab and is available at https:// github. com/ czaj/ DCE under CC BY 4.0 license. The 
data, software codes and supplementary materials are available from http:// czaj. org/ resea rch/ suppl ement 
ary‑ mater ials.
16 Full results are available in the supplementary material to this paper available online.
17 Cf. Campbell and Sandorf (2020), who observe that even under correct specification the parameters of 
HC models can be severely biased. The possible explanation for this difference is that we use more indica‑
tor variables which may help to better identify a latent variable and its associated coefficients. Furthermore, 
we included a socio‑demographic variable in the structural equation, which accounts for the observed varia‑
tion in the latent factor, which may further facilitate identification.
18 In Models 2–5, the indicator variable Ii enters the choice model directly, with a mean normalized to 0. In 
our DGP both indicators have the same level of correlation with the latent factor so it does not matter which 
one we put into the model. We chose the first one as it has a positive correlation with the latent factor. In a 
real‑life application one would have to either choose one indicator variable, calculate a function of all the 
indicators (e.g., mean) or incorporate all the indicator variables into the model. We found that including 
both indicator variables in the model actually makes the results worse.

https://github.com/czaj
https://github.com/czaj
https://github.com/czaj/DCE
http://czaj.org/research/supplementary-materials
http://czaj.org/research/supplementary-materials
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between Model 2 and Model 3, which shows that allowing for correlated random param‑
eters does not help to address the bias caused by the measurement error.

In Models 4 and 5, which suffer from both measurement and endogeneity bias, coef‑
ficients diverge from the true values even more. In some cases, the coefficients have wrong 
signs (for example “ Ii1 interaction (with Quality)”). Overall, we consider this to be con‑
vincing evidence against using attitudinal variables as direct interactions of the model 
parameters.19 Hybrid choice models have an obvious advantage in this regard by directly 
accounting for the measurement error.

The next two models (Model 6 and Model 7) correspond to cases where the measure‑
ment errors are controlled for by using the hybrid choice framework. However, it is appar‑
ently not enough to account for the endogeneity alone, as many estimates of the coeffi‑
cients remain biased. Specifically, interactions of the latent variable with the attributes are 
quite far away from the true values. Similar to the two previous models, the coefficient of 
the interaction with Quality has the wrong sign. Note that accounting for unobserved het‑
erogeneity in Model 7 helps somewhat, and brings the other coefficients closer to the true 
values (for example, the main attribute effects are correctly estimated).

Finally, the last two models represent attempts to control for endogeneity, either by 
explicitly allowing for correlation between error terms in the structural and discrete choice 
components (Model 8) or assuming the existence of an additional LV to compensate for 
the missing variable (Model 9). We find that both models perform well, recovering the 
expected coefficient values, although some of them (in Model 9) require rescaling, as 
described in Appendix B. On average, both specifications have similar log‑likelihood, 
although we note that these models are not nested, and Model 9 utilizes more coefficients, 
so some difference in terms of the log‑likelihood is expected.

The main purpose of non‑market valuation studies is the estimation of WTP for a given 
change in the quality of an environmental good. To assess how measurement error and 
LV‑endogeneity affect the mean WTP we compare it across the nine specifications con‑
sidered in the Monte Carlo simulation. The results are reported in Table 4. We find that 
Models 1, 8, and 9 recover the true value of the mean WTP, although the precision of these 
estimates is lower than that of the parameter estimates reported in Table 3. This is likely 
because the formula for the WTP includes a coefficient ratio. Models 2–6 result in biased 
estimates of mean WTP, with Model 4 generating the highest errors. This model suffers 
from both measurement and endogeneity bias, and it does not account for any unobserved 
heterogeneity. Once we add random parameters (Model 5) the estimates are very similar to 
Models 2 and 3 which suffer only from measurement error. Similarly, Model 6, which suf‑
fers from endogeneity and does not account for unobserved heterogeneity, results in highly 
biased mean WTP estimates. However, once the unobserved heterogeneity is accounted 
for (Model 7) the WTP estimates are very close to the true values. These results indicate 
that for mean WTP estimates it is crucial to control for measurement error and unobserved 
heterogeneity. The increase in precision of WTP estimates as a result of directly controlling 
for endogeneity (Models 8 and 9) is rather limited.

Even though obtaining mean WTP estimates is usually the main goal of stated preference 
studies, HC models are usually employed to investigate how WTP is affected by attitudes, 
perceptions, or other unobserved factors of interest. We, therefore, investigated how this 
relationship is affected by model misspecification caused by not accounting for preference 

19 It is likely that the problem is even more pronounced for ordinal rather than linear indicators, as then the 
relationship between the LV and indicator variables is not one‑to‑one, as assumed in the DGP used here.
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heterogeneity, measurement errors, or LV‑endogeneity. The results are presented in Fig. 1. 
We find that Models 2–7 result in substantially biased results relative to the true relationship 
represented by Model 1. Models suffering only from measurement error (Models 2 and 3 in 
the left panels in Fig. 1) recover a flatter relationship, which is probably caused by the lower 
estimates of coefficients for the interaction with the indicator variable, reported in Table 3. 
Nonetheless, these results are relatively close to the true relationship when compared with 
other models. Models 4–7 indicate decreasing relationship for the SQ attribute, even though 
it is actually U‑shaped (as LV interactions with SQ and Cost have different signs). On the 
other hand, for the Quality attribute, the recovered relationship is much flatter. In contrast, 
Models 8 and 9 perform well, recovering the same relationship as assumed by the DGP (rep‑
resented by the reference Model 1).20 Overall, our results show that although not account‑
ing for endogeneity had little effect on mean WTP, it substantially biased the relationships 
observed between LVs and choice attributes. This is a cause for concern, since observing 
such relationships is typically the main reason for using HC models.

20 The deviations from the true relationship caused by model misspecification (not accounting for prefer‑
ence heterogeneity, measurement error or endogeneity) are even more severe for M‑endogeneity, as illus‑
trated in Appendix C.

Fig. 1  Comparison of the effect of the latent variable on mean WTP under different specifications – mean 
estimate values in 1,000 simulations.The upper panels correspond to mean WTP for the SQ attribute, the 
lower panels correspond to mean WTP for the Quality attribute
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5  Discussion and Conclusions

The hybrid choice framework is an approach that has quickly gained popularity. Vij and 
Walker (2016) analyze the possible advantages of employing the HC framework and iden‑
tify a wide range of situations in which its use is justified. Most of the applications to date 
appear in the literature of environmental economics (e.g., Dekker et  al. 2012; Hess and 
Beharry‑Borg 2012; Hoyos et al. 2015; Czajkowski et al. 2017b, 2017c; Pakalniete et al. 
2017) and transportation (e.g., Vredin Johansson et al. 2006; Daly et al. 2012; Daziano and 
Bolduc 2013). However, none of the existing studies explicitly account for the potential 
correlation between discrete choice and the other components of the model (for example, 
structural or measurement equations), which may arise when some variables are omitted 
from the model (for example, other attitudes).

It is commonly assumed that the HC framework addresses the endogeneity and meas‑
urement problems associated with incorporating indicator variables into the choice model. 
We show that although this is true for the latter, resolving the former requires a specific for‑
mulation of the model. Using a Monte Carlo simulation, in which we can control the DGP 
and induce endogeneity, we are able to study the performance of different specifications 
of choice models, in terms of the resulting bias of model parameters and implied WTPs. 
We show how endogeneity can be controlled for by explicitly allowing for correlation 
between structural and discrete choice component error terms (or with random parameters 
in the utility function), or by introducing an additional latent variable. The latter approach 
is probably easier to implement with the existing software, although it requires putting 
auxiliary latent factors into the same measurement equations as a latent factor which a 
researcher suspects of endogeneity. This may render interpretation of the results difficult. 
We demonstrate that these approaches work as expected, and they successfully recover the 
true values of all parameters. Although the practical usefulness of these approaches is yet 
to be confirmed,21 they demonstrate that endogeneity should and can be controlled for.

Our results demonstrate that failure to account for unobserved preference heterogeneity, 
measurement error, or endogeneity leads to biased results, in terms of both utility function 
parameters and WTP. Interestingly, we find that controlling for endogeneity is of secondary 
importance (relative to measurement error and unobserved preference heterogeneity) for 
mean WTP estimates. However, it is necessary because it facilitates the observation of the 
correct functional relationships between latent constructs and preferences associated with 
choice attributes. We believe this is an important reason to control for endogeneity when‑
ever possible, as observing the relationship between WTP and latent factors is often the 
main reason for using HC models.

In Appendix C we consider M‑endogeneity, in which a missing variable enters measure‑
ment equations, rather than the structural equation. We find that it generally mimics the 
results that we observed for LV‑endogeneity. The main difference is that controlling for 
the correlation between the structural equation and choice model (Model 8) in relation to 
M‑endogeneity no longer allows us to recover the true values of the coefficients.

As HC models combine different types of data (e.g., discrete choice and Likert scale) 
and utilize several random components to account for preference heterogeneity (e.g., ran‑
dom parameters and latent variables), they can quickly become very complex. For example, 

21 For example, because of the possible non‑identification of the model with more latent variables given 
available data.
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we believe that Models 8 and 9 may be difficult to estimate, and therefore may require rela‑
tively large sample sizes. We conducted auxiliary simulations with varying sample sizes 
to test what minimum sample sizes are sufficient in order to accurately recover the DGP 
parameters. We considered sample sizes of 200, 500, and 700 respondents (with 6 choice 
tasks per respondent, as in our main simulation). We found that Model 1, which is rela‑
tively simple (no random parameters), recovered the true parameter values with a sample 
of 500, whereas with a sample of 200 some parameters were biased. Due to their complex‑
ity Models 8 and 9 required a sample of 700. We note, however, that our DGP is relatively 
simple, with only 3 attributes in the choice component of the model. If one were to uti‑
lize a more complex design with more attributes and random parameters, a larger sample 
than 700 would probably be needed. In the context of structural equation models (SEMs), 
Marsh et al. (1998) show that by having more indicator variables per latent factor, SEM can 
be estimated with a smaller sample size. This is also likely true for HC models. In future 
research, it would be useful to establish some rule‑of‑thumb guidelines for the necessary 
sample size for HC models, similar to those proposed by Westland (2010) for SEMs.

We believe it would be of interest to consider other methods that could address the 
endogeneity issues associated with indicator variables. The use of proxies (Guevara 2015) 
is probably the most straightforward way, although this is highly dependent on whether 
a researcher can identify a good variable that could serve as a proxy. In our simulation 
setting, XSD

i
 would be a straightforward choice as it affects preferences solely through its 

effect on the latent variable. In practice, selecting such a variable may not be obvious or 
data may not be available. Other methods such as the multiple indicator solution (Guevara 
and Polanco 2016) may not be suitable, as in the presence of LV‑endogeneity the other 
indicator needed will also be correlated with the error term of the choice model. Nonethe‑
less, in future research, it would be relevant to establish how methods which are less com‑
putationally intensive can mitigate the bias caused by LV‑endogeneity.

Acknowledging the limitations of our study, we note a possible taxonomy confusion, 
which could, to some extent, explain the overall belief in the ability of a hybrid choice 
model to mitigate endogeneity bias caused by indicator variables.22 In the hybrid choice 
framework, indicator variables do not enter the choice model directly, but rather they are 
treated as dependent variables. As such, they cannot cause endogeneity as it only arises 
when independent variables are correlated with an error term. However, in the HC models, 
the latent factors are independent variables, so they can still induce endogeneity if they are 
correlated with an error term in the choice model. Furthermore, since measurement error 
can be considered a special case of endogeneity (Walker et al. 2010), by addressing meas‑
urement bias hybrid choice models can resolve this source of endogeneity. Nevertheless, 
as illustrated by our study, the typical specification of the hybrid choice model does not 
address endogeneity arising from other sources.

It must also be noted that our study deals with the endogeneity of indicator variables 
and latent factors, and not with the endogeneity of the observed attributes (e.g., the travel 
cost in revealed preference studies). The latter case has attracted some attention in the 
literature, with proposed solutions that include imputing the missing attributes as latent 

22 HC models and indicator variables are often used to resolve the endogeneity problem (Guevara and Ben‑
Akiva 2010), whereas in the case considered here, indicator variables are a source of endogeneity. There‑
fore, the results of the current study are of importance for cases in which the researcher is interested in the 
influence of certain attitudes on preferences, e.g. the effects of consequentiality on the willingness to pay for 
some environmental good (Zawojska et al. 2019).
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variables using several indicator variables as measurement equations (Guevara and Ben‑
Akiva 2010), the BLP method (Berry et  al. 1995), using a control function (Rivers and 
Vuong 1988; Train 2009), and Multiple Indicator Solution (Guevara and Polanco 2016). 
For the comparison of the performance of different methods used to account for the endo‑
geneity of attributes see Guevara (2015).

It is no easy matter to assess the relative importance of the LV‑endogeneity when com‑
pared with the endogeneity of observed attributes. In stated preference studies, endogeneity 
of observed attributes is usually a lesser concern, as their levels are varied exogenously 
by the researcher. Furthermore, if sufficient care is taken when designing a study then all 
relevant attributes should be accounted for. If the estimation of mean WTP is an objec‑
tive of the study, then LV‑endogeneity can usually be avoided by simply not including any 
latent factors or indicator variables in the model, and letting the variation in preferences be 
captured by the random parameters. The exception is when identification of the effects of 
the latent variables is necessary for the aim of the study or the proper interpretation of the 
model. An example of the former is described by Buckell et al. (2021) where the aim of the 
study was to identify the effects of the intensity of nicotine addiction, which is measured 
through several indicator variables. An example of the latter is consequentiality (Zawojska 
et al. 2019), where the parameters of the choice model cannot be interpreted as true mar‑
ginal utilities for individuals who do not perceive a given survey as consequential. On the 
other hand, in revealed preference studies, endogeneity of attributes is much more likely as 
researchers usually do not observe a full context of the observed choices. As a result, even 
without any latent factors, it may be difficult to obtain correct estimates of mean WTP. 
We note, however, that in the revealed preference context, it is also likely that what mat‑
ters for the decision process are perceptions of certain attributes rather than their observed 
measures. For example, when valuing water quality improvements, there could be a sys‑
temic difference between the objective measures and respondents’ perceptions (Artell et al. 
2013). If this is the case, then one could account for individuals’ perceptions by using a 
hybrid choice framework, which would then make the LV‑endogeneity discussion relevant 
also for revealed preference studies.

Finally, we acknowledge that our investigation relates to individual‑specific latent var‑
iables, or as Bahamonde‑Birke et  al. (2015) refer to them, “non-alternative related atti-
tudes,” in contrast to “alternative related attitudes” and “perceptions.” We believe that our 
results are general, although we note that addressing endogeneity in relation to alternative 
related attitudes and perceptions would likely be much more difficult to deal with from the 
modeling perspective.

In summary, our study shows that while typical hybrid choice models mitigate meas‑
urement error, they can still suffer from endogeneity bias, for example, caused by omitted 
variables that affect both choice and indicator variables. We highlight the potential prob‑
lem, provide a thorough analysis of its potential causes and effects, and propose a method 
of classification for different types of endogeneity in HC models. We use a Monte Carlo 
experiment to demonstrate the existence and extent of endogeneity bias, propose two ways 
of addressing it, and verify that they are effective. Overall, we hope that our study stimu‑
lates further research in this area and is useful to applied researchers who deal with the 
endogeneity of indicator variables.
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