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Abstract
We analyze the effect of four determinants of electric vehicle diffusion in China for a panel 
of 31 regions for the period 2010–2016. We analyze diffusion of four different electric 
vehicle types, namely battery electric cars and buses as well as plug-in hybrid electric cars 
and buses. System GMM panel estimation results show that total monetary subsidies have 
a positive effect only on the diffusion of battery electric cars. A closer look reveals that 
subsidies provided by regional governments are decisive for all types of vehicles but the 
subsidy provided by the central government and its degression over time dilute the over-
all effect of subsidies and is partly detrimental. Non-monetary ownership policies, such as 
license-plate lotteries, show a positive effect only for battery electric cars. Availability of 
public charging infrastructure increases diffusion of all vehicle types. Charging points are 
relevant for cars, while charging stations are especially decisive for the diffusion of electric 
buses. Using local environmental conditions as a novel determinant for the diffusion of 
electric vehicles reveals that the local air pollution influences the diffusion of buses, but not 
of cars.
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1 Introduction

Electric vehicles are perceived as a way to mitigate environmental externalities and they 
have the potential to disrupt the automotive industry. Even though electric vehicles have 
a long tradition, they never diffused on larger scale until recently. IEA (2019) counts more 
than five million registered electric cars globally in 2018. China is the leading country in 
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terms of absolute number of electric cars, with a share of about 45% of global electric cars. 
China also has the largest electric bus fleet in operation, with 99% of electric buses world-
wide (Bloomberg New Energy Finance 2018).1 However, compared to the overall stock of 
vehicles and their potential to address local and global environmental problems, the num-
ber of electric vehicles needs to increase substantially and substitute vehicles with internal 
combustion engine in the next years (Sims et al. 2014). The increasing use of electric vehi-
cles is one of the requirements to achieve the 1.5 °C goal to reduce the impact of climate 
change (IPCC 2018).

Diffusion of electric vehicles is impeded by several shortcomings compared to conven-
tional vehicles with internal combustion engine. Foremost, electric vehicles face disadvan-
tages due to higher initial purchasing costs (Weiss et al. 2012; Zhao et al. 2015) and total 
cost of ownership (Falcão et al. 2017; Palmer et al. 2018). Furthermore, their technological 
development is not as advanced as the one for internal combustion engine vehicles. In par-
ticular, the batteries powering the vehicles require substantial technological improvements. 
This technological disadvantage leads to lower utility, since range is reduced and charging 
is time-consuming. Also, charging opportunities are not as frequently available as gas sta-
tions for conventional vehicles. Customers perceive the reduced range and possible lack of 
charging infrastructure as a major disadvantage and “range anxiety” reduces their willing-
ness to purchase electric vehicles (Egbue and Long 2012; Coffman et al. 2016). Lastly, the 
automotive industry is locked-in into the production of conventional vehicles and efforts 
to innovate in electric vehicles are reduced (Cowan and Hulten 1996; Unruh 2000). To 
overcome these monetary and technological disadvantages of electric vehicles, policy mak-
ers implemented various instruments to foster their diffusion. Policy makers’ intention to 
support the diffusion of electric vehicles not only aims to improve local and global environ-
mental conditions, but it is also motivated by industrial policy considerations (Lane et al. 
2013).

The tremendous increase in electric vehicle diffusion in China can be attributed to such 
governmental interventions. Since the 1990s, the Chinese government has placed the devel-
opment and diffusion of electric vehicles high on its political agenda (Gong et al. 2013; 
Yuan et al. 2015; Zhang and Bai 2017). First, China wants to establish an industry base 
to leapfrog conventional technologies and claim global leadership in the electric vehicle 
market (Wang and Kimble 2011; Howell et al. 2014). Second, China sees electric vehicles 
as means to address local pollution and improve local air quality (Zheng et al. 2012). Third, 
China wants to mitigate climate change and electric vehicles are a potential approach. To 
foster the diffusion of electric vehicles, several policy instruments were implemented on 
the national as well as on the regional level (Zhang and Bai 2017; Zhang et al. 2017).

This paper analyzes different determinants for the diffusion of electric vehicles in China. 
The heterogeneous policy instruments implemented at the central and regional government 
level make China an interesting case to understand which policy instruments and condi-
tions influence electric vehicle diffusion. Based on a theoretical discussion of the factors 
influencing the diffusion of environmental innovations and the emerging literature on the 
diffusion of electric vehicles, we derive four hypotheses: we hypothesize that monetary as 
well as non-monetary incentives, availability of public charging infrastructure and the local 
environmental conditions have an effect on the diffusion of electric vehicles.

1 China is also the largest market for electric two- and three-wheelers, with a global market share of about 
99% and a stock of 250 and 50 million respectively (IEA 2019). For a detailed assessment of two-wheelers 
in China, see Wells and Lin (2015) or Zuev (2018).
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We test the influence of these four possible determinants on four different electric vehi-
cle types. We separate electric vehicles into two categories based on their engines – Battery 
Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV). BEV run solely 
on an electric engine, while PHEV have both an electric engine and an internal combus-
tion engine, which can power the vehicle if the battery is empty. We further differentiate 
between vehicle types, namely cars and buses. Since China is also the world leader in elec-
tric buses (IEA 2019), new insights can be derived from a comparative analysis of differ-
ent vehicle types. We use a System Generalized Method of Moments (GMM) estimation 
approach to account for the dynamic nature of the diffusion process and to tackle endoge-
neity issues, especially with respect to subsidies and charging infrastructure. Our analysis 
covers the period 2010–2016 for 31 Chinese regions (cities and provinces) mainly in the 
eastern part of the country.

Our results provide a detailed and heterogeneous picture of the determinants of electric 
vehicle diffusion in China. The distinction among four different vehicle types reveals that 
policy instruments do not affect vehicle types equally. The total subsidy amount is espe-
cially relevant for BEV cars. However, differentiating between regional and central govern-
ment subsidies reveals that the regional subsidy level has a positive effect for all vehicle 
types, while the central government subsidy, which decreases over time, has in some cases 
an adverse effect. Public charging infrastructure is relevant for the diffusion of all vehicle 
types and charging stations are especially relevant for electric buses. Non-monetary incen-
tives such as license-plate lotteries or auctions show an effect only for BEV cars. Local air 
pollution only has an effect on the diffusion of buses, but not on cars. With the latter result 
we provide, to our knowledge, the first empirical assessment of environmental conditions 
on diffusion. We show that in specific cases, here the diffusion of buses, bad environmental 
conditions can increase diffusion of environmentally friendly innovations. However, one 
needs to keep in mind that these buses are usually purchased by regional governments and 
are most likely part of a larger effort to address local pollution via green public procure-
ment (Aldenius and Khan 2017). In terms of research on the diffusion of electric vehicles, 
we provide the first empirical assessment of the diffusion of buses, a highly relevant case 
neglected so far in empirical analysis. We furthermore provide policy recommendations on 
the diffusion of electric vehicles in particular and for environmentally friendly innovations 
in general.

In the following Sect. 2 we provide a theoretical discussion about the diffusion of envi-
ronmentally friendly innovations and derive four hypotheses for determinants of electric 
vehicle diffusion. Section 3 provides insights on electric vehicle diffusion in China as well 
as Chinese environmental conditions. In Sect. 4, we discuss our data and estimation strat-
egy and we provide regression results. In Sect. 5 we discuss the results and conclude.

2  Literature Review

2.1  Diffusion of Environmentally Friendly Technologies

The process of diffusion of innovations into economic application has been a subject for 
economic analysis since the seminal contributions by Griliches (1957) and Rogers (1962). 
Several stylized facts and diffusion models have been proposed since then (see Metcalfe 
1988; Geroski 2000; Hall 2006, for surveys). Most striking is the observation of a S-shaped 
diffusion curve with respect to the share of adoption over time. Of particular interest from 
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an economic point of view are the determinants of the rate of diffusion. Hall (2006) catego-
rizes factors influencing the rate of diffusion into four groups: the benefits from adoption, 
costs for adoption, factors related to the industrial and social environment, as well as uncer-
tainty and information problems. While these determinants are relevant for all innovations, 
there is a distinct group of innovations which are subject to additional factors: environmen-
tally friendly innovations (see Cecere et al. 2014, for an overview of different definitions).

Research on environmentally friendly innovations, or short eco-innovations, and their 
diffusion has received much attention lately (Karakaya et  al. 2014). Such innovations 
have reduced or no environmental externalities and are possible means to mitigate climate 
change. However, they suffer from a so-called double externality problem, which reduces 
their diffusion rate (Rennings 2000; Jaffe et al. 2005). The underlying problem relates to 
two market failures which are present simultaneously for eco-innovations. On one hand, 
eco-innovations suffer from knowledge externalities that reduce innovative activity (Arrow 
1962). On the other hand, they face disadvantages compared to technologies which do 
not internalize external effects on the environment (Baumol and Oates 1988). In a set-
ting where an eco-innovation competes with a non-eco-innovation, innovation activity and 
diffusion are reduced for the eco-innovation, creating a negative feedback which results 
in a lock-in situation that usually favors the environmentally unfriendly solution (Arthur 
1989; Cowan and Hulten 1996; Unruh 2000). To overcome such a lock-in situation and to 
increase diffusion of eco-innovations, policy intervention is necessary (Unruh 2000, 2002; 
Cecere et al. 2014).

Besides the double externality problem, other factors can influence the diffusion of 
eco-innovations. For example, environmentally aware customers have higher preferences 
towards a clean environment and exhibit a higher willingness to pay for products and 
services which do not influence the environment (or to a lesser extend). Extreme forms 
are sometimes referred to as green- or eco-worriers (Windrum et  al. 2009; Williams 
2013), who can be seen as lead users or early adopters supporting eco-innovations early 
on. Empirical evidence suggests that customer preferences for a clean environment can 
increase diffusion of eco-innovations. For example, customers are willing to pay more for 
electricity that is generated from renewable sources (Sundt and Rehdanz 2015). Also, sus-
tainable consumption and lifestyles (Spaargaren 2003) as well as the consumer’s percep-
tion of an eco-innovation towards her values, identity and norms (Ozaki 2010) can increase 
the diffusion of eco-innovations.

From a theoretical point of view on the determinants of eco-innovation diffusion, Can-
tono and Silverberg (2009) model the diffusion of eco-innovation and analyze the effect 
of green preferences and purchase subsidies on the speed of diffusion. In their percola-
tion model, in which customers have heterogeneous preferences for green technologies, 
they show that subsidies increase diffusion and technological learning effects take place, 
increasing diffusion further. Without subsidies, customers with green preferences are not 
enough to increase diffusion. This result is similar to the findings by Herrmann and Savin 
(2017), who model the diffusion of renewable energy technologies in Germany. They show 
that a specific mix of instruments leads to a cost-efficient support of diffusion and that 
green preferences alone are not sufficient for a self-sustained diffusion path.

2.2  Factors Influencing the Diffusion of Electric Vehicles

Electric vehicles are considered an eco-innovation that have a very low diffusion rate, 
despite their long history (IEA 2019). They have great potential to reduce local and global 
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emissions (Sperling 2018). This potential is however not utilized because the automotive 
sector is locked-in into the usage of the internal combustion engine (Cowan and Hulten 
1996; Unruh 2000). However, the diffusion rate increased recently and until 2018 more 
than five million electric cars were in use (IEA 2019). The factors that helped to overcome 
the lock-in and to increase the diffusion rate of electric vehicles are of particular interest 
to foster the diffusion of electric vehicles and eco-innovations in general. In the following, 
four key factors that potentially influence the diffusion of electric vehicles are discussed.2

An economic argument to explain the low diffusion of electric vehicles involves their 
relative price compared to vehicles with an internal combustion engine (Weiss et al. 2012; 
Zhao et al. 2015) and the total cost of ownership, which can be substantially higher than for 
conventional vehicles (Falcão et al. 2017; Palmer et al. 2018). Due to knowledge accumu-
lation and the realization of economics of scale, vehicles with internal combustion engine 
have a higher level of development and lower unit cost. Electric vehicles are comparatively 
costly, since they could not rely on economies of scale and feedback effects to the same 
extend. Furthermore, they are subject to the double externality problem, which reduces 
the incentive to invest in R&D and in turn could increase cost reductions. To overcome 
this disadvantage compared to vehicles with an internal combustion engine, governments 
can grant subsidies to purchase electric vehicles, reducing the relative price difference and 
thereby fostering diffusion. Cantono and Silverberg (2009) show in their diffusion model 
that subsidies which reduce the high upfront cost are indeed able to increase diffusion and 
induce learning effects, resulting in price reduction until the diffusion is self-sustained and 
subsidies are no longer required.

This relationship is supported by broader empirical evidence. Hardman et  al. (2017) 
review 35 empirical studies that either analyze the influence of subsidies–which can be 
point of sale grants, income or value added tax incentives, post purchase rebates, or oth-
ers–on diffusion or the perceptions of potential customers towards electric vehicles. They 
find that in most studies, subsidies have a positive influence on diffusion or the willingness 
to purchase an electric vehicle. However, subsidies need to be targeted to the customer. For 
example, Tal and Nicholas (2016) find for US customers that incentives are especially rel-
evant for low-end cars, while high-end electric cars are purchased anyway (see also Hard-
man and Tal 2016, for a detailed survey of motives for high-end electric car owners). Jenn 
et al. (2013) show that in the US, hybrid electric vehicle incentives need to be sufficiently 
large to increase diffusion, but Sheldon and Dua (2019) show that subsidy efficiency can be 
improved if the subsidy level is dependent on customer income and vehicle characteristics. 
For the US, a $1000 increase in rebates or tax credits increases average electric vehicle 
sales by 2.6% according to Jenn et al. (2018), by 5% to 11% according to Wee et al. (2018) 
who account for vehicle differences in US states and by 8% according to Clinton and Stein-
berg (2019). Münzel et al. (2019) find for a panel of 32 European countries that a subsidy 
increase of €1000 would increase vehicle sales shares relatively by 5–7%. With respect to 
China, Ma et al. (2017) and Li et al. (2019) show significant effects of purchase subsidies 
on electric vehicle diffusion across Chinese cities. However, Wang et al. (2017a) find no 
significant effect of purchase subsidies on diffusion across Chinese cities. With respect to 
the overall evidence of the effect of purchase subsidies, we therefore hypothesize:

2 For a review of further factors such as vehicle characteristics, customer preferences, and social norms, see 
Coffman et al. (2016) and Kumar and Alok (2020).
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H1: Financial purchase incentives have a positive effect on the diffusion of electric 
vehicles.

Besides financial incentives, governments can implement non-monetary regulations to 
either support a technology or to regulate or even prohibit competing ones. Standards and 
regulations are instruments frequently used to increase diffusion of eco-innovations (see 
Jaffe et al. 2003, for an overview). In the case of electric vehicles, instruments such as quo-
tas have been implemented in California, for example (Kemp 2005). Other regulations can 
also increase the willingness of customers to adopt, for instance, preferred treatments on 
roads (e.g. special lane access), free parking, exemption from driving restrictions and other 
favorable conditions with respect to conventional vehicles (Coffman et al. 2016). Hardman 
(2019) provides an overview of different regulatory incentives to promote the diffusion of 
electric vehicles.

Empirical evidence in Gallagher and Muehlegger (2011) show mixed findings for the 
correlation between the allowance of high occupation lane use by electric vehicles and 
their diffusion in the US. In the case of China, Ma et  al. (2017) show that the abolition 
of restriction on traffic for electric vehicles in Chinese cities increase diffusion and Wang 
et al. (2017b) and Li et al. (2019) find a strong effect of license-plate lotteries and no driv-
ing restriction on electric vehicle diffusion in Chinese regions. Based on the general litera-
ture on regulations and first empirical insights, we hypothesize:

H2:  Regulatory incentives have a positive effect on the diffusion of electric vehicles.

The diffusion of innovations is not only related to its own characteristics but also to 
complementary factors, especially infrastructure (Rosenberg 1972). Indirect network 
effects increase the utility that can be derived from a good due to the presence of comple-
mentary goods (Katz and Shapiro 1994). Complementary infrastructure is especially an 
issue in the mobility sector. Gnann and Plötz (2015) review the empirical and theoretical 
literature with respect to complementary infrastructure for alternative engine vehicle dif-
fusion. For electric vehicles, charging infrastructure is especially relevant, since until now, 
the range of electric vehicles is comparably low and customers face range anxiety and fear 
that without sufficient charging infrastructure they cannot fully utilize the vehicle (Egbue 
and Long 2012). Bleda and del Rio (2013) warn about the high potential of coordination 
failure which would reduce utility if sufficient complementary infrastructure is not present.

Several empirical studies find a strong correlation between the presence of charging 
infrastructure and electric vehicle diffusion. Sierzchula et al. (2014) show for a cross-sec-
tion of 30 countries that charging infrastructure plays a major role in electric mobility dif-
fusion. Such results are also present on the country level: Vergis and Chen (2015) show 
them for the US; Mersky et al. (2016) for Norway; and Egnér and Trosvik (2018) for Swe-
den and also address potential endogeneity issues. Li et al. (2017) model the bi-directional 
relationship between the provision of charging infrastructure and vehicle sales in the US. 
They estimate an elasticity of vehicle diffusion and charging infrastructure of 0.84 and the 
elasticity of charging infrastructure and the stock of electric vehicles of 0.61, demonstrat-
ing substantial indirect network effects. In the case of China, Wang et al. (2017a) and Li 
et al. (2019) provide evidence for a positive relationship. The overall theoretical and empir-
ical evidence leads to the hypothesis:
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H3:  Availability of charging infrastructure has a positive effect on the diffusion of electric 
vehicles.

While the first three hypotheses influence the price or utility derived from an electric vehi-
cle, customers might also purchase electric vehicles because they have preferences for the 
environment or their health. Since electric vehicles produce no tailpipe pollution they can be 
seen as means to improve the environment and reduce hazardous local air pollution (Sperling 
2018). Customers’ preferences for the environment can increase their willingness to pay for 
an electric vehicle compared to a vehicle with an internal combustion engine. Such green cus-
tomer preferences are, for example, modeled in Cantono and Silverberg (2009) and these cus-
tomers are usually early adopters (Windrum et al. 2009; Williams 2013). Several willingness 
to pay surveys show how preferences with respect to the environment influence consumption 
decisions for electric vehicles. Bunch et al. (1993) show that customers are willing to pay a 
premium for electric vehicles if they have considerable environmental benefits compared to 
gasoline vehicles. Similar results are presented by Erdem et al. (2010) who show that custom-
ers in Turkey who are concerned about global warming have a higher willingness to pay for 
hybrid cars. Carley et al. (2013) finds that the environmental view of survey participants in 
the US has a positive effect on their intent to purchase a plug-in electric vehicle. Hardman 
and Tal (2016) survey high-end electric vehicle owners in the US and find that environmental 
concerns were mentioned by more than 50% of vehicle owners. Contrary to these findings, 
Hidrue et al. (2011) find that among several characteristics, the environmental improvements 
associated with electric vehicles exhibit the lowest willingness to pay. Also, Figenbaum and 
Kolbenstvedt (2016) survey electric vehicle owners in Norway and environmental benefits 
were among the least relevant factors for their purchasing decision.

Due to the severe environmental conditions in China, the willingness to pay for environ-
mental improvements are large in general. Freeman et  al. (2019) show that households in 
China have a high willingness to pay for clean air revealed by relocation to less polluted areas. 
Similarly, Chen et al. (2017) demonstrates that high levels of pollution induce costly migration 
decisions for Chinese households. To actively address pollution, Ito and Zhang (2020) show 
that Chinese people are investing in home air purifiers to protect themselves from the hazard-
ous environment. With respect to electric vehicles and their environmentally friendly features, 
Lin and Tan (2017) ask in a survey conducted in four Chinese cities how much participants are 
willing to pay more for the environmental benefit provided by electric vehicles. They find that 
the participants are willing to pay at least 30,600 CNY more for the environmental benefit of 
battery electric vehicles. In a similar survey, Lin and Wu (2018) show that the higher the con-
cern about urban smog the higher is the willingness to purchase an electric vehicle. The previ-
ous empirical findings on the willingness to pay for a cleaner environment and to purchase 
electric vehicles to reduce pollution allows us to formulate the following hypothesis:

H4:  Local air pollution has a positive effect on the diffusion of electric vehicles.

3  Electric Vehicles and the Environment in China

3.1  Diffusion of Electric Vehicles in China

According to estimates by the IEA (2019), China had the largest stock of electric cars, 
approximately 2.3 million (1,760,000 BEV and 540,000 PHEV) in 2018. China was the 
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largest market for electric cars with a global market share of 45% in 2018. However, the 
share of new electric cars in China was still very low, with about 4.5% of all new registered 
cars in 2018. Figure 1 depicts the development of the BEV and PHEV car stock as well as 
market share over time. The exponential increase since 2013 is remarkable. The increase in 
market share indicates that substitution with conventional vehicles took place not solely in 
terms of an increase in absolute numbers of vehicles. A disaggregation at the regional level 
shows the concentration of electric vehicle diffusion to eastern China. The three regions 
with the highest number of electric vehicles were Beijing, Shanghai and Shenzhen, which 
together accounted for 37% of total electric vehicle sales in China. Customers of electric 
vehicles were until 2012 mainly governmental agencies or taxi companies, but since then, 
more and more private customers purchased electric vehicles (Yuan et al. 2015).

China was also the leader in terms of electric buses with more than 460,000 in operation 
in 2018 (IEA 2019). According to Shengyang (2018), in 2016 nearly 70% of all purchased 
buses in China were BEV and about 16% were PHEV buses. Buses were purchased by 
regional bus operators which are usually state owned but have to operate economically. 
Electric buses were mainly produced by two companies, BYD and Yutong. Similar to 
electric cars, most buses were operated in the eastern part of China. For example, Shen-
zhen was one of the pilot regions for electric vehicle diffusion and fostered an increase of 
electric vehicles between 2009 and 2017. By the end of 2017, Shenzhen managed to have 
an electric-only fleet of more than 16,000 buses (Dixon 2018). In addition, in other cities 
and regions, such as Beijing, Tianjin, Hebei, Guangzhou, or Xi’an the diffusion of electric 
buses increased substantially (IEA 2019).

Similar developments take place for charging infrastructure. IEA (2019) shows that 
China had about 45% of global public slow-charging infrastructure and more than three 
quarters of global public fast-charging infrastructure in 2018.3 Charging infrastructure can 

Fig. 1  Chinese electric car stock and share. Data source: IEA (2019)

3 Besides public charging infrastructure, private home-charging infrastructure is of importance, but most 
households do not have their own parking space and lack this opportunity (Ou et al. 2018). However, the 
“Notice on Accelerating Residential EV Charging Infrastructure Construction” issued in 2016 provides a 
detailed plan for the installment of home-charging infrastructure.
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be distinguished into different types, serving different vehicle types or performing differ-
ent services. Charging stations can serve many vehicles and different types at the same 
time. Charging points are usually used for electric cars, but also buses can be charged at 
such points. According to Ji and Huang (2018) in 2014, 780 centralized charging and bat-
tery swapping stations as well as 31,000 public charging points were in operation. The 
latter increased substantially in the following years to 450,000 private and public charging 
points by 2017. According to the “Guidelines for Accelerating the Plug-in Electric Vehi-
cle Charging Infrastructure Deployment” issued in 2015, this number should increase to 
4,800,000 by the end of 2020. In most cases, charging infrastructure were provided and 
operated by regional governments, since viable business models were not available (Ji and 
Huang 2018; Zhang et al. 2018).

3.2  Electric Vehicle Policies in China

The development and diffusion of electric vehicles in China were highly influenced and 
guided by policy on the national as well as the regional level. These policies target both the 
supply and the demand side in the innovation process and provide incentives and regula-
tions for firms to produce electric vehicles as well as for customers to adopt them.4 Further-
more, several policies address the availability of charging infrastructure and provide non-
pecuniary incentives. In the following, the main policies on the national as well as regional 
level are summarized. For detailed assessments see, among others, Yuan et al. (2015) who 
focus on industrial policies, Gong et al. (2013) who review major national policies, Zhang 
and Bai (2017) who review the national as well as selected regional policies, and Zhang 
et al. (2017) who focus on financial incentives.

The political support for electric vehicles in China on the national level began with the 
support of scientific and technological projects in the 8th Five-Year Plan for the period 
1990–1995. Since then, the support for capacity building in this area has steadily increased 
and electric vehicles have been included in the “State High-Tech Development Plan (863 
program)”. The 11th Five-Year Plan (2006–2010) and the 12th Five-Year Plan (2011–2015) 
included strategic aims to develop an electric automobile industry with an emphasis on 
R&D in the respective core technologies. The Five-Year Plans were complemented with 
several “Development Plans of Auto Industry”, which contained detailed targets and strat-
egies in developing the electric vehicle industry (see Yuan et  al., 2015, for detailed dis-
cussions). The “Development plan for the new-energy automobile industry (2012–2020)” 
implemented in 2012 declares the transformation of the automobile industry and that BEVs 
will be the long-term strategic orientation in the future development of electric vehicles.

Besides these supply-side oriented policies, several demand-side instruments were 
implemented to support the diffusion of electric vehicles. In 2009, the “Notice on pro-
motion and demonstration of energy-saving and new energy vehicles” was issued which 
included the “Ten Cities, Thousands of Vehicles” pilot program. The demonstration pro-
gram provided subsidies for electric vehicle purchases in selected cities from 2009 to 2012. 
The program was extended in 2010 and 15 additional cities were included. The subsidies 
consisted of price deductions at the point of sale and were conditioned on the type of vehi-
cle as well as on the battery capacity. The level of the subsidy and the conditions were 

4 Policy learning plays a substantial role over time. Xu and Su (2016) show that policy targets changed over 
time from producer oriented to consumer oriented, increasing support for the diffusion of vehicles.
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augmented nearly each year (Yuan et  al. 2015). Furthermore, the program contained an 
annual reduction of the subsidy level aiming to encourage innovative activity by car manu-
facturers and to create a self-sustainable market (Zhang and Bai 2017). The support was 
possible for both private as well as public actors; however, in some regions support was 
provided only for public actors. In the first years most vehicles were purchased by public 
actors (Yuan et al. 2015). In this period, the diffusion of electric vehicles was substantially 
below the governmental targets (Gong et al. 2013). Since 2013, the program has been suc-
ceeded by follow-up programs to guarantee continuous policy support and private actors 
have been incorporated in the scheme in all regions.

In 2013, the “Guiding Opinions on Accelerating the Promotion of the Application of 
New Energy Vehicles” provided further vehicle purchase subsidies and continued the “Ten 
Cities, Thousands of Vehicles” support for the period 2013–2015. Moreover, the policy 
reduced taxes, provided non-monetary incentives and revised fuel oil subsidies. In 2015, 
the “Notice concerning Financial Support Policy for Promotion and Application of New 
Energy Vehicle” continued the support for the period 2016 to 2020. Along these main 
policies, several other policies were implemented to increase the development of charg-
ing infrastructure, especially the “Guidelines for Accelerating the Plug-in Electric Vehicle 
Charging Infrastructure Deployment” in 2015 (Zhang and Bai 2017; Zhang et al. 2018). 
The support for electric vehicles was also implemented in the “Air Pollution Prevention 
and Control Action Plan” and public actors were encouraged to adopt electric vehicles.

Aside from the policies fostering the diffusion of electric vehicles on the national 
level, regional and city level policies play a major role. Zhang and Bai (2017) provide 
detailed assessments of policies in three regions and show the heterogeneity of policies 
and the degree of freedom possessed by regional authorities. Policy makers are motivated 
to account for their regional conditions in the support schemes. For example, Beijing 
and Shanghai have different subsidy schemes for BEVs and PHEVs. Shanghai promotes 
both BEVs and PHEVs with high subsidies, while Beijing only supports BEVs. To some 
extent, this difference can be attributed to regional protectionism because Beijing Automo-
tive Industry Corporation (BAIC)—the regional company in Beijing—does not produce 
PHEVs (Wang et  al. 2017b). These kinds of regional protectionism and favoritism are 
widespread (Gong et al. 2013). However, in nearly all regions and cities additional subsi-
dies on top of national wide subsidies are granted. These subsidies differ between regions 
in terms of vehicles considered, granting conditions and changes over time.

Additionally, regions follow their own strategies to support and implement charging 
infrastructure and provide different tariffs for home-charging. Furthermore, some regions 
implement car-ownership policies to control congestion and pollution. License-plate lot-
teries or auctions to register new vehicles are used in several cities to control vehicle regis-
tration (see Chen and Zhao 2013, for details). In most of these cities, electric vehicles are 
exempt from these policies or a quota of license plates is available which allows electric 
car registration without uncertainty or waiting time. The implementation of license-plate 
lotteries can differ between BEVs and PHEVs. For example, in Beijing only BEVs, but not 
PHEVs, are exempt from the lotteries. The usually free license plate translates into consid-
erable savings compared to a license plate for a conventional vehicle (Wang et al. 2017a). 
However, Wan et al. (2015) state that until 2014, the demand for these license plates was 
very low. Wang et al. (2017b), by contrast, argue that the exemptions from these lotteries 
should have major influence on electric vehicle diffusion.
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3.3  Environmental Conditions in China

The tremendous economic development in China generated several negative external 
effects, especially in terms of local and global pollution (He et al. 2002; Liu and Diamond 
2005; Chan and Yao 2008). While emission of CO2 and other greenhouse gases have 
global, long term effects, the emission of other gases and particles have local effects, espe-
cially on people’s health. With respect to local pollution, sulfur dioxide (SO2 ), ground level 
ozone (O3 ), nitrogen oxides (NOx ), and particulate matters with different aerodynamic 
diameters (esp. PM10 and PM2.5 ) are harmful. The concentration of these substances shows 
regional differences, with a higher intensity in the highly industrialized regions in the east 
(Liu et al. 2010). High concentration can lead to severe health effects and cause premature 
death (Matus et al. 2012; Lelieveld et al. 2015). For example, Rohde and Muller (2015) 
estimate that about 17% of all death in China can be attributed to local air pollution.

The reduction of local pollution levels is high on the Chinese government’s agenda. 
Major emitters are the electricity and transportation sectors. Several policies were imple-
mented over time to reduce local pollution, especially in the transportation sector (see Jin 
et al. 2016; Feng and Liao 2016, for reviews). Among them are restrictions on the use of 
cars, the retirement of old cars, fuel taxes and reduction of subsidies. Part of the efforts to 
reduce pollution from transportation includes the increase in the number of electric vehi-
cles, which produce less or no tailpipe emissions (Zhang and Bai 2017). However, Huo 
et al. (2010, 2015) estimate that the current electricity mix fueling electric vehicles actually 
increases pollution, since electricity is generated mainly form coal. Only with a drastically 
changed fuel mix, which relies more on renewable energy, can electric vehicles contribute 
to a reduction in emissions. However, power plants are usually located outside of cities 
and pollution would shift from inside of cities to rural areas where less people would be 
exposed to the pollution.

4  Empirical Analysis

4.1  Data

The data used for the empirical analysis of the diffusion of electric vehicles covers the 
period from 2010 until 2016. We collect data for 31 Chinese regions (cities and provinces) 
(see Table 5 in the Appendix). The data is collected from various sources provided by the 
Chinese government. We group the data into dependent, explanatory, and control variables 
as well as variables to assess the robustness of our results. There is some missing data and 
we interpolate in most of the cases. In 2016, ten cities do not report vehicle registration 
data, so for these cities, we do not interpolate data. Descriptive statistics are provided in 
Table 1 and correlations in Table 6 in the Appendix.

4.1.1  Regional Electric Vehicle Diffusion

Similar to Wee et al. (2018) and Li et al. (2019) we measure the diffusion of electric vehi-
cles by the annual new registered vehicles per region. We distinguish four different types of 
electric vehicles, based on the engine and vehicle type. With respect to the engine type, we 
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Table 1  Descriptive statistics

Note: Variables are presented in its original form, but enter the regressions log-transformed

Measurement Min. Mean Median Max. S.D. Obs.

Dependent variables
New BEV Cars Units 0.00 898.67 0.00 52192.00 4018.79 207
New PHEV Cars Units 0.00 448.13 0.00 24707.00 2420.70 207
New BEV Buses Units 0.00 389.26 30.00 13139.00 1261.18 207
New PHEV Buses Units 0.00 117.99 0.00 1785.00 275.45 207
Explanatory variables
Total Subsidy BEV 

Cars
Thousand CNY 0.00 51.56 65.25 125.40 42.40 217

Total Subsidy 
PHEV Cars

Thousand CNY 0.00 36.59 40.00 100.00 30.69 217

Total Subsidy BEV 
Buses

Thousand CNY 0.00 510.30 500.00 1100.00 259.20 217

Total Subsidy 
PHEV Buses

Thousand CNY 0.00 330.43 360.00 725.00 152.14 217

BEV Ownership 
policy

Dummy 0.00 0.08 0.00 1.00 0.27 217

PHEV Ownership 
Policy

Dummy 0.00 0.09 0.00 1.00 0.29 217

Charging Infrastruc-
ture

Cumulative units 0.00 2238.44 227.00 68393.00 7038.53 217

PM10 Pollution Particle concentra-
tion

19.30 90.78 89.00 192.00 30.67 217

Control variables
GDP Thousand CNY 15747.00 70314.29 67621.00 167411.00 31251.37 217
Population Thousands 57.43 17911.67 9204.00 74701.00 17973.39 217
Education Relative measure 0.31 4.09 2.57 14.62 3.37 217
Robustness variables
Regional Subsidy 

BEV Cars
Thousand CNY 0.00 22.12 20.85 68.30 22.36 217

Central Subsidy 
BEV Cars

Thousand CNY 0.00 29.44 41.70 60.00 23.00 217

Regional Subsidy 
PHEV Cars

Thousand CNY 0.00 14.70 10.00 50.00 15.83 217

Central Subsidy 
PHEV Cars

Thousand CNY 0.00 21.90 30.00 50.00 17.48 217

Regional Subsidy 
BEV Buses

Thousand CNY 0.00 159.07 59.50 600.00 185.18 217

Central Subsidy 
BEV Buses

Thousand CNY 0.00 351.24 380.00 500.00 157.96 217

Regional Subsidy 
PHEV Buses

Thousand CNY 0.00 85.90 0.00 500.00 109.45 217

Central Subsidy 
PHEV Buses

Thousand CNY 0.00 244.53 237.50 360.00 109.32 217

Charging Stations Cumulative units 0.00 39.00 5.00 612.00 96.42 217
Charging Points Cumulative units 0.00 2163.12 220.00 67781.00 6962.23 217
Air Quality Index Share of good days 29.00 77.77 83.56 100.00 17.92 217
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distinguish between Battery Electric Vehicles (BEV), which are powered solely by elec-
tricity, and Plug-in Hybrid Electric Vehicles (PHEV), which have both a small battery to 
run an electric engine as well as an internal combustion engine that can be used if the bat-
tery is empty. These two are the most frequently used engine types and can be used in cars 
for individual transport as well as in buses for public transport. These four types of vehi-
cles, BEV cars, PHEV cars, BEV buses, and PHEV buses, are the four dependent variables 
reflecting the diffusion of electric vehicles in our analysis. We collect the annual registered 
vehicles from the Yearbook of Energy-Saving and New Energy Vehicles in China, (2011-
2017). We log-transform the data to account for the increasing trend over time.

4.1.2  Purchasing Subsidies

Purchasing subsidies for electric vehicles are different among the four different vehicle 
types, since the subsidy amount depends on both the kind of vehicle and vehicle char-
acteristics. The overall subsidy amount for each vehicle type consists of central govern-
ment level and region government level subsidies.5 As discussed in Sect. 3.2 the national 
policy “Ten Cities, Thousands of Vehicles” program and its successors granted subsidies 
for purchases in selected region (see Table 5 in the Appendix when a region was covered 
by the programs). Regional authorities complemented the subsidies with their own subsidy 
scheme or implemented subsidies independent of central government polices. Subsidies 
are conditioned on the capacity of batteries for all vehicle types and the size of the buses. 
Gong et  al. (2013) provide a detailed description of the factors determining the subsidy 
amount. We collect the central and regional government subsidy amount from the Year-
book of Energy-Saving and New Energy Vehicles in China, (2011-2017). To quantify the 
central and the regional subsidy amounts, we take the average subsidy amount for a vehicle 
type each.6 We use the total subsidy amount as our main variable of interest, since custom-
ers make decisions based on the overall subsidy they receive. We use the separation of cen-
tral subsidy amount and regional subsidy amounts as a robustness test, where we have to be 
aware of a considerable correlation between the two. All values are measured in thousand 
CNY and log-transformed.

4.1.3  Non‑Monetary Incentives

To account for non-monetary incentives, we collect car-ownership policies at the regional 
level. Two kinds of ownership policies are implemented, namely license-plate lotteries and 
license-plate auctions. Both policies restrict the registration of cars with internal combus-
tion engine but exempt electric vehicles from this restriction. These policies are imple-
mented in six regions in our sample and at different points in time (Wang et al. 2017a). 
They apply only to cars and not to buses. The regions in our sample which implemented 
such a policy are Beijing, Guangzhou, Hangzhou, Shanghai, Shenzhen, and Tianjin (see 
Table 5 for details). Since Beijing implemented the license-plate lottery exemption only for 

6 For example, the national subsidy for BEV buses is 300, 400 or 500 thousand CNY/vehicle depending on 
the length of the bus. We calculate the average amount of subsidy which is 400 thousand CNY/vehicle. We 
proceed similarly for regional subsidies.

5 The subsidies are regionally bound to the purchaser’s residence. Usually, purchasers have to buy and reg-
ister their vehicle in the region of their residence and benefiting from subsidies in other regions should not 
be possible.
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BEV cars, variables are generated for BEV and PHEV cars separately. The policy is opera-
tionalized as a dummy variable for the region and year it is active.

4.1.4  Public Charging Infrastructure

We collect the cumulative number of public charging opportunities from the Yearbook 
of Energy-Saving and New Energy Vehicles in China, (2011–2017). The measure counts 
the presence of public charging facilities, consisting of charging points and charging sta-
tions, but it does not take into account how many vehicles can charge simultaneously at a 
location or the speed of charging.7 Normally, charging points allow only for slow charging 
and are located in parking spots or on the roadside, while charging stations are usually 
located close to urban roads or highways and serve a large number of vehicles, especially 
buses. Charging stations require larger space and are more expensive but they offer differ-
ent charging opportunities, such as fast charging or battery swapping (Zheng et al. 2012; Ji 
and Huang 2018). The overall number of charging possibilities is suitable to measure how 
the perceived availability of public charging infrastructure can influence the diffusion. For 
a robustness test, we separate the charging infrastructure into charging points and charging 
stations. We assume that charging points are primarily relevant for cars, while charging sta-
tions are primarily relevant for buses. We log-transform the cumulative data.

4.1.5  Local Air Pollution Measures

We account for the local air pollution via two different measures. Unfortunately, both are 
imperfect because of data constraints. The data is taken from the Environment Bulletin of 
Chinese Regions, (2011-2017). The first measure is the PM10 particle concentration, which 
is measured on a daily basis and averaged per year. While most of the PM10 pollution is 
emitted by the transportation sector, this measure captures only a part of the overall pol-
lution. The second measure is the Air Quality Index, which is as a composite indicator of 
several pollutants (SO2 , NO2 , O 3 , CO, PM10 and PM2.5 ). It is measured by the share of days 
with air quality equal to or above Grade II (good days). The advantages of using this meas-
ure are that it captures more pollutants and that it does not need any yearly aggregation. 
Unfortunately, the composition of Air Quality Index and its measurement changed in 2013, 
which reduces its reliability and comparability over time. Furthermore, we have to treat the 
environmental data with caution, since it is sensitive to political interests and the measure-
ment could be adjusted in favor of better reporting. Chen et  al. (2012) find evidence of 
manipulation of Air Quality Index data between 2000–2009 by regional governments, who 
were motivated to achieve a reward. Similarly, Ghanem and Zhang (2014) find in daily data 
for the period from 2001 until 2010 anomalies in reported PM10 pollution levels from about 
50% of the cities. Even though these manipulations seem severe, Chen et al. (2012) nev-
ertheless conclude that the environmental data is useful, since it still correlates well with 
other environmental data from external sources. We use the PM10 pollution as our preferred 
measure due to its measurement consistency over time and we use the Air Quality Index 
for a robustness test. The two measures should be negatively correlated.

7 The data does not contain home-charging possibilities. However, Ou et al. (2018) shows that home-charg-
ing was very limited in the time period considered because most households do not have their own parking 
space.
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4.1.6  Control Variables

Three control variables are used to account for the overall regional differences and devel-
opment as are other potentially relevant regional factors.8 In line with previous studies (e.g. 
Egnér and Trosvik 2018; Wee et al. 2018), we collect regional GDP and population data 
to account for economic development, market size, and other regional differences from 
the Statistical Yearbook of Chinese Regions, (2011–2017). Carley et al. (2013) and Hack-
barth and Madlener (2013) show that more highly educated people have a higher intent to 
purchase electric vehicles. Furthermore, a higher education level can be associated with 
a greater environmental awareness, which can increase electric vehicle adoption (Lin and 
Tan 2017). To account for the education level in a region, we build an indicator which cal-
culates participants in regular higher education institutions as a share of total resident pop-
ulation of a region. The data is collected from the Statistical Yearbook of Chinese Regions, 
(2011–2017). All measures are log-transformed.

4.2  Econometric Approach

Because diffusion is a dynamic process that is influenced by past diffusion and feedback 
effects (e.g. Hall 2006), our estimation strategy relies on Generalized Method of Moments 
(GMM) dynamic panel estimations to not only account for such dynamics but to also 
account for the endogeneity of policy interventions. The dynamic panel approach allows 
for a consideration of the whole history of the diffusion process (Greene 2012). We use 
the system GMM approach proposed by Arellano and Bover (1995), Blundell and Bond 
(1998), Bond (2002), which simultaneously uses the level as well as first difference to yield 
additional internal instruments. The system GMM is also more reliable in small samples 
(Soto 2009). We use the two-step approach to account for heteroskedasticity in our data 
and we calculate robust standard errors using the Windmeijer (2005) correction. We report 
the squared correlation between the predicted vehicle diffusion and the actual vehicle diffu-
sion as a goodness-of-fit measure (Windmeijer 1995).

For the instrumentation, we use all available lags of our lagged dependent variable. 
However, we restrict the number of further instruments to avoid overidentification and 
inflation of the Hansen J-test (Roodman 2009). We use the first four lags of our variables 
of interest, because we assume that they could be pre-determined due to potential influence 
by previous electric vehicle registrations. The control variables enter the set of instruments 
with no lag, since they are exogenous. We collapse the instruments, which is recommended 

8 Further control variables are suggested in the literature. Fuel and electricity prices, in particular, show 
potential relevance to induce diffusion. In China, fuel and electricity prices are not determined on markets; 
rather, the central and regional governments set them based on the regional economic developments. There-
fore, these prices are highly correlated with regional GDP and we abstain from using them in our analysis. 
However, neglecting them is not detrimental, since their empirical relevance is weak or inconclusive. In 
cross-country settings, both prices show no effect (e.g. Sierzchula et al. 2014; Münzel et al. 2019) and for 
the US, Clinton and Steinberg (2019) find no effects and Wee et al. (2018) find mixed results. Another fac-
tor which can influence the diffusion of electric vehicles is the diffusion of conventional vehicles. Unfortu-
nately, there is no data of new conventional vehicle registrations available at the regional level. We collected 
data on the overall number of vehicles registered in a region, but these figures do not account for scrapping 
vehicles. Manual inspection sheds serious doubts on the data quality. We used the overall number of vehi-
cles registered in a region as an additional control variable, but it does not affect diffusion and we abstain 
from including it in the analysis.
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for small samples. We test for overidentifying restrictions using the Hansen J-test (Hansen 
1982) and report p-values as well as the test’s degrees of freedom. We also report the 
p-values for the second order autocorrelation test (m2-Test) (Arellano and Bond 1991).

We estimate regressions for the different vehicle types 
V = {BEV cars, PHEV cars, BEV buses, PHEV buses} each, with V as an index for vehi-
cle specific variables for region i and year t:

with New VehicleVit as the annual newly registered vehicles, Total SubsidyVit the vehi-
cle specific subsidies, Ownership PolicyVit the vehicle specific non-monetary incen-
tives, Charging Infrastructureit as the accumulated number of charging places and 
PM10 Pollutionit as one of the measures for local environmental pollution. Controlsit is the 
vector of control variables. �i are region specific fixed effects and �it is an error term.

We estimate five different models for each vehicle type V (Model a-d) where we step-
wise include the variables of interest. Model 1 is the baseline model, which includes the 
lagged dependent variable and the control variables. Model 2 adds the vehicle specific total 
subsidies, which are proposed in hypothesis 1. Model 3 adds the vehicle specific owner-
ship policies, which are the non-monetary incentives proposed in hypothesis 2. This policy 
applies only to cars and is therefore only present for BEV cars and PHEV cars. Model 4 
adds the charging infrastructure proposed in hypothesis 3. Model 5 adds the local environ-
mental pollution in terms of PM10 particles and is proposed in hypothesis 4. Model 5 is the 
full model as presented above.

As robustness tests, we report estimates for three additional models in which we 
exchange variables from Model 5. In Model 6, the variable total subsidy is differentiated 
into the subsidies provided by the regional and those provided by the central governments. 
In Model 7, charging infrastructure is exchanged for vehicle-specific charging infrastruc-
ture, charging points are used in the regressions for cars and charging stations in the regres-
sions for buses. In Model 8, we use an alternative measure for local air pollution, the Air 
Quality Index. We conduct several additional robustness tests, which are available in the 
online supplementary material.

4.3  Results

Tables 2 and 3 provide the regression results for the BEV and PHEV cars and BEV and 
PHEV buses respectively. Table 4 provides robustness tests for all vehicle types. The good-
ness of fit—the squared correlation of the annual vehicle diffusion and the fitted values—is 
the highest for BEV cars and the lowest for PHEV buses. The goodness of fit is in gen-
eral quite good and usually increases with additional variables. The Hansen J-test indicates 
for most models that the instrumentation is not weak, only Models 1a,c,d and Model 2d 
suffer from weak instrumentation. Overall, the test statistics improve with an increase 
in variables in the regression. Serial autocorrelation seems to be partly a problem in the 
BEV car regressions, since the m2-Test cannot be rejected in all cases.9 With respect to the 

New VehicleVit = �New VehicleVi,t−1 + �1Total SubsidyVit

+ �2Ownership PolicyVit + �3Charging Infrastructureit

+ �4PM10 Pollutionit + �Controlsit + �i + �it

9 We conducted an additional robustness test and additionally included the dependent variable with lag 2. 
For BEV cars, this variable was negative significant in most specifications with a significant coefficient of 
about -0.2. The other co-variates changed only marginally. In the estimations for the other vehicle types, the 
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1 3

estimation results, in nearly all models a strong effect of the lag dependent variable is pre-
sent, indicating the high relevance of previous diffusion for current diffusion.10 The coeffi-
cient size of the lagged dependent variable decreases with the inclusion of additional vari-
ables and ranges between 0.3 and 0.6 in the full specifications in Model 5. The dynamic 
nature of the diffusion process could be related to the increased visibility and availability 
of electric vehicles but also could be due to cost reductions based on learning curves which 
may be affected by past influences. In general, the three control variables show no effect on 
the diffusion irrespective of vehicle type. In the following, we discuss the results regarding 
the different hypotheses derived in Sect. 2. 

4.3.1  Financial Purchase Incentives

The total subsidy to purchase electric vehicles reflects vehicle type dependent effects. A 
robust positive significant effect of total subsidy is only present for BEV cars. The effect 
size can be interpreted as an elasticity, where a one percent increase in total subsidy trans-
lates to an increase of newly registered BEV cars of about 0.5 percent.11 This effect for 
BEV cars is plausible, since the total subsidy is quite high and it covers the price difference 
between the internal combustion engine cars, providing a sufficient high incentive. For 
PHEV cars, there is a significant effect in Models 2b and 3b which translates to an elastic-
ity of about 0.28. However, the significant effect becomes insignificant with the inclusion 
of charging infrastructure in Model  4b. This co-variate dependent effect is puzzling but 
could be explained by a government reaction with a simultaneous change in subsidy and 
infrastructure support. A similar pattern for buses as for PHEV cars is present. For BEV 
buses Model 2c and for PHEV buses Model 2d show significant effects for total subsidy of 
about 0.37 and 0.54, respectively, but with the inclusion of further co-variates, the effects 
disappear.12

The robustness test, in which the total subsidy is separated into regional and central 
subsidies, reveals that the subsidies provided by the regional governments are decisive. For 
all vehicle types (Models 6a-d), the regional subsidies have a significant positive coeffi-
cient, which are for cars larger than the total subsidy coefficients. The effects for buses are 
smaller than the ones in Models 2c and 2d and are about 0.29 and 0.26 respectively. The 
central government subsidies are not significant except for BEV buses, where they have a 
negative significant coefficient. The overall missing or negative effect of central govern-
mental subsidies is surprising but most likely related to the fact that the central government 
subsidies decrease over time, while at the same time annual vehicle registrations increase. 
Furthermore, there is not much regional variation in the central government subsidy, since 
it discriminates only between regions that receive a subsidy and those that do not. Overall, 

10 To assure the reliability of our estimation approach, we compared it to dynamic panel fixed-effects speci-
fication with a lagged dependent variable. Since the fixed-effects specification should be biased downwards, 
the coefficient for the lagged dependent variable should be smaller than the ones from the GMM estima-
tions. This is the case for all our models which gives us confidence that the GMM specification is sound. 
Results are available in Table O2 in the online supplementary material.
11 The effect sizes should be interpreted with care and more like an upper bound than an average effect, 
since the data can be adjusted by the regional governments to meet car registration targets and requirements.
12 We estimate an alternative specification in which we do not log-transform the subsidy data and coeffi-
cients can be interpreted as semi-elasticities. The results do not change qualitatively but have smaller stand-
ard errors. Results are available in Table O3 in the online supplementary material.

additional lagged dependent variable was usually not significant and co-variates changed only marginally. 
Results are available in Table O1 in the online supplementary material.

Footnote 9 (continued)
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the robustness test provides confidence that subsidies increase diffusion for electric vehi-
cles, but the decreasing central government subsidy seems to dilute the overall effect.

4.3.2  Regulatory Incentives

Car ownership policies, which are implemented in several regions to control the number 
of cars, show significant coefficients only for BEV cars but not for PHEV cars. For BEV 
cars, the significance of the coefficient is sensitive to the inclusion of co-variates. While 
the coefficient is statistically insignificant in Model 3a (p-value = 0.13), including charging 
infrastructure in Model 4a renders the coefficient significant, thereby the coefficient size 
varies considerably between the model specifications and the effect is in not very precise. 
The coefficient size also varies in this range in the different robustness specifications in 
Models 6a, 7a and 8a. Considering the effect size based on the two significant coefficients 
in Model 4a and 5a, implementing ownership policies translates to an increase of newly 
registered BEV cars between about 182% and 953% compared to regions without owner-
ship policies. Since the six regions with BEV car ownership policies account for more than 
50% of the registered vehicle in our sample, the effect size is reasonable. The substantial 
range of estimates stems from the imprecise measurement via a dummy variable and does 
not measure the shadow price of the incentive, but qualitative discussions of these policies 
attribute substantial relevance to them (e.g. Wang et al. 2017b; Li et al. 2019). Overall, the 
hypothesis that non-monetary incentives increase diffusion is supported only in regards to 
BEV cars.

4.3.3  Public Charging Infrastructure

The third hypothesis states that the presence of public charging infrastructure has a positive 
effect on the diffusion of electric vehicles. In general, this hypothesis is supported by the 
results; however, the effect is not always robust for cars and fluctuates with the inclusion 
of some covariates. For BEV cars, the coefficient for charging infrastructure is significant 
in Model  4a but not if the PM10 pollution is included in Model  5a. The PM10 pollution 
measure seems to distort the estimation: in Model 8a where the Air Quality Index is used 
instead, the coefficient for charging infrastructure is significant. For PHEV cars, the coef-
ficient is barely insignificant in Model 4b (p-value = 0.103) but becomes significant with 
the inclusion of the PM10 pollution in Model 5b. Furthermore, in the robustness Models 6a, 
8a, as well as Models 6b and 8b the coefficients are significant as well. The effect sizes 
for BEV cars range between 0.2 and 0.4 and for PHEV cars between about 0.3 and 0.4. 
The results for the BEV and PHEV buses show significant positive coefficients, which are 
robust across all specifications. For both bus types, the elasticity is larger compared to cars 
– for BEV buses between 0.6 and 0.8 and for PHEV buses between 0.4 and 0.5.

We perform a robustness test in which the charging infrastructure is separated in charg-
ing points and charging stations. The intuition is that charging points are more relevant for 
cars while buses should be more dependent on charging stations. Regional policy makers 
could use this dependency to target the diffusion of either cars or buses by higher sup-
port for specific infrastructure. We estimate in Models 7a,b the effect of charging points 
on both car types and in Models 7c,d the effect of charging stations on both bus types. In 
the case of BEV cars, there is no significant effect for charging points in Model 7a.13 For 

13 We estimated Model  7a with the Air Quality Index as an alternative pollution measure and charging 
points have an effect size of 0.272 and is significant at the 1% level, again showing disturbances of the PM10 
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PHEV cars, there is a significant effect of charging points, which is of similar size as charg-
ing infrastructure in general. For buses, there is a significant effect of charging stations for 
both bus types. In particular, the coefficient of BEV buses is considerably larger than of 
general charging infrastructure, with an effect of approximately 1.05. This result is reason-
able since buses hardly charge at charging points; instead, they usually charge in larger 
facilities.

4.3.4  Regional Air Pollution

The fourth hypothesis postulates a relationship between the local environmental condi-
tion and the diffusion of electric vehicles. Such a relationship seems not to exist for elec-
tric cars, as none of our PM10 pollution estimates is significant for BEV or PHEV cars. 
For buses, large but weakly significant coefficients exist for PM10 pollution in Models 5c 
and 5d but also in Models 6c and 6d. For BEV buses, the effect size is between 1.0 and 1.1 
but for PHEV buses it is considerably larger, between 1.7 and 2.1. Interestingly, in Mod-
els 7c and 7d the measure for charging stations renders the coefficients for PM10 pollution 
for both bus types insignificant, indicating that there is a relationship between pollution and 
a policy response to it.14 However, PM10 pollution seems to be a poor measure, as indicated 
by the decrease of the goodness of fit in all models with its inclusion. This poor measure-
ment quality could be related to the ease with which the regional governments in favor of 
meeting policy targets could adjust the measurement.

As a robustness test, we use the Air Quality Index as an alternative measure of pol-
lution. This composite index counts the number of good days in a region and a decrease 
in good days should result in higher diffusion. This pollution measure again shows in 
Model 8a and 8b no effect for electric cars. Furthermore, it confirms the finding for BEV 
buses, where we see a large and significant effect size of about -1.4. For PHEV buses, the 
effect is not significant. Overall, these findings provide confidence that local air pollution 
can influence the diffusion of electric vehicles, but only for buses. The effects for buses are 
quite reasonable, since regional governments can use buses to address local air pollution 
while car owners might not want to contribute to the public good.

5  Discussion and Conclusion

Electric vehicles are perceived as a possible means to reduce local and global harmful 
emissions. However, electric vehicle diffusion is impeded by multiple externalities (Ren-
nings 2000; Jaffe et al. 2005). Governments intervene and implement policies to support 
the diffusion of electric vehicles. We empirically analyze the factors that determine the 

14 We conducted an additional robustness test and excluded the two regions with the highest annual diffu-
sion of BEV buses (Shenzhen and Hebei) and PHEV buses (Guangzhou and Hunan), since regional govern-
ments could use buses as means to address pollution. In these Models, only the effect of PM10 pollution for 
BEV buses is no longer significant whereas all other estimates remain qualitatively the same. Since Hebei 
has the highest level of PM10 pollution in the sample, PM

10
 pollution results for BEV buses seems to be 

driven by the highest polluting regions and adopting electric buses seem to be a policy response. Results are 
available in Table O5 in the online supplementary material.

Footnote 13 (continued)
pollution measure for BEV car specifications. Results are available in Table O4 in the online supplementary 
material.
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diffusion of electric vehicles in China for a panel of 31 Chinese regions for the period 
2010-2016. We separately analyze the diffusion of Battery Electric (BEV) cars and Plug-in 
Hybrid Electric (PHEV) cars as well as Battery Electric (BEV) buses and Plug-in Hybrid 
Electric (PHEV) buses. We derived four hypotheses which postulate that monetary and 
non-monetary policy interventions, public charging infrastructure as well as the local envi-
ronmental conditions influence the diffusion of electric vehicles. Our results add further 
insights to the literature on the diffusion of environmentally friendly technologies in gen-
eral and of electric vehicles and especially electric buses in particular.

The results of our dynamic panel system GMM estimations show that the diffusion pro-
cess is highly dynamic and that diffusion is substantially driven by past diffusion. This 
result is consistent with Qiu et al. (2019), who find similar coefficient sizes in a monthly 
panel for Chinese cities and congruent with Jenn et  al. (2013) and Jenn et  al. (2018), 
who find even larger effect sizes for the lagged dependent variables in estimations for US 
regions. Via the lagged dependent variable, the estimation accounts for the entire history 
of the diffusion process and can reveal benefits from adoption, exert neighborhood effects, 
reduce information problems, or reduce uncertainty, all of which can increase diffusion (cf. 
Hall 2006; Coffman et al. 2016). In addition, cost reductions from knowledge accumulation 
and scale effects can be captured by the past diffusion (Weiss et al. 2012).

With respect to the governmental monetary subsidies, our results show that they 
increase diffusion, especially for BEV cars. These finding are in line with previous liter-
ature, which finds similar effects for BEV cars diffusion in general (see for a review of 
the literature Hardman et al. 2017), and particular in China (Ma et al. 2017). While our 
results are very robust for BEV cars, with an elasticity of about 0.5, for the other vehicle 
types, the results are sensitive to co-variates. In addition, for PHEV vehicles the elastici-
ties are substantially smaller. In a more detailed assessment, we separate the total subsidies 
into regional and central government subsidies. The results reveal that subsidies provided 
by the regional governments have a significant positive effect on diffusion for all vehicle 
types, but the central government subsidies via the “Ten Cities, Thousands of Vehicles” 
program and its successors show either no significant effects or, in the case of BEV buses, 
they show a negative significant effect. Since the central government program has a sub-
sidy degression over time, the overall effect seems to be diminished and the anticipated 
vehicle cost reductions could most likely not compensate for the subsidy reductions (Zhang 
and Bai 2017). While these results are in line with the existing literature that purchasing 
subsidies is effective, the results do not provide information about its efficiency. Sheldon 
and Dua (2020) show that the subsidy efficiency in China could be improved and diffu-
sion could be increased if high-income households were not eligible for the subsidy and if 
lower-income households were more supported. Furthermore, most BEV and PHEV buses 
are operated by governmental agencies or firms contracted by the government. Therefore, 
monetary concerns could be secondary for the purchasing decision of electric buses–as 
indicated by the smaller elasticities compared to cars–but the political will to implement 
electric buses remains important (Dixon 2018).15

15 Accounting for the influence of policy is difficult in our setting. We collected data on the ownership 
of bus operators and separated them into governmentally owned and privately owned. Because the data is 
time-invariant and cannot be used in the GMM estimation, cross-sectional regressions were used but dif-
ferences in bus operators do not influence diffusion. Furthermore, we collected information on the regional 
implementation of emission trading systems (Goulder et al. 2017), but again–time and regional variation is 
very low in our sample and cross-sectional regressions do not show a correlation.
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Non-monetary regulatory incentives, such as the exemptions from license-plate lotteries 
or auctions for cars examined in this study, influences the diffusion of BEV cars but not 
of PHEV cars. Previous studies attribute large incentives to these instruments in China, 
as the exemption from purchasing a license-plate for a conventional car brings large sav-
ings (e.g. Wang et al. 2017b; Li et al. 2019). The effect size of introducing an exemption 
from license-plate lotteries or auctions for BEV cars are substantial. The six cities that 
have implemented such policies account for more than 50% of BEV car registrations in 
our sample. In a survey of customers and potential customers across China, Ouyang et al. 
(2020) show that the exception from license-plate restrictions has the highest influence of 
purchasing decisions. However, contrary to the claim by Wang et  al. (2017b) that these 
exemptions should be decisive for the diffusion of PHEV cars as well, we find no effect 
in our econometric approach for this car type. Wan et al. (2015) points out that in the first 
years after implementation, there was little demand for the free license plates. This lack of 
utilization could explain the non-significant effect for PHEV cars and potentially indicate 
that the relevance of this instrument is still unfolding.

Our results show that public charging infrastructure is relevant for all vehicle types, 
which is in line with most previous research (e.g. Sierzchula et  al. 2014; Coffman et  al. 
2016; Wang et al. 2017a; Egnér and Trosvik 2018). Concerns about endogeneity should 
be ruled out by the GMM estimation (Coffman et al. 2016; Egnér and Trosvik 2018). In 
our analysis, we provide a more detailed assessment of charging infrastructure and show 
that different kinds of charging infrastructure matter for different vehicle types. Charging 
stations are especially relevant for buses, whereas car diffusion is more affected by charg-
ing points. Concerning the effect sizes, the elasticity for charging infrastructure ranges 
between 0.2 and 0.4 for cars and between 0.4 and 0.8 for buses. The BEV car elasticities 
for charging infrastructure are consistent with the results from Egnér and Trosvik (2018), 
who estimate for Swedish regions an elasticity between 0.2 and 0.7, depending of model 
specification and for a slightly different operationalization. Li et  al. (2017) find larger 
elasticities of about 0.8 for electric cars in the US but account for feedback effects from 
increases in charging infrastructure due to diffusion. The results for cars are also compel-
ling in light of studies which see range anxiety as a large obstacle for customers’ adoption 
decisions (Egbue and Long 2012). The presence of sufficient charging infrastructure can 
consequently reduce this anxiety and increase diffusion. While our study supports the rel-
evance of public charging infrastructure for vehicle diffusion, it does not answer how much 
or which kind of charging infrastructure is necessary (Hardman et al. 2018; Funke et al. 
2019). Nevertheless, the diffusion of charging infrastructure and vehicles is co-evolving 
and charging opportunities need to increase further to serve additional customers to keep 
up the effect. The ambitious plans of the Chinese government in the “Guidelines for Accel-
erating the Plug-in Electric Vehicle Charging Infrastructure Deployment” should reduce 
any potential bottleneck if implemented accordingly (Ji and Huang 2018) and can be seen 
as an approach by the Chinese government to provide charging infrastructure as a public 
good.

With respect to the effect of local environmental conditions on diffusion, we are, to our 
knowledge, the first to test this relationship empirically. Simulation studies on the diffusion of 
environmentally friendly technologies as well as empirical studies on the willingness to pay for 
a clean environment suggest such a relationship (Cantono and Silverberg 2009; Lin and Tan 
2017; Lin and Wu 2018). Our empirical results show that for passenger cars such a relationship 
does not exist. This could be related to the public good nature of the environment and that the 
individual’s decision to purchase an electric vehicle to reduce environmental stress does not 
only affect herself. For electric buses, we find a significant and positive effect of local pollution 
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on diffusion. The effect size is substantial and additional robustness tests confirm that the effect 
is driven by the highly polluted regions. With the increasing focus by China on policy that 
addresses environmental concerns (Jin et al. 2016; Feng and Liao 2016), regional governments 
adopt electric buses to mitigate local pollution. This result indicates that not only is green public 
procurement part of a more general environmental policy mix in China, but it also illustrates 
that regional governments react to environmental pollution and try to mitigate them.

These results have several implications for the theoretical understanding of diffusion pro-
cesses, especially for eco-innovations. First, the results show that factors do not uniformly influ-
ence the diffusion process across technologies but are technology specific, as the comparison of 
the four different vehicle types demonstrate. In addition to technological differences, usage pat-
tern needs to be considered for a better understanding of diffusion and design of support mecha-
nisms, as illustrated for charging infrastructure. Second, environmental conditions can have an 
effect on diffusion, but this effect seems to be actor specific. Contrary to studies on willingness-
to-pay results, the adoption of a clean vehicle seems not to be affected by the environmental 
condition at the private customer level. However, governmental actors react to environmental 
stress and adopt electric vehicles as a policy response. This finding indicates that externalities 
of competing technologies can influence adoption decisions. Third, the results for buses provide 
insights into the ways in which governmental decisions for public procurement are influenced. 
Rather than monetary factors, other factors, such as the provision of complementary infrastruc-
ture and environmental concerns, seem decisive.

The findings can be translated into policy recommendations to support the diffusion of 
electric vehicles and eco-innovations in general. First, subsidies to reduce vehicle prices 
result in their intended effect and increase the diffusion of cars. For the case of China in 
particular, the “Ten Cities, Thousands of Vehicles” program and its successors seem not 
to provide the intended effect, most likely because the subsidy level decreases over time. 
While decreasing support usually contributes to dynamic efficiency, it should be linked to 
the technological progress to allow for a stable support environment (cf. the German feed-
in tariff for photovoltaics, where technological progress was faster than the decrease in sup-
port). Second, non-monetary incentives can have substantial effects, as the license-plate 
policies for BEV cars illustrate. Reducing the incentives to use alternative technologies can 
be an efficient way to increase diffusion. Third, the provision of public charging infrastruc-
ture is decisive for diffusion. Governments should provide means to establish the required 
infrastructure and thereby consider usage pattern. The recently implemented “Guidelines 
for Accelerating the Plug-in Electric Vehicle Charging Infrastructure Deployment” can 
provide additional charging facilities and can serve as an example for other countries in 
terms of scale and long-term planning. Fourth, local environmental conditions influence 
the decision to invest in electric vehicles. Considering the support for electric vehicles in 
a broader environmental policy mix can be a viable option to reduce regional and, poten-
tially, global pollution. Green public procurement should be fostered on a larger scale to 
mitigate climate change (Aldenius and Khan 2017). However, when implementing such 
policies, coordination failure needs to be considered. For example, China must address the 
issue that the current electricity mix is too dirty to gain overall environmental improve-
ments (Huo et al. 2010, 2015).

The present study has several caveats and opens up room for further research. We are the first 
to provide an assessment of the diffusion of electric buses, but the factors that influence their 
diffusion are still uncertain. Further research needs to explicitly address issues of governmental 
decision-making to better understand the factors that influence diffusion, especially in differ-
ent institutional settings. In addition, while our results provide first insights into the influence 
of environmental conditions on diffusion, Chinese pollution data is not reliable, so additional 
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research needs to confirm these findings. Furthermore, we do not consider a mix of determi-
nants that influence diffusion. In this respect, theoretical and empirical contributions need to 
provide deeper understanding of how the interaction of determinants influence diffusion. Our 
presented results need to be considered in light of several limitations in our analysis. We have 
only a limited sample of regions, so an analysis on a wider sample should improve estimation 
efficiency, and the use of external instruments, especially for subsidies and charging infrastruc-
ture, would improve reliability. Furthermore, Chinese data needs to be taken with care, since 
reported data can be or is influenced by political considerations (e.g. diffusion targets or envi-
ronmental variables). Further due to limitations of available data, we are not able to measure 
diffusion in the strict sense–as the share of electric vehicles to conventional vehicles–but we 
measured it rather as the annual number of vehicle registrations. Therefore, we cannot directly 
account for the market size and international comparison is limited. Better data sources can 
mitigate such shortcomings.

Appendix
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Table 5  Regions and implemented policies

 *A indicates cities which are at the same time provinces (direct-controlled municipalities)
**Indicates regions in which electric vehicles were supported only for public actors
Policy Period 1 refers to the “Ten Cities, Thousands of Vehicles” program (2009–2012). Policy Period 2 
to the “Guiding Opinions on Accelerating the Promotion of the Application of New Energy Vehicles” pro-
gram (2013–2015). Policy Period 3 refers to the “Notice concerning Financial Support Policy for Promotion 
and Application of New Energy Vehicle” program (2016–2020)

Region Region type Policy period 1 Policy period 2 Policy period 3 Non-monetary incentives

2010-2012 2013 2014–
2015

2016

Beijing City* X X X X 2011 (lottery, BEV 
exemption only)

Chengdu City X** X X X
Chongqing City* X** X X X
Dalian City X** X X X
Fujian Province X** X X X
Guangzhou City X** X X X 2013 (auction and lot-

tery)
Haikou City X** X X X
Hangzhou City X X X X 2014 (auction and lot-

tery)
Hebei Province X** X X X
Hefei City X X X X
Huizhou City X X X
Hunan Province X** X X X
Jiangxi Province X** X X X
Jilin Province X X X
Jinhua City X X X
Nanjing City X X
Nantong City X** X X
Qingdao City X X X
Shanghai City* X X X X 2010 (auction and lot-

tery)
Shenyang City X** X X
Shenzhen City X X X X 2015 (auction and lot-

tery)
Suzhou City X** X X
Tangshan City X** X X X
Tianjin City* X** X X X 2014 (auction and lot-

tery)
Wuhan City X** X X X
Xi’an City X X X
Xiangyang City X** X X X
Xinxiang City X X X
Yancheng City X X
Yunnan Province X** X X X
Zhengzhou City X** X X X
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